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ON THE REPRESENTATION DIMENSION OF SOME 
CLASSES OF ALGEBRAS 

FLAVIO U. COELHO AND MARIA INES PLATZECK 

ABSTRACT. We show tba.t the representation dimension of the 

following classes of &lgebra.s is at most 3: (a) Artin &lgebras A 

such that the functor Hom,t(D{A), -) has finite length (or dually, 

HomA(-, A) has finite length). These algebras coincide with the 

right (left) glued algebras, as introduced in [1] ; and (b) Trivial 

extensions of iterated tilted algebras. 

The concept of representation dimension of an a.rtin algebra. A, de­

noted by rep.dimA, was introduced by M. Auslander [3] in the early 

70's in an attempt to, para.phrasing him, give a reasonable way of mea­

suring how Jar A is from being representation-finite ( see Section 1 below 

for the appropriate definitions). 
For some time, this notion stayed apart from the main lines of inves­

tigation in the representation theory of algebras. Recently, its interest 

was revived by some works of Xi [11, 12] but mainly by the connection, 

which we shall recall in the sequel, with the finitistic and Nakayama 

conjectures given by lgusa and Todorov {-6] (see also {9]). 
It has been shown by Auslander that an algebra A is representation­

finite if and only if rep.dimA = 2. On the other hand, despite shown in 

[9] that rep.dimA is always finite, so far there is no example of algebras 

with representation dimension greater than 3. It follows from [6] that if 

A has representation dimension at most 3, then its finitistic dimension 

is finite. It is clear, then, the interest in deepening the study of the 

representation dimension. For a discussion on the connection between 

the finitistic and the Nakayama conjecture we refer the reader to [8]. 

The purpose of the present work is to calculate the representation 
dimension for some classes of algebras. We will show, for instance, that 

it is at most three for the following algebras: 

(a) Artin algebras A such that the functor HomA(D(A), - ) has finite 

length (or dually, HomA(-,A) has finite length) . These algebras 
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2 COELHO AND PLATZECK 

coincide with the right (left) glued algebras, as introduced in [1} . 
The class of right glued algebras includes all the hereditary al­
gebras as well as all tilted algebras with complete slices in their 
preinjective components. 

(b) Trivial extensions of iterated tilted algebras. 

For that, we shall prove a criterion which appears implicitely in the 
works of Auslander [3] and Xi [11]. Also, as a consequence of this crite­
rion, we get a better insight of the relations between the representation 
dimension of an algebra which is a one-point extension B[M] of an 
algebra B, and the representation dimension of B itself. This extends 
some results of [11). 

This paper is organized as follows. In the first section, after recalling 
some preliminary notions needed along the work, we state and prove the 
above mentioned criterion. Sections 2 and 3 deal with the calculation of 
the representation dimension of the algebras mentioned in (a) and (b) 
above while in Section 4, we show some results concerning one.-point 
extension algebras . 

. This work was done during reciprocal visits supported by the ex­
change project CAPES-SCyT between Argentina and Brazil and by 
FAPESP. The first named author also acknowledges support from CNPq 
and the second from SECyT, UNS. 

1. PRELIMINARIES 

1.1. Throughtaut this pa.per, all our algebras are artin algebras. For 
an algebra A, we denote by modA its category of finitely generated 
left A-modules and by indA a full subcategory of modA having as 
objects a full set of representatives of the isomorphism classes of the 
indecomposable A-modules. Also, given M E modA, we denote by 
addM the full subcategory of modA having as objects the direct sums 
of indecomposable swnmands of M. We denote by pdAM (or idAM) 
the projective dimension (or injective dimension, respectively) of M. 
Finally, we denote by gl.dimA the global dimension of A, that is, the 
suppremum of the projective dimensions of modules in modA. 

We recall that an A-module M is a generator (or a cogenerator) 
for modA provided for each X E modA, there exists an epimorphism 
M' --t X ( or a monomorphism X --t M') with M' E addM. 

For unexplained notions and facts needed on modA we refer the 
reader to [4]. 

1.2. The notion of representation-dimension of an algebra was in• 
troduced in [3] by Auslander. We refer to this work for the original 
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definition. For us, it will be more convenient to use the following char­

acterization, also proven in 13]. 

DEFINITION. The representation-dimension of an artin algebra is the 

number rep.dim A 
= inf {gl .dim(EndAM) : M is a generator-cogenerator of modA}. 

1.3. The first aim is to show a criterion for the calculation of the 

representation dimension of an algebra. From now on, A will denote 

an artin algebra, and let C be a. full subcategory of modA. We recall 

that a map / : 0 --+ M is called a right C-approximation of the A­

module M if O is in C and the sequence(-, 0) --+ (-, M) --+ 0 is 

exact in C. Moreover, we will say that an exact sequence 

0 --+ Cr ~ · · · ~ M1 -14 M --+ 0 

is a C-approximation resolution of M . if G, is in C for all i and the 

sequence 

0--+ (-,Cr)~··· .J4 (-,01) ..!!..+ (-,M) ~ 0 

is exact in C. We say that r is the length of the resolution. 

DEFINITION. An A-module Xis said to .have the r-resolution property 

if each A-module M bas an addX-approximation resolution of length 
r. 

REMARKS. (a) The condition of the a.hove definition can be replaced 

by a,similar- one holding for indecomposable modules M. 

(b) Clearly, the modules in addX always have a.n addX-approxima.tion 

resolution of length 1. 

(c) Given a module M in a subcategory C, one can, dually, define a 

left C-approximation of M, a.nd a C-approximation coresolution of M. 

Also, one can look at the notion of r-coresolution property. 

1.4. EXAMPLES. (a) Let A be a representation-finite algebra, and let 

M1, M2, • • • , M. be a set of all isoclasses of indecomposable A-modules. 

Clearly, X = M1 Ell··· Ell M. has the I-resolution property, since addX 
= modA. It is also not difficult to see that if an algebra A has a module 

M satisfying the I-resolution property, then A is representation-finite, 

and addM == modA. 

(b) Let H be a non-semisimple hereditary algebra and let X = HEB 

D(H). We show that such X has the 2-resolution property. Let M be 

an indecomposable H-module not in add X, and consider the minimal 

projective resolution O --+ P1 --+ P0 ----+ M --+ 0 of M. Clearly, 
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HomH(HEB D(H), M) = HomH(H, M) because Mis not in add.X and 
therefore is not injective, so the sequence 

0 -t (HEB D(H), P1) -t (HEB D(H), Po) -t (HEB D(H), M)--+ 0 

is exact and we are done. 

1.5. We will see in the sequel that if a module X satisfies the r­
resolution property then gl.dim (EndAX) $ r + 1. If, moreover, X is 
a generator-cogenera.tor of modA, then rep.dimA $ r + 1. This result 
has been used by Auslander in [3] and by Xi in [11], in order to give 
bounds for the representation dimension of some classes of algebras. 

In the following theorem, which is the main result of this section, we 
will prove that the converse statement also holds. 

THEOREM. Let A be an artin algebra. The f-0llowing statements are 
equivalent for a positive integer r: 
(a) rep.dim A 5 r + 1; 
(b) there exists a generator-cogenerator of modA satisfying the r-reso­

lution property. 

Though, as we mentioned above, the implication (b) => (a) has been 
implicitely proven in [3) and [11], for the convenience of the reader 
we shall provide here a. complete proof of this result. For that, it is 
convenient to recall some facts. · 

1.6. For a module Y, denote by :Fy the category of a.II coherent func­
tors F: ( a.ddY)OJ> -t Ab, where Ab denotes the category of ahelian 
groups. Recall that a functor F: ( addY)op --+ Ab is called coherent 
provided there is a morphism Yi -t ½ in addY such that the s quence 

(-, Yi) -t (-, ½)--+ F -t 0 

is exact in addY. Here we denote by (-, C) the restriction of the 
functor HomA(-, C) : modA -t Ab to addY. It follows from [3] 
{Proposition, Ch.III, p.104) that the categories :Fy and mod(EndAY) 
are equivalent and so, in particular, gl.dim(EndAY) == gl.dim (:Fy ). 

If an A-module M has an addY-a.pproximation resolution of length 
s, then pd(-, M) 5 s - l. If, moreover, Y is a generator of modA, 
then the converse holds. In fact, if pd(-, M) $ s - 1, let 

0 -t (-, Y.-d--+ .. ·--+(-,Yo) -t (-,M) -t 0 

with Y. E a.ddY, he a sequence which is exact in a.ddY. Since, by 
hypothesis, A is in addY, by evaluating the above sequence at A, we 
infer that there exists a.n exact sequence 

0 -t Y.-1 --4 · · · --4 Yo --4 M --+ 0 
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inducing the above one, proving then that M has an addY-approximation 

resolution of length s, as desired. 

1.7. Proof of Theorem 1.5. 

(b) => {a) Let X be a module satisfying the r-resolution property. We 

will show that gl.dim.rg $ r + 1, leading to the required result. Let F 

be a functor in .rg. By definition, there exists a morphism X" ~ X' 
in addX such that 

{ - , X") --+ { - , X') -➔ F --+ 0 

is exact in addX. Denote M= Kerf. Now, since.X has the r-resolution 

property, there exists an exact sequence 

0 -+ X,. --+ · · · -➔ X 1 -➔ M --+ 0 

with X; E addX such that the induced sequence 

{**) 0-➔ (-,X,.)--+ ···--+(-,Xi)--+ (-, M)-➔ 0 

is exact in add.X. Glueing together ( *) and ( **) we end up with a 

sequence 

0 ➔ (-,X,.) ➔ · · · ➔ (-,X1) ➔ {-,X") ➔ (-,X') ➔ F ➔ 0 

which is exact in add.X, showing that pd( F) S r + 1. Therefore, 
gl.dim.r .x S r + 1 and rep.dimA S r + 1, as required. This proves the 

implication (b) => (a). 

{ a) => (b) Suppose rep.dimA = s $ r + 1. Then there exists a module 
X such that A$ D(A) is in add X and gl.dim (EndAX) = s. By 

the above remarks, gl.dim.rx = s. We claim that X has the (s - 1)­
resolution property. In fact, let M E modA, not in a.ddX, and consider 

a minimal injective presentation O --+ M -➔ / 0 .!!..+ Ii of M. Hence, 

for F = Coker(-, Jo), we have that 

(*) 0-➔ (-,M)--+ (-,[0)--+ {-,Ii)-➔ F--t 0 

is exact. Since X is a cogenerator of modA we get that lo, /1 are in 
add X, thus F E :Fx, Now, Mis not in add.X, so (-,M) is not 
projective. Since gl.dim :F g = s we then infer that 

pd(-, M) = pd (F) - 2 S s - 2 

As observed before the proof of the theorem, this implies that M has a 

right add.X -approximation of length smaller than s $ r + l. This ends 

the proof of the theorem. D 
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1.8. COROLLARY. Let A be an artin algebra. Then rep.dimA = r + 1 
if and only if there exists a generator-cogenerator of modA satisfying 
the r-resolution property but there is none satisfying the s-resolution 
property for s < r. 

1.9. COROLLARY. Let A be a representation-infinite algebra. Then 
rep.dimA = 3 if and only if there exists a generator-cogenerator of 
modA satisfying the 2-resolution property. 

2. GLUED ALGEBRAS 

2.1. We will prove in this section that the algebras such that the 
length of Hom A ( D( A), - ) is finite ( or dually the length of HomA (-, A)) 
is finite) have representation dimension a.t most three. These algebras 
were studied by Assem-Coelho, who introduced in [1] the right (left) 
glued algebras, which coincide with them. We refer the reader to this 
work for their original definition. We will prove the result for right 
glued algebras, the corresponding result for left glued algebras follows 
by duality. We shall use here a. characterization whose proof can be 
found in [1, 2]. Given X, Y E indA, we say that X is a predecessor 
of Y or that Y is a. successor of X provided there exists a sequence 
X = Xo --+ X1 --+ · · · Xt = Y of non-zero morphisms between 
indecomposable modules. For a. given algebra. A, define the subcategory 

LA= {XE indA: for ea.ch predecessor Y of X, pdAY ~ 1} 

THEOREM. [I, 2] The following statements are equivalent for an artin 
algebra A: 

(a.) A is a right glued algebra. 
(b) the length of HomA(D(A),-) is finite. 
(c) all but finitely many indecomposable A-modules have projective 

dimension at most one. 
(d} CA is cofinite in indA. 

Clearly, the class of right glued algebras includes all the representa­
tion-finite ones. Not so immediate, but it also includes all the tilted 
algebras with complete slices in a preinjective component. Further 
examples can be found in [l]. 

2.2. Our main result of this section is the following. 

THEOREM. Let A be a representation-infinite right glued algebra. Then 
rep.dimA = 3. 
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Proof. By (1.7), it is enough to exhibit a generator cogenerator of 

modA satisfying the 2-resolution property. Since A is right glued, the 

set X1 = indA \ £A is finite. Also, by [2](1.5), the set 

X2 ={YE £,A : Y is a successor of an injective in indA} 

is finite. So, the set 

X = X1 U {P: Pis a projective in indA} U X2 

is finite, say X = {X1, · · · ,X,}. Write X = X1 EB··· EB Xs, Clearly, 
such module is a generator-cogenerator of modA, and we claim that it 

satisfies the 2-resolution property. Let now M be an indecomposable 

A-module not in add(.X). Then M E £.A., HomA(Xi, M) = 0 because 
.CA is closed under predecessors, and HomA(X2, M) = 0 because X2 is 
closed under successors. Moreover, since ME £,A and is not projective, 

pdAM = 1. . 

Let now O --t Pi ~ P0 ~ M -+ 0 be the minimal projective 

resolution of M in modA. We will prove that this sequence is an 

addX-approximation resolution of M. This amounts to prove that 

(X, Po) --+ (X, M) --+ 0 is exact for each indecomposable X E a.ddX. 
This clearly holds if X is projective, and it also holds if X is not 
projective, since then HomA(X, M) = 0, as observed a.hove. Thus the 
proof of the theorem is complete. · D 

2.3. The following result is the dual of Theorem 2.2. We leave the 

details of the proof for the reader. 

THEOREM. Let A be a representation-infinite left glued algebra. Then 

rep.dimA = 3. 

2.4. The above results imply Theorem 5.1 of [11]. Also, for reference, 
we mention the following corollary which improves Corollla.ry 5.2 of 

[11]. 

COROLLARY. Let A be a tilted algebra. ff A has a complete slice in 

either a postprojective component or in a preinjective component then, 

rep.dimA = 9. 

3. TRIVIAL EXTENSIONS OF ITERATED TILTED ALGEBRAS 

3.1. Along this section, H will denote a hereditary algebra. We will 
prove here that the representation-dimension of the trivia.I extension 

T(H) is at most 3. As a consequence, we will have the same bound for 
the representation dimension of the trivia.I extensions of iterated tilted 
algebras, using results by Happel [7] and by Xi in [12]. We shall first 
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recall some background on this construction. For further details, we 
refer the reader to [5] and [10]. 

The trivial extension of an algebra A is the algebra T(A) = A1>< 
D(A) defined as follows. As a vector space, T(A) = A EB D(A), and 
the product is defined by (a, f)(b,g) = (ab, ag+ fb), for a, b EA, J,g E 
D(A). The algebra T(A) is selfinjective. 

Let .A be an additive category and F ~ .A --+ .A be an additive 
functor. The trivial extension .A 1>< F of .A by F, defined in {5], Section 
1, is the category whose objects are the maps a : F(A) --+ A such 
that the composition a· F(o:) = 0. For objects o:: F(A)--+ A and 
(3 : F( B) --+ B in A I>< F, a morphism f : o: --+ P is a morphism 
f; A 

0

--+ B such that /3F(f) =fa. When A is an artin algebra and F 
= D(A) ®A-: modA ---+ modA, then modA 1>< Fis equivalent to mod 
T(A). For an A-module·x and a morphism f: D(A)®AX---+ X, the 
T(A)-module structure is defined on X by (a,g) · x =ax+ f(g ® x), 
for x EX, a EA and g E D(A) ((5], p.19). 

In the case we are primarily interested, that is, the trivial extension 
of the hereditary algebra H, the modules in modT(H) can be seen as 
triples (X1,X2,f) with X1,X2 E modH, and f: D(H) ® X1--+ X2 a 
surjective H-map. A morphism from (X1, X2 , f) to (Y1, ½,g) is a triple 
(ai1,et22,o:21) ohnorphlsms in modH, 0:11: X1--+ Yi, 022: X2--+ Y2 
and · a21: X1 --+ ½ such that a22/ = g(l ® au). This description 
of the T(H)-modules was given by Tachikawa in [10]. To see that the 
morphisms are appropiately defined we use the equivalence between 
modT( H) and modA 1>< F, considering the triples as elements in modA 1>< 

F in the following way. 
The element in modA 1>< F corresponding to the triple (X1,X2,/) is 

the map 

(1 g) : D(H) ® (X1 EB X2) ~ D(H) ® X1 EB D(H) ® X2--+ X1 EB X2 

Then a morphism from (X1,X1 ,f) to (Yi, ½,g) corresponds to a 
map O g) --+ (~ g) in modA IX F, that is, a map a = ( :!: :!n 
X1 EB X2 --+ Yi EB ½ such that 

( ~ g) ( idv(H) ® ( :~: :1~)) = ( :1: !!~) ( 1 g) 
This is satisfied precisely when a 12 = 0 and the triple ( au I a22, a21) 
satisfies the above stated condition. 

Since H is hereditary then D( H) ® X, being a homomorphic image 
of D( H)" for some n, is injective. Thus, D( H)X is also injective, and 
X ~D(H)X ffiX/ D(H)X in modH. Observe that the triple associated 
to the T(H)-module Xis (X/D(H)X,D(H)X,f), where/: D(H) ® 
XJ D(H)X --+ D(H)X is the multiplication map. 
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From now on, we will write the adjoint functors D(H) ®H - and 
HomH(D(H), -) by F and G, respectively, and by t:: FG-+- Id and 
T/: Id~ GF the a.djuntion morphisms. 

Following [10}, to a given indecomposable H-module X, two inde­
composable T(H)-modules can be assigned as follows. The T(H)­
module (X, 0, 0), called module of the first type and which we shall also 
denote by X. On the other hand, we consider a fixed minimal injective 

coresolution O -+- X -+- /0 (X) _!_,,. /1(X) -+- 0 of X, and assign to 
X the indecomposable T(H)-module X = (G(/o(X)), Ii(X),Jt:10 (X))­

We say that X is a module of the second type. It follows from [10] 
that an indecomposable nonprojective T( H)-module can be identified 
either with an H-module or with a module of the second type. 

We extend the above notation to arbitrary H-modules X = Xi$ 
···a, Xn, with X, in indA by writing .X = Xi EB··· a, Xn 

3.2. Given X, YE indH, there is naturally a morphism 

. t/J: HomT(H)(X, Y)--+ HomH(X, Y) 

defined by the commutative diagram 

0 ---t X ---t Io( X) ~ Ii ( X) ---t 0 

(*) l"'<"> l l"• 
0 ---t Y ---t Io(Y) ~ /1(Y) ---t 0 

for a = ( a 1, a 2, a 21 ) : .X ~ Y, where the middle vertical map is 
fJo(Y) F( ao) fio(X)· 

Then t/J is surjective, functorial in X and Y, and induces an isomor­
phism 

p_: HomT(H)(.X, Y) -+- HomH(X, Y) 

as follows from the following lemma. Recall that 

Hom(X, Y) = Hom(X, Y)/ P(X, Y), 

where P(X, Y) denotes the set of morphims from X to Y which factor 
through a projective module. 

LEMMA. Let a= (ai,a2,a2i): (X1,X2,/)--+ (Yi,½,g) be a mor­
phism in modT(H) and asume that there exists p: X2-+- F{Y1) such 
that F(ai) = pf. Then: 
(a) (0,0,a21 ) factors through the projective module (G{Y,), ½,t:y3). 

(b) (a1,a2,0) factors through (Yi,F(Yi),id). 
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(c) If Yi is a projective H-module then a factors through a projective 
module. 

Proof. (a) Observe that (0, 0, a 21 ) is the composition of 

and 

(b) Since F(a1) = pf, using that f is surjective we get that a2 = gp. 
Then we can write (a1,a2 ,0) = (id,g,0)((a1,p,0). (c) It follows from 

(a) and (b) observing .that (Yi,F(Y1),id) is projective in modT(H) · 
when Yi is projective in modH. D 

3.3. The main result of this section is the following. 

THEOREM. Let H be a hereditary algebra. Then rep.dim T(H} ~ 3. 

Proof. Let X = HEB D( H) EB T( H) EB ii be in modT( H). We shall prove 
that the generator-cogenerator module X satisfies the 2-resolution prop­
erty. Let N' E indT(H). 

Case 1. N = N' is a module of the first type (that is, N' E modH). 
As seen in {1.4)(b), HEB D(H) satisfies the 2-resolution property in 
modH, and so, there exists an exact sequence 

0-+l-'2-+Yi-!.+N-+0 
such that 

0-+H (-,}'2)-+u (-,Yi)-+H (-,N)-+0 
is exact in add(HEB D(H)). Clearly, also 

(*) 0 -+T(H) (-,1';) -+T(H) (-,Yi)-+T(H) (-,N)-+ 0 
is exact in add(HEB D(H)) (as T(H)-modules). Since T(H) is projec­
tive, then(*) is also exact in add(T(H)). The proof will be complete 
in this case once we prove that HomT(H)( H, - ) preserves the exactness 
of O -+ ½ -+ Y1 ~ N -+ 0. So, let P be an indecomposable 
projective H-module. Then P = (Q, /1(P), h tJa(P)), where 

0 -+ P-+ Io(P) ~ I1(P) -+ 0 
is a minimal injective resolution, and Q = G(Io(P)). Observe that a 
map/: P -+ N is given by (a0 ,0,0), where a 0 : Q -+ N. Since 
Q is projective, there exists /3: Q -+ Yi such that g/3 = a 0, and 
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(,8, 0, 0): P --t Yi lifts (g, 0, 0), as desired. 

Case !!. N' is not a module of the first type (i.e. N' ~ modH). 
So N' = N, for some NE indH. As above, consider an exact sequence 
(*) 0 --t ½ --t Yi --t N --t O with Yi,½ E add (H$ D(H)), 
which remains exact under HomH(HEB D(H}, -). Let / 0 , / 1 be injective 
modules so that 

0 0 0 

l l 1· 
0--+ Y2 --+ Yi --+ N --+ 0 

(*) 
l l l 

0 --+ Io(~) --+ lo --+ Io(N) --+ 0 

l l l 
0 --+ I1(Y2) --+ l1 --+ I1(N) --+ 0 

l l l 
0 0 0 

is exact and commutes. Observe that /0 = /0(Yi) EB I, / 1 = /1(Yi) EB I, 
where I is an injective module and f: /0 --t 11 is f = ( {\> ~) in the 
above decomposition with u being an isomorphism. Clearly, we get a 
sequence 

O--tt--tYi.EBQ--tN--t0 

with Q = (G(l), [, t:1), which is projective in modT(H). To prove that 
this sequence is exact we observe two facts: 

(a) The exact sequence O --t Io(Y2) --t Io --t Io(N) --t O splits, 
and therefore it remains exact under G. 

(b) All the maps in (•) are of the form (o1 , o2, 0), with 0 1 in modH. 

Then, using that a short exact sequence is exact in A 1>< F when the 
corresponding sequence in A is exact (l5], Corollary 1.2) we obtain 

that(*) is exact. Also, each of Yi, Y-2 belongs to add(H EB D(H}), and --therefore to addX, because D( H) ~ ( H, 0, 0). We shall now prove that 
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HomT(H)( X, - ) keeps ( *) exact. 
Let Y in add.X. We proved in Lemma 3.2 that maps of the form 
(0, O, 0-n) : Y --+ i.V factor through a projective module, and therefore 
they can be lifted to Yi EB Q --+ N ._ Thus it is enoug~ to prove t~at 
maps of the form ( 00 , 01, 0) : Y --+ N can be lifted to Yi EB Q -+ N. 
Consider first Y E add (HEB D(H)) and let O = (80, 0, 0) : Y-+ N (so, 
f.Jo(N)F(00 ) : F(Y) --+ /0 (N)). We then have the following diagram, 
whereµ= fJ0(N)F(0o): 

First observe that µ = fJo(N)F(Oo) lifts to d: F(Y) --+ N. Since 
H(D(H),-) keeps the sequence(•) exact, and F(Y) is injective {see 
{3.1)), we infer that i5 lifts through ,J,(g): Yi ---+ N. So j' i5 = fJo(N)F{Oo) 
and d = ,t,(g)E, for some i5 : F(Y) -+ N and t : F(Y) --+ Yi- Let 
a = jE. Then goa = 9o(jt) = j',J,(g)t = j'o = f.10 (N)F(80). Let 
cro = G(a)71Y. Then (oo,0,0): Y--+ (G(lo),Ii,/E10 ) = Yi EBQ lifts 
( Oo, 0, 0), as required. 
It remains to show that HomT(H)(.P,-) keeps(*) exact for each pro­
jective H-module P. We have a commutative diagram 

T(H)(P, Yi) --t T(H)(.P, N) --t 0 

l l 
H(P, Yi) ---+ H(P, N) ----+ 0 

where the lower sequence is exact and the vertical arrows are the iso­
morphisms defined in (3.2). Then we have that the upper sequence 
is exact. Consequently, (P,g) : T(H)(P, Yi EB Q) --+T(H) (P,N) is 
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surjective. It follows then that 

{.P,g): T(H}(P, Yi EB Q) --+T(H) (P, N) 

is also surjective, because g : Y1 EB Q --+ N is an epimorphism. This 
ends the proof of the theorem. O 

3.4. COROLLARY. Let A be an iterated tilted algebra. Then 
rep.dim T(A} ~ 3. 

Proof. It follows from [7] that such an A is derived equivalent to a 
hereditary algebra H. So, by [12], rep.dimT(A) = rep.dimT{H) and 
the result follows using our theorem above. O 

4. ONE-POINT EXTENSION ALGEBRAS · 

4.1. In this section we compare the representation dimension of an 
artin algebra B and the representation dimension of a one point exten­
sion of B, under appropiate hypothesis. More precisely, we will prove 
the following proposition, extending results proven in [11] for one point 
extensions of finite dimensional algebras by simple injective modules. 
We refer the reader to [4] for an account on the on&-point extension 
construction. We also observe that a dual version of this result holds 
for ontrpoint coextensions. We leave to the reader the details of the 
corresponding proof. 

PROPOSITION. Let B be an artin algebra, D a division ring, M a B- D 
bimodule and A= B[M] the one point extension of B by M. Assume 
that the set of successors of M in indB is finite. Then: 

(a) rep.dim B ~ rep.dimA; 
(b) If in dB is co finite in indA then rep.dim B = rep.dimA. 

Proof. (a) Let { Z1, · • · , z,} be the set of successors of M in indB. 
We will consider the A-modules as triples (U', X, !), with X in rnodB 
and f : M ® Dn --+ X a B-morphism, in the usual way (See, e.g., [4], 
IIl,2). We start by observing that any A-module K can be written in 
the form K = (Dn, Z,g) EB (0, N, 0) with Z E add(Z1 ffi · · - ffi Z,). In 
fact, let K = ( U', Ki, h ), and let N' be an indecomposable summand 
of K1 which is not a successor of M. Then B(M, N') = 0 and therefore 
(0,N',0} is a summand of K. 
Let rep.dim A = r + 1 and let X be a generator-cogenerator of modA 
satisfying the r-resolution property, X = (Dm,X,f) with X in modB 
and f : M ® D" --+ X a morphism of B-modules. 
Let Y = EB!=t Zi EB X. If follows from the description of the projective 
and the i~.jectivemodules in modA, ([4J, III, ~rop. 2.5), that Be,D(B) 
is in addY because AEBD(A) is in addX. So Y is generator cogenerator 
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of modB, and we will prove that it satisfies the r-resolution property, 

and thus rep.dimB :$ r + 1 = rep.dimA. This amounts to prove that 

pdB (-, N) $ r - 1 for each N in in dB, where B ( - , N) is considered 

as an element of :Fy, as observed in {1.6). 
We will also consider A ( - , N) E r x, and show that pdB ( - , N) :$ 

pdA(-, N) $ r - 1. This will end the proof of (a). We will prove the 

inequality by induction on k = pdA{-, N). We may assume that N ~ 

add Y. 
If k = 0, then the result clearly holds. So let k > 0 and consider a right 

.X-approximation X 1 --+ N of N. Let 0 ~ K--+ X1 --+ N--+ 0 
be exact. Then 0 --+A (-,K) --+A (-,Xi) --+A (-,N)--+ 0 is 

exact in addX, and pdA(-,K) < k = pdA(-,N). 
We write K = (Dn,K1,f) and X1 = (Dd,Y,g) with YE addX ~ 

addY. We have an exact sequence 0 --+ K1 --+ Y ~ N -+ 0. 

Moreover, as we observed above, K = (D'1, Z, h) EB {O, N1,0) with Z E 
add(Z1 EB··· EB Z1) ~ add Y. Since pd A(-, N1) :$ pdA{-, K) < k we 

can apply the induction hypothesis to conclude that pdB{-, Ni) < k. 
On the other hand, K1 = Z © N1;.and Z E addY. So pd B(-, K1) = 
pdB ( - , Ni) < k. Thus, to prove that pdB {-, N) S k, we only need to 

show that the sequence 

is exact in addY. Since N r/. addY we have that N is not a successor 

of Mand therefore B(Z,, N) = 0 for each i = 1, · · · , t. So we only need 

to prove that ( •) is exact in addX. 
Let (J : X --+ N be a map in modA. Then the composition 

Mm ~ M ® D"' --+ X --+ N is zero because B(M,N) = 0. So 

(0,8): X = (D"',X,f) --+ N is a morphism in modA, and thus it 

can be lifted tl:rough X1--+ N, because A(-,X1) ~A (-,N) is sur­

jective in addX. Since Xi = (D", Y,g), then IJ can be lifted through 

Y ~ N. This proves that (-, er) is surjective, as desired. 

(b) Let Z1 , • • • , Z1 be the successors of M in indB, let indA \in dB = 
{Di,··· , D.}, and assume that rep.dim B = r + 1. 

Let Y be a generator cogenerator of modB with the r-resolution prop­

erty, a.nd let X = Y EB EB:=1 D; EB EB!=t Z,. 
Let Nin indA but not in add.X. Then N is in indB. Considering again 

A(-, N) E :Fg and s(-, N) E :Fy, we will prove that pdA(-, N) $ 

pdB(-, N) $ r - 1, by induction on le = pds(-, N). The result holds 

for k = 0, so we assume k > 0. 
Let O --+ K --+ Yi --+ N --+ 0 be an exact sequence in modB such 
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that Yi E addY and 

0 -+B (-,K) -+B (-,Yi) -+B (-,N)-+ 0 

15 

is exact in addY. Since B(-,N) is not projective we have that 
pdB(-, K) < k = pdB(-, N) and then by the induction hypothesis 
we conclude that pdA(-, K) < k. 
Let D, = (D"i, U,,f.). Then (M, U;) #- 0 for all i, and U; Eadd(Z1 EB 
···EB Z,) . Then B(U;, N) = 0 and consequently B(D;, N) = 0. Since 
A ( - , Yi) -+ A ( - , N) -+ 0 is exact in addY, it follows that it is also 
exact in addX. Since pd A ( - , K) < k we get that pd A (-, N) $ k, as 
desired, ending the proof of the theorem. D 

4.2. The next result extends (11](6.l). 

COROLLARY. Let B be an artin algebra, D a division ring, M a B - D 
bimodule and A= B[Mj the one point exten$ion of B by M. If M is 
a simple injective module then rep.dimA = rep.dim B. 
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