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a b s t r a c t 

The theories describing the interactions between arbitrary electromagnetic shaped beams and infinite 

cylinders, both in cylindrical and elliptical coordinates, are reviewed. Two main approaches are consid- 

ered (i) an approach in terms of usual functions named the plane-wave spectrum approach and (ii) an 

approach in terms of Schwartz distributions, the latter leading to a formalism more general than the 

former. The relationship between both approaches, in cases when the plane-wave spectrum approach is 

feasible, is discussed. The attention is strongly focused on the description of the illuminating beams, in 

particular when using localized approximations in circular and elliptical coordinates, similar to the ones 

already developed in the case of spherical coordinates. 
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. Introduction 

The generalized Lorenz-Mie theory (GLMT) describes the inter- 

ction between electromagnetic arbitrary shaped beams and ho- 

ogeneous spheres, relying on two ingredients (i) the decompo- 

ition of incident waves, scattered waves and waves internal to 

he sphere in terms of partial waves and (ii) the fact that spher- 

cal coordinates allow one to use a method of separation of vari- 

bles to deal with Maxwell’s equations [1–3] . This GLMT has been 

alled GLMT in the strict sense ( stricto sensu ) and the name GLMT 

as been used generically to designate other theories of interac- 

ions between electromagnetic arbitrary shaped beams and a fam- 

ly of particles when waves are decomposed into partial waves, 

nd when the particles are regular enough to allow one to use 

 method of separation of variables, e.g. GLMT for multilayered 

pheres [4] , assemblies of spheres and aggregates [5] , and spheres 

ith eccentrically located spherical inclusions [6] . 

Two other GLMTs have been developed, namely for infinite 

ylinders, either (i) with a circular or (ii) with an elliptical cross- 

ection. The development of these theories ranged from 1994 to 

0 0 0, which is a fairly long span, particularly when it is noted that

he authors were already trained with the GLMT stricto sensu . The 

xplanation lies in the fact that, when trying to build these theo- 
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ies in the case of illuminating beams described by the Maxwellian 

ontributions to Gaussian Davis beam descriptions, it has been 

ound that the use of usual functions was relentlessly leading to 

 failure. It has then been recognized that the most general com- 

ulsory framework to be used was the one of Schwartz distribu- 

ions. This fact renders the access of the newcomer to GLMTs for 

nfinite cylinders fairly difficult. A current revival of the interest for 

uch theories, for instance in the framework of studies devoted to 

hotophoretic forces, e.g. [7–9] , and other issues, e.g. [10–13] , then 

rovided a motivation to review the GLMTs for infinite cylinders, 

xpounding the published material under a single roof, with an ef- 

ort of pedagogic skill allowing the newcomer to use an efficient 

nroad to explore the issue. 

The paper is organized as follows. Section 2 describes the GLMT 

or circular cylinders in terms of usual functions. It is to be noted 

hat the material presented in this section has never been explic- 

tly published in the literature, although numerical results were 

ublished, but these numerical results have been preceded by a 

iscussion in terms of distributions which made the access to the 

ewcomer fairly opaque. Section 2 describes the GLMT for circu- 

ar cylinders in terms of distributions. It explains why the use of 

istributions has been necessary, how to use them and how we 

an pass from a formulation to the other (when this passage is 

ossible). Section 3 deals with the case of elliptical infinite cylin- 

ers, both in terms of usual functions and in terms of distributions. 

ection 4 describes localized approximations which may be used 

https://doi.org/10.1016/j.jqsrt.2022.108181
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o speed up numerical computations associated with the descrip- 

ion of the illuminating beams. Section 5 complements the paper 

y discussing other worldwide contributions devoted to the inter- 

ctions between arbitrary shaped beams and cylinders. Section 6 

s a conclusion. 

. Formalism in terms of usual functions 

The configuration to be studied is described from Fig. 1 adapted 

rom [14] . The scatterer is an infinite cylinder with a circular cross- 

ection of radius a . The axis of the cylinder is chosen to coin-

ide with the axis (O c z) of a Cartesian coordinate system (x, y, z) .

he material of the cylinder is assumed to be non-magnetic, lin- 

ar, isotropic and homogeneous with respect to both space and 

ime. A cylindrical coordinate system (x 1 , x 2 , x 3 ) = (z, ρ, ϕ) is at-

ached to the Cartesian system (x, y, z) .The cylinder is illuminated 

y an arbitrary incident shaped beam having an exp (iωt) -time har- 

onic dependence which will be omitted in the sequel, according 

o an usual practice. The incident wave is defined by its electric 

eld components (E i z , E 
i 
ρ, E i ϕ ) and by its magnetic field components

H 

i 
z , H 

i 
ρ, H 

i 
ϕ ) . It propagates in the surrounding medium, assumed to

e non-absorbing. The complex refractive index M of the cylinder 

aterial is taken relatively to the surrounding medium. The prob- 

em is to solve Maxwell’s equations in order to determine the scat- 

ered wave and the cylinder (or internal) wave. 

.1. The Bromwich method and generating functions 

In spherical coordinates, the GLMT stricto sensu has been orig- 

nally built using scalar potentials, more particularly Bromwich 

calar Potentials (BSPs). It has later been converted to the use of 

ector Spherical Wave Functions (VSWFs), see [15] ., useful to use 

ranslational theorems in the case of assemblies of spheres and 

ggregates [5] or in the case of spherical particles with an ec- 

entric spherical inclusion [6] . VSWFs are furthermore useful in 

BCM (Extended Boundary Condition Method, e.g. [16–18] ) devoted 

o the study of scattering by irregularly shaped particles, e.g. re- 

iew in Section 8.1 of [19] . The use of scalar potentials may be

referred because it leads to more explicit and more readable for- 

ulae, although, historically, it has been a matter of contingency 

20] . Therefore the GLMT for circular infinite cylinders, to which 

his section is devoted, has been developed as well using BSPs. 

he use of BSPs is exhaustively reviewed in [3] , Sections 2.2 and 

.3 , see as well [21,22] . For the sake of completeness, the theory of

SPs in circular cylindrical coordinates is reviewed below, follow- 

ng [14] . 

At point P of the cylindrical coordinate system (x 1 , x 2 , x 3 ) =
z, ρ, ϕ) , Pythagora’s theorem reads as: 

s 2 = (e 1 ) 
2 dz 2 + (e 2 ) 

2 dρ2 + (e 3 ) 
2 dϕ 

2 (1) 

n which ds is the infinitesimal distance between two points P and 

 + dP , with: 

 1 = e 2 = 1 , e 3 = ρ (2) 

eading to: 

e 1 = 1 

∂ 
∂x 1 

( e 2 
e 3 

) = 

∂ 
∂z 

( 1 ρ ) = 0 

}
(3) 

For the considered non-magnetic, linear, local, isotropic and 

omogeneous media, the general Maxwell’s equations reduce to 

 simpler form that we shall call the Special Maxwell’s Equa- 

ions (SMEs). When Eq. (3) is satisfied, SMEs can be solved by us- 

ng the Bromwich method relying on BSPs. A counter-example is 

he case of spheroidal coordinates, e.g. [23,24] . When using BSPs, 

ny solution to the SMEs is the summation of two special solu- 

ions, the T M wave (Transverse Magnetic Wave) and the T E wave 
2 
Transverse Electric Wave). The special solutions may be found by 

rst solving a partial differential equation for BSPs U T M 

and U T E . 

n the system (z, ρ, ϕ) , this equation, valid for both U T M 

and U T E ,

eads as: 

∂ 2 U 

∂z 2 
+ k 2 U + 

1 

ρ

∂ 

∂ρ
(ρ

∂U 

∂ρ
) + 

1 

ρ2 

∂ 2 U 

∂ϕ 

2 
= 0 (4) 

n which k is the wavenumber in the considered material (i.e. it 

ust be replaced by k c in the cylinder) and U stands either for 

 T M 

and U T E . Once U T M 

and U T E are determined, all T M and T E

eld components may be evaluated by using the following set of 

quations: 

 z,T M 

= 

∂ 2 U T M 

(∂z) 2 
+ k 2 U T M 

(5) 

 ρ,T M 

= 

∂ 2 U T M 

∂ z∂ ρ
(6) 

 ϕ,T M 

= 

1 

ρ

∂ 2 U T M 

∂ z∂ ϕ 

(7) 

 z,T M 

= 0 (8) 

 ρ,T M 

= 

iωε 

ρ

∂U T M 

∂ϕ 

(9) 

 ϕ,T M 

= −iωε 
∂U T M 

∂ρ
(10) 

 z,T E = 0 (11) 

 ρ,T E = − iωμ

ρ

∂U T E 

∂ϕ 

(12) 

 ϕ,T E = iωμ
∂U T E 

∂ρ
(13) 

 z,T E = 

∂ 2 U T E 

(∂z) 2 
+ k 2 U T E (14) 

 ρ,T E = 

∂ 2 U T E 

∂ z∂ ρ
(15) 

 ϕ,T E = 

1 

ρ

∂ 2 U T E 

∂ z∂ ϕ 

(16) 

n which μ and ε denote the permeability and the permittivity 

f the medium respectively ( ε must be replaced by ε c inside the 

ylinder). 

As usual, solutions of Eq. (4) are searched by using coordinate 

eparability according to: 

(z, ρ, ϕ) = Z(z) R (ρ) φ(ϕ ) (17) 

For use in the sequel, this equation must be commented. A co- 

rdinate system in which solutions of the form of Eq. 17 exist is 

alled a separable coordinate system. There exist only eleven sep- 

rable coordinate systems [25,26] , including the spherical coordi- 

ate system and the cylindrical coordinate systems, for both circu- 

ar and elliptical cylinder coordinates. Following [26] , all solutions 

f the partial differential Eq. (17) can be built up from linear com- 

inations of the members of the family of separable solutions. We 

hall later however find that this is true, in general, only if we ex- 

end the formalism from usual functions to Schwartz distributions. 

or the time being, let us be satisfied when working with usual 

unctions. 
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that the (usual) functions Z(z) , R (ρ) , φ(ϕ ) satisfy: 

(18) 

(19) 

ρ (20) 

ity equation φ(0) = φ(2 nπ) , n integer, and therefore take the form 

e  general solution of Eq. (19) and requiring that solutions must remain 

fi lutions may then be given the form exp (ikγ z) , (kγ ) ∈ R , in which we 

h

r (21) 

Bessel equation: 

r (22) 

 of the first kind denoted J m 

(r) and a Bessel function of the second kind 

d m these functions, a set of two other linearly independent solutions is 

f

H (23) 

H (24) 

al functions, the general BSPs may then be obtained as a linear combi- 

n

G (25) 

2

ns J m 

(r) do not diverge at r = 0 . Therefore, these functions must be 

c ncident wave expansion. The BSPs for the incident wave, denoted U 

i 
T M 

a

U (26) 

U (27) 

oducing an integral over the continuous separation constant γ which, 

i s issue later). Furthermore, prefactors in Eqs. (26) and (27) have been 

i  than in spherical coordinates, e.g. for the GLMT stricto sensu , I m,T M 

(γ ) 

a ently of the fact that, depending on the context, they can be genuine 

c am Shape Distributions (BSDs) as in Section 3 . 

E ) e ikγ z dγ (28) 

ther we intend to preserve or not the evanescent waves. In the absence 

o hich γ is to be replaced by C = cos 
 with 
 being a tilt angle ranging 

f o isolate the BSF I m,T M 

(γ ) , we may successively use a representation of 

t again Section 3), and an orthogonality relation for exp (imϕ) , according 

t

(29) 
Inserting the separability Eq. (17) in the BSP Eq. (4) , it is found 

d 2 φ

dϕ 

2 
+ bφ = 0 

d 2 Z 

dz 2 
+ aZ = 0 

d 

dρ
ρ

dR 

dρ
+ (k 2 ρ2 − aρ2 − b) R = 0 

The solutions of the harmonic Eq. (18) must satisfy a continu

xp (imϕ) , m ∈ Z , in which we have set b = m 

2 . Writing down the

nite when z → ±∞ , it is found that a must be a real number. So

ave set a = k 2 γ 2 . Let us introduce: 

 = kρ
√ 

1 − γ 2 

Then, using R (ρ) = R ( r) , it is found that Eq. (20) becomes the 

 

d 

dr 
r 

dR 

dr 
+ (r 2 − m 

2 ) R = 0 

Two independent solutions of this equation are a Bessel function

enoted Y m 

(r) , also called a Neumann function N m 

(r) , e.g. [27] . Fro

ormed by two Hankel functions: 

 

(1) 
m 

(r) = J m 

(r) + iY m 

(r) 

 

(2) 
m 

(r) = J m 

(r) − iY m 

(r) 

According to the separability theorem expressed in terms of usu

ation of generating functions G (z, ρ, ϕ) reading as: 

 (z, ρ, ϕ) = 

⎛ 

⎜ ⎝ 

J m 

(r) 
Y m 

(r) 

H 

(1) 
m 

(r) 

H 

(2) 
m 

(r) 

⎞ 

⎟ ⎠ 

exp (imϕ) exp (ikγ z) , m ∈ Z 

.2. Incident wave expansion and Beam Shape Coefficients 

Among the set 

{ 

J m 

(r) , Y m 

(r ) , H 

(1) 
m 

(r ) , H 

(2) 
m 

(r ) 
} 

, only the functio

hosen among the generating functions G (z, ρ, ϕ) to express the i

nd U 

i 
T E 

, then read as: 

 

i 
T M 

= 

E 0 
k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
I m,T M 

(γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

i 
T E = 

H 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
I m,T E (γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

Eqs. (26) and (27) generalize Eqs. (26) and (27) of [14] by intr

n a preliminary step, was omitted in [14] (we shall return to thi

ntroduced for later convenience. Also, using the same terminology

nd I m,T M 

(γ ) are called Beam Shape Coefficients (BSCs), independ

oefficients as in [14] , Beam Shape Functions (BSFs) as above, or Be

From Eqs. (5) and (26) , we then obtain: 

 

i 
z = E i z,T M 

= E 0 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
(1 − γ 2 ) I m,T M 

(γ ) J m 

(kρ
√ 

1 − γ 2 

The limits of the integral are not specified. They depend on whe

f evanescent waves, these limits are (−1 , +1) , e.g. [28] , [29] in w

rom 0 to π . Otherwise, the limits may be extended to (−∞ , + ∞ ) . T

he so-called Dirac function (better called a Dirac distribution, see 

o: 

1 

2 π

∫ + ∞ 

−∞ 

e i (γ −γ ′ ) Z dZ = δ(γ − γ ′ ) 
3 
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∫
(30) 

i : 

I Zdϕ (31) 

I Zdϕ (32) 

nstants so that BSPs and fields are expressed in terms of two discrete 

s g m 

n,T E 
( n from 1 to ∞ , −n ≤ m ≤ + n ) for the BSCs in the GLMT stricto 

s nt and one continuous separation constant, so that BSPs and fields are 

e fact which is reflected in the notations I m,T M 

(γ ) and I m,T E (γ ) for the 

B of incident fields required the use of a distribution in Eq. (29) , although 

t n” without any damage. This anticipates the fact that a more rigorous 

(  to be developed. 

d only in terms of z-components E i z and H 

i 
z respectively. In spherical 

c ts E i r and H 

i 
r (in a spherical coordinate system). 

n contrast with the fact that they should be coordinate-independent 

c ions, this dependence over ρ must therefore be exactly cancelled out 

b d in spherical coordinates, e.g. [30–32] for plane waves and [33 , 34] for 

a

s the BSF I m,T M 

(γ ) . Similarly, the other incident field components may 

b

E  

ikγ z dγ (33) 

E (34) 

E (35) 

E z dγ (36) 

H ) e ikγ z dγ (37) 

H (38) 

H  

ikγ z dγ (39) 

H  e ikγ z dγ (40) 

H (41) 

i

(42) 
 + ∞ 

−∞ 

e i (m −m 

′ ) ϕ dϕ = 2 πδmm 

′ 

n which Z = kz, and δmm 

′ is the Kronecker symbol. We then obtain

 m,T M 

(γ ) = 

i m 

4 π2 (1 − γ 2 ) J m 

(kρ
√ 

1 − γ 2 ) 

∫ 2 π

0 

e −imϕ 

∫ + ∞ 

−∞ 

E i z 
E 0 

e −iγ Z d

Working with H 

i 
z instead of E i z , we similarly establish: 

 m,T E (γ ) = 

i m 

4 π2 (1 − γ 2 ) J m 

(kρ
√ 

1 − γ 2 ) 

∫ 2 π

0 

e −imϕ 

∫ + ∞ 

−∞ 

H 

i 
z 

H 0 

e −iγ Z d

A few comments are now useful as follows: 

(i) In spherical coordinates, we have two discrete separation co

ummations, a fact which is reflected in the notations g m 

n,T M 

and 

ensu . In the present case, we have one discrete separation consta

xpressed in terms of a discrete summation and of an integral, a 

SCs. As a result, the extraction of the expressions of BSFs in terms 

hat, from a physicist point of view, it can be viewed as a “functio

and more general) formulation, in terms of distributions, will have

(ii) We see that the BSFs I m,T M 

(γ ) and I m,T E (γ ) are determine

oordinates, BSCs are similarly deduced only from radial componen

(iii) The BSFs are seemingly dependent on the coordinate ρ i

omplex functions. If the beam perfectly satisfies Maxwell’s equat

y the quadrature process. An analogous feature has been observe

rbitrary shaped Maxwellian beams. 

From Eq. (5) , we have derived the expansion of E i z = E i 
z,T M 

versu

e derived by using Eqs. (6) - (16) , leading to: 

 

i 
ρ,T M 

= E 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ 
γ
√ 

1 − γ 2 I m,T M 

( γ ) J 
′ 
m 

( kρ
√ 

1 − γ 2 ) e

 

i 
ρ,T E = 

E 0 
kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
I m,T E (γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

i 
ϕ,T M 

= 

−E 0 
kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
γ I m,T M 

(γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

i 
ϕ,T E = E 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ √ 

1 − γ 2 I m,T E ( γ ) J 
′ 
m 

( kρ
√ 

1 − γ 2 ) e ikγ

 

i 
z = H 

i 
z,T E = H 0 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
(1 − γ 2 ) I m,T E (γ ) J m 

(kρ
√ 

1 − γ 2 

 

i 
ρ,T M 

= 

−H 0 

kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
I m,T M 

(γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

i 
ρ,T E = H 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ 
γ
√ 

1 − γ 2 I m,T E ( γ ) J 
′ 
m 

( kρ
√ 

1 − γ 2 ) e

 

i 
ϕ,T M 

= −H 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ √ 

1 − γ 2 I m,T M 

( γ ) J 
′ 
m 

( kρ
√ 

1 − γ 2 )

 

i 
ϕ,T E = 

−H 0 

kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
γ I m,T E (γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

n which we have used: 

H 0 

E 0 
= 

ωε 

k 
= 

k 

ωμ
4 
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2

) (r) to represent an outgoing wave (see asymptotic expression later). If 

t t) , we would have conversely chosen to use H 

(1) 
m 

(r) . For convenience 

i  write the BSPs of the scattered wave as: 

U (43) 

U (44) 

i ttered field components are then given by: 

E γ 2 ) e ikγ z dγ (45) 

E 2 ) e ikγ z dγ (46) 

E (47) 

E (48) 

E kγ z dγ (49) 

H 2 ) e ikγ z dγ (50) 

H (51) 

H  e ikγ z dγ (52) 

H  e ikγ z dγ (53) 

H γ (54) 

 we may simplify the expressions of the scattered fields by using the 

f d its derivative, according to: 

H (55) 

H (56) 

left to the reader. 

2

 J m 

to avoid divergence at ρ = 0 . The wavenumber k must furthermore 

b by ε c . Therefore, instead of depending on r given by Eq. (21) , J m 

must 

d

U (57) 
.3. Scattered wave expansion, including the far-field case 

In the generating functions G (z, ρ, ϕ) , we must now choose H 

(2
m 

he harmonic time dependence were exp (−iωt) instead of exp (+ iω

n the sequel, we shall simply note H 

(2) 
m 

(r) = H m 

(r) . Then, we may

 

s 
T M 

= 

−E 0 
k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
S m,T M 

(γ ) H m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

s 
T E = 

H 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
S m,T E (γ ) H m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

n which prefactors are again chosen for later convenience. The sca

 

s 
z = E s z,T M 

= −E 0 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
(1 − γ 2 ) S m,T M 

(γ ) H m 

(kρ
√ 

1 −

 

s 
ρ,T M 

= −E 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ 
γ
√ 

1 − γ 2 S m,T M 

( γ ) H 

′ 
m 

( kρ
√ 

1 − γ

 

s 
ρ,T E = 

E 0 
kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
S m,T E (γ ) H m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

s 
ϕ,T M 

= 

E 0 
kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
γ S m,T M 

(γ ) H m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

s 
ϕ,T E = E 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ √ 

1 − γ 2 S m,T E ( γ ) H 

′ 
m 

( kρ
√ 

1 − γ 2 ) e i

 

s 
z = H 

s 
z,T E = H 0 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
(1 − γ 2 ) S m,T E (γ ) H m 

(kρ
√ 

1 − γ

 

s 
ρ,T M 

= 

H 0 

kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
S m,T M 

(γ ) H m 

(kρ
√ 

1 − γ 2 ) e ikγ z dγ

 

s 
ρ,T E = H 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ 
γ
√ 

1 − γ 2 S m,T E ( γ ) H 

′ 
m 

( kρ
√ 

1 − γ 2 )

 

s 
ϕ,T M 

= H 0 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ √ 

1 − γ 2 S m,T M 

( γ ) H 

′ 
m 

( kρ
√ 

1 − γ 2 )

 

s 
ϕ,T E = 

−H 0 

kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
γ S m,T E (γ ) H m 

(kρ
√ 

1 − γ 2 ) e ikγ z d

When the far-field condition is satisfied, e.g. Section 8 in [14] ,

ollowing asymptotic expressions for the Hankel function H m 

(r) an

 m 

(r) → H 

∞ 

m 

(r) = 

√ 

2 

π r 
e −ir i m e iπ/ 4 

 

′ 
m 

(r) → 

−(1 + 2 ir) 

2 r 
H 

∞ 

m 

( r) 

The resulting simplified expressions for the scattered fields are 

.4. Internal wave expansion 

As for the incident wave, the generating function must again use

e replaced by the wavenumber k c in the cylinder material, and ε

epend on r c = kMρ
√ 

1 − γ 2 in which we used M = k c /k. 

We then introduce BSPs for the cylinder wave according to: 

 

c 
T M 

= 

E 0 
k 2 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T M 

(γ ) J m 

(k c ρ
√ 

1 − γ 2 ) e ik c γ z dγ
5 
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U (58) 

i = Mk , these BSPs may be rewritten as: 

U (59) 

U (60) 

 

M 

2 − γ 2 ) instead of J m 

(Mkρ
√ 

1 − γ 2 ) , have been used. Indeed, let us 

s

U  d(γ
′ 
/M) (61) 

U γ ′ /M) (62) 

 making the changes C m,T M 

(γ /M) /M → C m,T M 

(γ ) and C m,T E (γ /M) /M → 

C

U (63) 

U (64) 

(to be discussed later), let us complement Eqs. (63) and (64) with two 

c

U  dγ (65) 

U (66) 

n 2 of Eqs. (63) –(64) , i.e. the option taken in [14] , correspond to α = 

1 the material permittivity ε c instead of ε, according to e.g. Eq.(1.100) in 

[

ε (67) 

 The internal field components then read as: 

E
 

1 − αγ 2 ) e ikMβγ z dγ (68) 

E  − αγ 2 ) e ikMβγ z dγ (69) 

E z dγ (70) 

E  

ikMβγ z dγ (71) 

E αγ 2 ) e ikMβγ z dγ (72) 

H
√ 

1 − αγ 2 ) e ikMβγ z dγ (73) 

H  

ikMβγ z dγ (74) 
 

c 
T E = 

iH 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T E (γ ) J m 

(k c ρ
√ 

1 − γ 2 ) e ik c γ z dγ

n which prefactors are taken to be the same than in [14] . With k c 

 

c 
T M 

= 

E 0 
k 2 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T M 

(γ ) J m 

(Mkρ
√ 

1 − γ 2 ) e iMkγ z dγ

 

c 
T E = 

iH 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T E (γ ) J m 

(Mkρ
√ 

1 − γ 2 ) e iMkγ z dγ

However, in [14] , exp (ikγ z) instead of exp (iMkγ z) , and J m 

(kρ
√

et Mγ = γ ′ in Eqs. (59) –(60) , we obtain: 

 

c 
T M 

= 

E 0 
k 2 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T M 

(γ ′ /M) J m 

(kρ
√ 

M 

2 − γ ′ 2 ) e ikγ ′ z

 

c 
T E = 

iH 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T E (γ

′ /M) J m 

(kρ
√ 

M 

2 − γ ′ 2 ) e ikγ
′ z d(

We may then relabel γ ′ to γ , and afterward relabel the BSFs by

 m,T E (γ ) , leading to: 

 

c 
T M 

= 

E 0 
k 2 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T M 

(γ ) J m 

(kρ
√ 

M 

2 − γ 2 ) e ikγ z dγ

 

c 
T E = 

iH 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T E (γ ) J m 

(kρ
√ 

M 

2 − γ 2 ) e ikγ z dγ

This was the option taken in [14] . To let the two options open 

onstants α and β later to be discussed, according to: 

 

c 
T M 

= 

E 0 
k 2 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T M 

(γ ) J m 

(Mkρ
√ 

1 − αγ 2 ) e iMkβγ z

 

c 
T E = 

iH 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
C m,T E (γ ) J m 

(Mkρ
√ 

1 − αγ 2 ) e iMkβγ z dγ

Option 1 of Eqs. (59) –(60) correspond to α = β = 1 while optio

 /M 

2 and β = 1 /M. Also, in the set of Eqs. (5) –(16) , we must use 

3] : 

 c = M 

2 ε 

We must also take care of changing k to k c in Eqs. (5) and (14) .

 

c 
z = E c z,T M 

= E 0 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
(1 − β2 γ 2 ) C m,T M 

(γ ) J m 

(Mkρ
√

 

c 
ρ,T M 

= E 0 M 

+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ 
βγ

√ 

1 − αγ 2 C m,T M 

( γ ) J 
′ 
m 

( Mkρ
√ 

1

 

c 
ρ,T E = 

iE 0 
kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
C m,T E (γ ) J m 

(Mkρ
√ 

1 − αγ 2 ) e ikMβγ

 

c 
ϕ,T M 

= 

−E 0 
kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
βγC m,T M 

(γ ) J m 

(Mkρ
√ 

1 − αγ 2 ) e

 

c 
ϕ,T E = −E 0 M 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ √ 

1 − αγ 2 C m,T E ( γ ) J 
′ 
m 

( Mkρ
√ 

1 −

 

c 
z = H 

c 
z,T E = iH 0 M 

2 
+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
(1 − β2 γ 2 ) C m,T E (γ ) J m 

(Mkρ

 

c 
ρ,T M 

= 

−H 0 M 

kρ

+ ∞ ∑ 

m = −∞ 

(−i ) m me imϕ 

∫ 
C m,T M 

(γ ) J m 

(Mkρ
√ 

1 − αγ 2 ) e
6 
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H
 

1 − αγ 2 ) e ikMβγ z dγ (75) 

H  − αγ 2 ) e ikMβγ z dγ (76) 

H 2 ) e ikMβγ z dγ (77) 

i

2

E (78) 

E (79) 

H (80) 

H (81) 

i d T E -components. We also introduce the following notations: 

H (82) 

[ (83) 

J (84) 

[ (85) 

J (86) 

[ (87) 

(  J c m 

e ikMβγ z (88) 

{
γ ) ̃  J i m 

] 

} 

e ikγ z 

(89) 

( ) J c m 

e ikMβγ z (90) 

{
γ ) ̃  J i m 

] 

} 

e ikγ z 

(91) 

C (92) 

C (93) 
 

c 
ρ,T E = −H 0 M 

2 
+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ 

∫ 
βγ

√ 

1 − αγ 2 C m,T E ( γ ) J 
′ 
m 

( Mkρ
√

 

c 
ϕ,T M 

= −H 0 M 

2 
+ ∞ ∑ 

m = −∞ 

i (−i ) m e imϕ 

∫ √ 

1 − αγ 2 C m,T M 

( γ ) J 
′ 
m 

( Mkρ
√ 

1

 

c 
ϕ,T E = 

−H 0 M 

kρ

+ ∞ ∑ 

m = −∞ 

i (−i ) m me imϕ 

∫ 
βγC m,T E (γ ) J m 

(Mkρ
√ 

1 − αγ

n which we have again used Eq. (42) . 

.5. Use of boundary conditions 

The boundary conditions for ρ = a read as: 

 

i 
z + E s z = E c z 

 

i 
ϕ + E s ϕ = E c ϕ 

 

i 
z + H 

s 
z = H 

c 
z 

 

i 
ϕ + H 

s 
ϕ = H 

c 
ϕ 

n which each component is the sum of the corresponding T M- an

 m 

(ka 
√ 

1 − γ 2 ) = H m 

 H 

′ 
m 

(kρ
√ 

1 − γ 2 )] ρ= a = 

˜ H m 

 m 

(ka 
√ 

1 − γ 2 ) = J i m 

 J 
′ 
m 

(kρ
√ 

1 − γ 2 )] ρ= a = 

˜ J i m 

 m 

(Mka 
√ 

1 − αγ 2 ) = J c m 

 J 
′ 
m 

(Mkρ
√ 

1 − αγ 2 )] ρ= a = 

˜ J c m 

The boundary conditions then read as: 

1 − γ 2 )[ I m,T M 

(γ ) J i m 

− S m,T M 

(γ ) H m 

] e ikγ z = M(1 − β2 γ 2 ) C m,T M 

(γ )

 

mγ

ka 
[ S m,T M 

(γ ) H m 

− I m,T M 

(γ ) J i m 

] + i 
√ 

1 − γ 2 [ S m,T E (γ ) ̃  H m 

+ I m,T E (

= 

[ −m 

ka 
βγC m,T M 

(γ ) J c m 

− M 

√ 

1 − αγ 2 C m,T E (γ ) ̃  J c m 

] 
e ikMβγ z 

1 − γ 2 )[ I m,T E (γ ) J i m 

+ S m,T E (γ ) H m 

] e ikγ z = iM 

2 (1 − β2 γ 2 ) C m,T E (γ

 

mγ

ka 
[ S m,T E (γ ) H m 

+ I m,T E (γ ) J i m 

] − i 
√ 

1 − γ 2 [ S m,T M 

(γ ) ̃  H m 

− I m,T M 

(

= 

[
imM 

ka 
βγC m,T E (γ ) J c m 

+ iM 

2 
√ 

1 − αγ 2 C m,T M 

(γ ) ̃  J c m 

]
e ikMβγ z 

From Eqs. (88) and (90) , we respectively obtain: 

 m,T M 

(γ ) = 

(1 − γ 2 )[ I m,T M 

(γ ) J i m 

− S m,T M 

(γ ) H m 

] e ikγ z 

M( 1 − β2 γ 2 ) J c m 

e ikMβγ z 

 m,T E (γ ) = 

(1 − γ 2 )[ I m,T E (γ ) J i m 

+ S m,T E (γ ) H m 

] e ikγ z 

iM 

2 ( 1 − β2 γ 2 ) J c m 

e ikMβγ z 
7 
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A (94) 

i

A (95) 

A (96) 

B (97) 

B (98) 

E (99) 

i

E (100) 

E (101) 

F (102) 

F (103) 

 β . It is then clear that the constants occurring in Eqs. (95) - (98) and 

1 ion 1. Unfortunately, in this option, the z -dependent term exp (iMkγ z) 

d ption 2 has been chosen in [14] ). As a by-product issue, it would then 

b equivalent (as expected) when M is real. In this last case, option 1 is 

h ) simplify to: 

C (104) 

C (105) 

A (106) 

A (107) 

B (108) 

B (109) 

E (110) 

E (111) 

F (112) 
Inserting Eqs. (92) –(93) into Eq. (89) , we obtain: 

 m,T M 

S m,T M 

(γ ) + A m,T E S m,T E (γ ) = B m,T M 

I m,T M 

(γ ) + B m,T E I m,T E (γ ) 

n which: 

 m,T M 

= 

mH m 

γ

ka 

[
1 − β(1 − γ 2 ) 

M(1 − β2 γ 2 ) 

]

 m,T E = i 
√ 

1 − γ 2 ̃  H m 

− i 
√ 

1 − αγ 2 (1 − γ 2 ) 

M(1 − β2 γ 2 ) 

˜ J c m 

H m 

J c m 

 m,T M 

= 

mJ i m 

γ

ka 

[
1 − β(1 − γ 2 ) 

M(1 − β2 γ 2 ) 

]

 m,T E = 

i 
√ 

1 − αγ 2 (1 − γ 2 ) 

M(1 − β2 γ 2 ) 

˜ J c m 

J i m 

J c m 

− i 
√ 

1 − γ 2 ̃  J i m 

Similarly, inserting Eqs. (92) –(93) into Eq. (91) , we obtain: 

 m,T M 

S m,T M 

(γ ) + E m,T E S m,T E (γ ) = F m,T M 

I m,T M 

(γ ) + F m,T E I m,T E (γ ) 

n which: 

 m,T M 

= 

iM 

√ 

1 − αγ 2 (1 − γ 2 ) 

(1 − β2 γ 2 ) 

˜ J c m 

H m 

J c m 

− i 
√ 

1 − γ 2 ̃  H m 

 m,T E = 

mH m 

γ

ka 

[
1 − β(1 − γ 2 ) 

M(1 − β2 γ 2 ) 

]

 m,T M 

= 

iM 

√ 

1 − αγ 2 (1 − γ 2 ) 

(1 − β2 γ 2 ) 

˜ J c m 

J i m 

J c m 

− i 
√ 

1 − γ 2 ̃  J i m 

 m,T E = 

mJ i m 

γ

ka 

[
β(1 − γ 2 ) 

M(1 − β2 γ 2 ) 
− 1 

]
We know enough to discuss the values of the constants α and

00 –103 simplify if we take the option in which α = β = 1 , i.e. opt

oes not remain finite at z → ±∞ if M is complex (justifying that o

e interesting to check whether options 1 and 2 are numerically 

owever appealing because Eqs. (92) –(93),(95) –(98) and (100) –(103

 m,T M 

(γ ) = 

[ I m,T M 

(γ ) J i m 

− S m,T M 

(γ ) H m 

] e ikγ z 

MJ c m 

e ikMβγ z 

 m,T E (γ ) = 

[ I m,T E (γ ) J i m 

+ S m,T E (γ ) H m 

] e ikγ z 

iM 

2 J c m 

e ikMβγ z 

 m,T M 

= 

mH m 

γ

ka 

[ 
1 − 1 

M 

] 

 m,T E = i 
√ 

1 − γ 2 

[˜ H m 

− 1 

M 

˜ J c m 

H m 

J c m 

]

 m,T M 

= 

mJ i m 

γ

ka 

[ 
1 − 1 

M 

] 

 m, T E = i 
√ 

1 − γ 2 

[
1 

M 

˜ J c m 

J i m 

J c m 

− ˜ J i m 

]

 m,T M 

= i 
√ 

1 − γ 2 

[
M ̃

 J c m 

H m 

J c m 

− ˜ H m 

]

 m,T E = 

mH m 

γ

ka 

[ 
1 − 1 

M 

] 

 m,T M 

= i 
√ 

1 − γ 2 

[
M ̃

 J c m 

J i m 

J c m 

− ˜ J i m 

]

8 
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F (113) 

ss S m,T E (γ ) from Eq. (94) and insert the result in Eq. (99) to obtain 

S

S (114) 

i

S (115) 

S (116) 

S (117) 

lt in Eq. (94) to obtain S m,T E (γ ) reading as: 

S (118) 

i

S (119) 

S (120) 

S (121) 

used by Ren et al. [35] and by Méès et al. [36] (to which we shall 

r calized approximation (see Section 5 ). However, the paper by Ren et al. 

i butions (see Section 3 ) to a formulation in terms of usual functions and 

t  terms of usual functions. It then happens that the formulation above 

i though it could be deduced from the dictionary in Ren et al. [35] and 

a ce, the formulation presented above may be viewed as new. At least it 

i  roof. 

 of plane-wave spectrum approach. e.g. [35] , a denomination (i) which 

i s soon discussed and (ii) which is motivated by the plane wave term 

o  be confused with the Angular Spectrum Representation (ASR) or De- 

c LMT stricto sensu (i.e. when the scatterer is a homogeneous sphere, or 

m and 4 of [38] and a recent paper by Shen et al. [39] . In the GLMT for 

c  it is a consequence of the structure of the separability equation in the 

s is the result of the description of the illuminating beam in terms of a 

p

2

he integrals over the separability constant is omitted. Then the BSCs 

(

U (122) 

U (123) 

i on γ any more, in the form of functions, and become genuine BSCs. To 

e perly said the distribution δ(γ − γ
′ 
) , is not required any more and the 

u

I (124) 

I (125) 
 m,T E = 

mJ i m 

γ

ka 

[ 
1 

M 

− 1 

] 
We now solve the set of Eqs. (94) –(99) , as follows. We expre

 m,T M 

(γ ) reading as: 

 m,T M 

(γ ) = 

1 

S 1 
m,T M 

[ S 2 m,T M 

I m,T M 

(γ ) + S 3 m,T M 

I m,T E (γ )] 

n which: 

 

1 
m,T M 

= 1 − A m,T M 

E m,T E 

A m,T E E m,T M 

 

2 
m,T M 

= 

F m,T M 

E m,T M 

− B m,T M 

E m,T E 

A m,T E E m,T M 

 

3 
m,T M 

= 

F m,T E 

E m,T M 

− B m,T E E m,T E 

A m,T E E m,T M 

Similarly, we express S m,T M 

(γ ) from Eq. (99) and insert the resu

 m,T E (γ ) = 

1 

S 1 
m,T E 

[ S 2 m,T E I m,T M 

(γ ) + S 3 m,T E I m,T E (γ )] 

n which: 

 

1 
m,T E = 1 − A m,T M 

E m,T E 

A m,T E E m,T M 

= S 1 m,T M 

 

2 
m,T E = 

B m,T M 

A m,T E 

− A m,T M 

F m,T M 

A m,T E E m,T M 

 

3 
m,T E = 

B m,T E 

A m,T E 

− A m,T M 

F m,T E 

A m,T E E m,T M 

This completes the formulation. Such a formulation has been 

eturn later) in the case of Gaussian beams described by using a lo

ntroduced a dictionary to translate a formulation in terms of distri

herefore, to save room, did not explicitly repeat the formulation in

s not explicitly available, in this form, in the archival literature, al

lthough it is discussed in the thesis dissertation by Méès [37] . Hen

s certainly useful for the reader to have it available under a single

Let us add that the formulation above has been given the name

s convenient to oppose it to the approach in terms of distribution

f the form exp (ikz) occurring in the formulation. This should not

omposition (ASD) used to evaluate BSCs in the framework of the G

ore generally in spherical coordinates), e.g. review in Sections 3 

ylinders, the term exp (ikz) is essential to the formulation because

patial domain while, conversely, the ASD in spherical coordinates 

lane-wave spectrum in the spectral domain. 

.6. A simplified formulation and a trivial example 

The formulation in [14] is a simplified formulation in which t

BSFs) of Eqs. (26) –(27) simplify to: 

 

i 
T M 

= 

E 0 
k 2 

+ ∞ ∑ 

m = −∞ 

I m,T M 

(−i ) m e imϕ J m 

(kρ
√ 

1 − γ 2 ) e ikγ z 

 

i 
T E = 

H 0 

k 2 

+ ∞ ∑ 

m = −∞ 

I m,T E (−i ) m e imϕ J m 

(kρ
√ 

1 − γ 2 ) e ikγ z 

n which the BSFs I m,T M 

(γ ) and I m,T E (γ ) do not depend explicitly 

xtract them, Eq. (29) which involves the Dirac function, more pro

se of Eq. (30) is sufficient to obtain: 

 m,T M 

= 

exp (−ikγ z) 

2 π(1 − γ 2 )(−i ) m J m 

(kρ
√ 

1 − γ 2 ) 

∫ 2 π

0 

E i z 
E 0 

e −imϕ dϕ 

 m,T E = 

exp (−ikγ z) 

2 π(1 − γ 2 )(−i ) m J m 

(kρ
√ 

1 − γ 2 ) 

∫ 2 π

0 

H 

i 
z 

H 0 

e −imϕ dϕ 
9 
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i mined. 

minating beam and letting the rest of the formulation in the hands of 

t e wave propagating perpendicularly to the cylinder axis, from negative 

t nder axis, a simple case well documented in the literature, e.g. [25 , 40] . 

W

E (126) 

H (127) 

I imϕ dϕ (128) 

on z, we immediately require γ = 0 , so that Eq. (128) becomes: 

I (129) 

i ) m J m 

(kρ) so that: 

I (130) 

e is a pure T M-wave. It is interesting to note, as previously announced, 

t plane case, we can see how it is cancelled by the integral term. This is 

a rding to which the BSCs (or BSFs) are complex numbers which do not 

d

. What is important here is to note that the result γ = 0 is mathemat- 

i oach in which we would integrate over γ . This fact, which would hold 

a nt value of γ ), together with the use of a “Dirac function” in Eq. (29) , 

i -wave spectrum approach as well as in its simplified formulation. 

3

cheme of approximation [41–43] . In this framework, a potential vector 

A eads as: 

A (131) 

i

ψ (132) 

i  which w 0 is the beam waist radius. 

 the Gaussian beam. It is called the first-order Davis beam. The second 

a s of the Davis beam [42] . Explicit expressions are known only for these 

t tromagnetic fields are afterward deduced from the potential vector. 

y can be shown to be the summation of a first term perfectly satisfying 

M y a supplementary non-Maxwellian contribution [44 , 45] . 

 to a Gaussian beam, according to the configuration displayed in Fig. 2 

( cated at the origin O G . The beam propagates along the w -axis, from 

n  field components read as [1 , 41] : 

E (133) 

E (134) 

E (135) 

H (136) 

H (137) 

H (138) 

i

ψ (139) 
n which the γ -spectrum has reduced to a single value to be deter

As a trivial example, focusing only on the description of the illu

he reader, let us assume that the cylinder is illuminated by a plan

o positive x , with the electric field vibrating in parallel to the cyli

e then have: 

 

i 
z = E 0 exp (−ikx ) = E 0 exp (−ikρ cos ϕ) 

 

i 
z = 0 

From Eq. (124) , the T M−BSCs then read as: 

 m,T M 

= 

exp (−ikγ z) 

2 π(1 − γ 2 )(−i ) m J m 

(kρ
√ 

1 − γ 2 ) 

∫ 2 π

0 

exp (−ikρ cos ϕ) e −

Since the BSCs are constant numbers which should not depend 

 m,T M 

= 

1 

2 π(−i ) m J m 

(kρ) 

∫ 2 π

0 

exp [ −i (mϕ + kρ cos ϕ)] dϕ 

But the integral in Eq. (129) is a classical integral equal to 2 π(−
 m,T M 

= 1 , ∀ m 

We also readily find that I m,T E = 0 , ∀ m so that the incident wav

hat the ρ-dependent prefactor was only apparent. Indeed, in this 

n example of a completely general result already mentioned, acco

epend on the coordinates. 

The reader is referred to [14] for a complete analysis of this case

cally completely incompatible with the plane-wave spectrum appr

s well if the illumination was not perpendicular (but for a differe

ndicates that something is not completely satisfactory in the plane

. Formalism in terms of distributions: Why and how 

Let us consider a Gaussian beam described by using the Davis s

 = (A x , 0 , 0) is introduced in which the non-zero component A x r

 x = ψ(x, y, z) exp (−ikz) 

n which ψ is expanded as: 

 = ψ 0 + s 2 ψ 2 + s 4 ψ 4 + . . . 

n which s is the beam confinement parameter equal to (1 /kw 0 ) in

The lowest order term ψ 0 represents the fundamental mode of

nd third terms are called the third-order and the fifth-order mode

hree first modes, with the fifth mode available from [43] . The elec

None of these modes exactly satisfy Maxwell’s equations but the

axwell’s equations, called the Maxwellian term, complemented b

We now consider a Cartesian coordinate system O G u v w attached

adapted from [46] , see as well [14] ). The beam waist center is lo

egative to positive w ’s. In the first-order Davis approximation, the

 u = E 0 ψ 0 exp (−ikw ) 

 v = 0 

 w 

= 

−2 Qu 

kw 

2 
0 

E u 

 u = 0 

 v = H 0 ψ 0 exp (−ikw ) 

 w 

= 

−2 Qv 
kw 

2 
0 

H v 

n which: 

 0 = iQ exp 

(
−iQ 

u 

2 + v 2 

w 

2 
0 

)

10 
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Fig. 1. Geometry and coordinate system of the problem. Attached to an infinite cylinder of radius a there is a cylindrical coordinate sysytem (x 1 , x 2 , x 3 ) = (z, ρ, φ) with 

origin at O c . The main axis of the cylinder coincides with the z axis. 

Q (140) 

 cylinder perpendicularly to its axis with the beam waist center located 

o polarization at the waist location) is perpendicular to the plane defined 

b cylinder axis z coincides with the O G v axis. In cylindrical coordinates 

d d required to evaluate the BSCs, we have: 

E (141) 

H (142) 

w

ψ (143) 

Q (144) 

as [14,44] : 

H (145) 

i extensively analyzed in Section 10 of [14] . We here provide a more 

e omponent, i.e. it corresponds to the case when s = 0 , i.e. w 0 is infinite. 

I  integral, we obtain I 0 
m,T E 

= (−1) m +1 for the O (s 0 ) -term. Therefore, in 

u  valid since the separation constant has one precise value, forbidding 

t cy, the O (s 2 ) -term must therefore be studied as well in the restricted 

p en obtain that the corresponding BSP U 

2 
m,T E (in which the superscript 

“ lifies to: 

U (146) 

l

I  cos ϕ) e −imϕ dϕ (147) 
 = 

1 

i + 2 

w 

kw 

2 
0 

We now assume that the Gaussian beam illuminates the infinite

n the axis. The leading electric field polarization (i.e. electric field 

y the cylinder axis z and by the incident unit vector e i , i.e. the 

efined in Fig. 1 , limiting ourselves to the z-components of the fiel

 

i 
z = 0 

 

i 
z = −H 0 ψ 0 exp (ikρ cos ϕ) 

ith: 

 0 = iQ exp 

[
−iQ 

ρ2 sin 

2 ϕ + z 2 

w 

2 
0 

]

 = 

1 

i − 2 

ρ cos ϕ 
kw 

2 
0 

Focusing on H 

i 
z , the Maxwellian contribution to this field reads 

 

i 
z = H 0 [ −1 + s 2 (R 

2 sin 

2 ϕ + 2 iR cos ϕ + Z 2 )] exp (iR cos ϕ) 

n which we have used R = kρ and Z = kz. This configuration is 

xpedient argument. The O (s 0 ) term of Eq. (145) is a plane wave c

ndeed, from Eq. (125) , we have γ = 0 and, evaluating trivially the

tmost rigor, the extended plane-wave spectrum approach is not

he use of an integral with a differential element dγ . For consisten

lane-wave spectrum approach, with γ = 0 . From Eq. (125) , we th

2” refers to the fact that we are dealing with an O (s 2 ) -term) simp

 

2 
m,T E = 

H 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m I 2 m,T M 

J m 

(R ) e imϕ 

eading to: 

 

2 
m,T M 

= 

1 

2 π(−i ) m J m 

(R ) 

∫ 2 π

[ s 2 (R 

2 sin 

2 ϕ + 2 iR cos ϕ + Z 2 )] exp (iR

0 

11 
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Fig. 2. Geometry and coordinate system for the illuminating beam. The beam is assumed to propagate along the w axis, with the v axis. paralell to the z axis of Fig. 1 The 

electric field vibrates along the u axis. 

Z and that there is no satisfactory way to get rid of this dependence 

w coordinates. However, let us consider the quantity: 

U (148) 

w nclusions (the reader does not need to know how the expression for U 

2 

i  its properties). It may then be shown that applying Eqs. (5) –(16) to U 

2 , 

w r Davis beam in cylindrical coordinates, see [14] for details. Therefore 

U d U 

NS according to: 

U (149) 

U (150) 

5) (with γ = 0 ), therefore satisfying the separability theorem expressed 

b ly, U 

NS is not a sum of generating functions as displayed in Eq. (25) . 

T y Eq. (17) and is then called a non- 
∑ 

-separable potential. In order to 

s rst attempt tried, without any success, to build a theory for Gaussian 

b f non- 
∑ 

-separable potentials [47] . 

ulties lied in the fact that the framework in terms of usual functions 

w ributions of the Davis beam and that a correct framework is the one 

o e-wave spectrum approach, its simplified version, and the Maxwellian 

c procedure has been established allowing one to systematically generate 

n  a specific class of functions which are problematic if we want to use 

s uire further investigation if it is wanted to include them, in particular, 
A dramatic consequence of Eq. (147) is that I 2 
m,T M 

depends on 

hich is in contrast with the fact that BSCs should not depend on 

 

2 = 

H 0 s 
2 

k 2 

+ ∞ ∑ 

m = −∞ 

i m (Z 2 + m 

2 − 2 + iR cos ϕ) J m 

(R ) e imϕ 

hich is proposed as an Ansatz from which we shall draw a few co

n Eq. (148) has been obtained; it is sufficient to examine thereafter

e correctly recover the Maxwellian contributions of the first-orde

 

2 behaves as a proper BSP. However, it is the summation of U 

S an

 

S = 

H 0 s 
2 

k 2 

+ ∞ ∑ 

m = −∞ 

i m (m 

2 − 2) J m 

(R ) e imϕ 

 

NS = 

H 0 s 
2 

k 2 
(Z 2 + iR cos ϕ) 

+ ∞ ∑ 

m = −∞ 

i m J m 

(R ) e imϕ 

The term U 

S is a sum of generating functions as displayed in (2

y Eq. (17) , and is then called a 
∑ 

-separable potential. Converse

herefore, it does not satisfy the separability theorem expressed b

olve the problems raised by the above discussed difficulties, a fi

eams (in the case of a first-order Davis approximation) in terms o

It has soon later been found that the source of all these diffic

as not general enough to correctly handle the Maxwellian cont

f distributions, allowing one to deal simultaneously with the plan

ontributions of Davis beam approximations. In [48] , a constructive 

on- 
∑ 

-separable potentials, showing that these potentials provide

eparable functions to solve a problem, and which then would req
12 
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i the separability theorem could be established in terms of distributions, 

a f functions to 
∑ 

-separable potentials in terms of distributions [49] . In 

o re general framework, in terms of distributions, rather than in terms of 

f

ysicists is available from Roddier [50] . A still more easy-to-read tutorial 

d cattering is available from [51] , in which the reader is kindly requested 

t  Eq. (73) . In the present paper, we shall be content to provide a flavour 

o  the attention being paid only to the description of the illuminating 

b a generalization of functions (therefore they are sometimes viewed as 

g  some distributions are not usual functions. The essential fact is that 

d st with functions) any distribution is infinitely differentiable, and each 

d rthermore, when a problem is solved in terms of distributions, it is 

o putations, to check whether the solution in terms of distributions can 

b tory of the theory of distributions, the reader may refer to [52] . The 

e sual language: ∫
(151) 

 δ(x ) is everywhere equal to 0 but for x = 0 , so that the differential 

e h should better be written as: 

< (152) 

i for 0. From Eq. (152) , we see that δ(x ) now receives the status of an 

o tation to use a distribution T which is defined when we know how it 

a hen return to Eq. (150) which, omitting the prefactor H 0 s 
2 /k 2 , is from 

n  of exponentials, the cos ϕ-term may be rewritten as: 

U (153) 

i

J (154) 

l

U (155) 

 may then search for a beam shape “coefficient” A m 

(γ ) satisfying: 

U (156) 

w since the separation constant must have the same value γ = 0 than in 

E . (156) must then be rewritten in terms of distributions as: 

U (157) 

i h must be solved in a rigorous way in the framework of the theory of 

d  of functions means that the support of the distribution A m 

(γ ) is zero 

a on of support { 0 } is a linear combination of the Dirac distribution and 

o

T (158) 

i on. We then rely on the definition of the jth derivative of a distribution 

a

< (159) 

t

A (160) 

 > (161) 
n light scattering theories. One year later, it was understood that 

llowing one to convert the non- 
∑ 

-separable potentials in terms o

ther words, the separability approach must be expressed, in a mo

unctions. 

An easy-to-read introduction to the theory of distributions for ph

evoted specifically to the issue of beam parametrization in light s

o correct a missprint, namely changing δ(a ) to ϕ(a ) in the r.h.s. of

n the use of the theory of distributions in light scattering, with

eams. Before proceeding, let us state that the distributions form 

eneralized functions), i.e. any usual function is a distribution but

istributions solve the problem of differentiation, namely (in contra

erivative is a distribution, a property that we shall soon use. Fu

ften interesting, in particular for computer programming and com

e converted to a solution in terms of usual functions. For an his

mblematic example is the “Dirac function” δ(x ) satisfying, in an u
 

δ(x ) f (x ) dx = f (0) 

Unfortunately, this equation is a mathematical non-sense since

lement dx has no meaning. At best, it is a symbolic notation whic

 δ0 , f > = f (0) 

n which the subscript 0 in δ0 means that it is 0 everywhere but 

perator. More generally, the notation < T , ϕ > is the standard no

cts on f , this latter function being called a test function. Let us t

ow on simply denoted by U . Writing the cosine function in terms

 cos = 

R 

2 

+ ∞ ∑ 

m = −∞ 

i m e imϕ [ J m −1 ( R ) − J m +1 (R )] 

= R 

+ ∞ ∑ 

m = −∞ 

i m e imϕ J 
′ 
m 

(R ) 

n which we have used [53] : 

 

′ 
m 

(R ) = 

1 

2 

[ J m −1 (R ) − J m +1 (R )] 

eading to: 

 = 

+ ∞ ∑ 

m = −∞ 

i m e imϕ [ Z 2 J m 

(R ) + RJ 
′ 
m 

(R )] 

Returning to Eq. (27) of the plane-wave spectrum approach, we

 = 

+ ∞ ∑ 

m = −∞ 

e imϕ 

∫ 
A m 

(γ ) J m 

(R 

√ 

1 − γ 2 ) e iγ Z dγ

hich is an equation which actually has no meaning, as Eq. (151) , 

q. (149) . Similarly as for the passage from Eq. (151) to Eq. (152) , Eq

 = 

+ ∞ ∑ 

m = −∞ 

e imϕ < A m 

(γ ) , J m 

(R 

√ 

1 − γ 2 ) e iγ Z > 

n which A m 

(γ ) is now a Beam Shape Distribution (BSD), and whic

istributions, using its theorems. Now, the fact that γ = 0 in terms

s well. However, we possess a theorem telling us that a distributi

f its derivatives of the form: 

 = 

∞ ∑ 

k =0 

a k δ
(k ) 

n which a k ∈ C and δ(k ) is the k th derivative of the Dirac distributi

ccording to [50] : 

 T (m ) , ϕ > = (−1) m < T , ϕ 

(m ) > 

o establish: 

 m 

(γ ) = −i m δ′′ (γ ) 

Indeed, we then have: 

< A m 

(γ ) , J m 

(R 

√ 

1 − γ 2 ) e iγ Z > = −i m < δ′′ (γ ) , J m 

(R 

√ 

1 − γ 2 ) e iγ Z
13 
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f work relies on Beam Shape Distributions which, from Eqs. (26) –(27) , 

i

U (162) 

U (163) 

distributions in the framework of GLMTs is essentially contained above 

i stributions in which the symbolic notation < . > must be used to usual 

f e symbolic notation by an integral. And it is still another fortunate fact 

t approach (or its simplified version) is sufficient to deal with scattering 

p such as the Maxwellian contributions to Davis beams. 

 (s 2 ) , i.e. for the Maxwellian contribution to a first-order Davis beam is 

d y illuminated by the beam. The case of arbitrary location and arbitrary 

o a GLMT for cylinders up to O (s 2 ) has been used for cylindrical particle 

c to O (s 10 ) is discussed in [55] , still in terms of distributions, but with 

r  classical implementation in computer programs. An approach for the 

c ovided in [29] . 

ncidence, with the beam waist center of the beam located upon the 

c he passage from a theory in terms of distributions to a theory in terms 

o m descriptions were considered (i) Maxwellian beams at limited order 

r pectrum approach as discussed in Section 1 for quasi-Gaussian beams, 

a ed approximation. Concerning (i), the description used the Maxwellian 

c nd numerical results are accordingly provided up to O (s 6) . Concerning 

(  Davis beam which is non-Mawellian whose BSFs then depend on R, 

a value R p , then producing a remodeled Maxwellian beam which, based 

o a Gaussian beam, but provides a fairly satisfactory approximation of it. 

C  localized approximations are discussed. Numerical results for the case 

o , still using a localized approximation, is discussed in [36] . This paper 

a ical optics, comparisons with plane wave scattering, mode separation 

i ffect in which the incident beam propagates along the cylinder), and 

p

 angle of attack he/she should choose when dealing with a problem of 

s mmendation is then as follows. First, if he/she is not familiar with the 

t ve spectrum approach of Section 1, or its simplified version, assuming 

t nd. It must however here be recalled that this plane-wave spectrum 

a work, valid for all cases is the one of distributions, as illustrated and 

d s of distributions is analytically superior to the plane-wave spectrum 

a

the approach in terms of distributions might be preferred because (i) it 

i  contributions to non-Maxwellian beams) (ii) the final conversion from 

d ograms is very easy, or even trivial (when it is allowed), as extensively 

d ement, this more general approach is more aesthetic. Following these 

r ical infinite cylinders using the theory of distributions. 

4

s 1 and 2, the GLMT for elliptical infinite cylinders relies on the use of 

B utions is extensively discussed in [56] . The BSPs for the incident wave 

a

U γ ) , seh n (μ, q 2 ) se n (θ, q 2 ) e ikγ z > ] (164) 

U ) , seh n (μ, q 2 ) se n (θ, q 2 ) e ikγ z > ] (165) 

i nience, and A n,T M 

(γ ) , B n,T M 

(γ ) , A n,T E (γ ) and B n,T E (γ ) are the incident 

B ers, the BSPs here depend on two BSDs). The quantities z, μ and θ are 

e ven and odd Mathieu functions of the first kind respectively, assuming 

f most rigor, it is not defined. Similarly, ceh n (θ, q 2 ) and seh n (θ, q 2 ) are 
= −i m (J m 

(R 

√ 

1 − γ 2 ) e iγ Z ) ′′ γ =0 

= i m [ Z 2 J m 

(R ) + RJ 
′ 
m 

(R )] 

rom which we recover Eq. (155) . Hence, the most general frame

ntervene in equations which must be rewritten as: 

 

i 
T M 

= 

E 0 
k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ < I m,T M 

(γ ) , J m 

(kρ
√ 

1 − γ 2 ) e ikγ z > 

 

i 
T E = 

H 0 

k 2 

+ ∞ ∑ 

m = −∞ 

(−i ) m e imϕ < I m,T E (γ ) J m 

(kρ
√ 

1 − γ 2 ) e ikγ z > 

A fortunate fact is that all the knowledge required to deal with 

n this section. It is another fortunate fact that the passage from di

unctions (when this is possible) amounts to the replacement of th

hat, “for all practical purposes”, the original plane-wave spectrum 

roblems in the framework of GLMTs, if we dismiss “exotic” cases 

The GLMT for infinite cylinders in terms of distributions up to O

iscussed in [46] , for the case when the cylinder is perpendicularl

rientation for a first-order Davis beam is discussed in [28] . Such 

haracterization by phase-Doppler anemometry [54] . A theory up 

esults eventually expressed in terms of usual functions, allowing

ase of arbitrary shaped beams, still in terms of distributions, is pr

Numerical results for the case of Gaussian beams at normal i

ylinder axis, have been displayed in [35] . This paper summarized t

f usual functions (when it is possible). Three different kinds of bea

elying on the Davis scheme of approximation, (ii) a plane-wave s

nd (iii) a plane-wave spectrum approach using a cylindrical localiz

ontributions to the first- and third-Davis beam approximations, a

ii), a quasi-Gaussian beam is defined from a complete first order

nd by remodeling them by fixing the variable R to a prescribed 

n a first order approximation, cannot be defined exactly as being 

oncerning (iii), the reader should refer to Section 4 below in which

f arbitrary location and of arbitrary orientation of a Gaussian beam

lso contains some considerations devoted to the use of geometr

n the case of tilted Gaussian beams (exhibiting a wave guiding e

roperties of the rainbow. 

At this point, the reader would like to know what should be the

cattering of arbitrary shaped beams by infinite cylinders. Our reco

heory of distributions, the expedient choice is to use the plane-wa

hat one of these frameworks is sufficient for the problem at ha

pproach is not always feasible, and that the most general frame

emonstrated above in this section. Therefore the approach in term

pproach. 

Conversely, if he/she is familiar with the theory of distributions, 

s more general and could deal with any case (such as Maxwellian

istributions to usual functions for implementation in computer pr

iscussed in [35] and (iii) although this may be a subjective stat

ecommendations, we are now going to deal with the case of ellipt

. Elliptical infinite cylinders 

As for the case of circular infinite cylinders discussed in Section

SPs. The description of the illuminating beam in terms of distrib

re found to read as: 

 

i 
T M 

= 

E 0 
k 2 

∞ ∑ 

n =0 

[ < A n,T M 

(γ ) , ceh n (μ, q 2 ) ce n (θ, q 2 ) e ikγ z > + < B n,T M 

(

 

i 
T E = 

H 0 

k 2 

∞ ∑ 

n =0 

[ < A n,T E (γ ) , ceh n (μ, q 2 ) ce n (θ, q 2 ) e ikγ z > + < B n,T E (γ

n which the prefactors E 0 /k 2 and H 0 /k 2 have been chosen for conve

SDs (let us remark that, in contrast with the case of circular cylind

lliptical cylinder coordinates, while ce n (θ, q 2 ) and se n (θ, q 2 ) are e

or convenience in the notation that se (θ, q 2 ) = 0 although, in ut
0 

14 
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m even and odd respectively. As for the circular cylinder case, rules of 

d  the incident wave. The BSDs are found to be obtained from the electric 

E e complicated than in the circular case, in any case too complicated to 

b  combinations of the Dirac distribution and of its derivatives with test 

f ism, the case of the Maxwellian contribution to a first-order Gaussian 

b

e Davis formulation, up to O (s 6 ) , are studied in [57] . After being es- 

t ions, and checked by showing that they allow one to recover the orig- 

i n that the plane wave description may be recovered from the O (s 0 ) 

-  of arbitrary shaped beams in elliptical cylinder coordinates by using a 

p  1 for circular infinite cylinders. This plane-wave spectrum description 

i  terms of distributions. The distributions A n,T M 

(γ ) , B n,T M 

(γ ) , A n,T E (γ ) 

a by double or triple quadratures, a situation completely similar to the 

o es) when the BSCs may be expressed as well by using double or triple 

q ptical infinite cylinders is available from [60] . An erratum to correct a 

f

ders is finally available from [62] . The theory is presented using the 

p lated to: 

U (166) 

U (167) 

a l waves are displayed. Eq. (51) in [62] indicates that an option similar 

t the question, similar to the one for circular infinite cylinders, to study 

t results have been published in a thesis dissertation [37] but have not 

b e wave incidence, they do not perfectly reproduce the results published 

b ent computer code would be welcome to check the results of [62] and 

t e examined. Let us furthermore note that the case of circular cylinders 

m 3.6 in [57] . 

5

5

 stricto sensu , several methods have been designed to evaluate BSCs. 

W riginally been found that the numerical evaluation of quadratures was 

v ing localized approximations (with several variants) allowing one to 

d ry and features of localized approximations are reviewed in [64] , to be 

c lly takes the form of a localization operator (or localization procedure). 

L Cs g m 

n,T M 

, with an exp (iωt) convention, where it reads as follows, e.g. 

[

 m -waves, proportional to exp (imϕ) , according to: 

E (168) 

 . 

eads as: 

g (169) 

ial evaluation point, was taken to be equal to R = (n + 1 / 2) . In an im- 

p  to be R = [(n − 1)(n + 2)] 1 / 2 . In a still improved modified localization 

p

L (170) 

a hen n = | m | to avoid divergence of the term 1 /L 1 / 2 in Eq. (169) , see 

d ral localized approximation [68] originally relying on R = (n + 1 / 2) but 

w , such as exhibited in Eq. (170) . We shall below refer to these localized 

a imations). 
odified Mathieu functions of the first kind which are as well 

erivation allow one afterward to obtain the various components of

 z and magnetic H z components, although using a formulation mor

e summarized here. Let us only mention that the BSDs are linear

unctions based on the Mathieu functions. To illustrate the formal

eam is discussed as well in [56] . 

Maxwellian contributions to higher-order Gaussian beams in th

ablished, the BSPs are converted from distributions to usual funct

nal expressions of the field components. Furthermore, it is show

contribution. Next, in [58] , the emphasis relies on the description

lane-wave spectrum approach, similar to the one used in Section

s presented as the result of a conversion from the description in

nd B n,T E (γ ) are obtained in terms of usual functions expressed 

ne encountered in the GLMT stricto sensu (for homogeneous spher

uadratures [59] . A summary of the structure of the GLMT for elli

ew expressions in [56–58,60] is available from [61] . 

A complete exposition of the GLMT for elliptical infinite cylin

lane-wave spectrum approach in which Eqs. (164) –(165) are trans

 

i 
T M 

= 

E 0 
k 2 

∞ ∑ 

n =0 

∫ 
[ A n,T M 

(γ ) , ceh n (μ, q 2 ) ce n (θ, q 2 ) 

+ B n,T M 

(γ ) , seh n (μ, q 2 ) se n (θ, q 2 )] e ikγ z dγ

 

i 
T E = 

H 0 

k 2 

∞ ∑ 

n =0 

∫ 
[ A n,T E (γ ) , ceh n (μ, q 2 ) ce n (θ, q 2 ) 

+ B n,T E (γ ) , seh n (μ, q 2 ) se n (θ, q 2 )] e ikγ z dγ

nd partial wave expansions for both the scattered and the interna

o option 2 in Section 1 , e.g. Eqs. (63) –(64) has been chosen, with 

he newly introduced option 1 when M pertains to R . Numerical 

een released in the archival literature because, in the case of plan

y Yeh [63] . Before publishing these numerical results, an independ

he equivalence between options 1 and 2 when M is real should b

ay be recovered from the case of elliptical cylinders, e.g. Section 

. Localized approximations 

.1. Reminder in spherical coordinates 

In spherical coordinates, in particular to deal with the GLMT

hen applying the GLMT to the case of Gaussian beams, it has o

ery time-consuming. This difficulty has been solved by introduc

escribe the incident wave by using a localized beam model. Histo

omplemented by [65] and [66] . A localized approximation essentia

et us exemplify the localization procedure in the case of T M-BS

67] and references therein. 

(i) Expand the radial component of the electric field in terms of

 r = 

m =+ ∞ ∑ 

m = −∞ 

E m 

r 

(ii) Extract the non-plane-wave contribution E m 

r (R = kr, θ ) of E mr 
(iii) Then, the localized approximation g m 

n,T M 

of the BSC g m 

n,T M 

r

 

m 

n,T M 

= ( 
−i 

L 1 / 2 
) | m | −1 E m 

r (L 1 / 2 , π/ 2) 

In the original localized approximation, R = L 1 / 2 , called the rad

roved procedure [42] , the radial evaluation point was better taken

rocedure, we rather have: 

 = (n − | m | )(n + | m | + 1) = (n + 1 / 2) 2 − ( | m | + 1 / 2) 2 

 variant whose precise implementation requires a specific care w

iscussion in [66] . There also exist another variant named the integ

hich could take advantage of the improvements mentioned above

pproximations under the name of SLAs (spherical localized approx
15 
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5

cylinders (CLA: Cylindrical Localized Approximation) was proposed in 

[ is. A rigorous justification of the CLA, for perpendicular illumination by 

a  rigorously justifies the CLA in the plane-wave spectrum approach and 

d the Gaussian beam, the CLA anticipates well the rigorous formulation 

a shared by SLAs), and introduces as well the CLA in the approach in 

t tory numerical checks. The case of arbitrary location and orientation 

o [70] . Again, many satisfactory numerical checks have been displayed. 

T dent fields expressed in terms of coordinates with those obtained by 

r  has been validated, not only for Gaussian beams, but for “arbitrary 

s ne used to validate SLAs in the case of “arbitrary shaped beams” [67] . 

( (171) 

i  axis with respect to the axis of propagation of the illuminating beam, 

a

( (172) 

i  
 and ϕ to π/ 2 . Then, the BSCs (or BSFs) in the CLA-framework read 

a

I (173) 

I (174) 

5

ward been proposed in the case of Gaussian beams in [72] relying on 

t is perpendicularly illuminated by a Gaussian beam, whose beam waist 

c te cylinder. The case of “arbitrary shaped beams” has been treated in 

[ ) to A n,T M 

(γ ) is then as follows. 

E (175) 

i

E (176) 

i coordinates used, 
 is still a tilt angle specifying the orientation of the 

i

η (177) 

i defining an arbitrary polarization of the beam. 

E (178) 

i ometimes called joining factors [63] , [74] . 

A (179) 

i discussed in [73] , second column of Page 2952. 

 afterward obtained from the T M-BSCs by changing electric fields to 

m able from [72] and also from [37] . The reader wanting to deal with the 

E the case of Gaussian beams as a training. 

5

he case of beams whose description involves an axicon angle and/or a 

t n this subsection. It has then been shown that SLAs are less accurate 

i  topological charges [80–82] . Finite series, pertaining to the arsenal of 

m en used to speed up numerical computations [83–86] . Otherwise, we 

m odels, even if they depart from the intended beams. It is likely that 

s ds for research beyond the use of numerical quadratures and localized 

a  the design (if possible) of finite series methods, or the use of ASD, all 

m to investigate as well in circular and/or elliptical cylindrical coordinates. 
.2. Localized approximation in circular cylindrical coordinates 

The localized approximation for the GLMT for circular infinite 

35] , in analogy with SLAs, but without any firm mathematical bas

 Gaussian beam, has been afterward published in [69] . This paper

emonstrates that, although based on a first-order description of 

rising from the use of higher-order beams (a property already 

erms of distributions. The CLA is then justified by many satisfac

f the scatterer, still for Gaussian beams, has been published in 

hese numerical checks compare original profiles concerning inci

econstructing the same quantities from the BSPs. Finally, the CLA

haped beams” as well [71] , following the same strategy than the o

The CLA procedure is as follows. Let us set: 

E z , H z ) = (E z0 , H z0 ) exp (iR sin 
 cos ϕ) 

n which 
 is a tilt angle specifying the orientation of the cylinder

nd R = kρ . We afterward introduce: 

 E z0 , H z 0 ) = 

̂ G (E z0 , H z0 ) 

n which 

̂ G is a localization operator which changes R to (−m ) / sin

s, again with Z = kz: 

 m,T M 

(γ ) = 

(−1) m 

2 π(1 − γ 2 ) 

∫ + ∞ 

−∞ 

E z0 

E 0 
exp (−iγ Z) dZ 

 m,T E (γ ) = 

(−1) m 

2 π(1 − γ 2 ) 

∫ + ∞ 

−∞ 

H z0 

H 0 

exp (−iγ Z) dZ 

.3. Localized approximation in elliptical cylindrical coordinates 

An Elliptical Cylinder Localized Approximation (ECLA) has after

he use of third-order Davis beams, in the case when the cylinder 

enter is identified with a point on the axis of the elliptical infini

73] . The procedure to obtain the localized approximation A n,T M 

(γ
(i) Define: 

 z0 (z, iμ, θ ) = E z (z, iμ, θ ) / E 1 
n which: 

 1 = exp (−iLη sin 
) 

n which L is a rescaled semifocal length defined for the elliptical 

lluminating beam, and: 

= cos μ cos θ cos β + i sin μ sin θ sin β

n which μ, θ are angular elliptical coordinates, and β is an angle 

(ii) Define: 

 1 = 

(−i ) p 

π p n 
ce n (β, q 2 ) 

n which p is 0 (1) for n even (odd), and p n designates quantities s

(iii) Then: 

 n,T M 

(γ ) = 

E 1 
1 − γ 2 

∫ + ∞ 

−∞ 

E z0 (z, iμ0 , θ0 ) 

E 0 
exp (−iγ Z) dZ 

n which θ0 = (β − π/ 2) and μ0 is defined by a validity condition 

A similar procedure is valid for B n,T M 

(γ ) and the T E-BSCs are

agnetic fields. Numerical validations for Gaussian beams are avail

CLA for “arbitrary shaped beams” is recommended to begin with 

.4. Additional remarks 

The “arbitrary shaped beams” discussed in [67 , 71 , 73 excluded t

opological charge, so that a few warnings are required as listed i

n the case of beams exhibiting axicon angles, e.g. [75–79] , and/or

ethods to evaluate BSCs in spherical coordinates could then be

ay be content with the use of SLAs leading to localized beam m

uch limitations occur as well for CLA and ECLA, opening new roa

pproximations, including the analytical evaluation of quadratures,

ethods successful in spherical coordinates which would be worth 
16
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6

 interaction between arbitrary electromagnetic shaped beams and in- 

fi tics, “semi-analytical” (e.g. EBCM or the use of surface integrals, e.g. 

t g essentially to a chronological order (most of the time). It may then 

c nt to the framework of the present review paper, are Alexopoulons and 

P ly conducting and radially inhomogeneous dielectric cylinder. The inci- 

d exp (−R 2 /w 

2 
0 
) which results in a non-Maxwellian beam, corresponding 

t  one of the first-order Davis beam. This beam illuminates the cylinder 

p e by making the radius of the scatterer much smaller than the size of 

t implified plane-wave spectrum of Section 1, e.g. Eqs. (28) and (37) and 

o  displayed for size parameters ka (with k the wave-number and a the 

c se values with the ones which could be reached about three decades 

a days. Also, as far as we understand, the results are not considered as 

a urthermore, only far fields are considered. 

description of a two-dimensional Gaussian beam (whose fields depend 

o fset location (off both the beam axis and the beam waist), and partial 

w ant to the problem at hand. BSCs are obtained under the form of 1D- 

d l scheme is validated by reference to the simpler plane wave scattering 

p

annarella dealt with the case of an inhomogeneous fiber (built from 

a e index of refraction dependency to an arbitrary degree of accuracy) 

p n off-axis configuration. The beam description is still non-Maxwellian 

b g on the propagation coordinate [90] . 

In [91] , the scattering of a Gaussian beam by a homogeneous dielectric 

c  also quoted papers which, however, are not related to cylinders but to 

s  perpendicularly and the beam description is still cruder than the one 

o an ASD, on a far field expression, and on an integral representation of 

t  as a consequence, is evaluated approximately. Eventually, the incident, 

s ons to deal afterward with the boundary conditions. Results are appli- 

c mpared with a laboratory experiment carried out at a frequency equal 

t  with a quite similar formulation, to the case of an inhomogeneous di- 

e terial depends on the coordinate ρ) in [92] . The homogeneous cylinder 

c ve theory are compared with results obtained from geometrical optics. 

F with a formulation similar to the one he previously used, he obtained 

n the cylinder [93] . The expression for the Poynting vector is described 

a owave range have been performed, still at 9.6 Ghz, leading again to a 

“

re generally relying on a similar framework [91–93] , Rao studied the 

s r, more specifically exhibiting a cylindrical dielectric shell between an 

i epending on ρ in the region inside the shell [94] . The beam illuminates 

t iscussed. 

n off-axis Gaussian beam by a dielectric cylinder, still with a perpen- 

d milar to the one used by previous authors. Comparisons are displayed 

b een wave model calculations and experiments. Discrepancies between 

g

cular cylinders, and none of them reached the degree of generality of 

t  approaches usable in the case of arbitrary shaped beams. In parallel 

w s and efficient collaborations between Normandie University, France, 

a  of a diagonally incident focused Gaussian beam by an infinitely long 

h 7 [96] . The approach used relies on an ASD, i.e. let us recall, on the 

m aves, such as the one already used in spherical coordinates. Beside the 

m  spherical coordinates) provides an alternative way of computing the 

B . The formulation presented in Section 2 of [96] is valid for arbitrary 

s lsory) and is specified in Section 3 for the case of a diagonally incident 

p or a diagonally incident Gaussian beam using (i) a Davis model, (ii) an 

A lems associated with the use of a Davis model may be circumvented 

b hen dealing with an incident plane wave. Finally, Section 5 discussed 

f  paper by Lock [97] focused the attention on morphology-dependent 

r ed either by a plane wave or a focused Gaussian beam, using again an 

A rocesses in terms of a S-matrix analogous to the one used in quantum- 

m s on the difference between MDRs in spheres and MDRs in cylinders. 

F do not depend on the beam shape profile, in contrast with the case of 

c  on MDRs depending on its angle of incidence. More specifically, the 
. Worldwide contributions 

.1. The main stream 

This section reports on worldwide contributions concerning the

nite cylinders, excluding plane wave illumination, geometrical op

he projection method, e.g. [87] ) and numerical methods, accordin

ertainly be stated that we all have precursors. Two of them, releva

ark [88] . In their work, published in 1972, they consider a perfect

ent wave exhibits a Gaussian amplitude distribution of the form 

o a fairly crude representation of the beam, still simpler than the

erpendicularly. The plane wave case is recovered as a special cas

he beam. Partial wave expansions similar to the ones used in the s

thers, i.e. without the γ -integral, are used. Numerical results are

ylinder radius) equal to 1 and 5. It is interesting to compare the

fter, namely more than 500 in [36] , and much likely more nowa

ccurate when w 0 ≤ a , i.e. in the case of strongly focused beams. F

In 1979, Kojima and Yanagiuchi [89] used a more sophisticated 

n the propagation location), with perpendicular incidence, and of

ave expansions allowed them to describe the various fields relev

efinite integrals. Numerical results are displayed and the numerica

roblem. 

In 1980, still relying on the use of partial wave expansions, I

 concentric division into layers, allowing one to approximate th

erpendicularly illuminated by a “transverse” Gaussian beam in a

ut more accurate than in [88] , exhibiting a waist radius dependin

In 1982, we afterward have a series of three papers by Kozaki. 

ylinder (instead of a conducting cylinder) is discussed (the author

pherical objects). The Gaussian beam still illuminates the cylinder

f the first-order Davis beam. The formalism relies on the use of 

he incident beam which is difficult to evaluate exactly and which,

cattered and cylinder fields are expressed as partial wave expansi

able to the microwave, millimeter range. Numerical results are co

o 9.6 GHz, leading to a “good” agreement. This study is extended,

lectric cylinder (i.e. in which the permittivity ε of the cylinder ma

ase is recovered as a special case. Numerical results using the wa

inally, Kozaki returned to the case of a conducting cylinder and, 

ew simple expressions for the scattering of a Gaussian beam by 

s well. Many numerical calculations and experiments in the micr

good” agreement. 

In 1989, adapting a simplification proposed by Kozaki and mo

cattering of a Gaussian beam by a radially inhomogeneous cylinde

nternal radius a and an external radius b, with the permittivity ε d

he cylinder perpendicularly. Numerical results are displayed and d

In 1995, Zimmermann et al. [95] dealt with the scattering of a

icular illumination, and with a partial wave expansion method si

etween geometrical optics and the wave model, and as well betw

eometrical optics and wave model are exhibited and discussed. 

The works quoted above all dealt with Gaussian beams and cir

he approaches discussed in Sections 1 and 2 devoted to general

ith such works of general scope, in the framework of exchange

nd Cleveland University, USA, a thorough study of the scattering

omogeneous circular cylinder has been published by Lock in 199

odeling of the incident beam by an angular spectrum of plane w

ethods usable to compute BSCs, e.g. Section 5.4 , the ASD (as in

SCs in order, afterward, to deal with a general GLMT formulation

haped beams (in cases when the use of distributions is not compu

lane wave, while Section 4 is devoted to the evaluation of BSCs f

SD and (iii) a localized approximation. It is recognized that prob

y using the theory of distributions, as anticipated in Section 3 w

ar-field scattering properties. As a complementary work, another

esonances (MDRs) for an infinitely long circular cylinder illuminat

SD approach to evaluate the BSCs, but expressing the scattering p

echanical scattering problems. One of the results obtained insist

or light scattering by a sphere, the size parameters of the MDRs 

ylinders in which there is an influence of the shape of the beam
17 
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r incidence of an illuminating plane wave increases, an effect which is 

c s on the angle of incidence. This work is completed by another paper, 

s  the partial-wave scattering and interior amplitudes for the interaction 

b nfinitely long homogeneous dielectric circular cylinder, and examining 

t  compared with experimental ones [98] . 

te non absorbing cylinder are compared by Mroczka and Wysoczanski 

[ icular illumination. Numerous numerical results allow the discussion 

o polarization, and off-axis location. Next, in 20 0 0 again, Guo and Wu 

[ ndicularly incident on an infinitely long multilayered cylinder, using a 

r el functions (fairly similar to a recursive scheme used for multilayered 

s for homogeneous and inhomogeneous fibers. 

rom small particles in a cylindrical microchannel were carried out by 

V  Lock, i.e. with the BSCs evaluated with an ASD approach. Numerical 

r erpendicular incidence, and comparisons with experiments are carried 

o

an, still with an ASD approach to the evaluation of BSCs, in the case 

o s been published [103] . It focused on the examination of the effect of 

b r displaying resonance-dominated internal fields when the parameters 

d d that the theory of distributions leads to “excessive difficulties” (it is 

h e theory of distributions in light scattering). Then, they introduced an 

o e between a GLMT in spherical coordinates and a GLMT in cylindrical 

c ndrical Wave Functions (VCSWFs) and consequently expressed the BSCs 

( Cs in spherical coordinates. This is an extrinsic method according to 

t oefficients of a GLMT posed in a certain coordinate system in terms of 

q trinsic methods evaluate the beam shape coefficients of a GLMT posed 

i s in a different coordinate system” [105] . As examples of the extrinsic 

m f plane wave and Gaussian beam illuminations. Let us insist of the fact 

t ates. If necessary, it might be interesting to establish the relationship 

b erical coordinates [5,6,15] . Also, still in 2007, Novitsky dealt with the 

l g a matrix approach in a variant of the plane-wave spectrum approach, 

a h a two-layer bianisotropic core cylinder [106] . 

 a similar approach than in [104] , with an extrinsic evaluation of BSCs, 

d  an infinite cylinder. In the same year, Wu and Li presented a theory of 

i ectric field is of the form E 0 exp (−ρ2 /w 

2 
0 ) and a multilayered cylinder, 

b es analysis [108] . 

eam by a conducting infinite cylinder with dielectric coating relying on 

a pproach in which cylindrical BSCs are expressed in terms of spherical 

B ay of implementing localized approximations in a GLMT for cylinders, 

r investigated the scattering of a shaped beam by an arbitrarily oriented 

c ses of conducting and dielectric cylinders were compared. Li et al [111] . 

d ed cylinders perpendicularly illuminated by an arbitrary shaped beam. 

T ulated by using the CLA. Afterward DSE is used to discuss the rainbow 

s pproach and GLMT are compared, leading to an excellent agreement. 

T y Han et al. [112] who dealt with a review devoted to the scattering 

o s, with BSCs determined by using an extrinsic method for the cases of 

s

in the case of cylindrical nanowire illuminated by beams exhibiting a 

l approach is presented as being a “rigorous modeling” which “employs 

a odel technique”. An interesting issue would be to revisit such singular 

b ween DSE and GLMT for laser beam scattering by a multilayer cylinder, 

u ove. The consistency between DSE and GLMT is proved in detail. As an 

e ylinder is discussed by using the DSE. We end the year with Sun and 

W lluminated by a couple of Gaussian beams, using an expansion of the 

b ework. Cylindrical BSCs are evaluated using an extrinsic approach in 

t l an indirect way of dealing with a “CLA”). 

ring between parallel cylinders, accounting for the multiple scattering 

b ave spectrum to describe the beam. 

 scattering by an eccentrically coated conducting cylinder, in a GLMT 

f he BSCs are evaluated with an extrinsic approach in which the spher- 

i he Bessel functions is invoked to implement the fact that there is an 

e lts are provided in the case of perpendicular illumination by a tightly 

f  in the same year to deal with the scattering by a chiral cylinder [118] , 

s th spherical BSCs evaluated by using a SLA. Numerical results are again 

p  perpendicular illumination. 

 near-surface electromagnetic fields for a uniaxial anisotropic cylinder 

o amework, using an extrinsic approach as previously described in Zhai 
esonant size parameters of the cylinder increase as the angle of 

onveyed to the case of Gaussian beam insofar as its ASD depend

till in 1997, deriving and discussing the Debye-series expansion of

etween a diagonally incident beam of arbitrary profile with an i

he first-order rainbow extinction transition. Theoretical results are

In 20 0 0, plane-wave and Gaussian beam scattering on an infini

99] in the GLMT framework of Section 1 , in the case of perpend

f the effects of wavelength, cylinder diameter, refractive index, 

100] dealt with the problem of an off-axis Gaussian beam perpe

ecursive scheme in terms of three logarithmic derivatives of Bess

pheres [4,101] ), and applied to a discussion of rainbow scattering 

In 2006, measurement and analysis of angle-resolved scatter f

enkatapathi et al. [102] . The scattering theory is used following

esults for scattered and internal fields are provided in the case of p

ut. 

In 2007, a complementary paper, by Venkatapathi and Hirlem

f an elliptical Gaussian beam with a perpendicular incidence, ha

eam size parameters on the internal fields properties, in particula

efining the interaction are well adjusted. Zhang et al. [104] state

oped that the present review paper will demystify the use of th

riginal and interesting approach to the problem, by using a bridg

oordinates. For this, they expressed VSWFs in terms of Vector Cyli

or BSFs) I m,T M 

and I m,T E in cylindrical coordinates in terms of BS

he following definition: “Intrinsic methods evaluate beam shape c

uantities pertaining to the same coordinate system. Conversely, ex

n a certain coordinate system in terms of beam shape coefficient

ethod, BSCs in cylindrical coordinates are evaluated in the cases o

hat the authors used VCWFs instead of BSPs in cylindrical coordin

etween these VCWFs and BSPs, as already done and used in sph

ight scattering by multilayer bianisotropic cylindrical particles usin

nd applied it to case of a polarized Gaussian beam interacting wit

In 2008, a complementary paper by Zhang and Han [107] , using

ealt with the scattering of an arbitrarily oriented shaped beam by

nteraction between an off-axis 2D Gaussian beam in which the el

y using an ASD to evaluate the BSCs, and performed a Debye seri

In 2009, Wang et al. [109] dealt with the scattering of shaped b

 GLMT framework for cylinders. They however used an extrinsic a

SCs, the latter being evaluated by using a SLA (this is an indirect w

ather than using a CLA in cylindrical coordinates). Wei et al. [110] 

onducting infinite cylinder within a GLMT framework, and the ca

erived Debye Series Expansion (DSE) for infinitely long multilayer

he case of Gaussian beam illumination is detailed, with BSCs calc

cattering by a graded-index polymer optical fiber (GI-POF). DSE a

o complete the year 2009, we mention as well a review paper b

f typical particles obliquely illuminated by arbitrary shaped beam

pheroidal and cylindrical particles. 

In 2010, Normatov et al. [113] focused on resonance scattering 

ine phase irregularity, i.e. a wavefront dislocation. The theoretical 

 2D version of the Richard-Wolf focusing method and the source m

eams in a GLMT framework. Li et al. [114] studied the relation bet

sing recursive relations for Bessel functions already mentioned ab

xample, rainbow phenomenon on the scattering of a two-layer c

ang [115] who dealt with the scattering of an infinite cylinder i

eam in terms of VCWFs for arbitrary orientation, in a GLMT fram

erms of spherical BSCs, the latter being evaluated using a SLA (stil

In 2011, Pawliuk and Yedlin [116] dealt with the case of scatte

etween the individual scatterers, using a two-dimensional plane w

In 2012, Zhai et al. [117] dealt with the on-axis Gaussian beam

ramework expressed in terms of VCWFs, for oblique incidence. T

cal BSCs are evaluated by using a SLA. An addition theorem for t

ccentrically located cylinder inside a host cylinder. Numerical resu

ocused Gaussian beam, in the far-zone. A similar approach is used

till for on-axis oblique incidence and using an extrinsic method wi

rovided in the far-zone for a tightly focused Gaussian beam under

In 2013, Zhang et al. [119] dealt with the study of internal and

bliquely illuminated by an on-axis Gaussian beam, in a GLMT fr
18
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e ring of single walled nanotubes illuminated by a Gaussian beam, in a 

G ly long circular cylinders. Hyde IV et al. [121] dealt with the interaction 

b plane-wave spectrum of electromagnetic fields. 

sion of a Gaussian beam through a gyrotropic cylinder. The theory is 

f d in which the spherical BSCs are evaluated by using a SLA. Gagnon 

e molecule composed of two coupled active cylinders of slightly different 

r  laser theory used to study the effect of the underlying gain transition 

o hich may be used for the computation of the scattering by a complex 

a

 a GLMT to compute the interaction of light with arrays of cylindrical 

s orem for cylindrical functions. Emphasis is placed on the derivation of 

B cylinders embedded in other cylinders are also within the reach of the 

m m through a coated chiral cylinder in a GLMT framework, using VCWFs 

a ng a SLA. 

nd negative spinning under nonparaxial Hermite-Gaussian light-sheet 

b uadratures evaluated by a standard Simpson’s rule for numerical inte- 

g longitudinal and transverse radiation forces as well as the spin torque 

o f the particle are examined relying on Newton’s second law of motion. 

L

cal solution for a transverse Airy light-sheet, using an ASD, with BSCs 

e pezoidal rule. The formulation obtained allows applications to the com- 

p rical coordinates. This is followed by Mitri [128] to be complemented 

b of light-sheets, in a GLMT framework, where BSCs are evaluated using 

a sorptive circular cylinders illuminated by different wavefronts, ranging 

f eet beams. In the same year, Swirniak and Mroczkra [130] proceeded to 

a mogeneous circular cylinders for different types of optical fibers (with 

s ation. In particular, it is explored how the scattering varies when the 

i der spectrum source. A broad source is treated as a superposition of 

e n a GLMT framework and using as well DSEs. A complementary study 

i e scatterer is illuminated by an ultrashort light pulse (the characteristic 

t n the propagation time within a fiber, allowing one to isolate various 

p 131] published a review devoted to light wave propagation and scatter- 

i  by typical particles with regular shapes (spheres, spheroids, cylinders) 

a lex particles with arbitrary shapes and structures. 

the study of canonical scattering coefficients upward recursion process 

f eters. 

rce exerted on a cylinder material of circular cross section exhibiting 

c ic line source, using a simplified plane-wave spectrum approach. 

studying the radiation force on a cylinder exhibiting dichroism illumi- 

n  the Gaussian beam propagation through a biaxial anisotropic circular 

c VCWFs, following an extrinsic GLMT scheme where the cylindrical BSCs 

a from a SLA. Zhang et al. [136] dealt with the Gaussian beam scattering 

b ssesses the originality that both VCWFs and VSWFs are used, depend- 

i ed by a localized beam model in order to numerically investigate the 

s

l wave expansions in cylindrical coordinates, with introduction of BSCs) 

t ry parameters for a dielectric cylinder illuminated by light-sheets of 

a

eory of distributions, although this theory provides the most general 

f  beams and cylinders. It must however be recognized or stated that, 

i  well be expressed rigorously in terms of usual functions), the choice 

o be viewed as a “matter of notation”. Also, none of these papers dealt 

w that this issue is under-developed. We may nevertheless quote a paper 

b  an elliptical conducting cylinder having a smooth or ribbed surface. 

I lies on the use of Mathieu functions, this paper relies on expansions 

i thor, are “entirely appropriate to treat elliptical objects. However, the 

c s expectedly slower than in the more classical approach of GLMT, in 

p re not orthogonal to elliptical surfaces, in contrast with elliptical wave 

fi ntional approach, studied the radiation force and torque exerted on a 

p focused Gaussian light sheet with arbitrary incidence [139] . As stated 

b emi-analytical” method, which requires a single numerical integration 

p ith arbitrary geometrical cross-section, dealing with dichroism and, in 

p ion cross sections [140] or of radiation forces and torques [141] in the 

c  conclude that studies devoted to the conventional GLMT for elliptical 

c

t al. papers [117,118] . Yang et al. [120] studied the far-field scatte

LMT framework, in which the nanotubes are assimilated to infinite

etween a circular cylinder and a partially-coherent wave, using a 

In 2014, Chen et al. [122] used a GLMT to study the transmis

ormulated in terms of VCWFs, and relies on an extrinsic metho

t al [123] . theoretically investigated laser thresholds in a photonic 

adii. The theory relies on two ingredients (i) steady-state ab initio

n lasing frequencies and thresholds and (ii) a GLMT approach w

rrangement of dielectric cylinders. 

In 2015, Gagnon and Dubé [124] published a tutorial devoted to

catterers, using a GLMT framework together with an addition the

SCs and on the computation of resonant modes. Let us note that 

ethod. Yan et al. [125] . studied the transmission of a Gaussian bea

nd an extrinsic method in which spherical BSCs are evaluated usi

In 2016, Mitri [126] studied cylindrical particle manipulation a

eams, using an ASD. The BSCs are expressed under the form of q

ration. Furthermore, the analysis is extended to the evaluation of 

n an absorptive dielectric cylindrical particle, and the dynamics o

aguerre-Gauss light-sheet beams are considered as well. 

In 2017, Mitri [127] presented a generalized nonparaxial analyti

xpressed by an integral which is evaluated by using a standard tra

utations of optical scattering, radiation force and torque, in cylind

y an addendum [129] , dealing with radiation forces and torques 

n ASD. Numerical examples are displayed concerning dielectric ab

rom plane waves to non-paraxial scalar Airy and Gaussian light-sh

 theoretical analysis of primary rainbows produced by infinite ho

tep- and graded-index profiles) under low-coherent light illumin

ncident light is changed from a monochromatic source to a broa

lementary monochromatic waves, each of them being processed i

s devoted to (p = 2) - scattering (in the DSE-terminology) when th

ime duration of the pulse in free space is taken to be shorter tha

 = 2 orders in time when incident on a detector). Next, Han et al. [

ng through particles. GLMT approaches to deal with the scattering

re reviewed as well as numerical methods for scattering by comp

In 2018, Shiloah [132] dealt with an algorithmic issue, namely 

or long cylinders (and multilayered spheres) with large size param

In 2019, Mitri [133] dealt with a study of optical radiation fo

ircular dichroism (i.e. rotary polarization), illuminated by an electr

In 2020, the previous work on dichroism is complemented by 

ated by a circularly polarized light [134] . Chen et al. [135] studied

ylinder, using electromagnetic expansions in terms of appropriate 

re evaluated in terms of spherical BSCs, the latter being obtained 

y an infinite cylinder with a spherical inclusion. This problem po

ng on the region considered in the scatterer. The beam is describ

cattering properties. 

In 2021, Mitri [137] used a GLMT-like approach (i.e. using partia

o discuss longitudinal and transverse optical scattering asymmet

rbitrary wavefronts and polarization. 

None of the papers cited in this subsection dealt with the th

ramework to deal with the interaction between arbitrary shaped

n most cases (when the theory in terms of distributions may as

f a distribution approach or of an usual function approach may 

ith a GLMT for elliptical cylinders whatever its variant, meaning 

y Mitri [138] who dealt with optical radiation force exerted on

n deep contrast with the GLMT for elliptical cylinders, which re

n terms of cylindrical Bessel functions which, as stated by the au

onvergence of the solutions requires an extra-check because it i

articular due to the fact that the cylindrical wave functions used a

unctions”. Afterward, the same author, using a similar non conve

erfect electrically conducting elliptical cylinder illuminated by a 

y the author, such an approach however may be viewed as “a s

rocedure. Complementary studies concern the case of cylinders w

articular, with the evaluation of scattering, extinction and absorpt

ase of light-sheet illumination. From these examples, we may then

ylinders are severely under-developed. 
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ical beams and (ii) the use of VCFWs for particles other than cylindrical 

p

eal with vectorial scatterings, i.e. scatterings of electric and magnetic 

v lar fields. An example is quantum mechanics, e.g. [142] and references 

t l waves. Indeed, electromagnetic and acoustical wave scatterings share 

m ch as the use of acoustical BSCs, to allow one to use the denomination 

o  various regular acoustical scatterers possessing enough symmetries to 

a ements are well illustrated by Baresch et al. [143] . who dealt with the 

m d elastic sphere placed in an inviscid fluid, by Thomas et al. [144] who 

r , and comprehensively discussed acoustical and optical radiation force 

p cal tweezers, with a strong emphasis on the mutual enrichment which 

a eviewed the similarities and differences between optical and acoustical 

r s, and Baudoin and Thomas [146] dealing with an extended review on 

t

 the interaction between an acoustical beam with an elastic cylinder 

a xpansion method in cylindrical coordinates, with a particular attention 

p stical radiation force exerted on cylindrical particles in water, using a 

fi inates, e.g. [149,150] ) to model an incident acoustical Gaussian beam, 

a g et al. [151] who dealt with the computation of the acoustic radiation 

f with the expressions for the BSCs given in a closed, analytical form. 

W g which provides a new mechanism for acoustic manipulation apart 

f  their electromagnetic counterpart, a fact which is somehow pointed 

i ng effect is achieved by using a pair of one-way chiral surface waves 

s sed of spinning cylinders with equal but opposite spinning velocities 

e

 study of cylinders may be used as well for studying the interactions 

b lified by Wang et al. [153] who expressed the cylindrical BSCs of an 

i spherical BSCs evaluated with a SLA, Li et al. [154] who studied the 

d and transmitted by a uniaxial anisotropic slab, Zhang et al. [155] who 

d etic beam in a uniaxial anisotropic slab, Lu et al. [156] who compared 

d niaxial anisotropic slab, Liu et al. [157] who investigated the reflection 

a isotropic slab, taking a three-layered slab as an example, and Yan et al. 

[ rough a chiral slab. VCWFs are used as well by Zhang et al. [159] to 

s ace, using again an extrinsic method to evaluate the cylindrical BSCs in 

t owever, but also for spheres and spheroids. Theoretical results obtained 

f d by a plane wave were compared with EBCM simulations. See as well 

Y n beam scattering by a particle on or near a plane surface. 

7

 the interaction between arbitrary electromagnetic shaped beams and 

s ry to allow one to use the method of separation of variables (generically 

n loped theory of this kind has been the GLMT stricto sensu when the 

s ts complex refractive of refraction, which is now about four decades 

o hen the scatterer is an infinite cylinder with a cross section which is 

e finite cylinders soon demonstrated that the most general framework to 

h hich has afterward been found discouraging in the mind of newcomers. 

M ers (both from electromagnetic or acoustic waves), this paper presents 

a s of interactions between waves and cylinders. More specifically, this 

r inders, both using usual functions and distributions, with a particular 

a ction is devoted to worldwide contributions to this field of research, 

i nders. It must furthermore be noted that, although devoted to the case 

o r may be used as well to finite cylinders when the transversal size of 

t gth of the cylinder, at least when the angle of incidence is sufficiently 

c nside the cylinder. 

F

 the Council for Scientific and Technological Development (CNPq) 

( undation (FAPESP) (2020/05280-5). 

D

.2. Complementary side-issues 

This subsection deals with two side-issues (i) the case of acoust

articles. 

For issue (i), let us first mention that electromagnetic GLMTs d

ector fields. GLMT-like approaches may also be developed for sca

herein. Another very important scalar case is the one of acoustica

any common features, in any case a sufficient number of them, su

f acoustical GLMTs to denote the scattering of acoustical waves by

llow one to use the method of separation of variables. These stat

odeling of acoustic radiation force exerted on an arbitrarily locate

eviewed analogies between electromagnetic and scalar scatterings

ressures in relation with the development of single beam acousti

rose from a long common history, Thomas et al. again [145] who r

adiation pressure, with a focus on single-beam acoustical tweezer

he issue of acoustic scattering and trapping. 

Returning to cylinders, we then have Mitri [147] who studied

rbitrarily located in non-viscous fluid, using a partial wave series e

aid to resonance effects, Zhang et al. [148] who investigated acou

nite series expansion (similar to the ones used in spherical coord

nd obtaining the BSCs of the beam expanded as VCWFs, and Zhan

orce exerted on a rigid cylinder in an off-axial Gaussian beam, 

ang et al. [152] discussed long-range and robust acoustic pullin

rom levitation, trapping and binding, all phenomena which have

n an Appendix entitled “Lorenz-Mie for acoustic force”. The pulli

upported on the interface between two phononic crystals compo

mbedded in water. 

For issue (ii), let us note that VCWFs which are natural to the

etween arbitrary electromagnetic beams and slabs just as exemp

ncident Gaussian beam by using an extrinsic method with the 

eformations of circularly polarized Bessel vortex beams reflected 

ealt with the propagation characteristics of a focused electromagn

ifferently polarized Bessel vortex beams propagating through a u

nd transmission of a Bessel vortex beam by a stratified uniaxial an

158] dealing with the electromagnetic wave beam propagation th

tudy the Gaussian beam scattering by a particle above a plane surf

erms of spherical BSCs evaluated by a SLA, not only for cylinders h

rom this formulation in the case of a polystyrene sphere illuminate

uan et al. [160] for a similar study devoted to the case of Gaussia

. Conclusion 

Since a few decades, there has been a vigorous effort to study

cattering particles, either possessing a sufficient degree of symmet

amed GLMTs) or irregular particles (e.g. EBCM). The most deve

catterer is a homogeneous sphere defined by its diameter and i

ld. Another more recent GLMT has been developed for the case w

ither circular or elliptical. Original works related to the case of in

andle these cases requires the use of the theory of distributions w

otivated by the revival of applications to the scattering by cylind

 review, expected to be fairly exhaustive, concerning the theorie

eview deals with the GLMT for circular and elliptical infinite cyl

ttention paid to the relationship between both approaches. A se

ncluding the case of acoustical wave interactions with infinite cyli

f infinite cylinders, the approaches discussed in the present pape

he illuminating beam is sufficiently small with respect to the len

lose to perpendicular illumination to neglect wave guiding effect i

unding 
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