
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

Optimizing impulsive releases: A species competition model 

Jéssica C.S. Alves a,∗, Sergio M. Oliva a, Christian E. Schaerer b

aUniversity of São Paulo, Institute of Mathematics and Statistics, Department of Applied Mathematics, São Paulo, 05508-090, SP, Brazil
bNational University of Asunción, Polytechnic School, Campus UNA, San Lorenzo, PO Box 2111 SL, Central, Paraguay

a r t i c l e  i n f o

Keywords:
Impulsive system
Optimal release control
Species competition
Release amount

 a b s t r a c t

This study focuses on optimizing species release 𝑆2 to control species population 𝑆1 through im-
pulsive release strategies. We investigate the conditions required to remove species 𝑆1, which is 
equivalent to the establishment of 𝑆2. The research includes a theoretical analysis that examines 
the positivity, existence, and uniqueness of solutions, the conditions ensuring global stability, 
and a sufficient condition for controlling the 𝑆1-free solution. In addition, we formulate an opti-
mal control problem to maximize the effectiveness of 𝑆2 releases, manage the population of 𝑆1, 
and minimize the costs associated with this intervention strategy. Numerical simulations are con-
ducted to validate the proposed theories and allow visualization of population dynamics under 
various release scenarios.

1.  Introduction

Population control in ecological systems is a highly relevant issue, especially when two or more species (or phenotypes of the 
same species) directly compete for limited resources. These interactions can lead to competitive exclusion, in which only one species 
survives in the long term. In many cases, managing such interactions involves introducing a new species into a region already occupied 
by another, aiming to control or suppress the original population [1].

Various population control methods are used, ranging from chemical [2–5] and mechanical [6,7] strategies to the use of biological 
agents [2,8–10]. The introduction of a competing species is a widely used approach, as it allows natural ecological interactions, such 
as competition, to sustainably control the target population [11–14].

Competitive interactions between species have been extensively studied in the literature through different models and techniques 
to represent the dynamics of populations competing for limited resources. Some studies explore competition models that incorporate 
the Allee effect, highlighting the importance of nonlinear mechanisms in population interactions [15,16]. Other works use impulsive 
models to describe dynamics with discontinuous events, such as periodic interventions [17–19]. Significant contributions have also 
been made in the context of optimal control, where intervention strategies are formulated under cost and efficacy constraints [15]. 
Additionally, feedback-based impulsive control approaches have been proposed to reinforce the applicability of impulsive systems in 
population management [20].

In parallel, optimal control techniques have emerged as powerful tools to determine intervention strategies that minimize costs and 
maximize effectiveness, particularly in ecological and epidemiological contexts [21–25]. Moreover, impulsive systems have gained 
prominence as a natural approach to modeling time-discrete interventions, such as periodic releases of individuals or treatments 
applied at specific moments, by integrating these three elements: species competition, optimal control, and impulsive systems. The 
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$Z_2^+$


$\tau $


\begin {equation*}\overline {Z}_2(t) = \dfrac {K_2 Z_2^+ e^{r_2 (t-k\tau )}}{Z_2^+\left (e^{r_2 (t-k\tau )} - 1\right ) + K_2}, \quad k\tau < t \leq (k+1)\tau , \quad k \geq 0,\end {equation*}


$\tau $


$\overline {Z}_2(t)$


$h(Z_2)$


$Z_2 > 0$


\begin {align}h'(Z_2) = \dfrac {\partial }{\partial Z_2} \left ( \dfrac {K_2 Z_2 e^{r_2 \tau }}{Z_2(e^{r_2 \tau } - 1) + K_2} + u_k \right ) = \dfrac {K_2^2 e^{r_2 \tau }(e^{r_2 \tau } - 1)}{\left (Z_2(e^{r_2 \tau } - 1) + K_2\right )^2} > 0,\end {align}


$Z_2 > 0$


$h$


$Z_2^+$


$h$


\begin {align}h(Z_2^+) = Z_2^+,\end {align}


$h(Z_2) = Z_2$


$Z_2 > 0$


$h$


$Z_2^+$


$0 < Z_2 < Z_2^+$


$h(Z_2) < h(Z_2^+) = Z_2^+$


$Z_2 < h(Z_2) < Z_2^+$


$Z_2 > Z_2^+$


$h(Z_2) > h(Z_2^+) = Z_2^+$


$Z_2 > h(Z_2) > Z_2^+$


$\{Z_2^k\}$


$Z_2^+$


$Z_2^0 > 0$


$Z_2^+$


$\tau $


$\overline {Z}_2(t)$


\begin {equation*}\dfrac {dS_1}{dt}(t) = S_1(t)\left (\psi _1-\dfrac {r_1}{K_1}(S_1(t)+S_2(t))\right ) \left (\dfrac {S_1(t)}{K_0} - 1 \right ) - \delta _1 S_1(t),\end {equation*}


$\left (\frac {S_1(t)}{K_0} - 1\right )$


$K_0$


$S_1(t)$


$S_1(t) \leq K_0$


$\left (\frac {S_1(t)}{K_0} - 1 \right ) \leq 0$


$K_0$


$S_1(t)$


$t \geq 0$


$S_1(t) > K_0$


$\left (\frac {S_1(t)}{K_0} - 1 \right ) > 0$


\begin {align*}\dfrac {dS_1}{dt}(t) &= S_1(t)\left [\left (\psi _1 -\dfrac {r_1}{K_1}S_1(t)\right )\left (\dfrac {S_1(t)}{K_0} - 1 \right )-\dfrac {r_1}{K_1}S_2(t)\left (\dfrac {S_1(t)}{K_0} - 1 \right )-\delta _1\right ] \nonumber \\ &\leq S_1(t)\left [\left (\psi _1 -\dfrac {r_1}{K_1}S_1(t)\right )\left (\dfrac {S_1(t)}{K_0} - 1 \right )-\delta _1\right ],\end {align*}


$y = 0$


\begin {equation}\label {eq:equation_23} \left (\psi _1 -\dfrac {r_1}{K_1}y\right )\left (\dfrac {y}{K_0} - 1 \right )-\delta _1 = 0.\end {equation}


\begin {equation*}-\dfrac {r_1}{K_1K_0}y^2 + \dfrac {\psi _1K_1 + r_1K_0}{K_1K_0}y - (\delta _1 + \psi _1) = 0.\end {equation*}


\begin {equation*}\Delta = (\psi _1K_1 + r_1K_0)^2 - 4r_1K_0K_1(\delta _1 + \psi _1),\end {equation*}


\begin {equation*}y_1 = \dfrac {\psi _1K_1 + r_1K_0 - \sqrt {\Delta }}{2r_1}, \quad y_2 = \dfrac {\psi _1K_1 + r_1K_0 + \sqrt {\Delta }}{2r_1}.\end {equation*}


$y_1 = K_b$


$y_2 = K_*$


$0 < K_b < K_*$


\begin {equation*}\left \{ \begin {aligned} \dfrac {dy}{dt} < 0, &\quad \text {if } 0 < y < K_b, \\ \dfrac {dy}{dt} > 0, &\quad \text {if } K_b < y < K_*, \\ \dfrac {dy}{dt} < 0, &\quad \text {if } y > K_*. \end {aligned} \right .\end {equation*}


$y(0) = S_1(0)$


$0 \leq S_1(0) < K_b$


$y(t)$


$0$


$t$


$K_b < S_1(0) < K_*$


$y(t)$


$K_*$


$t \to \infty $


$S_1(0) > K_*$


$y(t)$


$K_*$


$t \to \infty $


$S_1$


$S_1(0) > K_b$


$K_b$


$K_*$


$\frac {dS_1}{dt}(t) \leq \frac {dy}{dt}(t)$


$S_1(0) = y(0)$


\begin {align}S_1(t) \leq y(t) \leq K_*, \quad \text {for all } t \geq 0.\end {align}


$S_1(t)$


$t \geq 0$


\begin {align}S_1(t) \leq M_1 := \max \{K_*, S_1(0)\}, \quad \text {for all } t \geq 0.\end {align}


$S_1(t)$


$S_2(t)$


$t \geq 0$


$M_1 > 0$


$S_1(t)$


$S_2(t)$


\begin {equation*}\dfrac {dS_2}{dt}(t) \leq \dfrac {dZ_2}{dt}(t), \quad \text {with } S_2(0) = Z_2(0),\end {equation*}


$Z_2$


$Z_2(t)$


$t \neq k\tau $


$\max \{K_2, Z_2(0)\}$


$K_2$


$S_2$


$t = k\tau $


$u_k \in U$


$u_{\max }$


$Z_2(t^+) \leq \max \{K_2, S_2(0)\} + u_{\max }$


$Z_2(t)$


\begin {equation*}S_2(t) \leq Z_2(t).\end {equation*}


$M_2 := \max \{K_2, S_2(0)\} + u_{\max }$


$S_2(t) \leq M_2$


$t \geq 0$


$V(t) = S_1(t) + S_2(t)$


$V(t) \in \mathcal {V}_0$


$\lambda > 0$


$k\tau \leq t \leq (k+1)\tau $


\begin {align*}D^+V(t) + \lambda V(t) &= D^+S_1(t) + D^+S_2(t) + \lambda (S_1(t) + S_2(t))\\\nonumber &= S_1(t)\left (\psi _1 - \dfrac {r_1}{K_1}(S_1(t) + S_2(t))\right )\left (\dfrac {S_1(t)}{K_0} - 1\right ) - \delta _1 S_1(t)\\\nonumber &\quad + S_2(t)\left (\psi _2 - \dfrac {r_2}{K_2}(S_1(t) + S_2(t))\right ) - \delta _2 S_2(t) + \lambda (S_1(t) + S_2(t))\\ &\leq (r_1 + \lambda ){M_1} + (r_2 + \lambda )M_2 := M_3.\end {align*}


$t = k\tau $


$V(k\tau ^+) = V(k\tau ) + u_k$


$u_k \in U$


\begin {align*}\label {eq:equation-22}\nonumber V(t) &\leq V(0) e^{-\lambda t} + \int _0^t M_3 e^{-\lambda (t-s)},ds + \sum _{0 \leq k\tau \leq t} u_k e^{-\lambda (t - k\tau )}\\ &\leq V(0) e^{-\lambda t} + \dfrac {M_3}{\lambda }(1 - e^{-\lambda t}) + \sum _{0 \leq k\tau \leq t} u_{\max } e^{-\lambda (t - k\tau )}.\end {align*}


$t \to \infty $


\begin {equation*}V(t) \leq \dfrac {M_3}{\lambda } + u_{\max } \dfrac {e^{\lambda \tau }}{e^{\lambda \tau } - 1}.\end {equation*}


$V(t)$


$S_1(t)$


$S_2(t)$

https://orcid.org/0000-0002-5284-0613
https://orcid.org/0000-0002-0587-7704
mailto:alvesj@ime.usp.br
https://doi.org/10.1016/j.apm.2025.116517
https://doi.org/10.1016/j.apm.2025.116517
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2025.116517&domain=pdf


J.C.S. Alves et al.

present work aligns with current research trends and contributes to advancing the field by proposing an original formulation aimed 
optimize intervention strategies in biological systems with discontinuous dynamics.

Many studies use mathematical models to represent interactions between competing or predatory species, often based on con-
tinuous approaches [9,26–28]. These formulations assume that control or introduction of new species occurs continuously, which, 
although theoretically feasible, does not always reflect practical reality. In practice, interventions such as the introduction of a com-
peting species generally occur periodically or impulsively due to logistical, financial, and operational constraints. To address these 
limitations, some studies propose alternative approaches, such as impulsive releases. Examples include the release of mosquitoes with 
Wolbachia to control the wild Aedes aegypti population [29–32], periodic and impulsive release of sterile mosquitoes [33–36], and 
similar strategies applied to other insect populations [23,31,37].

In this work, we adapt the interaction model between wild and Wolbachia-infected female mosquitoes of the species Aedes aegypti, 
originally proposed in [38], to represent the competition between two species, denoted by 𝑆1 and 𝑆2. The adapted model incorporates 
impulsive releases of species 𝑆2 and is formulated as a system of impulsive differential equations with jumps occurring at the initial 
condition of each intervention cycle. This modeling choice provides a realistic representation of biological control practices, in which 
the introduction of individuals from a competing population typically occurs at discrete time intervals rather than continuously. By 
placing the impulse at the initial state of each period, the model captures the cumulative effect of releases in a mathematically concise 
and biologically interpretable way.

One of the main contributions of this study lies in the analytical derivation of a sufficient condition that guarantees both the 
elimination of species 𝑆1 and the global stability of species 𝑆2 under an impulsive release strategy. This result not only characterizes 
the long-term behavior of the system but also provides a clear and actionable threshold for successful intervention. In addition, 
we formulate and solve an optimal control problem that determines the most efficient release strategy minimizing the number and 
magnitude of interventions while ensuring the fixation of 𝑆2.This combination of impulsive modeling, theoretical contributions, and 
cost-effective optimization constitutes the novelty of the proposed approach.

The structure of the paper is as follows. In Section 2, we present the formulation of the adapted model from [38], including 
the impulsive differential equations that represent the periodic release of individuals from population 𝑆2. We then describe the 
model components in detail, discussing the parameters involved and the specific conditions required to ensure biologically consistent 
population dynamics. The section concludes with a theorem on the equilibrium points and their stability, which was proposed in [38] 
and is being adapted to the context in this study.

Section 3 is dedicated to the analysis of the model dynamics. We begin by establishing fundamental results concerning the 
existence, uniqueness, positivity, and boundedness of solutions to the impulsive system, ensuring temporal consistency and well-
posedness. Then, we investigate the existence of a solution in which species 𝑆1 is eliminated and provide a detailed stability analysis 
of this solution. In particular, we derive a sufficient condition that guarantees the global stability of the 𝑆1-free solution, along with 
a criterion for the amount of individuals of species 𝑆2 required to eliminate species 𝑆1 through impulsive releases.

In Section 4, we formulate an optimal control problem aimed at minimizing the total number of individuals released during the 
intervention interval [0, 𝑇 ], where 𝑇  denotes the final observation time. At the same time, the strategy must ensure that the population 
of species 𝑆1 is reduced below its survival threshold associated with the Allee effect by time 𝑇 . We also prove the existence of at least 
one optimal solution to this control problem.

Section 5 presents numerical simulations based on the interaction between two subspecies: wild females and Wolbachia-infected 
females of Aedes aegypti. First, we simulate the impulsive model to validate the theoretical findings from Section 3, confirming the 
applicability of the sufficient condition for global stability of the 𝑆1-free solution. We then simulate the optimal control problem, using 
predefined impulse times and varying the final intervention time 𝑇 . These simulations allow us to assess how different parameters 
affect the effectiveness of control and guide the optimization of release strategies to reduce costs while ensuring the elimination of 
species 𝑆1.

Finally, Section 6 presents the main conclusions of the study. We discuss the relevance of impulsive release strategies in the 
population dynamics of species 𝑆1 and 𝑆2, emphasizing the role of optimal control in enhancing the effectiveness and efficiency 
of ecological interventions. We also propose directions for future research, highlighting opportunities to extend and deepen the 
understanding of systems governed by discontinuous dynamics.

2.  Model formulation

Based on a model introduced in [38], we define the impulsive model of competition between two generic species 𝑆1 and 𝑆2 as:

⎧

⎪

⎨

⎪

⎩

𝑑𝑆1
𝑑𝑡

= 𝑆1

(

𝜓1 −
𝑟1
𝐾1

(𝑆1 + 𝑆2)
)(

𝑆1
𝐾0

− 1
)

− 𝛿1𝑆1,

𝑑𝑆2
𝑑𝑡

= 𝑆2

(

𝜓2 −
𝑟2
𝐾2

(𝑆1 + 𝑆2)
)

− 𝛿2𝑆2,
 if 𝑡 ≠ 𝑘𝜏, 𝑘 ≥ 0 (1a)

{

𝑆1(𝑡+) = 𝑆1(𝑡),
𝑆2(𝑡+) = 𝑆2(𝑡) + 𝑢𝑘,

 if 𝑡 = 𝑘𝜏, 𝑘 ≥ 0, (1b)

with non-negative initial conditions and positive parameters, where 𝑆1(𝑡) and 𝑆2(𝑡) represent the populations of two species competing 
with each other over time 𝑡. The parameters 𝜓𝑖 and 𝛿𝑖 represent, respectively, the birth and death rates of species 𝑆1 and 𝑆2 for 𝑖 = 1, 2, 
as defined in the original model, while 𝑟𝑖 ∶= 𝜓𝑖 − 𝛿𝑖 for 𝑖 = 1, 2 indicates the intrinsic growth rate of both populations. The parameter 
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𝐾𝑖 for 𝑖 = 1, 2 is associated with the carrying capacity of the competing species populations. In this work, we disregard the density 
dependence of the parameters.

For this impulsive differential equation system, the release period is 𝜏 and 𝑢𝑘 ∈ 𝑈 denotes the impulsive release of species 𝑆2 at time 
𝑡 = 𝑘𝜏. In practice, 𝑢𝑘 is limited by the availability of species 𝑆2, so the set of possible releases is given by 𝑈 ∶= {0 ≤ 𝑢𝑘 ≤ 𝑢max, ∣ 𝑘 ≥ 0}, 
where 𝑢max ≥ 0 represents the maximum number of individuals of species 𝑆2 that can be released at a given time. The population of 
𝑆1 immediately after the 𝑘th release is given by 𝑡 = 𝑘𝜏+, with 𝑆𝑖(𝑡+) = lim𝜖→0+ 𝑆𝑖(𝑡 + 𝜖), 𝑖 = {1, 2}.

The system (1a) incorporates the frequency-dependent Allee effect in the first equation, which applies to species 𝑆1 [14,38]. This 
effect is modeled by the critical compensation term 

(

𝑆1
𝐾0

− 1
)

, which directly influences the recruitment of individuals of species 𝑆1. 
The term is positive when 𝑆1(𝑡) > 𝐾0 and negative when 𝑆1(𝑡) < 𝐾0. The parameter 𝐾0 > 0, along with 𝐾1 (where 0 < 𝐾0 < 𝐾1), are 
related to the “minimum viable population size" (MVPS) commonly observed in models with the Allee effect [39–44]. The MVPS 
threshold for species 𝑆1 is given by 𝐾𝑏, while its carrying capacity is indicated by 𝐾∗. For more details, see [38].

For this model, we consider
𝜓1 > 𝛿1 and 𝜓2 > 𝛿2, (2)

which guarantee a larger number of births than deaths. In addiction, we consider
𝜓2 < 𝜓1, 𝛿2 > 𝛿1 and 𝑟2 < 𝑟1, (3)

implying that the population of species 𝑆1 exhibits greater survival ability than that of species 𝑆2.
The system in (1a), with nonnegative initial conditions, has four steady states, as described in [38]. In the following, we present 

these steady states by adapting Theorem 1 from [38] to the context of this work.
Theorem 2.1  (adapted from Theorem 1 in [38]). Under the conditions (3), the dynamical system (1a) with nonnegative initial conditions 
has four steady states in the region of biological interest ℝ2

+ ⧵ {(0, 0)}, namely:
• one nodal repeller (𝐾𝑏, 0) where

𝐾𝑏 =
𝑟1𝐾0 + 𝜓1𝐾1 −

√

(𝑟1𝐾0 + 𝜓1𝐾1)2 − 4𝑟1𝐾0𝐾1(𝜓1 + 𝛿1)
2𝑟1

> 0,

indicates the MVPS threshold for species 𝑆1;
• one saddle point (𝑆∗

1 , 𝑆
∗
2 ) of unstable coexistence of both species with coordinates given by

𝑆∗
1 =

𝐾0
[

𝜓1(𝐾1 −𝐾2) + 𝛿1(𝐾1 +𝐾2)
]

𝜓1(𝐾1 −𝐾2) + 𝛿1𝐾2
> 0,

𝑆∗
2 =𝐾2 − 𝑆∗

1 > 0;
• two nodal attractors (0, 𝐾2) and (𝐾∗, 0), where

𝐾∗ =
𝑟1𝐾0 + 𝜓1𝐾1 +

√

(𝑟1𝐾0 + 𝜓1𝐾1)2 − 4𝑟1𝐾0𝐾1(𝜓1 + 𝛿1)
2𝑟1

> 0,

defines the carrying capacity of the first species. Only one of these steady states can be reached when 𝑡 → ∞ according to the initial 
conditions 𝑆1(0) > 0, 𝑆2(0) > 0 assigned to the system (1a), namely:
- If 𝑆1(0) > 𝐾𝑏 and 𝑆2(0) > 0 then (𝐾∗, 0) is reachable when 𝑡 → ∞ and the species 𝑆1 should persist while the species 𝑆2 become extinct.
- If 𝑆1(0) < 𝐾𝑏 and 𝑆2(0) > 0 then (0, 𝐾2) is reachable when 𝑡→ ∞ and the species 𝑆2 should persist while the species 𝑆1 become extinct.

In addition, for consistency with the results presented in [38] we consider
0 < 𝐾0 < 𝐾𝑏 < 𝐾2 < 𝐾1 < 𝐾∗.

Since the system we are working with is a model of interaction between two variables with known terms, wehave chosen the 
model (1a) for this work.When the pulse conditions (1b) are added, it is necessary to study the combined model (1a)–(1b)to ensure 
that, even with the discontinuity, the system remains well-posed.

In the next section, we will explore the dynamic behavior of the impulsive differential equations system, includingan analysis 
of the local and global stability of the free solution of species 𝑆1. We will also present numerical simulations that illustrate these 
behaviors andthe corresponding results, contributing to a deeper understanding of the dynamics between the species.

3.  Model dynamics analysis

In this section, we begin by presenting some essential mathematical definitions and tools for analyzing the impulsive differential 
equations system. These tools are fundamental for establishing results related to positivity, existence, uniqueness, and boundedness 
of solutions. Weperform a detailed analysis of the system, focusing on the results obtained and their implications for the behavior of 
solutions over time.

Additionally, when considering the release of individuals from species 𝑆2 to replace the population of 𝑆1. Weprove the existence 
and uniqueness of the solution (0, 𝑆2) and analyze the conditions for its stability. The behavior of this solution is of great importance, as 
it allows us to understand how species 𝑆2 behaves in the absence of direct interactions withother species. Through this investigation, 
we aim to better understand the conditions that ensure the maintenance of the free solution, which may have significant implications 
for the system’s dynamics and species interactions.
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3.1.  Fundamental concepts

In this subsection, we present some definitions and tools that will be used to analyze the existence and stability of impulsive periodic 
solutions of system (1a)-(1b). Throughout the paper, we adopt the notations ℝ+ = [0,∞), ℝ2

+ = {𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 ∶ 𝑥1 ≥ 0, 𝑥2 ≥ 0}, 
and denote by 𝑔 = (𝑔1, 𝑔2)𝑇  the vector field on the right-hand side of (1a).
Definition 3.1. (in [45]) Let 𝑉 ∶ ℝ+ ×ℝ2

+ → ℝ+. We say that 𝑉  belongs to the class 0 if it is continuous on (𝑘𝜏, (𝑘 + 1)𝜏] ×ℝ2
+ for all 

𝑘 ∈ ℕ, and if the following limit exists and is finite for every 𝑥 ∈ ℝ2
+:

lim
(𝑡,𝑦)→(𝑘𝜏+ ,𝑥)

𝑉 (𝑡, 𝑦) = 𝑉 (𝑘𝜏+, 𝑥).

Definition 3.2. (in [45]) Let 𝑉 ∈ 0. For (𝑡, 𝑥) ∈ (𝑘𝜏, (𝑘 + 1)𝜏] ×ℝ2
+, the upper right-hand derivative of 𝑉 (𝑡, 𝑥) with respect to the impulsive 

system (1a)-(1b) is defined by

𝐷+𝑉 (𝑡, 𝑥) = lim
ℎ→0

sup 1
ℎ
[𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑔(𝑡, 𝑥)) − 𝑉 (𝑡, 𝑥)].

Definition 3.3. (in [45]) Let 𝜚(𝑡) = 𝜚(𝑡, 𝑡0, 𝑥0) be a solution of system (1a)-(1b) defined on an interval [𝑡0, 𝑡0 + 𝓁). The function 𝜚(𝑡) is called 
a maximal solution if, for any other solution 𝑥(𝑡, 𝑡0, 𝑥0) defined on the same interval, we have 

𝑥(𝑡) ≤ 𝜚(𝑡), for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝓁).

A minimal solution 𝜌(𝑡) is defined analogously by reversing the inequality in Definition 3.3.
Using Definitions 3.1–3.3, we can now state a comparison theorem for impulsive differential equations.

Theorem 3.1. (Comparison theorem in [45]): Let 𝑚 ∈ 0, and suppose that
𝐷+𝑚(𝑡) ≤ 𝑣(𝑡, 𝑚(𝑡)), 𝑡 ≠ 𝑡𝑘, 𝑘 = 1, 2,…

𝑚(𝑡+𝑘 ) ≤ 𝜑𝑘(𝑚(𝑡𝑘)), 𝑡 = 𝑡𝑘, 𝑘 = 1, 2,…

where each 𝜑𝑘 ∈ (ℝ,ℝ) is non-decreasing.
Let 𝜚(𝑡) be the maximal solution of the scalar impulsive system

𝑢̇(𝑡) = 𝑣(𝑡, 𝑢), 𝑡 ≠ 𝑡𝑘 (4)

𝑢(𝑡+𝑘 ) = 𝜑𝑘(𝑢(𝑡𝑘)), 𝑡 = 𝑡𝑘, 𝑡𝑘 > 𝑡0 ≥ 0

𝑢(𝑡0) = 𝑢0,

which exists on [𝑡0,∞). Then, if 𝑚(𝑡+0 ) ≤ 𝑢0, it follows that 𝑚(𝑡) ≤ 𝜚(𝑡) for all 𝑡 ≥ 𝑡0.
A symmetric result holds if all inequalities are reversed and the maps 𝜑𝑘 are non-increasing.

Remark 3.1.  Although Definition 3.1 introduces the class 0 for functions 𝑉 (𝑡, 𝑥) that depend on both time and state variables, scalar 
functions of time, such as 𝑚(𝑡) in Theorem 3.1, are also said to belong to 0 since they satisfy the corresponding regularity properties at 
impulsive moments. More precisely, a scalar function 𝑚 ∶ ℝ+ → ℝ belongs to class 0 if it satisfies:

• 𝑚(𝑡) is continuous on each interval (𝑡𝑘, 𝑡𝑘+1];
• The right-hand limit lim

𝑡→𝑡+𝑘
𝑚(𝑡) exists and is finite for all 𝑘.

These conditions ensure that 𝑚 behaves regularly at the discontinuities induced by the impulses, analogously to the original definition of class 
0. 

Note that if the function 𝑣 in Theorem 3.1 is smooth enough to ensure existence and uniqueness of solutions for the initial value 
problem (4), then 𝜚(𝑡) is the unique solution.

3.2.  Behavior of system solutions

As we are working with population dynamics, we must make sure that the solutions of system (1a)–(1b) are non-negative.
Proposition 3.1. Let (𝑆1(0), 𝑆2(0)) be a non-negative initial condition, and let (𝑆1(𝑡), 𝑆2(𝑡)) be a solution to the system (1a)–(1b). Then, 
(𝑆1(𝑡), 𝑆2(𝑡)) remains non-negative for all 𝑡 ≥ 0.

Proof.  Note that 𝑑𝑆1
𝑑𝑡

= 0 whenever 𝑆1(𝑡) = 0. This implies that the solution cannot cross the 𝑆1-axis. Therefore, if 𝑆1(0) ≥ 0, it follows 
that 𝑆1(𝑡) ≥ 0 for all 𝑡 ≥ 0. Similarly, if 𝑆2(0) ≥ 0, then 𝑆2(𝑡) ≥ 0 for all 𝑡 ≥ 0. ∎

In the following proposition, the smoothness of the right-hand side of the system (1a)–(1b), combined with Definition 3.1, ensures 
the existence and uniqueness of solutions to the model.
Proposition 3.2. For each non-negative initial condition and each release amount 𝑢𝑘 ∈ 𝑈 of individuals from species 𝑆2, the system (1a)-(1b) 
has a unique solution defined on the interval [0,∞).
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Proof.  Suppose (𝑆1(𝑡), 𝑆2(𝑡)) is a solution to the system (1a)–(1b). It is continuous on the intervals (𝑘𝜏, (𝑘 + 1)𝜏] for 𝑘 ≥ 0, indicating 
that it remains continuous between each pair of pulses. Furthermore, there exist limits defined as follows:

𝑆1(𝑘𝜏+) = lim
𝜖→0+

𝑆1(𝑘𝜏 + 𝜖), 𝑆2(𝑘𝜏+) = lim
𝜖→0+

𝑆2(𝑘𝜏 + 𝜖).

Consequently, the existence and uniqueness of these solutions are guaranteed by the smoothness of the functions:

𝑔1(𝑆1, 𝑆2) = 𝑆1

(

𝜓1 −
𝑟1
𝐾1

(𝑆1 + 𝑆2)
)(

𝑆1
𝐾0

− 1
)

− 𝛿1𝑆1,

𝑔2(𝑆1, 𝑆2) = 𝑆2

(

𝜓2 −
𝑟2
𝐾2

(𝑆1 + 𝑆2)
)

− 𝛿2𝑆2.

 ∎
Due to the biological context of system (1a)–(1b), it is essential to ensure that the solutions remain bounded over time, as un-

bounded growth or negative population sizes would not be biologically meaningful. The model captures key ecological mechanisms 
such as intra- and interspecific competition, mortality, and impulsive interventions (e.g., periodic releases). To better understand the 
dynamics and provide a foundation for proving boundedness, we first consider an auxiliary system that describes the evolution of 
species 𝑆2 in the absence of individuals of species 𝑆1. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑍2
𝑑𝑡

(𝑡) = 𝑍2

(

𝜓2 −
𝑟2
𝐾2

𝑍2

)

− 𝛿2𝑍2. 𝑡 ≠ 𝑘𝜏, 𝑘 ≥ 0

𝑍2(𝑡+) = 𝑍2(𝑡) + 𝑢𝑘, 𝑡 = 𝑘𝜏, 𝑢𝑘 ∈ 𝑈
𝑍2(0+) = 𝑍2(0).

(5)

This simplified system captures the autonomous dynamics of 𝑆2 under impulsive control, without interaction terms involving 
𝑆1. We will show that, for each initial condition 𝑍2(0) such that 𝑍2(0) = 𝑆2(0) and for each set of releases 𝑈 , there exists a unique 
𝜏-periodic solution that is globally asymptotically stable. This result is a key step toward establishing uniform bounds on the full 
system’s solutions, and it ensures the existence and global stability of the 𝑆1-free solution of system (1a)–(1b).
Theorem 3.2. Given the auxiliary system (5), for each 𝑍2(0) ≥ 0 and each 𝑢𝑘 ∈ 𝑈 , there exists a unique positive 𝜏-periodic solution 𝑍2(𝑡), 
expressed by: 

𝑍2(𝑡) =
𝐾2𝑍+

2 𝑒
𝑟2(𝑡−𝑘𝜏)

𝑍+
2
(

𝑒𝑟2(𝑡−𝑘𝜏) − 1
)

+𝐾2
, 𝑘𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏, 𝑘 ≥ 0, (6)

where 

𝑍+
2 = 1

2

[

(𝑢𝑘 +𝐾2) +
√

(𝑢𝑘 +𝐾2)2 + 4
𝑢𝑘𝐾2
𝑒𝑟2𝜏 − 1

]

, 𝑘 ≥ 0. (7)

Furthermore, the solution 𝑍2(𝑡) is globally asymptotically stable.
The proof of Theorem 3.2 is given in the (Appendix A).
Corollary 3.1. Let 𝑍2(𝑡) be the 𝜏-periodic solution of system (5). Then for every solution 𝑍2(𝑡) of problem (5), 

𝑍2(𝑡) → 𝑍2(𝑡),  as 𝑡 → ∞,

where 𝑍2(𝑡) is given by (6).
Proof.  For every solution 𝑍2(𝑡) of the system (5), we have 𝑍2(𝑡) → 𝑍2(𝑡) as 𝑡 → ∞ follows directly from the Theorem 3.2 that estab-
lishes the global asymptotic stability of 𝑍2(𝑡). ∎

Now, we are interested in proving the uniform boundedness of the solutions of system (1a)–(1b). To this end, we first establish 
a lemma that provides an upper bound for 𝑆1(𝑡), based on its relationship with the carrying capacity 𝐾∗, as discussed in [38]. Then, 
we employ the auxiliary system (5), along with Theorem 3.2 and its Corollary 3.1, to derive an upper bound for 𝑆2(𝑡).

From a biological perspective, proving that the population sizes remain bounded ensures that the model describes realistic popula-
tion dynamics under impulsive interventions. From a mathematical point of view, uniform boundedness plays a key role in establishing 
the global asymptotic stability of the 𝑆1-free solution and is also a crucial hypothesis for proving the existence of an optimal control, 
which will be addressed in the next section.
Lemma 3.1. Let (𝑆1(𝑡), 𝑆2(𝑡)) be a solution of system (1a)–(1b), with positive parameters, 𝑢𝑘 ∈ 𝑈 , and non-negative initial conditions. Then, 
there exists a positive constant 𝑀1 such that 𝑆1(𝑡) ≤𝑀1 for all 𝑡 ≥ 0.

The proof of Lemma 3.1 is given in the (Appendix B).
Theorem 3.3. Let (𝑆1(𝑡), 𝑆2(𝑡)) be a solution of system (1a)–(1b), with positive parameters, 𝑢𝑘 ∈ 𝑈 and non-negative initial conditions. Then 
(𝑆1(𝑡), 𝑆2(𝑡)) is uniformly bounded.
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The proof of Theorem 3.3 is given in the (Appendix C).
With the support of Theorem 3.2, we establish the existence of a unique 𝜏-periodic solution of system (1a)-(1b) corresponding to 

the absence of species 𝑆1.

Theorem 3.4. Let (𝑆1(0), 𝑆2(0)) be non-negative initial conditions. For some choice of 𝑢𝑘 ∈ 𝑈 , the pair (0, 𝑆2(𝑡)) is the unique positive, 
𝜏-periodic, 𝑆1-free solution of system (1a)–(1b).

Proof.  Note that when 𝑆1(𝑡) = 0, the second equation of system (1a) reduces to 𝑑𝑆2
𝑑𝑡

=
𝑑𝑍2
𝑑𝑡

, where 𝑑𝑍2
𝑑𝑡

 corresponds to the first 
equation of the auxiliary system (5). The solution to this equation is given explicitly by (6).

Therefore, the dynamics of 𝑆2(𝑡) under the condition 𝑆1(𝑡) = 0 coincide exactly with those of 𝑍2(𝑡). By applying Theorem 3.2, 
which guarantees the existence and uniqueness of a positive 𝜏-periodic solution for system (5), we conclude that there exists 𝑢𝑘 ∈ 𝑈
such that (0, 𝑆2(𝑡)) is the unique 𝜏-periodic, 𝑆1-free solution of system (1a)–(1b), where 𝑆2(𝑡) = 𝑍2(𝑡) for all 𝑡 ≥ 0. ∎

3.3.  Stability of 𝑆1-free periodic solution

Due to the Allee effect present in the equation governing species 𝑆1, we observed in the previous section that when 𝑆1(0) < 𝐾𝑏, 
the population of 𝑆1 tends to go extinct in the absence of external intervention. Therefore, it is crucial to analyze the stability of 
the solution (0, 𝑆2(𝑡)) when 𝑆1(0) > 𝐾𝑏. Understanding the behavior of this solution is essential for evaluating the viability of species 
𝑆2 in the environment. In this subsection, we investigate the global asymptotic stability of the periodic solution with no individuals 
of species 𝑆1 in the system (1a)–(1b). To analyze this, we use a comparison argument with auxiliary systems whose dynamics are 
known. Additionally, we rely on the fact that all solutions of the system are uniformly bounded to ensure that the convergence is 
global.

Theorem 3.5. The 𝑆1-free periodic solution (0, 𝑆2(𝑡)) of the system (1a)-(1b) is globally asymptotically stable if
𝑆2(𝑡) > 𝐾1 for all 𝑡 ≥ 0. (8)

Proof.  From the second equation of the model, we obtain the inequality:
𝑑𝑆2
𝑑𝑡

≤
(

𝜓2 −
𝑟2
𝐾2

𝑆2

)

𝑆2 − 𝛿2𝑆2.

Therefore, we can apply the auxiliary system (5) for comparison. From Corollary 3.1, we know that
lim
𝑡→∞

𝑍2(𝑡) = 𝑍2(𝑡).

Thus, for any 𝜖 > 0 sufficiently small, there exists 𝑡1 > 0 such that
𝑍2(𝑡) < 𝑍2(𝑡) + 𝜖 for all 𝑡 > 𝑡1.

It follows from the Comparison Theorem 3.1 that 𝑆2(𝑡) ≤ 𝑍2(𝑡). Then, since 𝑍2(𝑡) < 𝑍2(𝑡) + 𝜖 and 𝑆2(0) = 𝑍2(0), we conclude that
𝑆2(𝑡) ≤ 𝑍2(𝑡) + 𝜖, for all 𝑡 > 𝑡1. (9)

Now, suppose that 𝑆1(0) > 𝐾𝑏 > 𝐾0. In this case, 
(

𝑆1
𝐾0

− 1
)

> 0. Consider the inequality: 

𝑑𝑆1
𝑑𝑡

≤ 𝑆1

[(

𝜓1 −
𝑟1
𝐾1

𝑆2

)(

𝑆1
𝐾0

− 1
)

− 𝛿1

]

.

To ensure the stability of the equilibrium solution 𝑆1(𝑡) = 0, we require that
(

𝜓1 −
𝑟1
𝐾1

𝑆2

)(

𝑆1
𝐾0

− 1
)

< 𝛿1. (10)

Given (9), the inequality (10) is guaranteed if

𝜓1 −
𝑟1
𝐾1

(𝑍2(𝑡) + 𝜖) <
𝛿1

(

𝑆1
𝐾0

− 1
) .

Since 𝑆1(0) > 𝐾𝑏 > 𝐾0, we have 
(

𝑆1
𝐾0

− 1
)

> 1 for sufficiently large values of 𝑆1, which implies that

𝛿1
(

𝑆1
𝐾0

− 1
) < 𝛿1.

Hence, the inequality 

𝜓1 −
𝑟1
𝐾1

(𝑍2(𝑡) + 𝜖) < 𝛿1
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is also satisfied. That is, we can rewrite the condition as
𝑍2(𝑡) > 𝐾1 for all 𝑡 ≥ 0,

since by the model hypothesis 𝑟1 = 𝜓1 − 𝛿1.
Substituting (8) into the first equation of system (1a), we obtain 

𝑑𝑆1
𝑑𝑡

≤ 𝑆1

[(

𝜓1 −
𝑟1
𝐾1

(𝑆1 +𝐾1)
)(

𝑆1
𝐾0

− 1
)

− 𝛿1

]

.

We now consider the following comparison system: 
⎧

⎪

⎨

⎪

⎩

𝑑𝑍1
𝑑𝑡

= 𝑍1

[(

𝜓1 −
𝑟1
𝐾1

(𝑍1 +𝐾1)
)(

𝑍1
𝐾0

− 1
)

− 𝛿1

]

,

𝑍1(0) = 𝑆1(0),

for which we know that 𝑍1(𝑡) → 0 as 𝑡→ ∞, by construction. Therefore, by the Comparison Theorem, if condition (8) holds, then for 
𝜖 > 0 sufficiently small, there exists 𝑡2 > 𝑡1 such that

𝑆1(𝑡) ≤ 𝑍1(𝑡) ≤ 𝜖, for all 𝑡 > 𝑡2. (11)

Substituting (11) into the second equation of system (1a), we obtain: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑆2
𝑑𝑡

(𝑡) ≥ 𝑆2

(

𝜓2 −
𝑟2
𝐾2

(𝜖 + 𝑆2)
)

− 𝛿2𝑆2, 𝑡 ≠ 𝑘𝜏, 𝑘 ≥ 0,

𝑆2(𝑡+) = 𝑆2(𝑡) + 𝑢𝑘, 𝑡 = 𝑘𝜏, 𝑢𝑘 ∈ 𝑈,
𝑆2(0+) = 𝑆2(0).

Due to the continuity of the right-hand side, and by an argument analogous to that used in Theorem 3.2, we conclude that for 𝜖 > 0
sufficiently small, there exists 𝑡3 > 𝑡2 such that

𝑍2(𝑡) − 𝜖 ≤ 𝑆2(𝑡), for all 𝑡 > 𝑡3.
Finally, if condition (8) is satisfied, then for 𝜖 > 0 we have:

0 ≤ 𝑆1(𝑡) ≤ 𝜖 and 𝑍2(𝑡) − 𝜖 ≤ 𝑆2(𝑡) ≤ 𝑍2(𝑡) + 𝜖, for all 𝑡 > 𝑡3.
Letting 𝜖 → 0, we conclude that

𝑆1(𝑡) → 0 and 𝑆2(𝑡) → 𝑍2(𝑡) ∶= 𝑆2(𝑡) as 𝑡→ ∞.

This implies that (𝑆1(𝑡), 𝑆2(𝑡)) → (0, 𝑆2(𝑡)) as 𝑡→ ∞ for any admissible initial condition satisfying 𝑆1(0) > 𝐾0, provided that condi-
tion (8) holds. Furthermore, since the solutions remain uniformly bounded and converge regardless of the initial condition (within 
the biologically relevant domain), the solution (0, 𝑆2(𝑡)) is globally attractive and stable in the sense of Lyapunov. Therefore, it is 
globally asymptotically stable.  ∎

3.4.  A method to select 𝑢𝑘 (a sufficient condition)

In this subsection, we make use of the global stability condition (8) to determine a sufficient value for the number of individuals 
of species 𝑆2 to be released, denoted by 𝑢𝑘, to stabilize the 𝑆2 population and drive the 𝑆1 population to extinction.

Let 

𝑆2(𝑡) =
𝐾2𝑍+

2 𝑒
𝑟2(𝑡−𝑘𝜏)

𝑍+
2
(

𝑒𝑟2(𝑡−𝑘𝜏) − 1
)

+𝐾2
, 𝑘𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏, 𝑘 ≥ 0,

where 𝑍+
2  depends on 𝑢𝑘 and is given by (7). The maximum value of 𝑆2(𝑡) over each interval (𝑘𝜏, (𝑘 + 1)𝜏] occurs at 𝑡 = (𝑘 + 1)𝜏, 

yielding

𝑆
max
2 =

𝐾2𝑍+
2 𝑒

𝑟2𝜏

𝑍+
2 (𝑒

𝑟2𝜏 − 1) +𝐾2
,

so that
𝑆2(𝑡) ≤ 𝑆

max
2 , for all 𝑡 ≥ 0.

In order to solution (0, 𝑆2(𝑡)) be globally asymptotically stable, it is sufficient that 𝑆2(𝑡) > 𝐾1. Thus, requiring
𝑆
max
2 > 𝐾1,

and performing algebraic manipulations, we obtain the following sufficient condition to guarantee the stabilization of 𝑆2 and the 
extinction of 𝑆1:

𝑢𝑘 > 𝜂(𝜏), ∀𝜏 ≥ 0,
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where

𝜂(𝜏) =
(𝑒𝑟2𝜏 − 1)𝜙(𝜏)(𝜙(𝜏) −𝐾2)
𝐾2 + 𝜙(𝜏)(𝑒𝑟2𝜏 − 1)

and 𝜙(𝜏) =
𝐾1𝐾2

𝑒𝑟2𝜏𝐾2 −𝐾1(𝑒𝑟2𝜏 − 1)
. (12)

Observing 𝜂(𝜏) may assume negative values for certain values of 𝜏 > 0 and since the biological context requires 𝑢𝑘 > 0, we restrict 
our attention to values of 𝜏 for which 𝜂(𝜏) is positive, and define a conservative lower bound:

𝑢𝑘 > max
𝜏>0

𝜂(𝜏) > 0, (13)

to ensure that the sufficient condition holds uniformly. We now demonstrate that this maximum exists.
Proposition 3.3. Let 𝜂(𝜏) and 𝜙(𝜏) be defined for 𝜏 ≥ 0 as in (12). Then, the function 𝜂(𝜏) attains a global maximum on [0,∞).

Proof.  The function 𝜂(𝜏) is continuous and differentiable on the interval [0,∞). Moreover, we have: 
lim
𝜏→0

𝜙(𝜏) = 𝐾1, lim
𝜏→0

𝜂(𝜏) = 0, and lim
𝜏→∞

𝜙(𝜏) = 0, lim
𝜏→∞

𝜂(𝜏) = 0.

Although the interval is unbounded above, an analysis of the function 𝜂(𝜏) shows that it reaches a local (and global) maximum at 
some 𝜏 = 𝜏max ∈ (0,∞), which completes the proof. ∎

The analysis carried out in this section revealed the conditions for the global stability of the 𝑆1-free solution, providing a solid 
theoretical foundation for the dynamic behavior of the impulsive model. In the next section, we address the optimal control problem, 
where the previously introduced model is used as the control system, and the results obtained throughout this section are fundamental 
for ensuring the existence of an optimal solution. This problem is formulated to determine strategies that maximize the effectiveness of 
population dynamics control. The numerical results of these approaches, as well as their implications, will be presented in Section 5.

4.  Impulsive optimal control problem

In this section, we formulate an optimal control problem involving the impulsive release of individuals of species 𝑆2. The control 
actions consist of fixed-frequency releases, and the objective is to determine the optimal number of individuals to be introduced at 
each intervention time. A central question guides this formulation: What is the minimum number of 𝑆2 individuals that must be 
released, at a fixed frequency, to guarantee their fixation in the target population while minimizing the overall intervention cost?

This control strategy is applied over a finite time horizon, denoted by [0, 𝑇 ], where 𝑇  represents the final time of intervention. 
Within this interval, up to 𝑁 releases may occur, each corresponding to an element of the admissible control set, defined as 𝑈̄ ∶=
{𝑢𝑘 ∈ ℝ ∣ 0 ≤ 𝑢𝑘 ≤ 𝑢max, 𝑘 = 1, 2,… , 𝑁}, where 𝑢max satisfies 𝑢max ≥ max

𝜏>0
𝜂(𝜏) with 𝜂(𝜏) specified in the Section 3.4. The release period 

𝜏 is considered fixed, determined by operational constraints such as logistical planning, environmental conditions, release policies, 
and economic factors, which limit the flexibility to vary the timing between consecutive releases.

Given this framework, the optimal control problem can be stated as follows:
Find an optimal control 𝑢∗ = (𝑢∗𝑘)

𝑁
𝑘=1, with each 𝑢𝑘 ∈ 𝑈̄ , that minimizes the cost functional 

𝐽 (𝑢) = 𝐶
𝑁
∑

𝑘=1
𝑢𝑘, (14)

subject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑆1

𝑑𝑡
= 𝑆1

(

𝜓1 −
𝑟1
𝐾1

(𝑆1 + 𝑆2)
)(

𝑆1

𝐾0
− 1

)

− 𝛿1𝑆1,

𝑑𝑆2

𝑑𝑡
= 𝑆2

(

𝜓2 −
𝑟2
𝐾2

(𝑆1 + 𝑆2)
)

− 𝛿2𝑆2,
if 𝑡 ≠ 𝑘𝜏, 𝑘 = 1, 2,… , 𝑁, (15)

{

𝑆1(𝑡+) = 𝑆1(𝑡),
𝑆2(𝑡+) = 𝑆2(𝑡) + 𝑢𝑘,

if 𝑡 = 𝑘𝜏, 𝑘 = 1, 2,… , 𝑁, (16)

{

𝑆1(𝑇 ) < 𝐾𝑏 (17)

with initial conditions:

𝑆1(0) ≥ 0 and 𝑆2(0) ≥ 0.

The condition 𝑢max ≥ max
𝜏>0

𝜂(𝜏) is established to ensure that the admissible control set 𝑈̄ is non-empty, which in turn guarantees the 
existence of at least one feasible value of 𝑢𝑘 satisfying the problem described in Eqs. (14)–(17), as will be shown in Proposition 4.1.

We consider the following aspects of the control problem under investigation:
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i. The objective function 𝐽 (𝑢) accounts for the sum of all releases, with the constant 𝐶 representing the cost of intervention;
ii. 𝐽 (𝑢) is subject to the model dynamics defined by Eq. (15)–(16), which characterize the control system;
iii. The constraint (17) aims to reduce the 𝑆1 population at the final time 𝑇  below the threshold 𝐾𝑏, associated with the Allee effect 

(see [38,39]), to ensure the fixation of the 𝑆2 species.

Next, we present a proposition that demonstrates that 𝑈̄ is a non-empty and compact set that satisfies the final constraint of the 
problem. This property is essential to ensure the existence of a viable solution within the established conditions.
Proposition 4.1. The set of admissible controls 𝑈̄ is non-empty and compact.
Proof.  In Section 3.2, we showed that the system (15)–(16) is well-posed for any 𝑢𝑘 ∈ 𝑈 . Since 𝑈̄ ⊂ 𝑈 , the system is also well-posed 
for any 𝑢𝑘 ∈ 𝑈̄ , ensuring the existence of a unique solution.

By hypothesis, 𝑢max ≥ max
𝜏>0

𝜂(𝜏) is given in Eq. (12). Choosing 𝑘∗ ∈ {1,… , 𝑁} such that 𝑢𝑘∗ = max
𝜏>0

𝜂(𝜏), we obtain 𝑆2 > 𝐾1 for this 
release, as shown in Theorem 3.5. Under this condition, the dynamics of 𝑆1, 

𝑑𝑆1
𝑑𝑡

= 𝑆1

(

𝜓1 −
𝑟1
𝐾1

(𝑆1 + 𝑆2)
)(

𝑆1
𝐾0

− 1
)

− 𝛿1𝑆1,

lead to a decline of 𝑆1 toward zero in finite time, satisfying the constraint 𝑆1(𝑇 ) < 𝐾𝑏.
Moreover, since 𝑢𝑘 ∈ [0, 𝑢max], the set 𝑈̄ is closed and bounded in ℝ, and therefore compact. We conclude that 𝑈̄ is non-empty 

and compact, containing at least one control 𝑢𝑘∗ ∈ 𝑈̄ that satisfies the system and the terminal constraint (17). ∎
Based on Theorem 5.1 in Section III of [24], we state the following result, which guarantees the existence of an optimal control 

for the problem under consideration.
Theorem 4.1. (Existence of optimal control) Consider the control problem defined by Eqs. (14)–(17), with the admissible control set 
𝑈̄ ⊂ ℝ.

If the following conditions are satisfied:

1. The admissible control set 𝑈̄ is nonempty and compact;
2. For each control 𝑢 = (𝑢𝑘)𝑁𝑘=1 ∈ 𝑈̄ , the impulsive system (15)–(16) has a unique, positive, and uniformly bounded solution;
3. The cost functional 𝐽 (𝑢) = 𝐶

∑𝑁
𝑘=1 𝑢𝑘 is continuous with respect to 𝑢,

then there exists an optimal control 𝑢∗ = (𝑢∗𝑘)
𝑁
𝑘=1 ∈ 𝑈̄ that minimizes the cost functional 𝐽 (𝑢) subject to the system dynamics and constraints. 

Proof.  The first condition has already been verified in Proposition 4.1. In Section 3.2, we established the existence, uniqueness, 
positivity, and uniform boundedness of the solutions to the system (15)–(16) for each 𝑢 = (𝑢𝑘)𝑁𝑘=1 ∈ 𝑈̄ ⊂ 𝑈 , which satisfies the second 
condition.

Furthermore, the cost functional 𝐽 (𝑢) = 𝐶
∑𝑁
𝑘=1 𝑢𝑘 is a linear function of the control variables 𝑢𝑘, and since 𝑈̄ is compact, it follows 

that 𝐽 is continuous on 𝑈̄ , satisfying condition (iii).
Since 𝐽 is continuous and 𝑈̄ is nonempty and compact, we can apply the Weierstrass Theorem, which ensures that every continuous 

function defined on a compact set attains its minimum on that set. Therefore, there exists 𝑢∗ = (𝑢∗𝑘)
𝑁
𝑘=1 ∈ 𝑈̄ such that

𝐽 (𝑢∗) = min
𝑢∈𝑈̄

𝐽 (𝑢),

concluding that 𝑢∗ is an optimal control for the problem defined by Eqs. (14)–(17). ∎
Based on these results, for any initial configuration of the system, it is possible to find an optimal control policy that satisfies the 

necessary conditions, thereby ensuring the viability of the proposed solution. The existence of an optimal control is a central topic 
in control theory, relying on classical assumptions such as the compactness of the admissible control set and the continuity of the 
system dynamics (see [24,25,46]). These assumptions are fulfilled in our setting, as demonstrated by the formulation of the problem 
and the compactness of the admissible set 𝑈̄ .

In the next section, we present numerical results that illustrate the efficiency of the proposed control strategy.

5.  Numerical results

This section presents the numerical results obtained to validate the theoretical findings and to investigate the behavior of the 
optimal control problem through numerical simulations. First, we assess the consistency of the theoretical results by comparing them 
with numerical approximations. Next, we explore the numerical solution of the optimal control problem, illustrating how the proposed 
approach performs under different parameter configurations and highlighting key observations. All simulations use the parameters 
detailed in Table 1 from [38].

For the simulations, we illustrate the species in question, with 𝑆1 representing wild female Aedes aegypti mosquitoes and 𝑆2
representing female mosquitoes infected with Wolbachia bacteria [47–49]. The model without impulsive control, proposed by [38], 
was applied in the context of Wolbachia-based Aedes aegypti control. Here, we extend this model to address any two species or 
subspecies, provided that their populations satisfy conditions (2) and (3). As an example, we return to the specific case involving 
Wolbachia.
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Table 1 
Parameters for the model (1a)–(1b).
 Parameter  Value  Range  Description
𝜓1  0.32667  0.28 - 0.38  Birth rate of species 𝑆1
𝜓2  0.21333  0.18 - 0.25  Birth rate of species 𝑆2
𝛿1  0.03333 1∕8 - 1∕42  Death rate of species 𝑆1
𝛿2  0.06666 2∕8 - 2∕42  Death rate of species 𝑆2
𝐾1  374 −  Related to the carrying capacity of 𝑆1
𝐾2  300 −  Carrying capacity of species 𝑆2
𝐾0  30 −  Threshold population for species interaction

Fig. 1. Impulsive solutions of the model (1a)–(1b) for different initial conditions. In Figure (a), the release amount is 𝑢𝑘 = 100 with 𝜏 = 7 (𝑢𝑘 < 𝜂(7)), 
and in Figure (b), the release amount is 𝑢𝑘 = 200 with 𝜏 = 14 (𝑢𝑘 < max

𝜏≥0
𝜂(𝜏)). In both cases, the 𝑆1-free solution does not achieve global stability. 

The dynamics of wild Aedes aegypti female mosquitoes 𝑆1 are represented in blue, while those infected with Wolbachia 𝑆2 are represented in red.

5.1.  Numerical consistency of theoretical results

To ensure a comprehensive assessment of the dynamics between species 𝑆1 and 𝑆2 (wild and Wolbachia-infected female Aedes 
aegypti mosquitoes), we performed simulations using four different initial conditions. The specific objective of this subsection is to 
demonstrate the global stability of the solution (0, 𝑆2(𝑡)), based on the condition established in Theorem 3.5.

The simulations were conducted over 180 days, using the parameters listed in Table 1, with Python and its libraries ensuring 
precision and efficiency in solving the system of equations. We implemented the fourth-order Runge-Kutta method with the NumPy 
library, including adaptations to incorporate the impulsive jumps, providing a robust numerical solution.

The simulation results are presented in Fig. 1 to 4. They illustrate the analysis of the global stability of the wild-female-free solution 
for different release periods 𝜏.

Fig. 1 (a) and (b) illustrate situations in which global stability is not achieved. This is consistent with the result presented in 
Theorem 3.5, since in both cases the number of infected females 𝑆2 released in each period 𝜏 does not satisfy the sufficient condition 
𝑢𝑘 > 𝜂(𝜏) to ensure global stability. For example, in Fig. 1 (a), with 𝜏 = 7 and a constant release sequence 𝑢𝑘 = 100,∀𝑘 > 0, the release 
value does not meet the threshold derived in the previous subsection, as 𝜂(7) ≈ 300. A similar situation occurs in Fig. 1 (b), where for 
𝜏 = 14 and 𝑢𝑘 = 200, ∀𝑘 > 0, the release does not satisfy the sufficient condition for the global stability of (0, 𝑆2(𝑡)) given in Eq. (13).

Fig. 2(c) and (d) illustrate situations in which global stability is achieved. This occurs when the number of individuals released in 
each period 𝜏 is increased to satisfy the sufficient condition given by 𝑢𝑘 > max

𝜏≥0
𝜂(𝜏). Specifically, in Fig. 2(c), for 𝜏 = 7, and Fig. 2(d), 

for 𝜏 = 14, the release is adjusted to constant sequences of 𝑢𝑘 = 300 and 𝑢𝑘 = 43760, ∀𝑘 > 0, respectively, both of which satisfy the 
stability condition in (13).

Observe in the figures how a constant release period 𝜏 and the quantity released 𝑢𝑘 directly influence the population dynamics of 
wild female Aedes aegypti mosquitoes 𝑆1 and those infected with Wolbachia 𝑆2. For example, in Fig. 3(e) and Fig. 3 (f), we observe 
the effect of applying a constant release sequence 𝑢𝑘 = 80, ∀𝑘 > 0 with two different release periods: 𝜏 = 3 in Fig. 3(e) and 𝜏 = 7 in 
Fig. 3(f).

In Fig. 3(e), global stability of the solution (0, 𝑆2(𝑡)) is achieved, as 𝑢𝑘 = 80 > 𝜂(3) ≈ 60, ∀𝑘 > 0. By contrast, in Fig. 3(f), where 
𝑢𝑘 = 80 < 𝜂(7) ≈ 300, ∀𝑘 > 0, global stability of the solution is not attained.

Based on the simulations performed, the dependence between 𝜏 and 𝑢𝑘 underscores the importance of carefully balancing the 
frequency and quantity of releases, as both parameters directly impact the success in achieving global system stability. Notably, as 
the interval between releases increases, the required number of individuals to be released also rises. Furthermore, considering the 
model conditions and the parameters presented in Table 1, we observe that in all implemented scenarios, particularly for 𝜏 = 14 with 
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Fig. 2. Impulsive solutions of the model (1a)–(1b) for different initial conditions. In Figure (𝑐), the release amount is 𝑢𝑘 = 300 with 𝜏 = 7 (𝑢𝑘 > 𝜂(7)), 
and in Figure (𝑑), the release amount is 𝑢𝑘 = 43760 with 𝜏 = 14 (𝑢𝑘 > max

𝜏≥0
𝜂(𝜏)). In both cases, the 𝑆1-free solution achieves global stability. The 

dynamics of wild Aedes aegypti female mosquitoes 𝑆1 are represented in blue, while those infected with Wolbachia 𝑆2 are represented in red.

Fig. 3. Impulsive solutions of the model (1a)–(1b) for different initial conditions. The release amount is 𝑢𝑘 = 80, with 𝜏 = 3 (𝑢𝑘 > 𝜂(3)) and 𝜏 = 7
(𝑢𝑘 < 𝜂(7)), in Figures (𝑒) and (𝑓 ), respectively. In the first case, the 𝑆1-free solution achieves global stability, while in the second case it does not. 
The dynamics of wild Aedes aegypti female mosquitoes 𝑆1 are shown in blue, and those infected with Wolbachia 𝑆2 are shown in red.

𝜂(14) < 0, as shown in Fig. 2 (d), the release value 𝑢𝑘 = 43760 is larger than max
𝜏≥0

𝜂(𝜏) ≈ 43759.89, thereby satisfying the condition for 
global stability. However, Fig. 2 (d) suggests that this amount might exceed what is necessary to eliminate the 𝑆1 population.

These observations indicate that the sufficiency of condition (13) ensures the global stability of the 𝑆1-free solution; however, it 
may be unnecessarily strict. For example, in Fig. 4 (g) and (h), we observe that the global stability of the wild-female-free solution 
𝑆1 is attained with constant sequences of releases of 𝑢𝑘 = 200 and 𝑢𝑘 = 600, ∀𝑘 > 0, for 𝜏 = 7 and 𝜏 = 14, respectively.

These simulations provide a deeper understanding of the conditions that either ensure or compromise the system’s stability. 
Furthermore, we observed that it is possible to release fewer infected females than established by the sufficient condition and still 
achieve global stability. This is because the condition (13) is only sufficient to ensure the global stability of the solution (0, 𝑆2(𝑡)).

Finally, comparing the simulation results with the theoretical analysis, they confirm the theoretical findings for the impulsive 
model studied. Additionally, we emphasize the need for an optimization strategy for the release process that minimizes intervention 
costs while ensuring the fixation of Wolbachia-infected females in the target area, a topic that will be further explored in the next 
subsection.

5.2.  Impulsive optimal control solutions

After ensuring the existence of a solution for the problem (14)–(17), we employed GEKKO, an optimization package in Python 
[50]. Using the parameters listed in  Table 1 and the constant 𝐶 = 1∕200, we simulated four scenarios by varying the release interval 
𝜏. As in the simulations from the previous subsection, 𝑆1 represents wild Aedes aegypti females, and 𝑆2 represents females infected 
with Wolbachia bacterium. The values of 𝜏 for each scenario are: 𝜏 = 7 (Case 1), 𝜏 = 14 (Case 2), 𝜏 = 21 (Case 3), and 𝜏 = 30 (Case 4).

For each case, the final intervention time 𝑇  also varies, taking the values 𝑇 = 300, 𝑇 = 180, 𝑇 = 100, and 𝑇 = 70, respectively. 
Additionally, for each 𝑇  and 𝜏, we present the corresponding release amounts 𝑢𝑘 over time.
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Fig. 4. Impulsive solutions of the model (1a)–(1b) for different initial conditions. In Figure (𝑔), the release amount is 𝑢𝑘 = 200 with 𝜏 = 7 (𝑢𝑘 < 𝜂(7)), 
and in Figure (ℎ), the release amount is 𝑢𝑘 = 600 with 𝜏 = 14 (𝑢𝑘 < max

𝜏≥0
𝜂(𝜏)). In both cases, even without satisfying condition (13), the 𝑆1-free solution 

achieves global stability. The dynamics of wild Aedes aegypti female mosquitoes 𝑆1 are represented in blue, while those infected with Wolbachia 𝑆2
are represented in red.

Table 2 
Numerical optimization results for Case 1 (𝜏 = 7).

𝑇
∑

𝑢𝑘 min 𝐽 (𝑢)

 300  2949.52  14.75
 180  1243.07  6.22
 100  1126.62  5.63
 70  908.66  4.54

Table 3 
Numerical optimization results for Case 2 (𝜏 = 14).

𝑇
∑

𝑢𝑘 min 𝐽 (𝑢)

 300  3604.23  18.02
 180  1677.15  8.39
 100  1109.34  5.55
 70  1110.13  5.55

We conducted simulations to analyze the system dynamics and identify optimal release strategies. Comparing different combina-
tions of release intervals 𝜏 and intervention durations 𝑇  allowed us to balance cost minimization with ensuring the dominance of the 
infected population 𝑆2. This approach offers practical guidance for efficiently achieving biological control objectives.

∙ Case 1: (𝜏 = 7). In this case, the release interval is set to 𝜏 = 7. Table 2 summarizes the numerical results, including the total sum 
of 𝑢𝑘 and the minimum value of the functional for each of the four final times 𝑇  analyzed. Fig. 5 depicts the trajectories of the wild 
female population 𝑆1 and the infected population 𝑆2, together with the respective release values 𝑢𝑘. For longer intervention horizons, 
the maximum number of infected females released at a single time step tends to be smaller, as the system has more time to converge 
to the target state.

∙ Case 2: (𝜏 = 14). Here, the release interval is increased to 𝜏 = 14. The corresponding results are presented in Table 3 and illustrated 
in Fig. 6. In most scenarios, a longer interval between releases required a larger maximum number of infected females per intervention 
to maintain the wild population below the survival threshold 𝐾𝑏. An exception was observed when 𝑇 = 100: despite a higher maximum 
release per period compared to Case 1, the total number of released females is smaller.

∙ Case 3: (𝜏 = 21). With 𝜏 = 21, the system behavior is shown in Fig. 7, and the numerical outcomes are reported in Table 4. A 
further increase in the maximum release per period is observed relative to previous cases. The variation in the minimum value of the 
functional is not monotonic across 𝜏: for 𝑇 = 180 and 𝑇 = 100, the values (11.42 and 6.47, respectively) exceeded those in Cases 1 
and 2, whereas for the remaining final times, the trend is reversed.

∙ Case 4: (𝜏 = 30). In this case, the release interval was set to 𝜏 = 30. The results are given in Table 5, and the corresponding 
trajectories are depicted in Fig. 8. For 𝑇 = 300, this configuration requires the most significant overall number of infected females, 
while Case 3 yields the smallest total release. Notably, for 𝑇 = 70, a single release of 𝑢𝑘 = 873.47 was sufficient to bring the wild 
female population to its survival threshold, ensuring the fixation of 𝑆2 in the target area.

It is important to note that these results rely on the assumption that all model parameters remain constant over time. Parameters 
such as birth and death rates vary due to environmental factors. For mosquitoes, for instance, these rates depend on humidity, 
temperature, and other seasonal conditions. Thus, although the model predicts that a single release (Case 4, 𝑇 = 70) would suffice 
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Fig. 5. Optimal trajectories and corresponding controls for Case 1 with initial condition (𝐾1, 0). 𝑆1 in blue; 𝑆2 in red. Final times 𝑇 : 300, 180, 100, 
and 70 (left to right).

Fig. 6. Optimal trajectories and corresponding controls for Case 2 with initial condition (𝐾1, 0). 𝑆1 in blue; 𝑆2 in red. Final times 𝑇 : 300, 180, 100, 
and 70 (left to right).

Table 4 
Numerical optimization results for Case 3 (𝜏 = 21).

𝑇
∑

𝑢𝑘 min 𝐽 (𝑢)

 300  2918.42  14.59
 180  2283.66  11.42
 100  1294.69  6.47
 70  1106.70  5.53

Table 5 
Numerical optimization results for Case 4 (𝜏 = 30).

𝑇
∑

𝑢𝑘 min 𝐽 (𝑢)

 300  3788.17  18.94
 180  2081.34  10.41
 100  1256.42  6.28
 70  873.47  4.37

under the assumed conditions, it remains a simplified mathematical representation. This reinforces the need for multiple simulations 
with different release strategies.

The simulations reveal a strong relationship between the impulse period 𝜏, the release amount 𝑢𝑘, and the chosen final time 
𝑇 . Increasing 𝜏 raises the maximum release per intervention, but the total number of infected females released does not follow a 
monotonic trend. The interaction between 𝜏 and 𝑇  determines efficiency: for 𝑇 = 100, 𝜏 = 14 required fewer total releases than 𝜏 = 7, 
despite a higher per-event peak; for 𝑇 = 180, the highest total release occurred at 𝜏 = 21, and the lowest at 𝜏 = 7. This indicates that 
neither parameter alone determines performance; rather, their combination defines the optimal strategy.
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Fig. 7. Optimal trajectories and corresponding controls for Case 3 with initial condition (𝐾1, 0). 𝑆1 in blue; 𝑆2 in red. Final times 𝑇 : 300, 180, 100, 
and 70 (left to right).

Fig. 8. Optimal trajectories and corresponding controls for Case 4 with initial condition (𝐾1, 0). 𝑆1 in blue; 𝑆2 in red. Final times 𝑇 : 300, 180, 100, 
and 70 (left to right).

These findings highlight the value of exploring multiple (𝜏, 𝑇 ) configurations to identify strategies best suited to specific constraints, 
such as available time or the number of infected females for release. Overall, the simulations confirm the effectiveness of the optimal 
control approach for Wolbachia-infected female releases.

6.  Final remarks

This study presents a mathematical framework to investigate the dynamics of two competing species under impulsive release 
strategies. By defining an impulsive differential equation model, we demonstrate the potential of periodic interventions in ecological 
systems, particularly in reducing the population of one species 𝑆1 through strategic competition with another species 𝑆2.

Theoretical analysis confirmed that the model is well-posed, ensuring the existence and uniqueness of an 𝑆1-free solution under 
specific conditions. Moreover, we derived a sufficient condition for impulsive releases of 𝑆2 that guarantees the global stability of the 
desired equilibrium, providing a solid foundation for ecological control strategies.

In this work, we adopt impulsive releases as an alternative to the continuous controls often considered in the literature, better 
reflecting realistic intervention settings. The impulsive nature of the releases justifies the use of numerical methods to determine 
optimal release magnitudes, ensuring that the resulting strategy is both effective and feasible.

This work highlights the relevance of mathematical modeling and control theory in tackling ecological challenges. Future research 
would extend these methods to more complex environmental systems, considering time-varying parameters, assessing how environ-
mental factors influence control effectiveness, and analyzing how parameter variability affects stability and optimality. Additional 
directions include evaluating the interplay between different control methods and exploring model adaptations that better capture 
realistic ecological dynamics. Such developments could significantly enhance the applicability and robustness of impulsive interven-
tion strategies in ecological control. Moreover, extending the problem to a framework involving fractional derivatives represents an 
interesting avenue that could be explored in future studies.
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Appendix A.  Proof of Theorem 3.2

Proof.  First, we will show that 𝑍2(𝑡) is the unique positive 𝜏-periodic solution of system (5). Let 

𝑍2(𝑡) =
𝑐𝐾2𝑒𝑟2𝑡

𝑐𝑒𝑟2𝑡 − 1
,

be the solution of 
𝑑𝑍2
𝑑𝑡

= 𝑍2

(

𝜓2 −
𝑟2
𝐾2

𝑍2

)

− 𝛿2𝑍2, 𝑡 ≠ 𝑘𝜏, 𝑘 ≥ 0,

which corresponds to the first equation of system (5), where 𝑐 ∈ ℝ is a constant to be determined and is associated with the initial 
conditions of the problem.

For 𝑡 = 𝑘𝜏, 𝑘 ≥ 0, let 𝑍2(𝑘𝜏+) denote the initial value at time 𝑘𝜏. Then,

𝑐 =
𝑍2(𝑘𝜏+)𝑒−𝑟2𝑘𝜏

𝑍2(𝑘𝜏+) −𝐾2
,

and the solution becomes

𝑍2(𝑡) =
𝐾2𝑍2(𝑘𝜏+)𝑒𝑟2(𝑡−𝑘𝜏)

𝑍2(𝑘𝜏+)
(

𝑒𝑟2(𝑡−𝑘𝜏) − 1
)

+𝐾2
, 𝑘𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏, 𝑘 ≥ 0, (A.1)

which represents the solution of system (5) between the pulses.
At the impulsive moments, when 𝑡 = (𝑘 + 1)𝜏, 𝑘 ≥ 0, from the second equation of (5), with 𝑢𝑘 ∈ 𝑈 , we obtain the following 

difference equation:
𝑍2((𝑘 + 1)𝜏+) = 𝑍2((𝑘 + 1)𝜏−) + 𝑢𝑘

=
𝐾2𝑍2(𝑘𝜏+)𝑒𝑟2𝜏

𝑍2(𝑘𝜏+)(𝑒𝑟2𝜏 − 1) +𝐾2
+ 𝑢𝑘, (A.2)

which defines a recursive relation between 𝑍2((𝑘 + 1)𝜏+) and 𝑍2(𝑘𝜏+). We can rewrite it as

𝑍𝑘+1
2 =

𝐾2𝑍𝑘
2 𝑒
𝑟2𝜏

𝑍𝑘
2 (𝑒

𝑟2𝜏 − 1) +𝐾2
+ 𝑢𝑘, (A.3)

where 𝑍𝑘
2 = 𝑍2(𝑘𝜏+).

Define

ℎ(𝑍2) =
𝐾2𝑍2𝑒𝑟2𝜏

𝑍2(𝑒𝑟2𝜏 − 1) +𝐾2
+ 𝑢𝑘,
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and observe that (A.3) has a single positive equilibrium point. Indeed, setting
ℎ(𝑍2) = 𝑍2,

gives the condition that determines the equilibrium point of the recursive Eq. (A.3), which is 𝜏-periodic. Performing algebraic ma-
nipulations, we obtain the quadratic equation

𝑍2
2 − (𝑢𝑘 +𝐾2)𝑍2 −

𝑢𝑘𝐾2
𝑒𝑟2𝜏 − 1

= 0,

which has two real roots, but only one of them is positive. It is given by

𝑍+
2 = 1

2

[

(𝑢𝑘 +𝐾2) +
√

(𝑢𝑘 +𝐾2)2 + 4
𝑢𝑘𝐾2
𝑒𝑟2𝜏 − 1

]

, 𝑘 ≥ 0.

Then, substituting 𝑍+
2  into (A.1), we obtain the corresponding 𝜏-periodic solution:

𝑍2(𝑡) =
𝐾2𝑍+

2 𝑒
𝑟2(𝑡−𝑘𝜏)

𝑍+
2
(

𝑒𝑟2(𝑡−𝑘𝜏) − 1
)

+𝐾2
, 𝑘𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏, 𝑘 ≥ 0,

which is the unique positive 𝜏-periodic solution of system (5).
Now we show that 𝑍2(𝑡) is globally asymptotically stable. Since ℎ(𝑍2) is continuous and differentiable for 𝑍2 > 0, we compute its 

derivative: 

ℎ′(𝑍2) =
𝜕
𝜕𝑍2

(

𝐾2𝑍2𝑒𝑟2𝜏

𝑍2(𝑒𝑟2𝜏 − 1) +𝐾2
+ 𝑢𝑘

)

=
𝐾2

2 𝑒
𝑟2𝜏 (𝑒𝑟2𝜏 − 1)

(

𝑍2(𝑒𝑟2𝜏 − 1) +𝐾2
)2

> 0, (A.4)

for all 𝑍2 > 0. Hence, ℎ is strictly increasing.
We have already shown that 𝑍+

2  is the unique positive fixed point of ℎ, that is, 
ℎ(𝑍+

2 ) = 𝑍+
2 , (A.5)

and there is no other solution to ℎ(𝑍2) = 𝑍2 with 𝑍2 > 0.
Since ℎ is strictly increasing and 𝑍+

2  is its unique positive fixed point, it follows that:

• If 0 < 𝑍2 < 𝑍+
2 , then ℎ(𝑍2) < ℎ(𝑍+

2 ) = 𝑍+
2 , so 𝑍2 < ℎ(𝑍2) < 𝑍+

2 .
• If 𝑍2 > 𝑍+

2 , then ℎ(𝑍2) > ℎ(𝑍+
2 ) = 𝑍+

2 , so 𝑍2 > ℎ(𝑍2) > 𝑍+
2 .

These inequalities show that the sequence {𝑍𝑘
2 } defined by the recursive Eq. (A.2) is monotonic and converges to 𝑍+

2  for any 
initial condition 𝑍0

2 > 0. Therefore, 𝑍+
2  is a globally asymptotically stable fixed point of the discrete dynamical system.

As a consequence, the corresponding 𝜏-periodic solution 𝑍2(𝑡) of the impulsive system (5) is globally asymptotically stable.
 ∎

Appendix B.  Proof of Lemma 3.1

Proof.  From the first equation of the system (1a)-(1b), we have
𝑑𝑆1
𝑑𝑡

(𝑡) = 𝑆1(𝑡)
(

𝜓1 −
𝑟1
𝐾1

(𝑆1(𝑡) + 𝑆2(𝑡))
)(

𝑆1(𝑡)
𝐾0

− 1
)

− 𝛿1𝑆1(𝑡),

which does not involve impulsive releases. The presence of the critical depensation term 
(

𝑆1(𝑡)
𝐾0

− 1
)

, associated with the concept 
of minimum viable population size (MVPS) [38], requires splitting the analysis into two cases. Here, 𝐾0 plays the role of a critical 
threshold: if the population falls below this value, it tends to extinction; otherwise, it may persist. Analyzing both cases allows us to 
conclude the boundedness of 𝑆1(𝑡).

a. If 𝑆1(𝑡) ≤ 𝐾0, then 
(

𝑆1(𝑡)
𝐾0

− 1
)

≤ 0. Thus, 𝐾0 is an upper bound for 𝑆1(𝑡) for all 𝑡 ≥ 0.

b. If 𝑆1(𝑡) > 𝐾0, then 
(

𝑆1(𝑡)
𝐾0

− 1
)

> 0. We then have

𝑑𝑆1
𝑑𝑡

(𝑡) = 𝑆1(𝑡)
[(

𝜓1 −
𝑟1
𝐾1

𝑆1(𝑡)
)(

𝑆1(𝑡)
𝐾0

− 1
)

−
𝑟1
𝐾1

𝑆2(𝑡)
(

𝑆1(𝑡)
𝐾0

− 1
)

− 𝛿1

]

≤ 𝑆1(𝑡)
[(

𝜓1 −
𝑟1
𝐾1

𝑆1(𝑡)
)(

𝑆1(𝑡)
𝐾0

− 1
)

− 𝛿1

]

,

and we can consider the comparison differential equation

𝑑𝑦
𝑑𝑡

(𝑡) = 𝑦(𝑡)
[(

𝜓1 −
𝑟1
𝐾1

𝑦(𝑡)
)(

𝑦(𝑡)
𝐾0

− 1
)

− 𝛿1

]

,
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𝑦(0) = 𝑆1(0), (B.1)

which has three equilibrium points: 𝑦 = 0, and the two positive solutions of
(

𝜓1 −
𝑟1
𝐾1

𝑦
)(

𝑦
𝐾0

− 1
)

− 𝛿1 = 0. (B.2)

Expanding (B.2), we obtain the quadratic equation

−
𝑟1

𝐾1𝐾0
𝑦2 +

𝜓1𝐾1 + 𝑟1𝐾0
𝐾1𝐾0

𝑦 − (𝛿1 + 𝜓1) = 0.

Solving this, we find
Δ = (𝜓1𝐾1 + 𝑟1𝐾0)2 − 4𝑟1𝐾0𝐾1(𝛿1 + 𝜓1),

and the roots

𝑦1 =
𝜓1𝐾1 + 𝑟1𝐾0 −

√

Δ
2𝑟1

, 𝑦2 =
𝜓1𝐾1 + 𝑟1𝐾0 +

√

Δ
2𝑟1

.

Following the notation in [38], we define 𝑦1 = 𝐾𝑏 and 𝑦2 = 𝐾∗, with 0 < 𝐾𝑏 < 𝐾∗. We now analyze the sign of the right-hand side 
of (B.1) in the intervals between the equilibria:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑦
𝑑𝑡

< 0, if 0 < 𝑦 < 𝐾𝑏,
𝑑𝑦
𝑑𝑡

> 0, if 𝐾𝑏 < 𝑦 < 𝐾∗,

𝑑𝑦
𝑑𝑡

< 0, if 𝑦 > 𝐾∗.

Therefore, for the initial condition 𝑦(0) = 𝑆1(0), we have:
i) If 0 ≤ 𝑆1(0) < 𝐾𝑏, then 𝑦(𝑡) decreases to 0 in finite time as 𝑡 increases;
ii) If 𝐾𝑏 < 𝑆1(0) < 𝐾∗, then 𝑦(𝑡) increases toward 𝐾∗ as 𝑡→ ∞;
iii) If 𝑆1(0) > 𝐾∗, then 𝑦(𝑡) decreases toward 𝐾∗ as 𝑡→ ∞.
As a result, following [38], given an initial population of species 𝑆1 large enough to survive (i.e., 𝑆1(0) > 𝐾𝑏), the threshold 𝐾𝑏
separates extinction from persistence, and 𝐾∗ represents the stable steady-state population. Since the comparison equation satisfies 
𝑑𝑆1
𝑑𝑡 (𝑡) ≤

𝑑𝑦
𝑑𝑡 (𝑡) and 𝑆1(0) = 𝑦(0), by the Comparison Theorem we conclude that

𝑆1(𝑡) ≤ 𝑦(𝑡) ≤ 𝐾∗, for all 𝑡 ≥ 0. (B.3)

Combining both cases (a) and (b), we conclude that 𝑆1(𝑡) is bounded for all 𝑡 ≥ 0. In particular,

𝑆1(𝑡) ≤𝑀1 ∶= max{𝐾∗, 𝑆1(0)}, for all 𝑡 ≥ 0. (B.4)

 ∎

Appendix C.  Proof of Theorem 3.3

Proof.  By hypothesis, the initial conditions are non-negative. By Proposition 3.1, we have that 𝑆1(𝑡) and 𝑆2(𝑡) are lower bounded by 
zero for all 𝑡 ≥ 0, and by Lemma 3.1, 𝑀1 > 0 is an upper bound for 𝑆1(𝑡). We will now show that 𝑆2(𝑡) is also upper-bounded. To do 
this, consider the second and fourth equations of system (1a)–(1b), from which we obtain:

𝑑𝑆2
𝑑𝑡

(𝑡) ≤
𝑑𝑍2
𝑑𝑡

(𝑡), with 𝑆2(0) = 𝑍2(0),

where 𝑍2 satisfies (5). The function 𝑍2(𝑡) is bounded, since for 𝑡 ≠ 𝑘𝜏, the solution of the continuous ODE is bounded by 
max{𝐾2, 𝑍2(0)}, where 𝐾2 represents the environmental carrying capacity of 𝑆2. At the impulsive instants 𝑡 = 𝑘𝜏, a term 𝑢𝑘 ∈ 𝑈
is added, which is upper bounded by 𝑢max. Thus, immediately after the impulse, we have 𝑍2(𝑡+) ≤ max{𝐾2, 𝑆2(0)} + 𝑢max. Therefore, 
𝑍2(𝑡) remains bounded for all time. By Theorem 3.1, we obtain:

𝑆2(𝑡) ≤ 𝑍2(𝑡).

Let 𝑀2 ∶= max{𝐾2, 𝑆2(0)} + 𝑢max. Then, 𝑆2(𝑡) ≤𝑀2 for all 𝑡 ≥ 0.
To show that the solutions are uniformly bounded, consider the function 𝑉 (𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡). Then 𝑉 (𝑡) ∈ 0, and for some 𝜆 > 0

and 𝑘𝜏 ≤ 𝑡 ≤ (𝑘 + 1)𝜏, we have:
𝐷+𝑉 (𝑡) + 𝜆𝑉 (𝑡) = 𝐷+𝑆1(𝑡) +𝐷+𝑆2(𝑡) + 𝜆(𝑆1(𝑡) + 𝑆2(𝑡))
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= 𝑆1(𝑡)
(

𝜓1 −
𝑟1
𝐾1

(𝑆1(𝑡) + 𝑆2(𝑡))
)(

𝑆1(𝑡)
𝐾0

− 1
)

− 𝛿1𝑆1(𝑡)

+ 𝑆2(𝑡)
(

𝜓2 −
𝑟2
𝐾2

(𝑆1(𝑡) + 𝑆2(𝑡))
)

− 𝛿2𝑆2(𝑡) + 𝜆(𝑆1(𝑡) + 𝑆2(𝑡))

≤ (𝑟1 + 𝜆)𝑀1 + (𝑟2 + 𝜆)𝑀2 ∶=𝑀3.

At the impulsive times 𝑡 = 𝑘𝜏, we have 𝑉 (𝑘𝜏+) = 𝑉 (𝑘𝜏) + 𝑢𝑘, for 𝑢𝑘 ∈ 𝑈 . Then, by Lemma 2.2 in [51], we obtain:

𝑉 (𝑡) ≤ 𝑉 (0)𝑒−𝜆𝑡 + ∫

𝑡

0
𝑀3𝑒

−𝜆(𝑡−𝑠), 𝑑𝑠 +
∑

0≤𝑘𝜏≤𝑡
𝑢𝑘𝑒

−𝜆(𝑡−𝑘𝜏)

≤ 𝑉 (0)𝑒−𝜆𝑡 +
𝑀3
𝜆

(1 − 𝑒−𝜆𝑡) +
∑

0≤𝑘𝜏≤𝑡
𝑢max𝑒

−𝜆(𝑡−𝑘𝜏).

Thus, as 𝑡 → ∞, we obtain:

𝑉 (𝑡) ≤
𝑀3
𝜆

+ 𝑢max
𝑒𝜆𝜏

𝑒𝜆𝜏 − 1
.

In this way, 𝑉 (𝑡) is uniformly bounded, and by its definition, each positive solution 𝑆1(𝑡) and 𝑆2(𝑡) of system (1a)–(1b) is also 
uniformly bounded. ∎
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