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Abstract

Machine learning algorithms are essential tools for developing Mineral Prospectivity Mod-
els (MPMs), enabling a data-driven approach to mineral exploration. This study integrated
airborne geophysical, topographic, and geological data with a mineral system framework
to build MPMs for iron oxide–copper–gold (IOCG) and hydrothermal nickel deposits in
the Southern Copper Belt of the Carajás Province, Brazil. Seven machine learning algo-
rithms were tested using stratified 10-fold cross-validation: Logistic Regression, k-Nearest
Neighbors, AdaBoost, Support Vector Machine (SVM), Random Forest, XGBoost, and
Multilayer Perceptron. SVM delivered the highest classification accuracy and robustness,
highlighting new mineralized zones while minimizing false positives and negatives, and
accounting for geological complexity. SHapley Additive ExPlanations (SHAP) analysis
revealed that structural controls (e.g., faults, shear zones, and geochronological contacts)
exert a stronger influence on mineralization patterns than lithological factors. The resulting
prospectivity maps identified geologically distinct zones of IOCG and hydrothermal nickel
mineralization, with high-probability closely aligned with major structural corridors ori-
ented E–W, NE–SW, and NW–SE. Results also suggest an indirect association with volcanic
units, Orosirian A1-type granites and Neoarchean A2-type granites.

Keywords: IOCG; hydrothermal nickel; data-driven approach

1. Introduction
Copper and nickel, critical to the clean energy transition, face supply challenges in

the current worldwide production, and the new discoveries are insufficient to meet the
growing demand for electrification in transportation and industry [1–3]. In this context,
Mineral Prospectivity Models (MPMs) play a pivotal role in accelerating mineral discovery
by identifying areas with high exploration potential [4]. While MPMs traditionally rely on
geophysical, geochemical, and spatial data, manual integration and interpretation make
results heavily dependent on the interpreter’s prior knowledge [4–6].

The use of Machine Learning Algorithms (MLAs) in geosciences has grown with the
rise of big data, advances in data science, improved computational power, and the avail-
ability of robust geological datasets [7]. MLAs have become powerful tools for analyzing
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complex, high-dimensional, and nonlinear parameters, which are common in MPMs. This
has enhanced exploration strategies by improving MPM accuracy and reducing interpre-
tative bias [8–10]. Given the complexity of geological settings and ore-forming processes,
MLAs often outperform traditional exploration models [8]. However, MPM effectiveness
depends heavily on the quality and representativeness of training data, understanding of
mineral systems, and management of uncertainties [11,12]. Therefore, MPM development
requires both methodological innovation and a deep geological insight [13].

The Carajás Province in the Amazonian Craton hosts one of the largest concentrations
of iron oxide–copper–gold (IOCG), along with iron sulfide–copper–gold (ISCG) and hy-
drothermal nickel deposits [14–19]. Copper and nickel mineralization developed through
Neoarchean to Paleoproterozoic ore-forming processes, linked to the installation and reacti-
vation of translithospheric shear zones. Overprinting metallogenetic processes leaves geo-
logical footprints detectable at scales ranging from micro- to craton-scale datasets [20–22].

However, identifying these footprints and the controlling factors of hydrothermal
mineral systems remains challenging, particularly in tropical and equatorial regions like
the Amazonian Craton [6,23], which is characterized by dense rainforest, supergene cover,
scarce outcrops, and limited access [6]. Airborne geophysical surveys (e.g., gamma-ray
spectrometry, magnetometry, gravimetry) provide spatially continuous data, offering valu-
able support for structural interpretation, geological–geophysical mapping, and mineral
exploration [6,23–25].

We integrate multiphysics airborne geophysical data with the mineral systems frame-
work to build a prospectivity model for IOCG and hydrothermal nickel deposits using MLA
predictions (Logistic Regression, k-Nearest Neighbors, AdaBoost, Support Vector Machine,
Random Forest, XGBoost, and Multilayer Perceptron). Critical mappable components of
copper and nickel mineral systems were identified from geophysical data. Prospectivity
analysis in the Carajás Province was improved through systematic data integration, model
calibration, and validation against known deposits and exploration results.

2. Geologic Setting of the Carajás Province
The Carajás Province (Figure 1) is an Archean nucleus in the southeastern Amazonian

Craton, divided into two domains, the Rio Maria (south) and Carajás (north) domains. The
Rio Maria Domain consists of a Mesoarchean tonalite–trondhjemite–granodiorite (TTG)
and greenstone belt sequences, together with Paleoproterozoic A1-type granites and a mafic
suite [26,27].

The Carajás Domain (Figure 1) comprises Mesoarchean granite–gneiss complexes
(Xingu Complex, Chicrim Cateté Orthogranulite, and correlated units) surrounded by
~3.0–2.9 Ga greenstone belts (Selva, Tucumã, and Sapucaia groups [16,27–29]). Several
elongate calc–alkaline granitoids (Pantanal, Nova Canadá, Boa Sorte, Bom Jesus, Cruzadão
and Serra Dourada) were emplaced at ~2.92–2.83 Ga [30–32]. Mesoarchean TTGs (Colorado
and Água Fria trondhjemites) and sanukitoid (Água Azul and Água Fria granodiorites)
occur along the boundary between the Carajás and Rio Maria domains [30–32].
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Figure 1. (A) Simplified geological map showing hydrothermal deposits in the Carajás Domain.
(B) Location of the Carajás Province in the Amazonian Craton. (C) Tectonic compartmentation of the
Carajás Mineral Province (after [33,34]).

A widespread magmatic event between ~2.76 and 2.72 Ga was controlled by translith-
ospheric discontinuities expressed at the surface as regional shear zones (e.g., Canaã,
Cinzento, Carajás) [31,32,35–38]. The Itacaiúnas Supergroup and correlated units (Rio
Novo, Aquiri, Liberdade groups) comprise ca. ~2.76–2.73 Ga metavolcanic–sedimentary
sequences that unconformably overlie the granite–gneiss terrain [26,39–42]. Neoarchean
magmatism also includes coeval A2-type granites (e.g., Estrela, Planalto, Velha Canadá,
Vila Jussara, Igarapé Gelado, Pedra Branca) and mafic–ultramafic intrusions (e.g., Pium
Norite, Serra Leste, Cateté suites).

During the Rhyacian (ca. 2.2–2.0 Ga), the Bacajá Domain and northern Carajás Do-
main were amalgamated, reactivating regional shear zones [43,44]. Paleoproterozoic
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basin covers (Águas Claras and Caninana formations) represent sag to syn-orogenic
transgressive—regressive sequences deposited at 2.19–2.01 Ga [45,46], unconformably
overlying the Itacaiúnas Supergroup. A1-type granites (1.88–1.85 Ga) are widespread
in the Carajás and Rio Maria domains [47–49] and emplaced contemporaneously with
diabase and rhyolite porphyry in the Carajás domain and with Uatumã volcanism and
plutonism [26,47–50]. Laterite, colluvium, and alluvial cover overlie banded iron formation
of the Carajás Formation, the mafic–ultramafic complexes, sedimentary rocks of the Águas
Claras Formation, and major drainages [33].

3. The IOCG and Hydrothermal Nickel Deposits in the Carajás Domain
In the Carajás Province (Figure 1), IOCG and hydrothermal nickel deposits share

several geological features, including volcanic and granitic host, sub-vertical to vertical
orebodies, and extensive, multi-stage hydrothermal alteration zones [15,51]. Regionally,
both deposit types are associated with the Cinzento and Canaã shear zones, which define
the Northern and Southern Copper Belts, respectively [16]. These similarities led to their
interpretation as a continuum; however, nickel enrichment may result from leaching of mag-
matic sulfides in mafic–ultramafic rocks by deep-seated, high-temperature hydrothermal
fluids channeled through the shear zones [15,51].

The study area covers the Southern Copper Belt, in the southern Carajás Domain,
including IOCG deposits [52–58] such as Sequeirinho-Sossego (65.1 Mt @ 0.56% Cu and
0.18% Au, [59]), Castanha, Jatobá, Bacuri, Bacaba, Alvo 118 (170 Mt @ 1.0% Cu, 0.3 g/t
Au, [60]), Tarzan, and Pedra Branca. Hydrothermal nickel deposits include GT-34 [61] and
the Jaguar deposit [51,62], which hosts three orebodies: Jaguar South (47.2 Mt @ 0.93%
Ni, 0.05% Cu, 214 ppm Co, [63]), Jaguar Central (11.6 Mt @ 0.84% Ni, 0.05% Cu, 251 ppm
Co, [63]), and Onça Preta (23.7 Mt @ 1.05% Ni, 0.07% Cu, 417 ppm Co, [63]) along the Canaã
shear zone intercept with the McCandless fault.

In the Southern Copper Belt, IOCG formation is attributed to 2.71–2.68 and 1.90–1.88
Ga [16,54], whereas hydrothermal nickel deposits lack precise geochronological constraints.
Rhyacian (ca. 2.2–2.0 Ga) reactivation of regional shear zones [43,44] is also recorded in the
IOCG deposits such as Bacuri, Bacaba, and Jatobá [63].

Neoarchean IOCG deposits are spatially associated with regional-scale alkaline hy-
drothermal alteration (albite-scapolite) along E-W-trending megashear zones (e.g., Canaã,
Cinzento). At deposit scale, hydrothermal alteration includes Na-Ca (albite, scapolite),
K-Fe (biotite-magnetite, K-feldspar-magnetite), and Ca-Fe (amphibole-magnetite-apatite)
assemblages. Paleoproterozoic IOCG deposits are characterized by late K-Fe and Mg-Fe
(chlorite), followed by albite–musketovite, epidote, sericite, and carbonate [52,54–58]. Min-
eralization consists mainly of chalcopyrite, pyrite, and siegenite, with local pyrrhotite,
occurring in lens-shaped disseminations, massive replacement bodies, breccias, and vein
stockworks [14,16,26,54,64].

Hydrothermal nickel deposits in the Carajás Domain are hosted by granodioritic to
tonalitic gneiss (GT-34, Onça Preta), porphyritic felsic subvolcanic rocks, and granite-gneiss
(Jaguar Central, Jaguar South). Subordinate mafic–ultramafic rocks occur at GT-34 deposit
and Onça Preta [61,65,66]. At GT-34, alteration includes Na (albite), Mg-Na (orthopyroxene–
scapolite), Ca (hornblende–actinolite–apatite–magnetite), Mg-K (phlogopite), and late
Na-Ca (albite–epidote–K feldspar) assemblages [61,65,66]. Mineralization is dominated by
pyrrhotite and pentlandite, with minor pyrite, chalcopyrite, and magnetite.

The Jaguar deposit comprises three main structurally oriented orebodies, Jaguar South,
Jaguar Central, and Onça Preta [51,62,65]. Jaguar South and Jaguar Central show K (biotite),
Ca-Fe (apatite–magnetite), Ca (actinolite), Mg-Fe (chlorite), and late Ca (calcite) alteration.
Onça Preta, hosted in tonalitic granitoid and subordinate ultramafic rocks, is characterized
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by K (biotite) and Ca-Fe (magnetite I–apatite I) alteration, locally overprinted by late Mg-Ca
(talc–tremolite–(chlorite) and Fe (magnetite II) alteration [51,62,65]. Overall, the orebodies
consist of pyrite, millerite, magnetite, and apatite, and minor pentlandite, chalcopyrite,
pyrrhotite, sphalerite, and quartz.

The Neoarchean IOCG mineral system in the Carajás Province is interpreted to have
formed after delamination and foundering of the metasomatized subcontinental litho-
spheric mantle, which triggered widespread mantle and crustal melting and the widespread
~2.74–2.72 Ga magmatism at Carajás [54]. Upwelling of CO2-rich fluids from the partial
melting of the metasomatized mantle likely caused tectonic instability, development of
megashear zones, regional albite–scapolite alteration, and ~2.71–2.68 Ga IOCG miner-
alization [67,68]. Paleoproterozoic IOCG deposits are temporally associated with the
emplacement of ~1.88 Ga A1-type granites [16].

4. Conceptual Framework and Dataset
4.1. Conceptual Model and the Mineral System Approach

Prospectivity mapping should incorporate multiple genetic models for ore formation
targets [21]. In this study, selected proxies correspond to mappable features associated
with known IOCG and hydrothermal nickel deposits in the southern Carajás Domain. The
workflow proposed by McCuaig et al. [69] and reviewed by Skirrow et al. [21] comprises
four steps: (i) identification of ore fluid and metal sources, (ii) delineation of fluid flow
pathways, (iii) identification of fluid throttle, and (iv) recognition of ore depositional
gradients (Table 1). Accordingly, the exploration database is diverse and includes various
geophysical and geological data (Table 1, Figures 2 and 3). Magnetic and gravimetric data
are used to infer structures and potential sources linked to fluid pathways and traps [21,24].
Radiometric data highlight hydrothermal alteration zones related to depositional gradient,
and geological maps provide the structural and lithological framework [21,24].

Table 1. Critical processes and proxies of the mineral potential mapping (modified from [24]).

Critical
Process

Source
(Magma, Metals)

Active
Pathway Fluid Throttle Chemical Scrubber

Constituent
processes

Deep alkaline magmatic
source

Trans-crustal and
craton-scale fault

zones

Decompression
evidenced by

brecciation zones
Fluid mixing

Metasomatized
subcontinental

lithospheric mantle and
sources of metals,

ligands, and sulfur

Lithospheric craton
margins/older

sutures

High geothermal
gradient

Fluid interaction
with wall and host

rocks

Targeting
Elements

Alkaline magmatism
associated with

ultrabasic to basic rocks

Suture zones
between terrains of

distinct ages

The occurrence of a
large brecciation

zone

Key alteration
minerals (magnetite,

biotite, albite,
amphibole, U- and

REE-bearing
minerals)

Suture zones with
multiple orogeny events –

Intense
hydrothermal

activity

Rocks with favorable
chemistry

(magnetite-rich
alteration zones)
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Table 1. Cont.

Critical
Process

Source
(Magma, Metals)

Active
Pathway Fluid Throttle Chemical Scrubber

Mappable
Targeting Criteria

Contacts between
Mesoarchean,
Neoarchean,

Paleoproterozoic units
(geochronological

contacts), occurrences of
volcanic, granitic, and
mafic–ultramafic rocks

Structures mapped
by gravity and

magnetic lineaments

Morpholineament,
faults and shear zone

Radiometric
channels, ratios and

magnetic highs

The primary metal sources in IOCG and hydrothermal nickel systems are attributed to
the metasomatized subcontinental lithospheric mantle (SCLM) and leaching from volcanic
and mafic–ultramafic rocks [51,62,70]. Metavolcano–sedimentary units are the main hosts of
mineralization and may have provided the initial copper source, with hydrothermal fluids
leaching and transporting Cu from these rocks. Likewise, hydrothermal remobilization of
metals from mafic–ultramafic intrusion likely contributed to chalcophile and siderophile
enrichment in Carajás hydrothermal deposits [51,62]. The occurrence of massive sulfide
ore and evidence of remobilization in the Luanga Suite support this interpretation [62,71].

In the Carajás Province, regional shear zones juxtaposing Mesoarchean granite-gneiss,
greenstone belts, and Neoarchean metavolcanic–sedimentary sequences may represent in-
herited translithospheric structures that controlled SCLM metasomatism [24,72]. Likewise,
contacts between Archean and Paleoproterozoic granites likely represent metal-enriched
zones, spatially correlated with IOCG and hydrothermal nickel mineralization [24,73].

Fluid inclusions and stable isotope data indicate that IOCG ore-forming fluids
evolved through unmixing of high-temperature, hypersaline (NaCl-CaCl2-CO2) magmatic–
hydrothermal fluids and mixing with surface-derived fluids [52,55,56,74,75]. The magmatic
fluids may have originated from partial melting of metasomatized mantle and, subor-
dinately, from exsolution during crystallization of the Neoarchean magmatic units (e.g.,
A2-type granite, shallow gabbro). Fluorine-rich fluids exsolved from Paleoproterozoic A1-
type granites may have contributed to younger IOCG deposits, which show a granitophile
signature [54,58,76]. These granites, of alkaline affinity, formed by the partial melting of
deep Archean crustal sources ([48] and references therein), and their contribution may also
be extended to hydrothermal nickel deposits.

Therefore, distances to contacts among Mesoarchean, Neoarchean, and Paleoprotero-
zoic units (geochronological contacts), as well as volcanic, granitic, and mafic–ultramafic
rocks, were used as a criteria in the MPM. A similar approach was applied by Oliveira
et al. [77] in the Northern Copper Belt.

Proxies for active pathways include crustal framework structures such as gravity
and magnetic lineaments (Table 1). These lineaments, interpreted as deep-to-shallow-
seated crustal discontinuities [23,24,77–80], focus and localize mineralized fluid flow [21].
Long-wavelength gradients are typically associated with deep sources, whereas short-
wavelength gradients generally correspond to shallower crustal sources [81]. To assess
these structures at different depths, magnetic and gravimetric lineaments were used as
proxies (Figure 2D–E).
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Figure 2. Potential, structural and geological data input for the machine learning predictive study.
(A) Bouguer anomaly map. (B) TGA map. (C) Distance to geochronological contact. (D) LTHG in
gravimetry data and interpreted gravimetric lineament. (E) Interpreted magnetic lineament from
LTHG of total magnetic intensity. (F) Morpholineament, (G) fault, and (H) shear zone classified by
direction set. (I) Distance to structure intercept, (J) volcanic unit, (K,L) A1- and A2-type granites.
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Figure 3. Distance to mafic–ultramafic suite (A) and radiometric data (B–J) used in this machine
learning predictive study. (B) Total count. (C) Potassium. (D) Equivalent uranium. (E) Equivalent
thorium. (F) K/eTh ratio. (G) eU/eTh ratio. (H) F-parameter. (I) K2/eTh ratio. (J) eU2/eTh ratio.

Fault, shear zone, and morpholineaments were used as criteria for physical throttling
of hydrothermal fluids (Table 1). These include mapped and interpreted surface structures
that likely acted as conduits, enabling basinal and surface-derived fluids to infiltrate
structural weakness and ascend to shallower crustal levels [23]. Mapped structures from
Costa et al. [33], including faults, fractures, and shear zones, were incorporated in the MPM.
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Morpholineaments, interpreted from hillshade topography data, represent linear features
associated with structural discontinuities [82,83].

Magnetic and gamma-ray spectrometric data (Table 1) were used as proxies to map
zones with anomalous K, U, and magnetic minerals associated with Cu-Au and Ni min-
eralization [6,24]. IOCG and hydrothermal nickel deposits can display a wide range of
physical properties and mineral assemblages, often resulting from intense hydrothermal
alteration [51,62,84]. Their geophysical response is controlled by (i) the relative proportions
of magnetic (i.e., magnetite) and non-magnetic (i.e., pyrite) minerals, (ii) textures, and
(iii) depth of mineralization [85,86].

4.2. Dataset

Geophysical data comprises airborne gamma-ray spectrometric, magnetometric, and
gravity surveys provided by the Geological Survey of Brazil (GSB, https://geosgb.sgb.gov.
br/ (accessed on 10 May 2025)). Gamma-ray spectrometry and magnetometry include three
surveys provided: Oeste de Carajás (1125), Rio Maria (1129), and Tucuruí (1097) [87–90].
These were conducted and pre-processed by LASA Prospecções S/A between June 2014
and June 2015 (Oeste de Carajás), January 2014 and November 2014 (Rio Maria), and
April and July 2010 (Tucuruí). Flight lines were spaced 500 m apart (N–S) with 10 km
tie lines (E–W) and a terrain clearance of 100 m. Magnetometry used a Scintrex CS-3
(10 Hz, 0.001 nT resolution), while gamma ray data were collected with a 256-channel
Exploranium GR-820 and Pico Envirotec GRS 410 (1 Hz). Aircraft speed averaged 266 km/h,
yielding measurements every 7.4 m (magnetometry) and 74 m (gamma-ray). Magnetic data
corrections included parallax diurnal variation, International Geomagnetic Reference Field
(IGRF) removal, leveling, and micro-leveling. Gamma-ray corrections included dead time,
background removal (aircraft, cosmic, atmospheric radon), height, Compton effect, and
conversion to elemental concentrations [87–89].

Gravity data are from the airborne Carajás gravimetric survey (Project 1123) [91]. N–S
flight lines were spaced 3 km apart, with E–W control lines at 12 km. Mean sensor clearance
was 900 m above the surface. Two fixed-wing aircraft were used: the western portion was
surveyed with a GT-2A gravimeter aboard the PR-FAS aircraft at 275 km/h, and the eastern
portion with a GSS3 Graviton-M aboard the PP-AGP at 274 km/h. Measurements were
restored every 0.1 and 0.5 s. The used data were corrected for latitude, free air, Eötvös,
dynamic acceleration, and Bouguer effects [91].

Data were interpolated with the minimum curvature technique [92] on regular grids
of 100 m (magnetometry and gamma-ray) and 600 m (gravimetry) using Geosoft Oasis
Montaj 2025.1. Gamma-ray spectrometry data were merged with the grid leveling method
of Minty [93], which estimates a base-level shift and scaling factor to align grids to the same
absolute level.

Topographic data came from the Brazilian National Institute for Spatial Research’s
Topodata (INPE’s Topodata database), derived from refined SRTM (Shuttle Radar To-
pography Mission) data resampled from 3 arcseconds (~90 m) to 1 arcsecond (~30 m)
using geostatistical interpolation [94]. The database is freely available from INPE (http:
//www.dsr.inpe.br/topodata/ (Accessed on 17 October 2025)).

4.2.1. Gamma-Ray Spectrometry Techniques

Gamma-ray spectrometry data include potassium (K), equivalent uranium (eU), and
equivalent thorium (eTh), which display distinct geochemical behavior [95,96]. Potassium
and eU enrichment are mainly linked to hydrothermal alteration [95,96], while weathering
in tropical and subtropical climates may cause K absorption on clays [96]. Among these

https://geosgb.sgb.gov.br/
https://geosgb.sgb.gov.br/
http://www.dsr.inpe.br/topodata/
http://www.dsr.inpe.br/topodata/
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radioelements, K is the most mobile, whereas eTh is generally immobile in hydrothermal
fluids [95,97].

Radiometric grids (K, eU, eTh) contain negative values that can obscure ratio grids;
therefore, values below mean/10 reset to that threshold. Ratio grids enhance geochemical
contrasts and reduce environmental artifacts from vegetation and soil moisture [96]. Hy-
drothermal alteration zones, which enriched K, eU, Fe, and other elements [98], can thus be
mapped using radiometric ratios such as K/eTh, K2/eTh, eU/eTh, and the F-parameter [99].
The F-parameter (F = K·eU/eTh) is a robust geochemical index for mapping hydrothermal
alteration. It highlights altered areas by comparing K and eU enrichment relative to the
eTh/eU and eTh/K ratios [100].

4.2.2. Magnetic and Gravimetric Technique

The Total Gradient Amplitude (TGA) was derived from the total magnetic intensity
to centralize anomaly values above their source [101]. This method is widely used in
low-latitude regions where reduction to the pole is unstable, such as the Amazonian
Craton [86].

A 5000 m upward continuation filter was applied to the total magnetic field and
Bouguer anomaly before edge detection to suppress shallow signals and highlight deeper
sources and structures [102].

Geologic contacts and structures were then mapped using magnetic and gravimet-
ric data with edge detection techniques. Vertical and horizontal derivatives enhanced
responses from both shallow and deep sources [103].

Among these, the Logistics Horizontal Gradient (LTHG) method [104] was applied
to delineate magnetic and gravimetric lineaments. LTHG applies a logistic function to
the first-order derivative of the total horizontal gradient, equalizing shallow and deep
anomalies and maximizing amplitudes along body margins. Even in noisy data or complex
settings, it outperforms other methods in edge identification and border definition [104].

4.2.3. Morpholineament

Morpholineaments are linear to slightly curvilinear geomorphological features, reflect-
ing geological structures such as foliation, contact, fault, shear zone, and fold [82,83,105,106].
They are mapped in ArcMap following the procedure of Domingos [80] and Dutra et al. [23],
using four hillshade maps derived from SRTM data with a vertical exaggeration factor of
15 and azimuths of 0◦, 60◦, 90◦, and 330◦. These illumination angles were selected to be
orthogonal to the dominant regional structural trends. Interpretation emphasized major
regional topographic features, including valleys, ridgelines, and drainage patterns.

4.2.4. Spatial Orientation of Lineament and Structure

Previous studies in the Carajás Province show that mineralization controls vary with
structural azimuth [23,80,107]. Accordingly, structural data (shear zone and fault) from
Costa et al. [33] and lineaments (morpholineament, magnetic, and gravimetric lineament)
were grouped into four orientations: N–S, NE–SW, E–W, and NW–SE. This classification
was used to evaluate the relative importance of each set and to refine prediction models.

5. Pre-Processing Analysis
Pre-processing included data organization and cleaning, feature normalization, dataset

sampling, and oversampling. Data were normalized with the z-score method to ensure
equal contribution of variables and avoid instability [108,109].
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5.1. Spatial Data Input

The spatial dataset includes potential-field, radiometric, geological, and mor-
pholineament data pre-processed in QGIS 3.36.1-Maidenhead, Geosoft Oasis Montaj
2025.1, and Python 3.13.9 libraries to extract proxy variables and structure information
(Figures 2 and 3).

Before integrating geological data and interpreted lineaments (magnetic, gravimetric,
and morpholineament), categorical features were converted to continuous variables using
Euclidean distance. This approach improves prospectivity model performance and reduces
uncertainties from discretizing evidential maps [110].

Geological features, including contacts, faults, shear zones, volcanic rocks,
mafic–ultramafic suites, and A1- and A2-type granites, were extracted from the geological
map and rasterized with Euclidean distance. In the resulting rasters, pixels inside lithologi-
cal units were set to zero, increasing with distance from the source feature (Figures 2 and 3).

5.2. Data Balancing Based on Augmentation with Synthetic Oversampling Technique

In the Southern Copper Belt, twelve IOCG deposits and four hydrothermal nickel
deposits are known. Some occur in close proximity, potentially producing similar values
at data resolution. To reduce redundancy, the Pista and Baiano orebodies of the Sossego
IOCG complex were excluded from the training dataset.

Mineral prospectivity mapping typically involves far fewer mineralized sites than
non-mineralized ones. Such an imbalance can bias MLA models and reduce their ability
to detect valuable targets. To improve classification, SMOTE (Synthetic Minority Over-
sampling Technique) was applied to generate synthetic IOCG and hydrothermal nickel
data [8,24,110,111] using Python package imbalanced-learn [112]. This method is widely
adopted in mineral prospectivity studies [24].

The distribution and similarity between the original and synthetic datasets were
assessed using dimensionality reduction techniques (Principal Component Analysis and
t-Distributed Stochastic Neighbor Embedding). Results indicate that the synthetic samples
generated by SMOTE preserve the global variance structure of the original deposits while
maintaining strong local proximity to their real counterparts. Thus, the data balancing
procedure did not distort the underlying structure but rather acted as a local extension of
the dataset. A more detailed discussion of these analyses, along with illustrative figures, is
provided in the Supplementary Material.

5.3. Data Partition

The training–test dataset comprised mineralized and non-mineralized samples. Non-
mineralized samples were randomly selected from regional data, at least 12.5 km from
known deposits, following Prado et al. [24]. To address class imbalance and reduce overfit-
ting [24], SMOTE was applied to generate 50 samples per class (non-deposit, IOCG deposit,
and hydrothermal nickel deposit). The dataset combined 50 randomly selected non-deposit
samples with known deposits (10 IOCG and 4 hydrothermal nickel) plus synthetic samples
(40 for IOCG deposits and 46 for hydrothermal nickel deposits) to balance class size. The
final dataset was split into training (35 samples per class) and testing (15 samples per class)
sets using a fixed random seed for reproducibility.

5.4. Exploration Data Analysis

Exploratory data analysis used boxplots and the Pearson correlation coefficient (ρ) to
identify patterns and relationships among parameters [113]. Box-and-whisker diagrams
show that the most relevant parameters to differentiate mineralized from non-mineralized
areas are Bouguer anomaly, TGA, eU, eU/eTh ratio, F-parameter, eU2/eTh ratio, distance
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to geochronological contact, magnetic lineaments, faults, and distance to volcanic units
(Figure 4).

Figure 4. Box-and-whisker plots of parameters used in mineral prospectivity mapping of the
Carajás Province, divided into regional data (Reg), non-deposit samples (ND), IOCG deposits
(IOCG), and hydrothermal nickel deposits (HNi). Means are shown by central lines, out-
liers by circles. Grav = gravimetric lineament, Mag = magnetic lineament, SZ = shear zone,
Morpho = morpholineament, MUM = mafic-ultramafic unit, Volc = volcanic unit, A2-GRA = A2-type
granite, A1-GRA = A1-type granite. The white circles represent outliers.
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The IOCG deposits show the highest average values for most selected parameters,
notably Bouguer anomaly (−24.2 mGal), TGA (1.6 mT/m), eU (4.2 ppm), and distance
to NE–SW gravimetric lineament (19.4 km), E–W magnetic lineaments (5.7 km), NW–SE
magnetic lineaments (32.1 km), and NE–SW faults (13.8 km, Figure 4). Hydrothermal
nickel deposits have a higher average for distance to geochronological contact (5.8 km) and
NW–SE faults (16.6 km), and the lowest average distance to NW–SE shear zones (9.1 km,
Figure 4). Both IOCG and hydrothermal nickel deposits recorded the shortest distances to
E–W faults, 7.0 km and 6.0 km, respectively, compared to 30.2 km for non-deposit samples
(Figure 4).

The Pearson correlation matrix indicates that most parameters are independent, with
low correlations (ρ ≤ 0.30, Figure 5). Radiometric features, however, display stronger
interdependence (ρ = 0.52 to 0.94). Because highly correlated variables (ρ > 0.80, p < 0.05)
often represent the same information, they were excluded to avoid redundancy without
reducing model performance [108,114]. Accordingly, total count (TC) and K2/eTh were
removed due to strong correlations with eTh (ρ = 0.94, p < 0.001) and K/eTh ratio (ρ = 0.88,
p < 0.001; Figure 5). K2/eTh also showed moderate correlations with the F-parameter
(ρ = 0.77, p < 0.001) and K (ρ = 0.74, p < 0.001), supporting its exclusion (Figure 5).

Figure 5. Pearson correlation matrix of parameters. Grav = gravimetric lineament, Mag = magnetic lin-
eament, SZ = shear zone, Morpho = morpholineament, MUM = mafic-ultramafic unit, Volc = volcanic
unit, A2-GRA = A2-type granite, A1-GRA = A1-type granite.
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6. Processing with Machine Learning Application
Machine learning was implemented in Python within JupyterLab using NumPy [115],

pandas [116], scikit-learn [117], and XGBoost [118]. Data visualization employed the Python
libraries matplotlib 3.10.7 [119] and Plotly 6.3.1 [120].

Seven MLA predictions were evaluated for MPM using stratified 10-fold cross-
validation with shuffled data and a fixed random seed (random_state = 42). The algorithms
included Logistic Regression (LR, [121]), k-Nearest Neighbors (KNN, [122]), AdaBoost
(ADA, [123]), Support Vector Machine (SVM, [124]), Random Forest (RF, [125]), XGBoost
(XGB, [118]), and Multilayer Perceptron (MLP, [126]). Hyperparameters for LR, KNN, and
SVM were optimized via grid search, while the others used random search. Parameter
values used for the grid search are summarized in Table 2.

Table 2. Initial and optimal hyperparameters with F1 scores from cross-validation on the training
dataset for machine learning algorithms in the prospective study. CI = 95 % confidence intervals.

Model Parameter Description Range/Values Optimal
Value F1 Score CI

Logistic
Regression

(LR)

penalty
Type of

regularization
applied

L1, L2, elasticnet,
none L1

0.962 0.029

C
Inverse of

regularization
strength

0.001–1000
(logspace) 2.154

solver Optimization
algorithm Saga Saga

max_iter
Maximum
number of
iterations

100–1000 100

K-Nearest
Neighbors

(KNN)

n_neighbors Number of
neighbors to use 3–15 3

0.919 0.056weights
The weight

function used in
prediction

Uniform,
distance Distance

metric Distance metric
Euclidean,
Manhattan,
Minkowski

Euclidean

AdaBoost
(ADA)

n_estimators Number of weak
learners 50–300 50

0.961 0.031

learning_rate

Controls the
contribution of

each weak
learner

0.01–1.0 0.01
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Table 2. Cont.

Model Parameter Description Range/Values Optimal
Value F1 Score CI

Support
Vector

Machine
(SVM)

C
Penalty

parameter of the
error term

0.001–1000
(logspace) 2.154

0.991 0.017gamma

Defines the
influence of a
single training

example

0.001–100, auto Auto

kernel
Type of kernel

used in the
algorithm

Poly, RBF RBF

Random
Forest (RF)

n_estimators Number of trees
in the forest 25–200 500

0.980 0.024

max_depth Maximum depth
of each tree 15–30, none 25

criterion
Function to
measure the

quality of a split
Gini, entropy Gini

min_samples_split

Minimum
number of

samples required
to split

2, 5, 10 1

min_samples_leaf

Minimum
number of

samples at a leaf
node

1, 2, 5, 10 2

XGBoost
(XGB)

eta Step size
shrinkage 0.01–0.1 0.05

0.971 0.027

learning_rate Shrinks feature
weights 0.1–0.4 0.35

gamma

Minimum loss
reduction for

further
partitioning

0.05–1.0 1.0

max_depth Maximum depth
of a tree 3–25 15

min_child_weight
Minimum sum of
instance weights

in a child
1, 3, 5, 7 1

subsample/
colsample_bytree

Subsample ratio
of training in-

stances/features
0.6–1.0 0.8/0.6

reg_lambda/alpha
L2 and L1

regularization
terms

0.001–1000
(logscale) 1/0.1
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Table 2. Cont.

Model Parameter Description Range/Values Optimal
Value F1 Score CI

Multilayer
Perceptron

(MLP)

hidden_layer_sizes Number and size
of hidden layers (10) to (20,20) (20,20,20)

0.981 0.024

activation Activation
function

Logistic, Tanh,
Relu Logistic

solver Optimization
algorithm

LBFGS, SGD,
Adam Adam

alpha
L2 penalty

(regularization
term)

0.001–1000
(logscale) 0.001

learning_rate Learning rate
schedule

Constant,
adaptive Adaptive

learning_rate_init Initial learning
rate 0.0001–0.3 0.15

max_iter

Maximum
number of

training
iterations

50–200 100

7. Prediction Evaluation
Stratified 10-fold cross-validation randomly divides the dataset into 10 disjoint folds

with roughly equal instances. In each iteration, one fold serves as the test set and the
remaining nine as the training set [127–129]. Optimal hyperparameters were chosen based
on F1 score from this procedure [24].

In the training data (Table 2), all algorithms achieved high scores, with several models
exceeding 0.91 across all metrics. However, their performance diverged on the test set
(Figure 6). Cross-validation showed that SVM outperformed all models, achieving the
highest F1 scores in both training (0.991; CI = 0.017; Table 2) and test datasets (0.975;
CI = 0.046; Figure 6). RF and XGB also performed strongly (training F1 > 0.980; test
F1 > 0.844), while LR and KNN were moderate (training F1 > 0.919; test F1 > 0.914), and
ADA had substantially lower and more variable test performance (F1 score < 0.842).

In addition to its high metrics and robustness, SVM outperformed other algorithms
in reducing false negatives (i.e., missed deposits). By contrast, 7 to 13% of IOCG or
hydrothermal nickel samples were misclassified as non-mineralized samples by ADA and
XGB (Figure 7), producing false positives. SVM was therefore chosen for prospectivity
prediction, as its superior performance (Figure 6) and low false-positive rate minimize
exploration costs by reducing predictions in areas unlikely to host deposits (e.g., [130]).
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Figure 6. Cross-validation metric values with a 95% confidence interval (CI) for different machine
learning algorithms on the test dataset.

Figure 7. Confusion matrices of machine learning algorithms on the training dataset. Classes are
hydrothermal nickel deposits (HNi), IOCG deposits (IOCG), and non-deposit samples (ND).
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8. Results
8.1. Variable Ranking

SHapley Additive ExPlanations (SHAP), where used to address the importance and
impact of each feature in predictive modeling [131,132]. SHAP quantifies feature contribu-
tion for the entire dataset and for specific classes (i.e., IOCG deposit, hydrothermal nickel
deposit, and non-deposit). Features were ranked by their mean absolute SHAP values,
reflecting overall and class-specific importance. All metrics were calculated using the
training datasets.

Training data were used to compute SHAP values, highlighting variable importance
and their influence on SVM predictions through stratified 10-fold cross-validation (Figure 8).
Results show that structural features strongly affect SVM classifications, with varying
importance across classes. Key features include Bouguer anomaly, geochronological con-
tact, NE–SW gravimetric lineaments, NW–SE magnetic lineaments, E–W faults, NE–SW
morpholineaments, and A1–type granites. Radiometric features, shear zones, structural
intersections, and mafic–ultramafic units generally show low importance (Figure 8).

Figure 8. SHAP feature importances for the SVM model in mineral prospectivity prediction.
Grav = gravimetric lineament, Mag = magnetic lineament, SZ = shear zone, Morpho = morpholinea-
ment, MUM = mafic-ultramafic unit, Volc = volcanic unit, A2-GRA = A2-type granite, A1-GRA = A1-
type granite.
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Feature effects are summarized in Figure 9, where variables are ranked by mean
absolute SHAP value, reflecting their average impact on model output. Each training
sample is represented by a dot, showing its SHAP value with colors indicating feature
magnitude: red = high; blue = low value; and green = average.

 

Figure 9. SHAP summary plots for the SVM model across three classes (hydrothermal nickel deposit,
IOCG deposit, and non-deposit). Features are ranked by mean absolute SHAP value; colors represent
the original feature value. Grav = gravimetric lineament, Mag = magnetic lineament, SZ = shear zone,
Morpho = morpholineament, MUM = mafic-ultramafic unit, Volc = volcanic unit, A2-GRA = A2-type
granite, A1-GRA = A1-type granite.

For the hydrothermal nickel deposits, low values (blue dots) of the NE–SW gravi-
metric lineament, E–W faults, and volcanic units corresponding to higher SHAP values
indicate a positive contribution to predicting potential mineralization (Figure 9). In contrast,
medium (green) to high (red) values generally align with negative SHAP values, suggest-
ing a suppressive effect. High values of geochronological contact, and medium-to-high
values of the A1- and A2-type granites also show positive associations with hydrothermal
nickel deposits.

For IOCG deposits, SVM modeling shows that low values of geochronological contacts,
A1-type granites, and E–W and NW–SE faults, along with high values of NW–SE-trending
magnetic lineaments and Bouguer anomaly, are positively linked to SHAP values (Figure 9).
For non-deposit samples, high values of E–W faults, NE–SW morpholineaments, volcanic
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units, and E–W gravimetric lineaments, together with low values of Bouguer anomaly and
NW–SE magnetic lineaments, contribute positively to their classifications (Figure 9).

8.2. Mineral Prospectivity Map

We generated two maps showing SVM predictions for IOCG and hydrothermal nickel
deposits (Figure 10). Areas with probability scores > 0.6 were considered high potential for
hosting deposits. For both types, the SVM model identified two main prospective regions
of the eastern and western Southern Copper Belt.

Figure 10. SVM-predicted prospective areas for IOCG (A) and hydrothermal nickel (B) deposits in
the Southern Copper Belt.

The eastern region, which hosts the major known IOCG deposits, shows the highest
IOCG probability (Figures 10A and 11A). It is spatially associated with the tectonic contact
among the basement granite–gneiss terrain, the Mesoarchean Selva Group greenstone belt,
and the ENE–WSW volcanic rocks of the Neoarchean Itacaiúnas Supergroup (Figure 11A).
High prospectivity also extends around A1-type granites, including the Central de Carajás
Granite near the Tarzan deposit, and the Rio Branco Granite, south of Sossego mine, as well
as in calc–alkaline granite, mafic–ultramafic complex, Chicrim-Cateté Orthogranulite, and
foliated A2-type granites situated south of 6◦30′ S parallel (Figure 11A).
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Figure 11. Geological map of the eastern (A) and western (B) Southern Copper Belt, highlighting
high-prospective areas for IOCG and hydrothermal nickel deposits.
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For hydrothermal nickel deposits, the SVM model identified one key area in the
eastern region (Figures 10B and 11A). The area lies around and to the west of the GT-34
deposit, near the contact between Mesoarchean calc–alkaline granites and the Chicrim-
Cateté Orthogranulite.

In the western Southern Copper Belt, prospectivity is dominated by hydrothermal
nickel (Figures 10A and 11B). The SVM model predicted a high-prospectivity zone near
known hydrothermal nickel deposits, particularly adjacent to the Jaguar deposit, associated
with the Mesoarchean TTG units and the Neoarchean Itacaiúnas Supergroup (Figure 11B).
The IOCG potential areas are located around the Pantera deposit and near the contacts
between A2-type granite and TTG units.

Most known deposits received high prospective scores (Figure 12). IOCG deposits in
the Southern Copper Belt were generally classified with probabilities ≥ 0.78. Hydrothermal
nickel deposits were also correctly classified, with most scoring ≥0.89 (Figure 12).

 

Figure 12. Prediction probabilities for known deposits in the Southern Copper Belt. Probabilities for
hydrothermal nickel deposits are shown in italic at the base of each bar, and those for IOCG deposits
in regular font at the top.

The results were further assessed using a prediction–area plot (Figure 13), which high-
lights differences in classifying IOCG and hydrothermal nickel deposits. IOCG prospec-
tivity values are widely distributed, producing a gradual cumulative area curve. This
suggests high-probability IOCG zones are spatially dispersed, requiring exploration over a
larger area to capture most predictions. In contrast, hydrothermal nickel shows a steeper
curve, indicating high prospectivity values concentrated in a much smaller portion of the
Southern Copper Belt.
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Figure 13. Prediction–area plot for the SVM model to IOCG and hydrothermal nickel deposits in the
Southern Copper Belt.

9. Discussion
Mineral systems, SVM models, and MPM were integrated to assess Cu and Ni prospec-

tivity in hydrothermal deposits in the Southern Copper Belt. In addition to Cu and Ni,
IOCG deposits may host Au, and some hydrothermal nickel deposits contain interesting
Co contents [59,60,63].

Within the mineral system framework, features were grouped into four processes:
source, active pathway, fluid throttle, and chemical scrubber. Results highlight the role of
structural features in IOCG and hydrothermal nickel mineralization, as well as in defining
new prospective areas (Figures 8–11).

SHAP-based feature importance highlights geochronological contacts, E–W fault, NW–
SE magnetic lineaments, Bouguer anomaly, NE–SW gravimetric lineaments, and NE–SW
morpholineaments (Figure 8), indicating the structural influence exerted by the lithospheric
architecture on fluid migration across multiple crustal levels.

Following Dutra et al. [23], gravimetric and magnetic lineaments reflect deep-to-mid-
crustal structures that served as conduits for deep-seated hydrothermal fluids during IOCG
and hydrothermal nickel mineralization. In contrast, morpholineaments, faults, and shear
zones represent mid-to-shallow-crustal structures that facilitated the influx of externally
derived, low temperature, and low salinity fluids, promoting ore precipitation through
fluid mixing [23,24,77–80].

Thus, these structures likely acted as depositional gradients or chemical traps for
metal precipitation [22]. The role of deep-to-mid-crustal structures may also extend to
geochronological contacts, which preserve records of ancient sutures.

Lithological units used as source proxies show a moderate-to-high role compared to
structural and radiometric features (Figures 8 and 9). Proximity to Orosirian A1-type gran-
ites and metavolcanic rocks contributes positively to predicting IOCG and hydrothermal
nickel mineralization. The emplacement of A1-type granites created a magmatic environ-
ment that acted as a regional heat source, driving hydrothermal fluid circulation [16,23].
This interpretation is consistent with Cloutier et al. [22] for Australian IOCG mineral sys-
tems. In addition, the dryness and high halogen-rich nature of A1-type magmas favor
chloride-complex metal transport.

Orosirian hydrothermal circulation may have formed or remobilized metals in hy-
drothermal nickel deposits [23]. Dutra et al. [23] proposed this process to explain nickel
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remobilization from the mafic–ultramafic suite and consequent enrichment of IOCG (Jatobá,
Castanha) and hydrothermal nickel (GT-34) deposits in the Southern Copper Belt. Although
proximity to mafic–ultramafic outcrops shows little influence on classifying mineralized
samples (Figures 8 and 9), deeper mafic–ultramafic bodies may play a greater role in MPM
and mineralization processes. Such deep fluid interactions have been suggested by several
studies [23,51,61,62,133].

Neoarchean A2-type granites were only relevant for classifying hydrothermal nickel
deposits (Figure 9). However, exsolved magmatic fluids or intense rock–fluid interactions
with this unit have been proposed in the formation of IOCG deposits [16,54]. This suggests
that magmatic–hydrothermal fluids may not have been released during A2-type granite
crystallization, but instead were linked to the ascent of deep, mantle-derived CO2-rich
hypersaline fluids during the megashear zone development [67,68].

The link between A2-type granites and nickel deposits may reflect their spatial proxim-
ity to the Jaguar deposit in the western study area. SHAP-based importance also suggests a
temporal connection between Neoarchean magmatism (2.76–2.72 Ga) [32] and the mineral-
ization event at 2.71–2.68 Ga that formed the main IOCG deposits in the Southern Copper
Belt [16,54].

SHAP-based feature importance indicates that radiometric features show only weak
signatures for IOCG and hydrothermal nickel deposits (Figure 8). Although these deposits
are linked to regional, widespread hydrothermal zones [23,51,53,134], the 100 m resolution
data were insufficient to resolve or distinguish them from granitic units.

The SVM MPM identified several areas with high probabilities of hosting hydrother-
mal deposits. Many show E–W, NE–SW, and NW–SE orientations, particularly in the small
prospective zones, and are commonly aligned with fault and shear zones, reflecting the
strong structural control on IOCG and hydrothermal nickel deposits. This relationship is
most evident in the western Southern Copper Belt (Figures 10 and 11). Our IOCG results
also agree with Dutra et al. [23], despite their use of traditional statistical methods and
fewer parameters.

The most surprising aspect of the hydrothermal nickel prospectivity map is the pres-
ence of several small areas with low-to-moderate prospective scores between the two
high-prospective regions for IOCG deposits (Figure 10B). These areas exhibit strong struc-
tural control, suggesting the Canaã shear zone may have played a key role in hydrothermal
nickel formation. This pattern is absent in the IOCG map (Figure 10A). Episodic hydrother-
mal activity from the Neoarchean to Paleoproterozoic periods repeatedly remobilized
metals. Nickel likely precipitated during late ductile-brittle deformation, spatially overlap-
ping earlier IOCG systems, which may explain why Ni-prospective areas occur between
IOCG deposits.

10. Conclusions
Seven machine learning algorithms were tested for supervised MPM: Logistic Re-

gression, Gradient Boosting, k-Nearest Neighbors, AdaBoost, Support Vector Machine
(SVM), Random Forest, XGBoost, and Multilayer Perceptron. Models were tuned and
evaluated with stratified 10-fold cross-validation, where SVM achieved the best classifica-
tion metrics and robustness. Its stability with high-dimensional, multi-class data makes
SVM well-suited for MPM in geologically complex regions, such as the Carajás Province.
Moreover, SVM minimized false positives and negatives, a key factor in reducing mineral
exploration costs.

Prospectivity modeling in the southern Carajás Province shows a strong link between
high Cu and Ni potential and major structural features, including regional faults, shear
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zones, and geochronological contacts, which likely acted as conduits for hydrothermal
fluids at different crustal levels.

The best IOCG prospects occur in the Selva Group, Itacaiúnas Supergroup, A2-type
and calc–alkaline granitoids, consistent with known mineralizing events and tectono-
magmatic settings. Hydrothermal Ni prospectivity is mainly associated with TTG suites,
calc–alkaline granites, and metavolcanic sequences of the Itacaiúnas Supergroup and Selva
Group.

The SVM model revealed distinct spatial patterns: IOCG prospectivity is more
widespread but lower in intensity, whereas hydrothermal Ni prospectivity is more lo-
calized with high-probability zones concentrated around smaller, well-defined mineral-
ized systems.

Structural architecture dominated by E–W, NW–SE, and NE–SW trends was again
confirmed visually by SHAP-derived feature importance, highlighting its control on fluid
flow and ore deposition along selected corridors. Lithological units played a secondary
role, though A1-type granites and volcanic rocks were statistically linked to IOCG and
hydrothermal Ni, respectively. These lithologies likely acted as metal sources or thermal
engines in the regional hydrothermal system.

Mafic–ultramafic rocks and Neoarchean A2-type granites, though not mineralized,
appear to indirectly influence mineralization by promoting deep fluid–rock interactions
and magmatic fluid exsolution, especially in the western Southern Copper Belt. These
findings suggest that previously unrecognized or inferred subsurface lithospheric features,
absent from surface geology, should be integrated into the prospectivity model, enabling a
multi-factor approach to establish causality across scale.

To further improve the prospectivity model, datasets with deeper penetrating ability,
such as magnetotelluric and seismic tomography, alongside high-resolution geochemical
and isotopic data, should be incorporated to develop a holistic view of lithospheric-scale
controls on mineral systems, as emphasized by Skirrow et al. [21], Oliveira et al. [77], and
Cloutier et al. [22]. In this regard, recent Curie isotherm estimates in the Amazonian Craton
provide valuable constraints on lithosphere thermal structure and its correlation with min-
eral deposits [135]. Integrating thermal models with geophysical and geochemical data may
therefore enhance understanding of lithospheric-scale controls on mineral prospectivity.
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//www.mdpi.com/article/10.3390/min15101086/s1, Figure S1. Data distribution of original and
synthetic samples in PCA and t-SNE spaces for IOCG and hydrothermal nickel deposits. The
explained variances are shown in parentheses. The deposits are Alvo 118 (A), Bacaba (B), Bacuri (Bu),
Castanha (C), GT-34 (G), Jaguar Central (JC), Jaguar South (JS), Jatobá (J), Onça Preta (OP), Pantera
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