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coincide with the right (left) glued algebras, as introduced in [1}.
The class of right glued algebras includes all the hereditary al-
gebras as well as all tilted algebras with complete slices in their
preinjective components.

(b) Trivial extensions of iterated tilted algebras.

For that, we shall prove a criterion which appears implicitely in the
works of Auslander [3] and Xi [11]. Also, as a consequence of this crite-
rion, we get a better insight of the relations between the representation
dimension of an algebra which is a one-point extension B[M] of an
algebra B, and the representation dimension of B itself. This extends
some results of [11].

This paper is organized as follows. In the first section, after recalling
some preliminary notions needed along the work, we state and prove the
above mentioned criterion. Sections 2 and 3 deal with the calculation of
the representation dimension of the algebras mentioned in (a) and (b)
above while in Section 4, we show some results concerning one-point
extension algebras.

‘This work was done during reciprocal visits supported by the ex-
change project CAPES-SCyT between Argentina and Brazil and by
FAPESP. The first named author also acknowledges support from CNPq
and the second from SECyT, UNS.

1. PRELIMINARIES

1.1. Throughtout this paper, all our algebras are artin algebras. For
an algebra A, we denote by modA its category of finitely generated
left A-modules and by indA a full subcategory of modA having as
objects a full set of representatives of the isomorphism classes of the
indecomposable A-modules. Also, given M € modA, we denote by
addM the full subcategory of mod4 having as ohjects the direct sums
of indecomposable summands of M. We denote by pdsM (or id4M)
the projective dimension (or injective dimension, respectively) of M.
Finally, we denote by gl.dimA the global dimension of A, that is, the
suppremum of the projective dimensions of modules in modA.

We recall that an A-module M is a generator (or a cogenerator)
for modA provided for each X € modA, there exists an epimorphism
M’ — X (or a monomorphism X —» M’) with M’ € addM.

For unexplained notions and facts needed on modA we refer the
reader to [4].

1.2. The notion of representation-dimension of an algebra was in-
troduced in [3] by Auslander. We refer to this work for the original
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definition. For us, it will be more convenient to use the following char-
acterization, also proven in {3].

DEFINITION. The representation-dimension of an artin algebra is the
number rep.dim A
= inf {gl.dim(End4M) : M is a generator-cogenerator of modA}.

1.3. The first aim is to show a criterion for the calculation of the
representation dimension of an algebra. From now on, A will denote
an artin algebra, and let C be a full subcategory of modA. We recall
that a map f : C — M is called a right C-approximation of the A-
module M if C is in C and the sequence (—,C) — (=, M) — 0 is
exact in C. Moreover, we will say that an exact sequence

0— Gy reve By by 25 b —0

is a C-approzimation resolution of M if C; is in C for all : and the
sequence

0— (=, C) L B0 (- M) —0

is exact in C. We say that = is the length of the resolulion.

DEFINITION. An A-module X is said to have the r-resolution property

if each A-module M has an addX-approximation resolution of length
r.

REMARKS. (a) The condition of the above definition can be replaced
by asimilar one holding for indecomposable modules M.

(b) Clearly, the modules in addX always have an addX-approximation
resolution of length 1.

(c) Given a module M in a subcategory C, one can, dually, define a
left C-approzimation of M, and a C-approzimation coresolution of M.
Also, one can look at the notion of r-coresolution property.

1.4. EXAMPLES. (a) Let A be a representation-finite algebra, and let
My, M;,- -+ , M, be a set of all isoclasses of indecomposable A-modules.
Clearly, X = M; @ --- ® M, has the l-resolution property, since addX
— modA. It is also not difficult to see that if an algebra A has a module
M satisfying the 1-resolution property, then A is representation-finite,
and addM = modA.

(b) Let H be a non-semisimple hereditary algebra and let X = H®
D(H). We show that such X has the 2-resolution property. Let M be
an indecomposable H-module not in add X, and consider the minimal
projective resolution 0 — P, — Fp — M — 0 of M. Clearly,



4 COELHO AND PLATZECK
Hompy(H® D(H), M) = Homy(H, M) because M is not in addX and

therefore is not injective, so the sequence
00— (H®D(H),P) — (H®D(H),FR) — (H®D(H),M) — 0
is exact and we are done.

1.5. We will see in the sequel that if a module X satisfies the r-
resolution property then gl.dim (EndsX) < r + 1. If, moreover, X is
a generator-cogenerator of modA, then rep.dimA < r 4 1. This result
has been used by Auslander in [3] and by Xi in {11}, in order to give
bounds for the representation dimension of some classes of algebras.

In the following theorem, which is the main result of this section, we
will prove that the converse statement also holds.

THEOREM. Let A be an artin algebra. The following statements are
equivalent for a positive integer r:
(a) rep.dim A<r+1;
(b) there exists a generator-cogenerator of modA satisfying the r-reso-
lution property.

Though, as we mentioned above, the implication (b) = (a) has been
implicitely proven in [3] and [11], for the convenience of the reader
we shall provide here a complete proof of this result. For that, it is
convenient to recall some facts.

1.6. For a module Y, denote by Fy the category of all coherent func-
tors F': (addY')*® — Ab, where Ab denotes the category of abelian
groups. Recall that a functor F: (addY)® — Ab is called coherent
provided there is a morphism ¥; — Y; in addY such that the sequence

() —(-Y3) = F—0

is exact in addY. Here we denote by (—,C) the restriction of the
functor Homy(~,C) : modA — Ab to addY. It follows from [3]
(Proposition, Ch.1II, p.104) that the categories Fy and mod(End,Y)
are equivalent and so, in particular, gl.dim(EndsY) = gl.dim (Fy).

If an A-module M has an addY-approximation resolution of length
s, then pd(—, M) < s — 1. If, moreover, Y is a generator of modA,
then the converse holds. In fact, if pd(—, M) < s — 1, let

0 —’('_le-l) —Fe— (_7%) —'—)("7M) —0

with ¥; € addY, be a sequence which is exact in addY. Since, by
hypothesis, A is in addY, by evaluating the above sequence at A, we
infer that there exists an exact sequence

0 —Yyy —-— Y —M—0
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inducing the above one, proving then that M has an addY -approximation
resolution of length s, as desired.

1.7.  Proof of Theorem 1.5.
(b) = (a) Let X be a module satisfying the r-resolution property. We
will show that gl.dimFy < r + 1, leading to the required result. Let F
be a functor in Fx. By definition, there exists a morphism X n Ly xr
in addX such that
(*) (-, X")— (-, X)—F—0
is exact in addX. Denote M= Kerf. Now, since X has the r-resolution
property, there exists an exact sequence
0—X,—--—Xg —M—0

with X; € addX such that the induced sequence
(**) 0_)(_,X7')_">"'_>(—1X1)__>(_1M)_')0
is exact in addX. Glueing together (*) and (**) we end up with a
sequence

0 (—X) == (=X) = (- X)=(-X)>F=0

which is exact in addX, showing that pd(F) < r + 1. Therefore,
gldimFg < r 41 and rep.dimA < r + 1, as required. This proves the
implication (b) = (a).

(a) = (b) Suppose rep.dimA=s <1+ 1. Then there exists a module
X such that A® D(A) is in add X and gl.dim (End4X) = s. By
the above remarks, gl.dimFy = s. We claim that X has the (s — 1)-
resolution property. In fact, let M € modA, not in addX, and consider
a minimal injective presentation 0 — M — Ip ELN I; of M. Hence,
for F = Coker(—, fo), we have that

(*) 0 — (= M)—(—Ile) = (- H)— F—0

is exact. Since X is a cogenerator of modA we get that Iy, I; are in
add X, thus F € Fg. Now, M is not in addX, so (—, M) is not
projective. Since gl.dim Fg = s we then infer that

pd (=, M)=pd (F)-2<s-2

As observed before the proof of the theorem, this implies that M has a
right add X-approximation of length smaller than s < r+ 1. This ends
the proof of the theorem. o
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1.8. COROLLARY. Let A be an artin algebra. Then rep.dimA=r+1
if and only if there exists a generator-cogenerator of modA satisfying
the r-resolution property but there is none satisfying the s-resolution
property for s < r.

1.9. COROLLARY. Let A be a representation-infinite algebra. Then
rep.dimA = 3 if and only if there erists a generator-cogenerator of
modA satisfying the 2-resolution property.

2. GLUED ALGEBRAS

2.1. We will prove in this section that the algebras such that the
length of Hom 4(D(A), —) is finite (or dually the length of Hom4(~, A))
is finite) have representation dimension at most three. These algebras
were studied by Assem-Coelho, who introduced in [1] the right (left)
glued algebras, which coincide with them. We refer the reader to this
work for their original definition. We will prove the result for right
glued algebras, the corresponding result for left glued algebras follows
by duality. We shall use here a characterization whose proof can be
found in [1, 2]. Given X,Y € indA, we say that X is a predecessor
of Y or that Y is a successor of X provided there exists a sequence
X = Xo — X; — ---X; = Y of non-zero morphisms between
indecomposable modules. For a given algebra A, define the subcategory

La={X € indA: for each predecessor Y of X, pd,Y <1}

THEOREM. (1, 2] The following statements are equivalent for an artin
algebra A:
(a) A is a right glued algebra.
(b) the length of Homa(D(A),—) is finite.
(c) all but finitely many indecomposable A-modules have projective
dimension at most one.

(d) L4 is cofinite in indA.

Clearly, the class of right glued algebras includes all the representa-
tion-finite ones. Not so immediate, but it also includes all the tilted
algebras with complete slices in a preinjective component. Further
examples can be found in [1].

2.2.  Our main result of this section is the following.

THEOREM. Let A be a representation-infinite right glued algebra. Then
rep.dimA = 3.



REPRESENTATION DIMENSION 7

Proof. By (1.7), it is enough to exhibit a generator cogenerator of
mod A satisfying the 2-resolution property. Since A is right glued, the
set X; = indA \ L, is finite. Also, by [2](1.5), the set

Xy ={Y € L4:Y is a successor of an injective in indA}
is finite. So, the set
X = X, U{P: P is a projective in indA} U A

is finite, say X = {X1," -+, X,}. Write X = X, ®--- & X,. Clearly,
such module is a generator-cogenerator of modA, and we claim that it
satisfies the 2-resolution property. Let now M be an indecomposable
A-module not in add(X). Then M € L4, Homy(X,, M) = 0 because
L4 is closed under predecessors, and Hom 4(X,, M) = 0 because A} is
closed under successors. Moreover, since M € L4 and is not projective,
pdaM =1. :

Let now 0 — P; LN Py 4 M — 0 be the minimal projective
resolution of M in modA. We will prove that this sequence is an
add X-approximation resolution of M. This amounts to prove that
(X, Py) — (X, M) — 0 is exact for each indecomposable X € addX.
This clearly holds if X is projective, and it also holds if X is not
projective, since then Hom4(X, M) = 0, as observed above. Thus the
proof of the theorem is complete. ' O

2.3. The following result is the dual of Theorem 2.2. We leave the
details of the proof for the reader.

THEOREM. Let A be a representation-infinite left glued algebra. Then
rep.dimA = 3.

2.4. The above results imply Theorem 5.1 of {11]. Also, for reference,
we mention the following corollary which improves Corolllary 5.2 of
[11].

COROLLARY. Let A be a tilted algebra. If A has a complete slice in
either a postprojective component or in a preinjective component then,
rep.dimA = 8.

3. TRIVIAL EXTENSIONS OF ITERATED TILTED ALGEBRAS

3.1. Along this section, H will denote a hereditary algebra. We will
prove here that the representation-dimension of the trivial extension
T(H) is at most 3. As a consequence, we will have the same bound for
the representation dimension of the trivial extensions of iterated tilted
algebras, using results by Happel [7] and by Xi in [12]. We shall first
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recall some background on this construction. For further details, we
refer the reader to [5] and [10].

The trivial eztension of an algebra A is the algebra T(4) = Ax
D(A) defined as follows. As a vector space, T(A) = A & D(A), and
the product is defined by (a, f)(b,9) = (ab,ag+ fb),fora,bc A, f,g €
D(A). The algebra T'(A) is selfinjective.

Let A be an additive category and F : A — A be an additive
functor. The trivial eztension Ax F of A by F, defined in [5], Section
1, is the category whose objects are the maps a : F(A) — A such
that the composition a - F(a) = 0. For objects a : F(A) — A and
B : F(B) — Bin Ax F, a morphism f : @« — f$ is a morphism
f: A — Bsuchthat F(f) = f a. When A s an artin algebra and F
= D(A)®,4 —: modA — modA, then modA x F is equivalent to mod
T(A). For an A-module X and a morphism f : D(A)®4 X — X, the
T(A)-module structure is defined on X by (a,g) -z = az + f(¢ ® z),
for z € X, a € A and g € D(A) ([5], p-19).

In the case we are primarily interested, that is, the trivial extension
of the hereditary algebra H, the modules in modT'(H) can be seen as
triples (X, X3, f) with X;, Xo € modH,and f: D(A)® X; — X; a
surjective H-map. A morphism from (X, X;, f) to (¥}, Yz, g) is a triple
(ea1, @32, z1) of morphisms in modH, a4;: X; — Y}, 093: Xo — V3
and  ag: X; — Y; such that asf = g(1 ® a;1). This description
of the T'((H)-modules was given by Tachikawa in [10]. To see that the
morphisms are appropiately defined we use the equivalence between
modT'(H) and mod Ax F', considering the triples as elements in mod A x
F 1n the following way.

The element in modA x F' corresponding to the triple (X), X3, f) is
the map

(33) : D(H) © (X, ® X3) ~ D(H) ® X: & D(H) ® X3 — X, © X,

Then a morphism from (X, Xa, f) to (Y1, Ya,9) corresponds to a
map ($8) — (98) in modA x F, that is, a map o = (31 32) :
X1 ® Xy — Y: & Y; such that

(58)(idper) ® (531 52)) = (2 am)(39
This is satisfied precisely when a;; = 0 and the triple (011, 032, 1)
satisfies the above stated condition.

Since H is hereditary then D(H) ® X, being a homomorphic image
of D(H)" for some n, is injective. Thus, D(H)X is also injective, and
X ~D(H)X @ X/D(H)X in modH. Observe that the triple associated
to the T(H)-module X is (X/D(H)X, D(H)X, f), where f: D(H) ®
X/D(H)X — D(H)X is the multiplication map.
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From now on, we will write the adjoint functors D(H) ®u — and
Homp(D(H),~) by F and G, respectively, and by € : FG — Id and
7 : Id — GF the adjuntion morphisms.

Following [10], to a given indecomposable H-module X, two inde-
composable T(H)-modules can be assigned as follows. The T(H)-
module (X, 0,0), called module of the first type and which we shall also
denote by X. On the other hand, we consider a fixed minimal injective
coresolution 0 — X — I4(X) N Li(X) — 0 of X, and assign to
X the indecomposable T(H)-module X = (G(Io(X)), (X)), ferx))-
We say that X is a module of the second type. It follows from [10]
that an indecomposable nonprojective T'(H)-module can be identified
either with an H-module or with a module of the second type.

We extend the above notation to arbitrary H-modules X = X1 ®

- ® X,, with X; in indA by wrltlng X=X9 --0X,

3.2. Given X,Y € indH, there is naturally a morphism
. ¢: HomT(H)(X,Y’) — HomH(X, Y)

defined by the commutative diagram

0 —s X — I(X) —L LX) — 0

(*) . J’w(a) l la:

0 — Y — L(Y) == L(Y) — 0

for o = (a1, 03,0a9) : X — Y, where the middle vertical map is
en(y) F(oo) 5;01();')-
Then ¢ is surjective, functorial in X and Y, and induces an isomor-
phism o
¥ : Homp (X, Y) — Hompy(X,Y)
as follows from the following lemma. Recall that
Hom(X,Y) = Hom(X,Y)/P(X,Y),

where P(X,Y) denotes the set of morphims from X to Y which factor
through a projective module.

LEMMA. Let o = (o, 03,021) : (X1, X3, f) — (N1,Y2,9) be a mor-
phism in modT(H) and asume that there ezists p : X; — F(Y)) such
that F(ay) = pf. Then:
(a) (0,0, a2) factors through the projective module (G(Y3), Ya,ev,)-
(b) (a1, 03,0) factors through (Y, F(Y1),id).
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(c) IfY; is a projective H-module then a factors through a projective
module.

Proof. (a) Observe that (0,0, ay ) is the composition of

0,0,a21) : (X1, Xa, f) — (G(Y2), Y2, ev;)

and

(0,1d,0) : (G(Y2), Yay v, ). — (11, V2, 9).

(b) Since F(ay) = pf, using that f is surjective we get that a, = gp.
Then we can write (o, a2, 0) = (id, 9,0)((a1, p,0). (c) It follows from
(a) and (b) observing.that (Y}, F(Y}),1d) is projective in modT'(H)
when Y] is projective in modH. O

3.3. The main result of this section is the following.
THEOREM. Let H be a hereditary algebra. Then rep.dim T(H) < 3.

Proof. Let X = H® D(H)®T(H)® A be in modT(H). We shall prove
that the generator-cogenerator module X satisfies the 2-resolution prop-
erty. Let N' € indT'(H).

Case 1. N = N' is a module of the first type (that is, N’ € modH).
As seen in (1.4)(b), H® D(H) satisfies the 2-resolution property in
modH, and so, there exists an exact sequence
0— Y, —Y,-5HN—0

such that

0 —y (_9Y2) —H (—1Yl) —g ("’:N) — 0
is exact in add(H&® D(H)). Clearly, also
() 0= (= Ya) —ra (- V) —ran (-, N) — 0
is exact in add(H® D(H)) (as T(H)-modules). Since T(H) is projec-
tive, then (*) is also exact in add(T(H ))-_ The proof will be complete
in this case once we prove that Homy)(H, —) preserves the exactness
of 0 =Y, -V, L4 N — 0. So, let P be an indecomposable
projective H-module. Then P = (Q, I(P), h ¢;,(p)), where

0 — P — Iy(P) 2 L(P) — 0
is a minimal injective resolution, and @ = G(Io(P)). Observe that a
map f: P — N is given by (a,0,0), where ap: Q — N. Since
@ is projective, there exists 8: Q — Y; such that g8 = ap, and
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(8,0,0): P — Y; lifts (g,0,0), as desired.

Case 2. N’ is not a module of the first type (i.e. N’ ¢ modH).

So N'= N, for some N € indH. As above, consider an exact sequence
(*)0 — Y, — Yy — N — 0 with 1,Y; € add (H® D(H)),
which remains exact under Homy(H® D(H), —). Let Iy, I; be injective
modules so that

0 0

Lol

00— Y3 — V) —

L

0 — Io(Yz) — Iy — Ip(N) —— 0

Lo

0 — ILi(Y2) — L — L(N) ——= 0

Lo

0 0

— 0

— 2 — o

o — e

is exact and commutes. Observe that Iy = Io(Y1)® I, I, = h(h) & 1,
where [ is an injective module and f: Iy — L is f = {;’ 2) in the
above decomposition with ¢ being an isomorphism. Clearly, we get a
sequence

(%) 0+ —oNheQ—oN—0

with @ = (G(I), I, ¢1), which is projective in modT(H). To prove that
this sequence is exact we observe two facts:

(a) The exact sequence 0 —» Iy(Yz) — Io — Io(N) — 0 splits,

and therefore it remains exact under G.

(b) All the maps in (%) are of the form (o, a3,0), with ; in modH.
Then, using that a short exact sequence is exact in .4 x F' when the
corresponding sequence in A is exact (5], Corollary 1.2) we obtain
that (¥) is exact. Also, each of ¥}, ¥; belongs to add(H & D(H)), and
therefore to add X, because D(H) ~ (H,0,0). We shall now prove that
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HomT(H)(X —) keeps () exact.

Let Y in addX. We proved in Lemma 3.2 that maps of the form
(0,0,63) : Y — N factor through a prOJectlve module, and therefore
they can be lifted to ¥ ® Q — N. Thus it is enough to prove that
maps of the form (6, 6,,0) : Y — N can be lifted to Y; & Q@ — N.
Consider first Y € add (H® D(H)) and let 6 = (6,,0,0) : ¥ — N (so,
e F(B0) : F(Y) —+ Io(N)). We then have the following diagram,
where g = e,(n)F(fo):

9 id I & I(N) — 0
/

F(Y) =

L — L(N) —0

0

First observe that u = ¢ F(6o) lifts to §: F(Y) — N. Since
u(D(H),—) keeps the sequence (*) exact, and F(Y) is injective (see
(3.1)), we infer that 4 lifts through ¥(g): Y1 — N. So j'§ = ez,(n)F(6o)
and § = ¥(g)e, for some § : F(Y) — N and € : F(Y) — Y;. Let
= je. Then goa = go(je) = j'¥(g)e = j'§ = efmw)F(6o). Let
ap = G(a)ny. Then (a,0,0): Y — (G(Lo), I, fer,) = Y1 @ Q lifts
(80,0,0), as required.
It remains to show that Homr (P, —) keeps (¥) exact for each pro-
jective H-module P. We have a commutative diagram

(P, Y1) — 1an(P,N) — 0

o L
#(PYy) —— y(PN) — 0

where the lower sequence is exact and the vertical arrows are the iso-
morphisms defined in (3. 2) Then we have that the upper sequence
is exact. Consequently, (P g): T(H)(P Y1 @ Q) —ran (P N) is
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surjective. It follows then that
(13,9) : T(H)(Pa?l ® Q) —rw) (13, N)

is also surjective, because g : ¥; @ Q — N is an epimorphism. This
ends the proof of the theorem. 0

34. COROLLARY. Let A be an ilerated tilted algebra. Then
rep.dim T(A) <3.

Proof. 1t follows from [7] that such an A is derived equivalent to a
hereditary algebra H. So, by [12], rep.dimT(A) = rep.dimT(H) and
the result follows using our theorem above. |

4. ONE-POINT EXTENSION ALGEBRAS

4.1. In this section we compare the representation dimension of an
artin algebra B and the representation dimension of a one point exten-
sion of B, under appropiate hypothesis. More precisely, we will prove
the following proposition, extending results proven in [11] for one point
extensions of finite dimensional algebras by simple injective modules.
We refer the reader to [4] for an account on the one-point extension
construction. We also observe that a dual version of this result holds
for one-point coextensions. We leave to the reader the details of the
corresponding proof.

PROPOSITION. Let B be an artin algebra, D a division ringy M a B—D
bimodule and A = B[M)] the one point extension of B by M. Assume
that the set of successors of M in indB is finite. Then:

(a) rep.dim B < rep.dimA;

(b) IfindB is cofinite in indA then rep.dim B = rep.dimA.
Proof. (a) Let {Z;,---,Z;} be the set of successors of M in indB.
We will consider the A-modules as triples (D", X, f), with X in modB
and f : M @ D™ — X a B-morphism, in the usual way (See, e.g., [4],
I11,2). We start by observing that any A-module K can be written in
the form K = (D*,Z,g) ® (0, N,0) with Z € add(Z, ®--- & Z;). In
fact, let K = (D", K\, h), and let N’ be an indecomposable summand
of Ky which is not a successor of M. Then g(M, N’} = 0 and therefore
(0, N',0) is a summand of K. _
Let rep.dim A = r + 1 and let X be a generator-cogenerator of modA
satisfying the r-resolution property, X = (D™, X, f) with X in modB
and f: M ® D* — X a morphism of B-modules.
Let Y = 65::1 Z; ® X. If follows from the description of the projective
and the injective modules in modA, ({4}, ITl, Prop. 2.5), that B® D(B)
is in addY because A@ D(A)is in addX. So Y is generator cogenerator
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of modB, and we will prove that it satisfies the r-resolution property,
and thus rep.dimB < r + 1 = rep.dimA. This amounts to prove that
pdp(—,N) < r — 1 for each N in indB, where B(—, N) is considered
as an element of Fy, as observed in (1.6).

We will also consider 4(—,N) € Fg, and show that pdp(—,N) <
pda(—, N) < r — 1. This will end the proof of (a). We will prove the
inequality by induction on k = pd4(—, N). We may assume that N ¢
add Y.

If k = 0, then the result clearly holds. So let k > 0 and consider a right
X-approximation X; — N of N. Let 0 — K — Xy — N—0
be exact. Then 0 —+4 (— K) —4 (—, Xi) —4 (=, N) — 0is
exact in addX, and pda(—, K) < k = pda(~, N).

We write K = (D", Ky, f) and X; = (D% Y,g) with Y € addX C
addY. We have an exact sequence 0 — K3 — Y — N — 0.
Moreover, as we observed above, K = (D™, Z,h) @ (0, N1,0) with Z €
add(Z, @ - ® Z:) C add Y. Since pd 4(—, M) < pda(—, K) <k we
can apply the induction hypothesis to conclude that pdp(—, M) < k.
On the other hand, Ky = Z® N;,and Z € addV. So pd g(—, K1) =
pdg(—, M) < k. Thus, to prove that pdp(—, N) < k, we only need to
show that the sequence

(*) 0 —5 (= K1) —5 (= Y) E95 (-, N) — 0

is exact in addY. Since N ¢ addY we have that N is not a successor
of M and therefore g(Z;, N) = 0 for each i = 1,--- ,. So we only need
to prove that (%) is exact in addX.

Let § : X — N be a map in modA. Then the composition
M™ ~ M@ D™ — X — N is zero because B(M,N) = 0. So
(0,6) : X = (D™, X, f) — N is a morphism in modA, and thus it
can be lifted through X; — N, because 4(—, X;) —4 (—, N) is sur-
jective in addX. Since X = (D%,Y,g), then 8 can be lifted through
Y %+ N. This proves that (—, ) is surjective, as desired.

(b) Let Zy,--- ,Z; be the successors of M in indB, let indA\indB =
{Ds,---,D,}, and assume that rep.dim B=r+1.

Let Y be a generator cogenerator of mod B with the r-resolution prop-
erty, and let X =V @ @, D; ® @i, Z:.

Let N in indA but not in addX. Then N is in ind B. Considering again
a(—,N) € Fg and g(—,N) € Fp, we will prove that pda(—,N) <
pdp(—, N) < r — 1, by induction on k = pdg(—, N). The result holds
for k = 0, so we assume k > 0.

Let 0 — K — Y; — N — 0 be an exact sequence in modB such
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that Y; € addY and

0 —p (=, K) —p (-, Y1) —5(-,N) —0

is exact in addY. Since p(—,N) is not projective we have that
pdp(—, K) < k = pdp(—, N) and then by the induction hypothesis
we conclude that pds(—, K) < k.

Let D; = (D™,U;, f;). Then (M,U;) # 0 for all i, and U; €add(Z; &
-+ @ Z;) . Then (Ui, N) = 0 and consequently g(D;, N) = 0. Since
a{—=Y1) —4 (=, N) — 0 is exact in addY’, it follows that it is also
exact in addX. Since pda(—, K) < k we get that pda(—,N) <k, as
desired, ending the proof of the theorem. O

4.2. The next result extends [11](6.1).

COROLLARY. Let B be an artin algebra, D a division ringy M @ B— D
bimodule and A = B[M] the one point extension of B by M. If M is
a simple injective module then rep.dimA = rep.dim B.
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