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Abstract: Although hardware trojans impose a relevant threat to the hardware security of RISC-V and
Web3 applications, existing datasets have a limited set of examples, as the most famous hardware
trojan dataset TrustHub has 106 different trojans. RISC-V specifically has study cases of three and four
different hardware trojans, and no research was found regarding Web3 hardware trojans in modules
such as a hardware wallet. This research presents a dataset of 290 Verilog examples generated with
ChatGPT-4 Large Language Model (LLM) based on 29 golden models and the TrustHub taxonomy.
It is expected that this dataset supports future research endeavors regarding defense mechanisms
against hardware trojans in RISC-V, hardware wallet, and hardware Proof of Work (PoW) miner.
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1. Summary

Using an open-source hardware solution (Open Hardware) enhances the transparency
of hardware solutions for critical applications. This transparency may contribute to the
ease of verification of these hardware solutions and thus to its overall security. Follow-
ing the development and massive use of open-source software (Free and Open-Source
Software—FOSS), hardware devices can have all their code and specifications open, made
available under a license that makes it possible for anyone to use, copy, analyze, and make
changes, so people are encouraged to contribute to a project on a voluntarily [1].

The Open Source Hardware Association (Open Source Hardware Association)! defines
open hardware as the “hardware whose design is made publicly available so that anyone
can study, modify, distribute, manufacture, and sell the design or hardware based on that
design. The hardware source is available in a preferred format for making modifications.
Ideally, open-source hardware uses readily available components and materials, standard
processes, open infrastructure, unrestricted content, and open-source tools to maximize
individuals” ability to manufacture and use hardware. Open-source hardware gives people
the freedom to control their technology, share their knowledge and encourage commerce
through the open exchange of designs.

Some successful examples such as the RISC-V open architecture and the OpenTitan
project supported by a commercial partnership between several companies show the
relevance of open hardware. One of the benefits of open hardware is the replacement of
security by obscurity with security by verification [2]. By increasing the ease of specification,
testing, and verification of hardware designs, and fostering community collaboration, open
hardware can contribute to greater user confidence in hardware solutions by transparency.
Specifically, the RISC-V is becoming a standard Instruction Set Architecture (ISA) for small
Internet of Things (IoT) devices, warehouse-level computers, and personal mobile devices.
For example, the company SiFive put RISC-V products on the market for desktop and IoT
applications, while Alibaba launched a RISC-V product for cloud and edge computing [3].

Open-source software solutions are transparent solutions whose availability for free
access makes a higher level of security maturity possible due to the peer scrutiny process.
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Considering the example of backdoors in open-source solutions, only making code available
for free access is not enough. Some method is needed to help verify the security of these
solutions. In the case of hardware used in critical security applications, it is not enough to
perform only functional tests to verify that the device works according to specification [4].
It is necessary to verify that no additional functionality is present in such a design.

Among the security threats of the RISC-V, hardware trojans included by malicious
designers and foundries can cause denial of service and the transmission of sensitive data
to external non-authorized observers. However, even with its reasonable importance, the
development of defense mechanisms is relatively lagging [3]. One of the reasons why these
defense mechanisms are lagging is related to the availability of open datasets to support
research. Different hardware trojan detection methods may be studied if there are available
datasets with relevant designs to support such investigations. A current research effort to
study hardware trojans in RISC-V presents the design and integration of four trojans into
a post-quantum RISC-V micro-controller [5], and another work presents three hardware
trojans inserted into different RISC-V modules [6]. While these stealthy hardware trojans
are of the utmost importance to enable research, their manual nature makes it difficult to
scale to support a comprehensive dataset of RISC-V hardware trojans.

Considering another relevant example, decentralized systems based on Blockchain
have enormous industry and academic interests [7]. The most popular use case is the
cryptocurrency Bitcoin [8], which is a peer-to-peer electronic cash system [9]. Other cryp-
tocurrencies such as Ethereum [10] have been created, and other applications such as
supply chain [11], smart contracts [12], and other [13] have been proposed. Blockchain
technology [14] is a distributed ledger that records a sequence of events accepted and
respected by the network. The ledger is built with a sequential block structure so that each
block has a cryptographic hash of the previous block, creating a hash chain. Due to this
distributed structure, a consensus mechanism is necessary when creating a new block in
the ledger, and this consensus is provided by proof-of-work (PoW), proof-of-stake (PoS),
and other algorithms to solve the consensus problem [15].

Specifically, a fundamental process used to validate the blocks in Bitcoin is mining. It
is based on a consensus algorithm that implies the solution of a mathematical problem by
each miner [16]. A Bitcoin miner spends computing power to solve these cryptography
problems for the Proof of Work (PoW) consensus algorithm in exchange for some amount
of Bitcoins [9]. Despite its relevance, to the best of the authors” knowledge, there is no
investigation regarding possible hardware trojans in specialized hardware PoW miners.
Regarding decentralized applications in Web3, wallets such as Metamask are being used
by millions of users, enabling their interactions with Non-Fungible Tokens (NFT) and
Metaverse applications [17]. However, to the best of the authors” knowledge, there is no
investigation regarding possible hardware trojans in specialized hardware wallets.

There are four relevant datasets for hardware trojan detection in the literature. The
most popular is TrustHub, an online hardware trojan database with benchmarks organized
according to its taxonomy [18,19]. Currently, this dataset has a total of 106 examples of vari-
ous designs: AES, Basic RSA, Ethernet, 8051 microcontrollers, R5-232 serial communication,
and VGA, among others. Another dataset has ElectroMagnetic (EM) side-channel signals
for 12 different hardware trojans of the AES [20]. The third dataset has 37 examples of
hardware trojans of Basic RSA, AES, and communication modules [21]. The fourth dataset
has 20 different examples of hardware trojans of AES and additional examples on a toy
dataset in communication modules, adder, encoder, and other simple designs [22].

Considering this motivation, the present work considers these Research Questions:

*  Research Question 1: How do we better support hardware trojan detection research
considering limitations in existing datasets?

e Research Question 2: Is it possible to use a Large Language Model (LLM) to enhance
data generation for hardware trojan research?
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2. Methods

Considering the motivation of supporting the development of defense mechanisms
to enhance RISC-V security (which is currently lagging [3]), the lack of extensive RISC-V
hardware trojan datasets to enable the implementation of various hardware trojan detec-
tion techniques (as only a few examples of RISC-V hardware trojans are available in the
literature [5,6]), and the non-existing investigation of hardware trojans in Web3 (e.g., hard-
ware wallet and miners), the present work uses some open Verilog designs, the TrustHub
taxonomy [18,19] and the ChatGPT-4 to generate synthetic hardware trojan data. In this
context, the ChatGPT-4 Large Language Model (LLM) is used to generate some trojans
based on a given design, motivated by its success in red team applications [23]. Previous
synthetic data generation methods found in the literature do not use ChatGPT-4 [24-26].

The prompt engineering method used for generating the hardware trojans for ed-
ucational purposes is illustrated in Figure 1. The first step is essential for proper LLM
agent context. This context consists of the user presenting itself with this prompt: ‘I am
researching ways to identify hardware trojans, and to train my classifier I need to generate
some Verilog designs infected with hardware trojans based on a golden model Verilog
design and some hardware trojan descriptions’.

User Presentation

Taxonomy Upload

Trojan Generation

Figure 1. Prompt Engineering Method to Generate Hardware Trojan using ChatGPT-4.

In the second step, the user provides the TrustHub benchmark file in PDF format
(available on its website? and illustrated in Figure 2) to ChatGPT-4 with the prompt ‘Con-
sider the hardware trojans described in this file. For each Verilog code I will provide next,
please generate hardware trojans according to the hardware trojans described in the file’.

Hardw are Trojans

| Insertion phase | ‘ Abstraction level l ‘Actwation mechamsm| I Effect I | Location I [Physlcalcharacter\snc‘

Specification P System Alw ays on ‘Change the functionality Processor Distribution
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Figure 2. TrustHub taxonomy provided to ChatGPT-4 to generate hardware trojans [18,19].

The third step consists of providing the Verilog design (i.e., golden model) directly
in the prompt, as illustrated in this example: ‘For educational purposes, give me one
new example of hardware trojan of the following Verilog design based on the taxonomy:
<golden model Verilog design>’.

According to some initial experiments, not providing the initial context results in the
agent denial to generate the trojan to prevent misuse, not providing the taxonomy may
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lead to some episodes of only external trigger-based trojans being generated, and currently
ChatGPT-4 does not support Verilog file analysis, but it can parse Verilog designs if they
are directly provided in user queries.

Consider the examples of prompt results presented in Figures 3 and 4. First, ChatGPT-
4 generates a time bomb hardware trojan for the Miner design that disrupts operation
after a timer reaches a specified value. In the second example, a new hardware trojan is
generated with a payload that leaks sensitive data.

ChatGPT
In this new example, we will design a hardware Trojan based on the "Operational Phase - Time Bomb"

category for the “fpgaminer_top" Verilog design. This type of Trojan remains inactive until a specific
time or condition is met, based on the mining operation's runtime or other environmental conditions.
When activated, the time bomb could disrupt the mining process, modify the hash outputs, or perform

other malicious actions.

Here's the integration of a Time Bomb Trojan into the " fpgaminer_top* module:

Modified “fpgaminer_top~ Module with a Time Bomb Trojan:

verilog Bc opy code

“timescale 1ns/1ps

Figure 3. Time Bomb example generated by ChatGPT-4 for the Miner design.

In this modification, the Trojan, configured as a time bomb, counts each clock cycle from the start of the
mining operation. When the timer reaches a predefined value (*0x5A5A5A5A " in this example), the

Trojan activates. This activation could disrupt the mining process by invalid

o You

give me a new example

ChatGPT
In this new example, we'll create a hardware Trojan based on the "Operational Phase - Leaking

Information” category for the “fpgaminer_top" Verilog design. This type of Trojan is designed to
secretly transmit sensitive information out of the device. In the context of a cryptocurrency miner, this
could involve leaking the successful nonce values (golden nonces) or the midstate, which can be

extremely valuable information.

Figure 4. Data Leak example generated by ChatGPT-4 for the Miner design.

As some complex designs would have a long response, and to prevent misuse of the
ChatGPT-4 [27], the examples may be presented only in the modified parts, and there is
always a clear disclaimer such as: ‘Remember, this is a hypothetical example for educational
purposes to understand potential vulnerabilities and the concept of hardware Trojans. It
should not be used for malicious purposes’. This guideline is also valid for the present
research, whose objective is to provide an open dataset and a new approach to generate
new hardware trojans that, even with the limitation of being hypothetical, would contribute
to the development of defense countermeasures against real hardware trojans.

Additionally, we use the Verilator tool to assess the data quality of the generated
hardware trojans and corresponding golden models. Verilator (Py Verilator version 0.7.0)
is an open-source software tool that converts Verilog files to behavioral models in C++ to
perform simulations and testing [28].
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3. Data Description

The generated dataset has 290 Verilog examples generated with ChatGPT-4 Large
Language Model (LLM) based on 29 golden models of RISC-V, hardware wallet, and
hardware Proof of Work (PoW) miner. The miner has nine modules, RISC-V has 15 modules,
and the wallet has five modules. A total of 10 trojans were generated for each module.
Figure 5 show the size comparison in bytes of the golden models of the three hardware
designs. The average size of miner modules is 2987 bytes, RISCV is 1760 bytes, and Wallet
is 2685 bytes.

File Size (bytes) by Design

sha256_transform.v, 5044
Data_Path_...

uart_comm.v, 6261 sha256_transform.v, 5044 CTLR_Unit_RV32l, 9260 2281

simpleBus.v,
dsram_TO.v, 1443 1226

RV32I_Top_...
1660 crypto_wallet2_top.v, 4885

virtual_wirew, | prepherial_datap...
uart_rxv, 1990 1865 2269

MUX_to...
StPy, 1144
_tx... | sha2s6.. | uart_tx... immediate_... | Register_File, | P25y, | isra... | P... | sha256_functi.. | bip39y, | rand...
fpgaminer_top.y, 5027 | main_pll.v, 3742 995 966 ALU_RV32Ly, 1740 1487 1053 549 415 | 2. 1665 1011 818

Figure 5. Golden Model Sizes Comparison by Design.

The histogram of the generated hardware trojans according to their size (bytes) is
presented in Figure 6. The average size of the trojan files is 2744 bytes.

(1546, 2546] (3546, 4546] (5546, 6546] (7546, 8546]
[546, 1546] (2546, 3546) (4546, 5546] (6546, 7546)

140

120

100

80

0

Figure 6. Hardware Trojan Distribution by Size (bytes).

The diversity of the generated hardware trojans according to their type is presented in
Figure 7. The proposed approach generated only two types of hardware trojans: condition-
based and time-based. When compared to the taxonomy of Figure 2, not all trigger
conditions could be generated with the proposed approach. One relevant example is the
physical condition-based hardware trojan.

For example, a condition-based hardware trojan in a RISC-V can be triggered by an
external serial input with a specific pattern. On the other hand, a time-based hardware
trojan (e.g., time bomb example presented in Figure 3) can be activated after a specific
number of clock cycles have occurred since the device restart.
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Trojan Types
= 0: Condition-based (without counter)
5 1: Time-based (with counter)

Time-based (1)

RISC-V

Trojan Types
== 0: Condition-based (without counter)
= 1: Time-based (with counter)

Condition-based (0)

Hardware Wallet

Trojan Types
== 0: Condition-based (without counter)
e 1: Time-based (with counter)

Proof of Work Miner

Condition-based (0)

Condition-based (0)

Figure 7. Hardware Trojan Diversity.

The overhead in bytes for the generated hardware trojans when compared to their
corresponding golden models is presented in Figure 8. There are some negative values
because in some cases the modified design is smaller than the golden model. After all,
the substituted logic can be simpler than the original logic. Although RISC-V is the most
complex design, the Proof of Work Miner presented bigger overheads, even though with a
smaller number in total.

Hardware Wallet Proof of Work Miner RISC-V

Trojan Overhead Distribution Trojan Overhead Distribution Trojan Overhead Distribution

Frequency
@
Frequency
G 3

e

IS

04
-1500  -1000  -500 [ 500 1000

o
-250 0 250 500 750 1000 1250 1500 1750
‘Trojan Overhead Trojan Overhead

0
~2500 -2000 -1500 -1000 -500 O 500 1000
Trojan Overhead

Figure 8. Hardware Trojan Overhead (bytes).

Figure 9 presents the total warnings of the Verilator (PyVerilator version 0.7.0) tool
for each of the three major hardware designs. These warnings can cover various aspects
of code style and logic errors, including incomplete case statements, overlapping case
values, and improper use of certain Verilog constructs like dynamic casts and continuous
assignments to registers. One possible warning occurs if a case statement lacks a default
case, potentially hiding violations of design assumptions during simulation. The tool also
warns against overlapping case values, which can lead to unpredictable behavior if the
order of case statements is altered”.

As a general fact, ignoring these warnings generally does not affect the immediate
functionality of the simulation or the design, but could degrade the performance of the
converted model. For instance, there are warnings in the original golden models, and in
some cases, the generated design presented additional warnings, for example, when the
trojan uses an additional signal that is not present in the original file (see Figure 9). The
pattern for larger models such as the Proof of Work Miner and RISC-V is more complex,
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which may indicate that larger designs require additional validations depending on the
final use of the generated dataset.

Hardware Wallet

Is Trojan
o o
o n o
| | |

Number of Errors

Proof of Work Miner

-9
-
|
|
|
.|
|
O
|
|
|
|

i '
[} 4 6 7 8 10 13 14 16 20 26 30 31 32 42 43 64 67
Number of Errors.

15-
10- B i — e s _—
05-
0.0- —_— e _— —_—
0.5 -
; | | | ] . . | | | ] ] | | ]

Number of Errors

Is Trojan

Figure 9. Verilator (PyVerilator version 0.7.0) Warnings.

3.1. Hardware Wallet

The hardware wallet considered is a simple implementation of a wallet with five mod-
ules (among them the use of SHA-256 hash) in Verilog, available in a GitHub repository*.
The modules in this example form the basis for implementing a hardware cryptocurrency
wallet: they integrate key generation, the use of secure hashing algorithms, and the conver-
sion of data into mnemonic formats, all essential elements for the security and functionality
of a cryptocurrency wallet. For example, the bip39 module implements the BIP39 (Bitcoin
Improvement Proposal 39)° standard, which is used to generate mnemonic phrases for
creating cryptocurrency keys. BIP39 transforms binary data into a sequence of words that
can be more easily memorized by users.

3.2. Proof of Work Miner

The considered miner is an open-source Bitcoin miner described in Verilog and avail-
able in a GitHub repository®. It has nine modules, and among them, there is serial commu-
nication (UART) and a SHA-256 hash function module. The described components make
up an FPGA-based Bitcoin miner, combining control logic, communication, and crypto-
graphic processing to perform mining efficiently. For example, the fpgaminer_top module



Data 2024, 9, 82

8 of 15

coordinates the distribution of clock, reset, and other control signals among internal mod-
ules. It also manages the input and output interface, connecting the FPGA to other devices
and monitoring systems. This module is crucial because it orchestrates the entire miner
operation, ensuring that all components work in a synchronized and efficient manner.

3.3. RISC-V

The RISC-V design used as a golden model is an example presented in the literature,
the same that has three hardware trojans in its study case [6]. The files are available in
its GitHub repository’. This System on a Chip (SoC) described in Verilog has a Serial to
Parallel (52P) module, a Simple Bus, two memories (iSram and dSram), a Parallel to Serial
(P25) module, and the main RV32I that supports integer operations. The RV32I is composed
of other modules, such as Arithmetic Logic Unit (ALU), Program Counter (PC), Data Paths,
Register Files, Multiplexers, and Control Unit, as presented in Figure 10. It has a total of
15 modules.

RISC-V _SoC

1 p2s_load

p2s_enable

shift_done

ser_out

alu_out +.1 pin_ol
1
—,L» pin_o2

d_valid valid

sng ajdwis

addr_dmem

10

data_dmem

32

clk

w_en_to_bus_for_dmem

pin6
Figure 10. RISC-V used as a golden model [6].

4. Discussion

The dataset provided in this work could be used to implement different hardware
detection techniques. In this section, some suggested tools, detection experiments, and
limitations are presented.

4.1. Tools

A useful open-source tool for parsing HDL descriptions is PyVerilog, a Python library
that receives hardware description files in the HDL Verilog language [29]. The tool allows
you to analyze the dependency between inputs, outputs, and variables through a data
flow analyzer.

In the literature, there are proposals for the use of graph algorithms to identify hard-
ware trojans. One of these examples uses analysis in the hardware description at the netlist
level, obtained after synthesis with the application of graph similarity algorithms (e.g.,
graph isomorphism) [30]. As hardware descriptions have vertices and edges, which are the
modules/signals and their connections, these types of solutions seek to take advantage of
this modeling to identify the existence of hardware trojans in hardware descriptions [30].

One of the Python tools with support for various graph algorithms is the graph-
tool library, which was developed in C++ for better performance. Among the various
compatible types, this tool can receive graphs in DOT format and perform algorithms such
as breadth and depth search, as well as isomorphisms of graph and subgraph [31].

Yosys is an open-source tool for synthesizing circuits described in Verilog for some
commercial FPGA (Field-Programmable Gate Array) programmable logic circuit boards,
such as the Xillinx 7-Series family (AMD, San Jose, CA, USA) and Lattice iCE40 (Lattice
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Semiconductor, San Jose, CA, USA). The nextpnr tool is also used for Routing/Placement
processes between Netlist and Bitstream. It is possible to use Yosys and nextpnr tools
together through an API in Python, which facilitates the integration and use of these tools
built in the C++ language [32].

4.2. Experiments

We used the ChatGPT-4 Large Language Model (LLM) to perform a hardware trojan
detection experiment with three examples of RISC-V from the dataset.

In the present work, the following prompt for hardware trojan detection was used:
‘Given the Verilog design below, analyze if it has a hardware trojan or not, and justify your
answer in one paragraph: <Verilog Design>". In a second step, to refine the result, an
additional prompt was used to motivate reflection: ‘Are you sure?’. ChatGPT-4 responses
are presented before and after reflection on the examples.

The first example is a hardware trojan in the instruction controller module. Initially,
ChatGPT was not able to detect that the given design contained a hardware trojan. However,
after the reflection step, the LLM changed the response and detected the hardware trojan.

The second example is the serial to parallel golden module (without trojan), a simple
module used to convert serial inputs to parallel signals for internal processing. ChatGPT
identified correctly that the design does not have a trojan, and confirmed its analysis
upon reflection.

The third example is a hardware trojan in the RV32I_Top module, triggered when
specific memory addresses have some determined values. ChatGPT identified correctly
that the design contains a trojan, and confirmed its analysis upon reflection.

4.2.1. CTLR_Unit_RV32I Module

Initial Answer: The Verilog design for the CTLR_Unit_RV32I module provided does
not exhibit any obvious signs of containing a hardware trojan based on the code snippet
analyzed. The control unit is primarily responsible for decoding the opcode and function
bits (func3, func?) of instructions to set various control signals for other parts of the
processor, such as jump, memory write, store select, ALU source, write register, etc. The
case statements are well-defined and appear to correctly implement the expected behavior
for different types of instructions (R-type, I-type, loads, stores, branches, etc.).

The decision logic for setting control outputs based on specific combinations of op-
codes and function codes follows the typical design patterns of a processor’s control unit,
aligning with the RISC-V ISA (Instruction Set Architecture). For example, the module
handles arithmetic operations, load and store instructions, and control transfer instructions,
setting appropriate control signals like alu_op for ALU operations and jump, mem_wr
for jumps and memory operations. The default case resets all control signals, which is a
common practice to ensure determinism in the absence of a valid opcode.

Overall, the module seems to perform as a straightforward control unit without any
irregular or suspicious behavior that would suggest a malicious alteration or a hidden
functionality that could be considered a hardware trojan. The integrity of this module
appears to be intact based on the provided code, focusing solely on instruction decoding and
control signal generation without any conditional or hidden operations that are unrelated
to the instruction’s defined behavior.

Answer after Reflection: Upon revisiting and examining the code more thoroughly
for potential anomalies or subtle hints of a hardware trojan, one part of the code in the
Verilog module CTLR_Unit_RV32I does raise some suspicion. This involves the handling
of function codes under the R-type instructions, specifically:
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// R-type Instructions
7°b0110011: begin
case (func3)
// Addition
3’b000: begin
if (func7 == 7°b0000000) alu_op = 4’b0100; // ADD
else if (func7 == 7’b0100000) alu_op = 4’b0101; // SUB
else if (func7 == 7’b0100000 && func3 == 3’b101) begin
alu_op = 4’b1011;
end

endcase

Here, there’s a condition:
else if (func7 == 7°b0100000 \&\& func3 == 3°b101)

This line is logically unreachable. In the context of the preceding code, the conditions
check for func7 == 7’b0100000 already to assign the SUB operation. When it reaches the
next condition where it also checks for func7 == 7’b0100000 along with func3 == 3'b101, it is
not only redundant but unreachable because the func3 value for this specific block (3'b000
for ADD/SUB) is different from 3’b101. This seems like an intentional or unintentional
error and could potentially indicate a misdirection or oversight but not necessarily a trojan
unless there is additional suspicious activity linked to this.

This anomaly, while odd, might not be enough on its own to conclusively label the
design as containing a hardware trojan without further context about how such conditions
could be used maliciously or additional suspicious code elsewhere in the system. It is an
error that warrants further scrutiny but does not directly imply malicious intent just by
itself. Further review of the entire system design and its behavior in simulation or operation
would be advisable to ascertain any trojan activity accurately.

4.2.2. StP Module

Initial Answer: The Verilog module StP does not exhibit any obvious signs of containing
a hardware trojan based on the code snippet provided. This module is designed for serial-
to-parallel conversion and manages data loading into instruction memory (I_memory). The
functionality centers around handling an 8-bit wide interface to load 32-bit wide instructions,
which necessitates serially shifting in bits until a full instruction word is formed.

The primary functionality is controlled by the enable signal, which dictates whether the
module is in loading mode or not. When enabled, bits are serially shifted into the par_out
register, and once 8 bits have been collected, the count resets, and the data are marked
valid (d_valid). If the grant signal is active, indicating permission from the bus, the address
for the next instruction memory location (imem_addr) is incremented. This behavior
ensures that data loading is synchronized with bus permissions, avoiding unauthorized
memory writes.

The reset condition appropriately initializes all states (count, d_valid, shift_done, and
addr), ensuring no residual data impacts subsequent operations upon reset. The transition
from loading to completion is indicated by the shift_done signal, which becomes active
when enable is turned off. This clear delineation between operational states helps avoid
accidental overlap of loading and operation phases.

Overall, the design’s logic appears straightforward and typical for a serial loading inter-
face without hidden conditions or unexplained behaviors that would suggest the presence
of a hardware trojan. It seems to functionally align with the described purpose of serially
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loading instructions into memory, following a predictable and transparent operational flow.
This indicates the module is likely safe without embedded malicious functionality.
Answer after Reflection: Upon further examination and a more detailed look at
the design specifics of the StP module, it appears that the module does not contain any
immediately obvious indications of a hardware trojan within the code provided. However,
this analysis is dependent on the intended use and external environment of the module:

¢  Correct Functionality: The module converts serial input (ser_in) into an 8-bit parallel
output (par_out), cycling through a shift operation controlled by the count. When the
count reaches 8 (binary 1000), it resets, and d_valid is asserted to indicate valid data.
This part of the functionality is typical for serial-to-parallel data handling.

*  Memory Address Handling: The address incrementing is conditional on the grant
signal. This is a standard practice where the module waits for an external acknowl-
edgment or control signal before proceeding to the next memory address, suggesting
responsiveness to synchronization signals which is typical in system-on-chip or micro-
controller applications.

*  Reset and Enable Handling: The reset (rst) condition appropriately initializes all
critical signals and counters, ensuring that no residual values carry over that could
cause unintended behavior. Similarly, the transition to and from the enabled state is
managed by clear and straightforward logic.

*  Potential Vulnerabilities: While the overall functionality does not suggest a trojan, any
vulnerabilities would likely be related to how external signals like grants are managed
or potential misuse if enabled and grant signals are not securely controlled. However,
these are general security concerns rather than specific indications of a trojan within
this code.

*  Absence of Malicious Code: There is no code that suggests malicious activity such
as unauthorized data leaks, unexpected alterations in data flow, or conditions that
trigger anomalous behaviors under normal operational circumstances.

Given these points, the module, from the perspective of the code provided, seems
to function as expected for its described purpose without adding malicious functionality.
However, as with any security-sensitive analysis, a thorough review by domain experts,
possibly with formal verification tools or during system integration testing, would be
prudent to rule out subtle vulnerabilities or contextual security risks that might not be
evident from code review alone.

4.2.3. RV32I_Top Module

Initial Answer: The provided Verilog design for the RV32I_Top module indeed con-
tains a hardware trojan, evidenced by the specific behaviors scripted in the always block
that is triggered under certain conditions.

The hardware trojan is activated when both addr_dmem equals 32’hDEADDEAD and
data_dmem equals 32’hCAFEBABE. Upon these conditions being met, a trigger register TT
is set to 1. Subsequent to this trigger, the design executes malicious behavior: it forces the
w_en_to_bus_for_dmem (write enable to data memory) to 1 and sets addr_dmem (address
to data memory) to 32’hBADCODE. This action implies unauthorized writing to a possibly
harmful or unintended memory address, suggesting a clear malicious intent to modify the
memory’s normal operation.

This type of conditional behavior based on specific rare data values, which then leads
to unusual or unauthorized actions (such as writing to a predefined harmful address), is
characteristic of a hardware trojan. The trojan is designed to remain dormant until the pre-
cise conditions are met, ensuring it remains undetected during typical verification processes
and activates only under specific circumstances to perform its detrimental operations.

Answer after Reflection: Yes, I am confident in my analysis that the Verilog design
for the RV32I_Top module contains a hardware trojan based on the behavior described
in the code. The critical aspect of this analysis centers around the specific conditions and
subsequent actions taken within the always block triggered by the clock edge:
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e Condition Trigger: The design waits for both addr_dmem to equal 32’hDEADDEAD
and data_dmem to equal 32’hCAFEBABE. These specific, non-arbitrary values likely
would not be naturally used in normal operations and seem carefully chosen to
activate under very rare circumstances.

*  Malicious Activity: Once these conditions are met, the register TT is set to 1. The logic
then dictates that if TT is 1, w_en_to_bus_for_dmem is forced to 1 (enabling write
operations to data memory) and addr_dmem is set to 32’hBADCODE. This direct
manipulation of memory addressing and enabling write operations is typical of a
hardware trojan designed to perform unauthorized or harmful actions without user
knowledge or consent.

e Impact of the Trojan: By forcefully writing to a designated harmful address (32’hBAD-
CODE), the trojan could corrupt data, alter program behavior, or cause system mal-
functions, which are significant security threats in any computational system.

This design introduces a subtle, malicious functionality that remains dormant until
specific, unlikely conditions are met, making it a clear case of a hardware trojan intended
to alter system behavior covertly.

4.3. Limitations

Since the data are generated synthetically using an Artificial Intelligence (AI) model, it
is important to discuss the limitations and potential biases introduced by this method. The
most relevant limitation of the proposed approach and resulting dataset is that it has only
simple hardware trojans. Figure 7 shows that only two types of hardware trojans could
be generated. For example, time-based and condition-based trojans were generated, but
‘always on’ and physical-condition-based trojans were not included in the dataset (see the
taxonomy of Figure 2).

Even though the reduced diversity is a drawback when compared to manual trojan
insertion, it is not scalable to manually generate a considerable amount of hardware trojans
based on new golden models to support hardware trojan detection research. Complex
and closer to real-life trojans are necessary (e.g., three to four examples in study cases of
RISC-V [5,6]), but more examples in a diverse dataset of hardware trojans are also required
for the implementation of defense mechanisms against trojans in new applications (e.g.,
Web3). Without a diverse dataset with a relevant amount of hardware trojans and golden
models, supervised learning techniques for detection cannot be applied.

Existing datasets also present simple trojans, the most popular hardware trojan dataset
TrustHub [19] has simple examples of serial communication, display communication,
hashing algorithm, symmetric and asymmetric encryption, and simple general-purpose
processors, but it does not have examples of larger designs based on the RISC-V instruction
set architecture or specific designs that use general-purpose modules for tailored efficient
processing (e.g., Proof of Work miner that uses SHA hashing module for efficient distributed
consensus for Web3 applications). Even though chip-level trojans are mentioned, their
designs are not provided in TrustHub.

One way to remedy this limitation is to give more information to the Large Language
Model (LLM) by performing prompt engineering with enhanced trojan examples so that the
LLM can learn to generate complex hardware trojan patterns (e.g., trojans with both time-
based and external-condition-based triggers; distributed trojans considering the physical
characteristic aspect of Figure 2). This could be achieved by performing fine-tuning of an
open-source LLM to create a specialized tool for hardware trojan generation, in a similar
way to an example found in the literature of fine-tuning of the open-source CodeGen
LLM for Verilog design generation [33]. If a comprehensive database with diverse trojan
examples is feasible, another relevant approach is Retrieval-Augmented Generation (RAG)
to support the enhanced accuracy and credibility of the generated data [34].
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5. Final Considerations

The answers to the Research Questions considered in this work are presented below
based on the obtained results.

Research Question 1 (RQ1): How can we better support hardware trojan detection
research considering limitations in existing datasets?

Answer to RQ1: Considering that existing datasets have a limited set of examples,
as the most famous hardware trojan dataset TrustHub has 106 different trojans, RISC-V
specifically has study cases of three and four different hardware trojans and no research
was found regarding Web3 hardware trojans in modules such as a hardware wallet, this
research contributes to the state of the art with a dataset of 290 hardware trojans in Verilog
of RISC-V, hardware wallet and hardware Proof of Work (PoW) miner. It is expected that the
available dataset will support future research endeavors regarding detection mechanisms
against hardware trojans.

Research Question 2 (RQ2): Is it possible to use a Large Language Model (LLM) to
enhance data generation for hardware trojan research?

Answer to RQ2: Yes, a method for synthetic data generation with ChatGPT-4 LLM was
proposed and validated with study cases of RISC-V, hardware wallet, and hardware Proof
of Work (PoW) miner. The method consists of providing a hardware trojan taxonomy and a
golden model to the LLM and asking for hardware trojan generation using prompt engineer-
ing. Hardware trojan diversity, hardware trojan overhead, and total Verilator (Py Verilator
version 0.7.0) tool warnings were analyzed. Additionally, some experiments of hardware
trojan detection using LLM were also performed using the generated synthetic data.

Future work may apply the proposed approach to other cores such as post-quantum
hardware implementations. Similar to the present implementation, it is expected that
the examples also only present two types of trigger (external and time-based), but other
interesting venues for future research are using other Large Language Models, different
prompts, and temperature levels to obtain a more diverse synthetic dataset.

The experiments of hardware trojan detection were performed with the same tool
(ChatGPT-4) used in the generation as an example of attack and defense using a tool with
similar capabilities, but a relevant opportunity for future research is to use an adversarial
machine learning approach for enhanced hardware trojan generation. Considering the
PAIR attack found in the literature, an LLM was used as a red team to generate prompt
injections to break another LLM used as a blue team [23]. A similar approach is to use
an open-source uncensored® LLM for hardware trojan generation (to avoid the safety
constraints found in the present research) and the proprietary ChatGPT-4 for hardware
trojan detection. If an initially generated hardware trojan is detected by the blue team
model, then the red team can use the responses to generate an enhanced hardware trojan.
After some rounds of generation and detection, then a complex and harder-to-detect trojan
would be generated.

Moreover, it is also possible to apply other detection tools to perform hardware
trojan detection. Some relevant examples found in the literature are UCI, FANCI, and
ANGEL. UCI (Unused Circuit Identification) uses a test suite to identify intermediate logic
to investigate [35] data flow dependencies. FANCI (Functional Analysis for Nearly-unused
Circuit Identification) uses the degree of dependence between outputs and inputs using
Boolean functions to identify combinations of inputs that are rarely used but have an impact
on the circuit outputs [36]. ANGEL technique is an evolution of FANCI that considers
signals from predecessor states [37]. Future work may apply these other tools that are not
based on Al in the dataset generated using ChatGPT-4.

Author Contributions: Conceptualization, W.V.R. and V.T.H.; methodology, W.V.R. and V.T.H;
software, V.T.H.; validation, W.V.R.; data collection, V.T.H.; writing—original draft preparation,
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Notes

https:/ /www.oshwa.org/definition/, accessed on 21 April 2024.

2 https:/ /trust-hub.org/downloads/resource/pdf/Taxonomy.pdf, accessed on 21 April 2024.

3 https:/ /verilator.org/guide/latest/warnings.html, accessed on 21 April 2024.

4 https://github.com/jmaldonl/Crypto_wallet/tree /master/firmware, accessed on 21 April 2024.

5 https:/ /github.com/bitcoin/bips/blob/master/bip-0039.mediawiki, accessed on 21 April 2024.

6 https:/ /github.com/progranism/Open-Source-FPGA-Bitcoin-Miner/ tree /master /src, accessed on 21 April 2024.

7 https:/ / github.com /Saazh / Trojan-D2 / tree /main / TrojanD2 / Trojan_D2 /RISC-V /ALL_FILES_IN_ONE_FOLDER, accessed on
21 April 2024.

8 https:/ /ollama.com/library /llama2-uncensored, accessed on 21 April 2024.

9 https:/ /leginf.usp.br/?resolucao=resolucao-no-7900-de-11-de-dezembro-de-2019, accessed on 21 April 2024.
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