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Abstract

In this paper we investigate the well-posedness of the Cauchy problem for a Schrödinger operator with 
singular lower order terms. We allow distributional coefficients and we approach this problem via the regu
larising methods at the core of the theory of very weak solutions. We prove that a very weak solution exists 
and it is unique modulo negligible perturbations. Very weak solutions converge to classical solutions when 
the equation coefficients are regular enough.
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1. Introduction

The problem of existence of a unique solution to the initial value problem for Schrödinger type 
equations in suitable spaces of functions or distributions has been widely investigated in litera
ture in the past years: the Schrödinger equation is indeed the fundamental equation in Quantum 
Mechanics. Many papers deal with it, in the linear and nonlinear case, in the deterministic and 
stochastic case, for flat or asymptotically flat metrics, with or without potentials. Several results 
of existence and uniqueness of a (possibly weak) solution have been given under suitable as
sumptions of regularity on the coefficients of the Schrödinger operator. The aim of this paper is 
to go beyond such assumptions of regularity. Although the literature on this topic is huge, let us 
try to summarise some basic facts. Consider the initial value problem{︄

Su(t, x) = f (t, x), t ∈ [0, T ], x ∈ Rn,

u(0, x) = g(x), x ∈ Rn,
(1.1)

associated to a class of Schrödinger type operators of the form

S = Dt − a(t)△x +
n ∑︂

j=1 
cj (t, x)Dxj

+ c0(t, x), t ∈ [0, T ], x ∈ Rn,

where △x :=∑︁n
j=1 ∂2

xj
and D := −i∂ . The well-posedness of the problem (1.1) is well under

stood in the case when the coefficients are at least continuous with respect to t and of class 
B∞(Rn) with respect to x, where B∞(Rn) stands for the space of all complex-valued smooth 
and uniformly bounded functions together with all their derivatives. When all the coefficients 
cj are real-valued, the lower order terms dfine a self-adjoint operator and, in this case, well
posedness is obtained in a straightforward way. When some of the coefficients cj have a non 
identically zero imaginary part, the situation is more delicate. We summarise some of the known 
results:

• When the coefficients do not depend on the time variable and a(t) = 1, a necessary condition 
to H∞ =⋂︁m∈RHm(Rn) well-posedness is that there exist constants M,N > 0 such that

sup 
x∈Rn,ω∈Sn−1

⃓⃓⃓⃓
⃓⃓ n ∑︂
j=1 

ρ∫︂
0 

Im cj (x + ωθ)dθ

⃓⃓⃓⃓
⃓⃓≤ M log(1 + ρ) + N, ∀ ρ ≥ 0,

see [15];
• the previous condition is also sufficient in the case n = 1, otherwise technical assumptions 

on the derivatives of cj have to be added, see [16];
• if a(t) is real-valued and continuous, cj , c0 are continuous in t and of class B∞(Rn

x) and 
|Im (cj (t, x))| ≤ C⟨x⟩−σ for every x ∈ Rn and t ∈ [0, T ], where ⟨x⟩ := (1 + |x|2)1/2, then 
the Cauchy problem (1.1) is well posed in Hm(Rn) for every m ∈ R if σ > 1, in H∞(Rn) if 
σ = 1 and in Gevrey classes of index s ≤ 1/(1 − σ) if 0 < σ < 1, see [17];

• the case when a(t) vanishes of some order has been investigated in [5], where the authors 

obtained a well posed Cauchy problem either in H∞ or in Gevrey classes depending on the 
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vanishing order of a(t) and on the corresponding Levi conditions that they ask on the lower 
order terms cj ;

• the Gevrey well posedness under assumption |Im cj (t, x)| ≤ C⟨x⟩−σ , 0 < σ < 1, in the 
case of a Gevrey index s > 1/(1 − σ) has been investigated in [3], under exponential decay 
assumptions on the data;

• the Cauchy problem for Schrödinger-type equations in Gelfand-Shilov spaces has been stud
ied in [1] and [2].

Concerning Schrödinger equations with singular coefficients, there are several works treating 
the case of singular potentials, that is when c belongs to Lp or modulation spaces, see for instance 
[4,6,7]. In these papers, the coefficients of the lower order terms are real-valued. 
The aim of this paper is to analyse a very singular situation, that is when all the coefficients of 
the lower order terms may be distributions. Namely we focus on operators of the form

S = Dt − a(t)△x +
n ∑︂

j=1 
aj (t)bj (x)Dxj

+ a0(t)b0(x), t ∈ [0, T ], x ∈Rn, (1.2)

where a(t) is a real-valued bounded function which never vanishes, aj and a0 are compactly 
supported distributions on an interval I containing [0, T ] and bj , b0 are certain tempered dis
tributions that we shall dfine later on. The choice of coefficients dfined as tensor products is 
motivated by their different behaviour with respect to time and space variables. 
The situation described above is clearly very general and therefore requires a redefinition of 
the notion of solution of the problem (1.1) because of intrinsic problems due to multiplication 
of distributions. In the recent papers [11,12], the last author et al. treated hyperbolic equations 
with discontinuous functions or compactly supported distributions as coefficients and introduced 
the concept of very weak solution. Note that evolution equations with non-regular coefficients 
appear frequently in geophysics when modelling wave transmission through the Earth subsoil 
which has a multilayered and therefore discontinuous structure. However, allowing distributional 
coefficients leads to the major problem of identifying a reasonable notion of solution since the 
equation operator might fail to be well-defined when the coefficients are less than continuous. 
Following the approach introduced in [12] we will replace the operator S with a family of reg
ularised operators Sε , ε ∈ (0,1], obtained via convolving the irregular coefficients with a net of 
mollfiers ϕω(ε)(·) = ω(ε)−nϕ(·/ω(ε)), where ω(ε) is a positive scale converging to 0 as dfined 
later in the paper. We therefore look at the net of solutions (uε)ε of the regularised problem and 
we provide a qualitative analysis of (uε)ε with respect to the parameter ε by analysing its limiting 
behaviour as ε tends to 0. In a nutshell, this means to find a very weak solution for our Cauchy 
problem. For recent applications of the theory of very weak solutions and for some new insights 
provided via numerical experiments we refer the reader to [8,9,13,21]. The paper is organised as 
follows. In Section 2 we describe our main result concerning the existence of a very weak so
lution for the Cauchy problem (1.1) and we provide the needed preliminaries. The construction 
and analysis of the regularised problem is given in Section 3. Few results concerning pseudo
differential operators employed in the paper can be found in Section 4. The proof of our main 
result is spread throughout Sections 5, 6 and 7, with a different approach for the 1-dimensional 
case and n-dimensional case. The paper ends with Section 8, where we discuss the uniqueness 
of the very weak solution and we prove consistency with the classical theory in case of regular 

coefficients.
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2. Main result

In this section we state our main result concerning the existence of a very weak solution for 
the Cauchy problem (1.1). The statement requires some preliminaries.

Let ϕ be a Schwartz function such that 
∫︁
Rn ϕ = 1. Given a positive scale ω(ε), ε ∈ (0,1], i.e. 

ω is positive and bounded, ω(ε) → 0 as ε → 0+ and ω(ε) ≥ cεr , for some c, r > 0, we dfine

ϕω(ε)(x) = 1 
(ω(ε))n

ϕ

(︃
x

ω(ε)

)︃
.

As usual, tempered distributions can be regularised via convolutions with the net (ϕω(ε))ε . The 
following result, which deals with regularisations of different kind of distributions and functions, 
follows from standard arguments, as in [12,14,22], and for this reason we shall omit the proof.

Proposition 2.1. 

• If u ∈ S ′(Rn) then there exists N1(n,u) = N1 and N2(u) = N2 such that for any β ∈Nn
0 :

|∂β
x (ϕω(ε) ∗ u)(x)| ≤ Cβω(ε)−N1−|β|⟨x⟩N2

for some positive constant Cβ ;
• If u ∈ E ′(Rn) then there exists N(n,u) such that for any β ∈N0:

|∂β
x (ϕω(ε) ∗ u)(x)| ≤ Cβω(ε)−N−|β|

for some positive constant Cβ ;
• If u ∈ B∞(Rn) then for any β ∈Nn

0 there exists cβ > 0 such that

|∂β
x (ϕω(ε) ∗ u)(x)| ≤ cβ;

• If u ∈ B∞(Rn) and ϕ has all moments vanishing, i.e. 
∫︁

xαϕ(x)dx = 0 for all α ≠ 0, then for 
any β ∈Nn

0 and any q ∈ N0 there exists cβ,q > 0 such that

|∂β
x (ϕω(ε) ∗ u − u)(x)| ≤ cβ,q(ω(ε))q .

We point out that from ω(ε) ≥ cεr it follows that ω(ε)−N1−|β| and ω(ε)−N−|β| in the propo
sition above can be replaced by ε−M for some M depending on u,n,β and the scale ω.

In the sequel we consider the concept of H∞-moderateness and H∞-negligibility of nets of 
H∞(Rn) functions and analogously the same concepts with H∞ replaced by B∞. Note that 
we will work with nets of functions in the variables t ∈ [0, T ] and x ∈ Rn and that we will 
always assume boundedness with respect to t ∈ [0, T ]. H∞- or B∞-estimates will be therefore 
considered with respect to the space variable x.

Definition 2.2. 

(i) Let (vε)ε ∈ {C([0, T ];H∞(Rn))}(0,1]. We say that the net (vε)ε is H∞-moderate if for any 
m ∈N0 there exists N ∈N0 and C > 0 such that
∥vε(t, ·)∥Hm ≤ Cε−N, ∀t ∈ [0, T ], ε ∈ (0,1].
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(ii) Let (vε)ε ∈ {C([0, T ];H∞(Rn))}(0,1]. We say that the net (vε)ε is H∞-negligible if for any 
m ∈N0 and for any q ∈N0 there exists C > 0 such that

∥vε(t, ·)∥Hm ≤ Cεq, ∀t ∈ [0, T ], ε ∈ (0,1].

(iii) Let (vε)ε ∈ {C([0, T ];B∞(Rn))}(0,1]. We say that the net (vε)ε is B∞-moderate if for all 
β ∈ N0 there exist N ∈N0 and C > 0 such that

sup 
x∈Rn

|∂β
x vε(t, x)| ≤ Cε−N, ∀t ∈ [0, T ], ε ∈ (0,1].

(iv) Let (vε)ε ∈ {C([0, T ];B∞(Rn))}(0,1]. We say that the net (vε)ε is B∞-negligible if for all 
β ∈ N0 and for all q ∈ N0 there exists C > 0 such that

sup 
x∈Rn

|∂β
x vε(t, x)| ≤ Cεq, ∀t ∈ [0, T ], ε ∈ (0,1].

Remark 2.3. The above definitions (iii) and (iv) are a special case of C∞-moderateness and 
C∞-negligibility, respectively where we ask a uniform estimate on the whole Rn instead of on 
compact sets. See [14,22]. Note also that by Sobolev’s embedding theorem H∞(Rn) ⊂ B∞(Rn). 
Hence, (i) implies (iii) and (ii) implies (iv).

Now we introduce the concept of very weak solution that we are interested in.

Definition 2.4. The net (uε)ε ∈ {C([0, T ];H∞(Rn))}(0,1] is a H∞ very weak solution for the 
Cauchy problem (1.1) if there exist

• B∞-moderate regularisations (aε)ε and (aj,ε)ε of a and aj , j = 0,1, . . . , n,
• B∞-moderate regularisations (bj,ε)ε of bj , j = 0,1, . . . , n,
• H∞-moderate regularisations (fε)ε, (gε)ε of the Cauchy data f and g,

such that, for every fixed ε, uε solves the Cauchy problem{︄
Sεv(t, x) = fε(t, x), t ∈ [0, T ], x ∈ Rn,

v(0, x) = gε(x), x ∈Rn,
(2.1)

for the regularised operator

Sε = Dt − aε(t)△x +
n ∑︂

j=1 
aj,ε(t)bj,ε(x)Dxj

+ a0,ε(t)b0,ε(x), t ∈ [0, T ], x ∈Rn, (2.2)

and (uε)ε is H∞-moderate.

Remark 2.5. The definition above is not affected by replacing the parameter interval (0,1] with 
any smaller interval (0, ε0]. This is actually quite natural when regularising distributions on a 

bounded interval [0, T ] as we will see in the next section.

194 



A. Arias Junior, A. Ascanelli, M. Cappiello et al. Journal of Differential Equations 425 (2025) 190--222 
To obtain a very weak solution for (1.1) we need to solve the regularised problem (2.1), (2.2) in 
H∞(Rn). So, in order to apply the techniques coming from classical theory, for instance the ones 
used in [17], we need the following behaviour for the regularised coefficients and regularised 
data:

• aε(t) should be a real-valued continuous function on [0, T ] which never vanishes;
• aj,ε(t), j = 0,1, . . . , n, should be continuous functions on [0, T ];
• bj,ε(x), j = 0,1, . . . , n, should belong to B∞(Rn);
• |Im (aj,ε(t)bj,ε(x))| ≲ ⟨x⟩−σ , j = 1, . . . , n, uniformly in t and for some σ ≥ 1;
• fε ∈ C([0, T ];H∞(Rn)) and gε ∈ H∞(Rn).

We therefore need a suitable set of hypotheses on the coefficients a, aj , bj and on the data f,g

in such a way that once we regularise them, the obtained regularisations satisfy the conditions 
above and the needed moderateness assumptions.

Regarding the coefficients a, aj , j = 0,1, . . . , n, we have the following quite natural hypothe
ses:

a(t) is a positive bounded function such that 0 < Ca ≤ a(t) ≤ C̃a;
aj ∈ E ′(I ), j = 0,1, . . . , n, where I is an open interval containing [0, T ].

In order to find suitable assumptions for the coefficients bj , j = 0,1, . . . , n and data f,g

we need to take into account both regularity and behaviour at ifinity. From Proposition 2.1 we 
know that regularisations of tempered distributions in general do not give functions in B∞(Rn). 
Therefore we are led to consider some subclass of tempered distributions. A first possibility 
based on classical distributional spaces could be assuming bj and b0 in

O′
C = F−1OM = {u ∈ S ′(Rn) :ˆ︁u ∈OM},

where

OM =
{︃
f ∈ C∞(Rn) : for any α ∈ Nn

0 there isp ≥ 0 such that sup
x

{⟨x⟩−p|∂α
x f (x)|} < ∞

}︃
.

In this case the regularised coefficients turn out to be Schwartz functions.
Since Schwartz regularity, in particular rapid decay, is much more than what we need, we 

introduce the following spaces: for any i ∈N0 we consider

H−∞,i (Rn)

=
{︄

u ∈ S ′(Rn) : for all |β| ≤ i there is pβ ≥ 0 such that sup 
ξ∈Rn

|∂β
ξ ˆ︁u(ξ)| ≤ Cβ⟨ξ ⟩pβ

}︄
.

(2.3)

The motivation to consider the above space is the following: if u ∈ H−∞,i (Rn) then ˆ︁u ∈ Ci(Rn)

and all the derivatives ∂βˆ︁u up to order i have at most a polynomial growth, hence the regularisa
tion uε = u ∗ ϕε will be a B∞(Rn) function with decay ⟨x⟩−i . Indeed, take α ∈ Nn

0 and |β| ≤ i. 

By straightforward computations we have
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xβ∂α
x uε(x) = (−1)β

1 
ω(ε)|α|+n

∫︂
eixξD

β
ξ {ˆ︁u(ξ)ˆ︃∂αφ(ω(ε)ξ)}d− ξ,

where d− ξ := dξ
(2π)n

. So, for all α ∈ Nn
0 and |β| ≤ i there exists p = p(u, i) ≥ 0 such that

|xβ∂α
x uε(x)| ≤ Cαω(ε)−n−|α|−p, (2.4)

which allow us to conclude our intuitive assertion. We also point out that if i ≥ n + 1, then 
uε and all their derivatives belong to L2(Rn), so, in view of (2.4) we conclude that (uε)ε is a 
H∞-moderate net.

Example 2.6. For all ξ ∈R we consider

ρ(ξ) = sin(eξ2
)e−ξ2

.

We then have

∂ξρ(ξ) = cos(eξ2
)2ξ − sin(eξ2

)2ξe−ξ2

and any higher order derivative ∂α
ξ ρ (α ≥ 2) cannot be bounded by a polynomial. Therefore 

a = F−1(ρ) ∈ H−∞,1(R) −O′
C .

Since ρ has a super exponential decay for |ξ | → +∞, then a ∈ C∞. On the other hand, if we 
consider for instance

λ(ξ) =
{︄

sin(eξ − 1)e−ξ − ξ, ξ ≥ 0,

0, ξ < 0,

we have b = F−1(λ) ∈ H−∞,1(R) −O′
C , but in this case b is not even a function.

Remark 2.7. For any i = 0,1,2, . . . the following inclusions hold:

E ′(Rn) ⊂ O′
C ⊂ H−∞,i+1(Rn) ⊂ H−∞,i (Rn) ⊂ H−∞(Rn) =

⋃︂
m∈R

Hm(Rn) ⊂ S ′(Rn).

We are finally ready to state the hypotheses that we are going to consider on the coefficients 
bj , j = 0,1, . . . , n:

bj ∈ H−∞,2(Rn), j = 1, . . . , n, b0 ∈ H−∞,0(Rn).

For the Cauchy data we shall ask the following:

f ∈ C([0, T ],H−∞,n+1(Rn)), g ∈ H−∞,n+1(Rn).

Note that we endow the space H−∞,n+1(Rn) with the following notion of convergence (and 
related topology): we say that uj ∈ H−∞,n+1(Rn) converges to u ∈ H−∞,n+1(Rn) if there exist 

p ≥ 0 and C > 0 such that
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sup 
ξ∈Rn,|β|≤n+1

|∂β
ξ ˆ︁u(ξ)|⟨ξ ⟩−p ≤ C, sup 

ξ∈Rn,|β|≤n+1
j∈N0

|∂β
ξ ˆ︁uj (ξ)|⟨ξ ⟩−p ≤ C

and

sup 
ξ∈N0,|β|≤n+1

⟨ξ ⟩−p|∂β
ξ (ˆ︁uj −ˆ︁u)(ξ)| → 0 as j → ∞.

It easily follows from the arguments seen below that if f ∈ C([0, T ];H−∞,n+1(Rn)) then 
fε(t, x) := ϕω(ε)(x) ∗ f (t, x) ∈ C([0, T ];H∞(Rn)) and there exists p ≥ 0 such that

|∂β
x fε(t, x)| ≤ Cβε−n−p−|β|⟨x⟩−n−1, t ∈ [0, T ], x ∈ Rn.

We are now ready to state our main result.

Theorem 2.8. Consider the Cauchy problem (1.1) under the following hypotheses on the coeffi
cients:

(i) a(t) is a real-valued function satisfying

0 < Ca ≤ a(t) ≤ C̃a, t ∈ [0, T ], (2.5)

(ii) aj ∈ E ′(I ), j = 0,1, . . . , n, where I is an open interval containing [0, T ],
(iii) bj ∈ H−∞,2(Rn), j = 1, . . . , n, and b0 ∈ H−∞,0(Rn).

Assume f ∈ C([0, T ],H−∞,n+1(Rn)), g ∈ H−∞,n+1(Rn). Then, (1.1) admits a very weak solu
tion of H∞ type.

Remark 2.9. A decay like ⟨x⟩−1 is enough to get a solution in H∞(Rn) for the regularised prob
lem (2.1), see [17], so in principle it would be sufficient to take the coefficients bj ∈ H−∞,1(Rn). 
However, in this case the solution of the regularised problem would exhibit a loss of Sobolev reg
ularity with respect to the initial data. This loss depends in general on the first order coefficients, 
and hence also on the parameter ε. This would make the dependence of the constants appearing 
in the energy estimates very difficult to control. For this reason we decided to take the coefficients 
bj in H−∞,2(Rn) because under this assumption the solution of the regularised problem has the 
same regularity of the initial data.

The proof of Theorem 2.8 consists of several steps and it is organised as follows. In Section 3
we regularise the Cauchy problem (1.1), constructing then a family of regularised associated 
Cauchy problems. These regularised problems will admit a unique classical solution in H∞(Rn). 
By solving these Cauchy problems in the H∞ framework, we will obtain a net of solutions 
(uε)ε∈(0,ε0] for some sufficiently small ε0 > 0. Moreover, we will also derive energy estimates 
for the solutions uε writing explicitly how the constants depend on the parameter ε. Since the 
regularised problem can be treated in a simpler way in space dimension 1 we dedicate Section 5
to this case which easily illustrates the main ideas of our method. In Section 6, we treat the 
case of arbitrary space dimension where a pseudodifferential change of variable will be needed, 

leading to a more technical proof.
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3. Construction of the regularised problem

In the present section and in Sections 5, 6 we are going to use the positive scale ω(ϵ) = ε for 
simplicity’s sake. We shall come back to a generic ω(ϵ) in Section 7, where a specific positive 
scale is needed (see (7.1)).

For any given Schwartz function φ ∈ S (Rn) we recall the notation

φε(x) := 1 
εn

φ
(︂x

ε

)︂
, ε ∈ (0,1].

3.1. Regularisation of a(t)

Let φ ∈ S (R) satisfying 0 ≤ φ ≤ 1 and 
∫︁

φ = 1. In order to regularise the coefficient a(t) we 
first extend it to the whole real line, then we convolve it with the family φε and lastly we restrict 
the result to the interval [0, T ]. More to the point, we consider the extension

ã(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(t), t ∈ [0, T ],
a(T ), t ∈ [T ,T + 1],
a(0), t ∈ [−1,0],
0, t ∈R− [−1, T + 1].

Then we set ãε := ã ∗ φε , ε ∈ (0,1], and

aε := ãε|[0,T ] . (3.1)

Now we discuss a uniform lower and upper bound for aε with respect to the parameter ε. By 
definition, for all t ∈ [0, T ], we have

aε(t) = ãε(t) =
∫︂
R 

ã(s)φε(t − s)ds =
T +1∫︂
−1 

a(s)φε(t − s)ds.

Since Ca ≤ a(s) ≤ C̃a we get

Ca

ε

T +1∫︂
−1 

φ

(︃
t − s

ε

)︃
ds ≤ aε(t) ≤ C̃a

ε

T +1∫︂
−1 

φ

(︃
t − s

ε

)︃
ds.

A suitable change of variables implies

Ca

t+1
ε∫︂

− T +1−t
ε

φ(s)ds ≤ aε(t) ≤ C̃a

t+1
ε∫︂

− T +1−t
ε

φ(s)ds.
Hence, taking ε < ε0, where ε0 is small enough, we get
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Ca

2 
≤ aε(t) ≤ C̃a, t ∈ [0, T ], ε ∈ (0, ε0). (3.2)

Indeed, denoting Iε(t) = ∫︁ t+1
ε

− T +1−t
ε

φ(s)ds, it suffices to notice that limε→0+ Iε(t) = 1 uniformly 

in t ∈ [0, T ].

3.2. Regularisation of aj (t), j = 0,1, . . . , n

Let ϕ ∈ S (R) such that 
∫︁

ϕ = 1. We then dfine

aj,ε(t) = (aj ∗ ϕε)(t) = 1

ε
aj

(︃
ϕ

(︃
t − ·

ε

)︃)︃
. (3.3)

Since aj ∈ E ′(I ) ⊂ E ′(R), j = 0,1, . . . , n, there exist a compact set K ⊂ R, C > 0 and Ñ0 ∈N0

such that

|aj (h)| ≤ C
∑︂

α≤Ñ0

sup 
x∈K

|∂α
x h(x)|, ∀ h ∈ C∞(R).

Hence, we immediately get

|aj,ε(t)| ≤ Cε−N0 max 
α≤N0

∥∂αϕ∥∞, (3.4)

where N0 is the maximum of the orders of aj , j = 0,1, . . . , n, plus 1.

3.3. Regularisation of bj (x), j = 0,1, . . . , n

Let ρ ∈ S (Rn) with 
∫︁

ρ = 1. We then dfine

bj,ε(x) := (bj ∗ ρε) = 1 
εn

bj

(︃
ρ

(︃
x − ·

ε

)︃)︃
. (3.5)

Since bj ∈ H−∞,2(Rn), j = 1, . . . , n, and b0 ∈ H−∞,0(Rn), we get bj,ε ∈ B∞(Rn), j =
0,1, . . . , n, and the following estimates hold

|∂β
x bj,ε(x)| ≤ Cβε−|β|−N1⟨x⟩−2, |∂β

x b0,ε(x)| ≤ Cβε−|β|−N1 , (3.6)

where N1 > 0 is a number depending on the coefficients bj , j = 0,1, . . . , n, and on the dimen
sion.
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3.4. Regularisation of the Cauchy data

Let μ ∈ S (Rn) with 
∫︁

μ = 1.
Let f ∈ C([0, T ],H−∞,n+1(Rn)) and g ∈ H−∞,n+1(Rn). We then dfine fε(t, x) = με(x) ∗

f (t, x) and gε(x) = με(x) ∗ g(x). The following estimates hold:

|∂β
x fε(t, x)| ≤ Cβε−|β|−Ñf ⟨x⟩−(n+1), |∂β

x gε| ≤ Cβε−|β|−Ñg ⟨x⟩−(n+1), (3.7)

where Ñf > 0 is a number depending on f (t) and on the dimension n, Ñg > 0 is a number 
depending on g and on the dimension n. By these estimates we immediately get that for all 
m ∈N0 there exist C > 0 and Nf ∈N0 and Ng ∈ N0 such that

∥fε(t, ·)∥Hm ≤ Cm,Nf
ε−Nf , ∀t ∈ [0, T ], ε ∈ (0,1]

∥gε∥Hm ≤ Cm,Ngε
−Ng , ∀ε ∈ (0,1].

We are finally ready to dfine the family of regularised Cauchy problems that we shall study 
in the next sections. We consider the family of regularised operators

Sε = Dt − aε(t)△x +
n ∑︂

j=1 
aj,ε(t)bj,ε(x)Dxj

+ a0,ε(t)b0,ε(x), t ∈ [0, T ], x ∈Rn, ε ∈ (0, ε0],

(3.8)
and then the family of regularised problems{︄

Sεv(t, x) = f (t, x), t ∈ [0, T ], x ∈ Rn,

v(0, x) = g(x), x ∈Rn,
(3.9)

where f ∈ C([0, T ];H∞(Rn)) and g ∈ H∞(Rn). In the next sections we will obtain a net of so
lutions (uε)ε∈(0,ε0] where for every ε the function uε ∈ C([0, T ];H∞(Rn)) is the unique solution 
of the Cauchy Problem (3.9). Moreover, we will also derive energy estimates for the solutions 
uε expliciting how the constants depend on the parameter ε. Finally, thanks to these energy esti
mates, we will be able to prove the main result of the paper.

4. Pseudodifferential operators

In this section we collect some results and definitions concerning pseudodifferential operators 
that we will employ in the next sections. For the proofs we address the reader to [19].

Definition 4.1. Given m ∈ R, ρ ∈ [0,1], δ ∈ [0,1), we denote by Sm
ρ,δ(R

2n) the space of all 
smooth functions p(x, ξ) ∈ C∞(R2n) such that for any α,β ∈ Nn

0 there exists a positive constant 
Cα,β satisfying

|∂α
ξ ∂β

x p(x, ξ)| ≤ Cα,β⟨ξ ⟩m+δ|β|−ρ|α|.
The Frechét topology of the space Sm
ρ,δ(R

2n) is induced by the following family of seminorms
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|p|(m)
ℓ := max |α|≤ℓ,|β|≤ℓ

sup 
x,ξ∈R2n

|∂α
ξ ∂β

x p(x, ξ)|⟨ξ ⟩−m−δ|β|+ρ|α|, p ∈ Sm
ρ,δ(R

2n), ℓ ∈N0.

Remark 4.2. When ρ = 1 and δ = 0 we simply write Sm(R2n) instead of Sm
1,0(R

2n). When 
ρ = δ = 0 we have S0

0,0(R
2n) = B∞(R2n).

Given a symbol p(x, ξ) we associate to it the linear and continuous operator p(x,D) :
S (Rn) → S (Rn) dfined by

p(x,D)u(x) =
∫︂

eiξxp(x, ξ)ˆ︁u(ξ)d− ξ, u ∈ S (Rn).

We will sometimes also use the notation op(p(x, ξ)) instead of p(x,D). The next result concerns 
the action of such operators on Sobolev spaces.

Theorem 4.3. [Calderón-Vaillancourt] Let p ∈ Sm
ρ,δ(R

2n). Then for any real number s ∈R there 
exist ℓ := ℓ(s,m,n) ∈ N0 and C := Cs,m > 0 such that

∥p(x,D)u∥Hs ≤ C|p|(m)
ℓ ∥u∥Hs+m, ∀ u ∈ Hs+m.

Moreover, when m = s = 0 we can replace |p|(m)
ℓ by

max |α|≤ℓ1,|β|≤ℓ2
sup 

x,ξ∈Rn

|∂α
ξ ∂β

x p(x, ξ)|⟨ξ ⟩−δ|β|+ρ|α|,

where

ℓ1 = 2
⌊︂n

2 
+ 1
⌋︂

, ℓ2 = 2

⌊︃
n 

2(1 − δ)
+ 1

⌋︃
.

Now we consider the algebra properties of Sm
ρ,δ(R

2n) with respect to the composition of 
operators. In the sequel Os− in front of the integral sign stands for oscillatory integral. Let 
pj ∈ S

mj

ρ,δ(R
2n), j = 1,2, and dfine

q(x, ξ) = Os −
∫︂∫︂

e−iyηp1(x, ξ + η)p2(x + y, ξ)dyd− η (4.1)

= lim 
μ→0

∫︂∫︂
e−iyηp1(x, ξ + η)p2(x + y, ξ)e−μ2|y|2e−μ2|η|2dyd− η.

Theorem 4.4. Let pj ∈ S
mj

ρ,δ(R
2n), j = 1,2, and consider q dfined by (4.1). Then q ∈

S
m1+m2
ρ,δ (R2n) and q(x,D) = p1(x,D)p2(x,D). Moreover, the symbol q has the following 

asymptotic expansion

q(x, ξ) =
∑︂ 1 

α!∂
α
ξ p1(x, ξ)Dα

x p2(x, ξ) + rN(x, ξ),
|α|<N
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where

rN(x, ξ) =
∑︂

|γ |=N

N

γ !
1 ∫︂

0 

(1 − θ)N−1 Os −
∫︂∫︂

e−iyη∂
γ
ξ p1(x, ξ + θη)D

γ
x p2(x + y, ξ)dyd− η dθ,

and the seminorms of rN may be estimated in the following way: for any ℓ0 ∈ N0 there exists 
Cℓ,N,n > 0 such that

|rN |(m1+m2)
ℓ0

≤ Cℓ,N,n|p1|(m1)
ℓ0+N+n+1|p2|(m2)

ℓ0+N+n+1.

The last theorem that we recall is the celebrated sharp Gårding inequality (see Theorem 2.1.3 
in [18]).

Theorem 4.5. Let p ∈ S1(R2n) and suppose Rep(x, ξ) ≥ 0 for all x ∈Rn and |ξ | ≥ R for some 
R > 0. Then there exist k = k(n) ∈N0 and C = C(n,R) such that

Re ⟨p(x,D)u,u⟩L2 ≥ −C|p|(1)
k ∥u∥2

L2, u ∈ S (Rn).

5. Solving the regularised problem: the case n = 1

Let us consider the Cauchy problem (1.1) in the case n = 1. We apply to the coefficients 
and to the Cauchy data the regularisation described in Section 3 and we come to the regularised 
problem (3.9) for the operator

Sε = Dt + aε(t)D
2
x + a1,ε(t)b1,ε(x)Dx + a0,ε(t)b0,ε(x), t ∈ [0, T ], x ∈ R, ε ∈ (0, ε0]. (5.1)

We now consider the function

B1,ε(x) =
x∫︂

0 

b1,ε(y)dy, x ∈R.

Using the fact that |b1,ε| ≤ Cε−N1⟨x⟩−2 we conclude B1,ε ∈ B∞(R) and

|∂β
x B1,ε(x)| ≤ Cβε−N1−β. (5.2)

Since aε never vanishes, we can dfine

Fε(t, x) = ia1,ε(t)B1,ε(x)

2aε(t) 
, t ∈ [0, T ], x ∈ R.

Conditions (3.2) and (5.2) imply that Fε ∈ C([0, T ];B∞(R)) and⃓⃓ ⃓⃓ (︂ )︂
⃓eFε(t,x)⃓≤ exp CC−1
a ε−N0−N1 . (5.3)
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Our idea, inspired by [20], is to eliminate the first order coefficient by performing the follow
ing conjugation

Sε,Fε := eFε(t,x) ◦ Sε ◦ e−Fε(t,x).

We have:

eFε ◦ Dt ◦ e−Fε = Dt − DtFε = Dt + B1,ε(x)

2 
· a1,ε(t)a

′
ε(t) − a′

1,ε(t)aε(t)

a2
ε (t) 

,

eFε ◦ aε(t)D
2
x ◦ e−Fε = aε(t)D

2
x − a1,ε(t)b1,ε(x)Dx + aε(t){∂2

xFε − (∂xFε)
2}

= aε(t)D
2
x − a1,ε(t)b1,ε(x)Dx + i

2
a1,ε(t)∂xb1,ε(x)

+ 1 
4aε(t)

(a1,ε(t)b1,ε(x))2,

eFε ◦ a1,ε(t)b1,ε(x)Dx ◦ e−Fε = a1,ε(t)b1,ε(x)Dx − (a1,ε(t)b1,ε(x))2

2aε(t) 
.

Therefore

Sε,Fε = Dt + aε(t)D
2
x + A0,ε(t, x),

where

A0,ε(t, x) = a0,ε(t)b0,ε(x) + B1,ε(x)(a1,ε(t)a
′
ε(t) − a′

1,ε(t)aε(t))

2a2
ε (t) 

+ i

2
a1,ε(t)∂xb1,ε(x)

− (a1,ε(t)b1,ε(x))2

4aε(t) 
.

We remark that the operator Sε,Fε maintains the same structure as (5.1) but has no terms of order 
one. Writing ∂t = iSε,Fε − iaε(t)D

2
x − iA0,ε(t, x), we obtain

∂t∥u(t)∥2
L2 = 2Re (∂tu(t), u(t))L2

= 2Re (iSε,Fεu(t), u(t))L2 − 2Re (iaε(t)D
2
xu(t), u(t))L2⏞ ⏟⏟ ⏞
=0 

−2Re (iA0,ε(t)u(t), u(t))L2

≤ ∥Sε,Fεu(t)∥2
L2 +

⎛⎜⎝1 + 2 sup 
t∈[0,T ]
x∈R 

|A0,ε(t, x)|
⎞⎟⎠∥u(t)∥2

L2 .

Applying Gronwall lemma we get

∥u(t)∥2
L2 ≤ exp

(︃
t

(︃
1 + 2 sup

t,x
|A0,ε(t, x)|

)︃)︃⎧⎨⎩∥u(0)∥2
L2 +

t∫︂
∥Sε,Fεu(τ )∥2

L2dτ

⎫⎬⎭ .
0 
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We estimate A0,ε(t, x) in the following way

|A0,ε(t, x)| ≤ CC−2
a ε−2(N0+N1)−1

where C > 0 denotes a constant which may depend on a, a1, a0, b1, b0, ϕ,φ,ρ, but does not 
depend on ε. Therefore

∥u(t)∥2
L2 ≤ exp

(︂
tCC−2

a ε−2(N0+N1)−1
)︂⎧⎨⎩∥u(0)∥2

L2 +
t∫︂

0 

∥Sε,Fεu(τ )∥2
L2dτ

⎫⎬⎭ . (5.4)

To obtain (5.4) with general Sobolev norms, m ∈N0, we observe that

Sε,Fε,m := ⟨Dx⟩m ◦ Sε,Fε ◦ ⟨Dx⟩−m = Dt + aε(t)D
2
x + ⟨Dx⟩mA0,ε(t, x)⟨Dx⟩−m.

We have

⟨Dx⟩mA0,ε(t, x)⟨Dx⟩−m = σm,ε(t, x,D)

where

σm,ε(t, x, ξ) = Os −
∫︂∫︂

e−iyη⟨ξ + η⟩mA0,ε(t, x + y)⟨ξ ⟩−mdyd− η

=
∫︂∫︂

e−iyη⟨y⟩−2⟨Dη⟩2
{︂
⟨η⟩−2⌈ m+1

2 ⌉⟨Dy⟩2⌈ m+1
2 ⌉ (︁⟨ξ + η⟩mA0,ε(t, x + y)⟨ξ ⟩−m

)︁}︂
.

Calderón-Vaillancourt Theorem implies

∥σm,ε(t, x,D)u∥L2 ≤ CmC−2
a ε−2(N1+N0)−m−5∥u∥L2 .

In this way, proceeding in analogous manner as before, we obtain for any m ∈ N0 the follow
ing a-priori estimate:

∥u(t)∥2
Hm ≤ exp

(︂
tCmC−2

a ε−2(N0+N1)−m−5
)︂⎧⎨⎩∥u(0)∥2

Hm +
t∫︂

0 

∥Sε,Fεu(τ )∥2
Hmdτ

⎫⎬⎭ . (5.5)

Energy inequality (5.5) gives the following proposition.

Proposition 5.1. Let f̃ ∈ C([0, T ];Hm(R)) and g̃ ∈ Hm(R). There exists a unique solution u in 
C([0, T ];Hm(R)) for the Cauchy problem{︄

Sε,Fεu(t, x) = f̃ (t, x), t ∈ [0, T ], x ∈ R,

u(0, x) = g̃(x), x ∈R,
(5.6)
and the solution u satifies (5.5).
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The above proposition gives H∞-well-posedness for the problem (3.9). Indeed, first let us 
consider the auxiliary problem{︄

Sε,Fεv(t, x) = eFε(t,x)f (t, x), t ∈ [0, T ], x ∈R,

v(0, x) = eFε(0,x)g(x), x ∈R.
(5.7)

It is not hard to conclude that for h ∈ Hm(R) (m ∈N0)

∥e±Fε(t,·)h(·)∥Hm ≤ Cm max
β≤m 

sup 
x∈R

|∂β
x e±Fε(t,x)| ∥h∥Hm

≤ Cmε−meCε−(N0+N1)∥h∥Hm.

Let vε ∈ C([0, T ],H∞(R)) be the solution of (5.7). Then uε = e−Fεvε dfines a solution for 
the regularised Cauchy problem (3.9). Next we observe that the energy inequality (5.5) implies 
for every m ∈ N0

∥uε(t)∥2
Hm = ∥e−Fε(t)vε(t)∥2

Hm ≤ Cmε−2me2Cε−2(N0+N1)∥vε(t)∥2

≤ Cmε−2me2Cε−2(N0+N1)

exp
(︂
tCmε−2(N0+N1)−m−5

)︂⎧⎨⎩∥eFε(0)g∥2
Hm +

t∫︂
0 

∥eFε(τ)f (τ )∥2
Hmdτ

⎫⎬⎭
≤ Cmε−4me4Cε−2(N0+N1)

exp
(︂
tCmε−2(N0+N1)−m−5

)︂⎧⎨⎩∥g∥2
Hm +

t∫︂
0 

∥f (τ)∥2
Hmdτ

⎫⎬⎭ .

The uniqueness of the found solution follows by standard arguments. We summarise what we 
have done in the following theorem.

Theorem 5.2. For every ε ∈ (0, ε0], where ε0 is a small parameter so that (3.2) holds, consider 
the regularised Cauchy problem (3.9) with initial data f ∈ C([0, T ];H∞(R)) and g ∈ H∞(R). 
Then there exists a unique solution uε ∈ C([0, T ];H∞(R)) for the problem (3.9). Besides, the 
solution uε satifies for every m ∈N0

∥uε∥2
Hm ≤ Cm exp

(︂
Cm,T ε−2(N0+N1)−θm

)︂⎧⎨⎩∥g∥2
Hm +

t∫︂
0 

∥f (τ)∥2
Hmdτ

⎫⎬⎭ , (5.8)

where

(i) Cm and Cm,T are constants depending on the coefficients a, a1, a0, b1, b0 and on the molli
fiers ρ,φ,ϕ;

(ii) N0 stands for the maximum of the orders of a0 and a1 plus 1;
(iii) N1 is a positive number depending on the coefficients b0, b1;

(iv) θm is a natural number depending on m.
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6. Solving the regularised problem: the n-dimensional case

Let us now come to the regularised problem (3.9) for the operator (3.8) in the case of space 
dimension n ≥ 2. To solve this problem we need a change of variable as in the monodimensional 
case but in this more general situation, the change cannot be driven by a function, it has to be 
expressed in terms of a pseudodifferential operator.

We will follow the argument used in [17]. For any M > 0 there exists a real-valued function 
λ̃(x, ξ) satisfying the following conditions

|∂α
ξ ∂β

x λ̃(x, ξ)| ≤ MCα,β |ξ |−|α|, x ∈Rn, |ξ | ≥ 1, α,β ∈ Nn
0 ,

n ∑︂
j=1 

ξj ∂xj
λ̃(x, ξ) ≤ −M⟨x⟩−2χ

(︃ ⟨x⟩
|ξ | 
)︃

|ξ |,

where χ(t) ∈ C∞
c (R) satifies χ(t) = 1 for |t | ≤ 1

2 , χ(t) = 0 for |t | ≥ 1, tχ ′(t) ≤ 0 and 0 ≤
χ(t) ≤ 1. For a large parameter h ≥ 1 to be chosen later on, we consider

λ(x, ξ) = λ̃(x, ξ)(1 − χ)

(︃ |ξ |
h 

)︃
. (6.1)

Then, since ⟨ξ ⟩h ≤ √
5h on the support of (1 − χ)(h−1|ξ |),

|∂α
ξ ∂β

x λ(x, ξ)| ≤ MCα,β⟨ξ ⟩−|α|
h ,

where ⟨ξ ⟩h := √︁h2 + |ξ |2 and the constants Cα,β do not depend on M and on h. So, λ is a 
symbol of order zero with respect to the basic weight ⟨ξ ⟩h. Moreover, we also have

n ∑︂
j=1 

ξj ∂xj
λ(x, ξ) ≤ −M⟨x⟩−2χ

(︃ ⟨x⟩
|ξ | 
)︃

|ξ |(1 − χ)

(︃ |ξ |
h 

)︃
. (6.2)

For a suitable choice of M and h := h(M) (M and h will depend on the parameter ε) we will 
prove that eλ(x,D) is invertible and the conjugated operator

Sε,λ := eλ(x,D) ◦ Sε ◦ {eλ(x,D)}−1

satifies a priori energy estimates, yielding a well-posed associated Cauchy problem. The main 
effort here is to check carefully how the constants in the energy estimate depend on the parame
ters M,h and ε.

6.1. Invertibility of eλ(x,D)
We begin with the following elementary lemma.
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Lemma 6.1. The following estimates hold

|e±λ(x,ξ)| ≤ eCM, |∂α
ξ ∂β

x e±λ(x,ξ)| ≤ M |α+β|Cα,β⟨ξ ⟩−|α|
h e±λ(x,ξ),

where the constants Cα,β and C do not depend on M and on h. In particular, e±λ is a symbol of 
order zero and its seminorms can be estimated as

|e±λ|(0)
ℓ ≤ CℓM

2ℓeCM, ℓ ∈ N0,

where Cℓ does not depend on M and on h.

Now we consider the composition

eλ(x,D) ◦ e−λ(x,D) = σ(x,D),

where

σ(x, ξ) = Os −
∫︂∫︂

e−iyηeλ(x,ξ+η)e−λ(x+y,ξ)dyd− η

= 1 + i

n ∑︂
j=1 

∂ξj
λ(x, ξ)∂xj

λ(x, ξ) + r−2(x, ξ)

⏞ ⏟⏟ ⏞
:=r(x,ξ) 

,

r−2(x, ξ) =
∑︂
|γ |=2

2 
γ !Os −

∫︂∫︂
e−iyη

1 ∫︂
0 

(1 − θ)∂
γ
ξ eλ(x,ξ+θη)dθD

γ
x e−λ(x+y,ξ)dyd− η. (6.3)

The estimates provided by Lemma 6.1 give

|r−2|(−2)
ℓ ≤ Cℓ,nM

4ℓ+2n+6e2CM ≤ Cℓ,ne
(2C+1)M, ℓ ∈N0,

where Cℓ,n and C do not depend on M and on h. Next we observe that

eλ(x,D) ◦ e−λ(x,D) = I + r(x,D),

r(x, ξ) has order −1 and

|∂α
ξ ∂β

x r(x, ξ)| ≤ Cα,β,ne
(2C+1)M ⟨ξ ⟩−1−|α|

h

≤ Cα,β,ne
(2C+1)Mh−1⟨ξ ⟩−|α|.

Hence, if we chose h ≥ h0(M,n) := Ae(2C+1)M , where A > 0 is a number depending on the 
dimension and on a finite number of derivates of r(x, ξ), Calderón-Vaillancourt theorem implies
r(x,D) : L2(Rn) → L2(Rn)
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continuously and the norm sup{∥r(x,D)u∥L2 : ∥u∥ ≤ 1} < 1. Let us also notice that due to our 
choice of h0, for all h ≥ h0 the zero seminorms of r do not depend on M . So,

{I + r(x,D)}−1 =
∑︂
j≥0 

{−r(x,D)}j : L2(Rn) → L2(Rn)

and Theorem I.1 of [19] (page 372) gives that

{I + r(x,D)}−1 = s(x,D)

where s(x, ξ) is a symbol of order zero satisfying: for any ℓ ∈N0 there exists ℓ′ ∈N0 such that

|s|(0)
ℓ ≤ Cℓ{|r|(0)

ℓ′ }3ℓ ≤ CℓC
3ℓ
ℓ′,n.

Lemma 6.2. For all h ≥ h0(M,n) := Ae(2C+1)M the operator eλ(x,D) is invertible and we have(︁
eλ(x,D)

)︁−1 = e−λ(x,D) ◦
∑︂
j≥0 

(−r(x,D))j ,

where, for r−2 given by (6.3),

r(x, ξ) = i

n ∑︂
j=1 

∂ξj
λ(x, ξ)∂xj

λ(x, ξ) + r−2(x, ξ).

Moreover, ∑︂
j≥0 

(−r(x,D))j = s(x,D),

where s(x, ξ) is a zero order symbol and its zero seminorms do not depend on h and on M .

We close this subsection writing the symbol s(x, ξ) in a convenient way:

s(x,D) = I − r(x,D) +
∑︂
j≥2 

(−r(x,D))j = I − r(x,D) + (r(x,D))2s(x,D)

= I − op

⎛⎝i

n ∑︂
j=1 

∂ξj
λ(x, ξ)∂xj

λ(x, ξ)

⎞⎠− r−2(x,D) + (r(x,D))2s(x,D).

So,

s(x, ξ) = 1 − i

n ∑︂
j=1 

∂ξj
λ(x, ξ)∂xj

λ(x, ξ) + s−2(x, ξ), (6.4)
where s−2(x, ξ) has order −2 and satifies

208 



A. Arias Junior, A. Ascanelli, M. Cappiello et al. Journal of Differential Equations 425 (2025) 190--222 
|∂α
ξ ∂β

x s−2(x, ξ)| ≤ Cα,β,ne
CM ⟨ξ ⟩−2−|α|

h ,

where the constants Cα,β,n and C do not depend on M and on h.

6.2. Computing the operator Sε,λ

We start computing the symbol of

eλ(x,D)D2
xj

e−λ(x,D),

which is

ξ2
j + 2iξj ∂xj

λ(x, ξ) + i

n ∑︂
ℓ=1 

ξ2
j ∂ξℓ

λ(x, ξ)∂xℓ
λ(x, ξ) + qj,0(x, ξ),

where

qj,0(x, ξ) =
∑︂
|γ |=2

2 
γ !Os −

∫︂∫︂
e−iyη

1 ∫︂
0 

(1 − θ){∂γ
ξ (eλξ2

j )}(x, ξ + θη)dθD
γ
x e−λ(x+y,ξ)dyd− η,

|∂α
ξ ∂β

x qj,0(x, ξ)| ≤ Cα,β,ne
(2C+1)M ⟨ξ ⟩−|α|

h .

Hence

eλ(x,D) ◦ aε(t)

n ∑︂
j=1 

D2
xj

◦e−λ(x,D) = op

⎛⎝aε(t)

n ∑︂
j=1 

ξ2
j + aε(t)2i

n ∑︂
j=1 

ξj ∂xj
λ(x, ξ)

⎞⎠ (6.5)

+ op

⎛⎝aε(t)i

n ∑︂
j=1 

ξ2
j

n ∑︂
ℓ=1 

∂ξℓ
λ(x, ξ)∂xℓ

λ(x, ξ) + aε(t)

n ∑︂
j=1 

qj,0(x, ξ)

⎞⎠ .

Now note that

−iaε(t)

n ∑︂
j=1 

D2
xj

◦
n ∑︂

ℓ=1 
(∂ξℓ

λ∂xℓ
λ)(x,D) = op

⎛⎝−iaε(t)

n ∑︂
j=1 

ξ2
j

n ∑︂
ℓ=1 

∂ξℓ
λ(x, ξ)∂xℓ

λ(x, ξ)

⎞⎠ (6.6)

− op

⎛⎝2aε(t)

n ∑︂
j=1 

ξj

n ∑︂
ℓ=1 

∂xj
{∂ξℓ

λ(x, ξ)∂xℓ
λ(x, ξ)}

⎞⎠
+ op

⎛⎝iaε(t)

n ∑︂
j=1 

n ∑︂
ℓ=1 

∂2
xj

{∂ξℓ
λ(x, ξ)∂xℓ

λ(x, ξ)}
⎞⎠ .
From (6.5) and (6.6) we conclude that
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eλ(x,D) ◦ aε(t)

n ∑︂
j=1 

D2
xj

◦ {eλ(x,D)}−1

= aε(t)

n ∑︂
j=1 

D2
xj

+ aε(t)2i

n ∑︂
j=1 

(∂xj
λ)(x,D)Dxj

+ aε(t)q0(x,D), (6.7)

where

q0(x,D) = op

⎛⎝ n ∑︂
j=1 

qj,0(x, ξ) − 2
n ∑︂

j=1 
ξj

n ∑︂
ℓ=1 

∂xj
{∂ξℓ

λ(x, ξ)∂xℓ
λ(x, ξ)}

+i

n ∑︂
j=1 

n ∑︂
ℓ=1 

∂2
xj

{∂ξℓ
λ(x, ξ)∂xℓ

λ(x, ξ)}
⎞⎠

+ 2iop

⎛⎝ n ∑︂
j=1 

ξj ∂xj
λ(x, ξ) + i

n ∑︂
j=1 

ξ2
j

n ∑︂
ℓ=1 

∂ξℓ
λ(x, ξ)∂xℓ

λ(x, ξ) +
n ∑︂

j=1 
qj,0(x, ξ)

⎞⎠
◦ op

⎛⎝−i

n ∑︂
j=1 

∂ξj
λ(x, ξ)∂xj

λ(x, ξ)

⎞⎠
+ eλ(x,D) ◦

n ∑︂
j=1 

D2
xj

◦ e−λ(x,D) ◦ s−2(x,D),

|q0(x, ξ)|(0)
ℓ ≤ Cℓ,ne

CM, (6.8)

for some positive constant C independent of ε,h and M .

Next we study the conjugation of the first order terms. We have

eλ(x,D) ◦ aj,ε(t)bj,ε(x)Dxj
◦ e−λ(x,D)

= aj,ε(t)e
λ(x,D) ◦ op

(︂
bj,ε(x)ξj e

−λ(x,ξ) + ibj,ε(x)∂xλ(x, ξ)e−λ(x,ξ)
)︂

= aj,ε(t)bj,ε(x)Dxj
+ aj,ε(t)ej,ε,0(x,D),

where

ej,ε,0(x, ξ) = Os −
∫︂∫︂

e−iyηeλ(x,ξ+η)bj,ε(x + y)∂xλ(x + y, ξ)e−λ(x+y,ξ)dyd− η

+
∑︂
|γ |=1

Os −
∫︂∫︂

e−iyη

1 ∫︂
0 

∂
γ
ξ eλ(x,ξ+θη)dθbj,ε(x + y)ξj e

−λ(x+y,ξ)dyd− η.

Setting
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eε,0(t, x,D) =
n ∑︂

j=1 
aj,ε(t)ej,ε,0(x,D)

−
n ∑︂

j=1 
{aj,ε(t)bj,ε(x)Dxj

+ aj,ε(t)ej,ε,0(x,D)}

◦ op

⎛⎝i

n ∑︂
j=1 

∂ξj
λ(x, ξ)∂xj

λ(x, ξ) − s−2(x, ξ)

⎞⎠ ,

we get

eλ(x,D) ◦
n ∑︂

j=1 
aj,ε(t)bj,ε(x)Dxj

◦ {eλ(x,D)}−1 =
n ∑︂

j=1 
aj,ε(t)bj,ε(x)Dxj

+ eε,0(t, x,D), (6.9)

and we have the following estimate

|∂α
ξ ∂β

x eε,0(t, x, ξ)| ≤ Cα,β,nε
−N0−N1−ℓn−|β|eCM ⟨ξ ⟩−|α|

h , (6.10)

where ℓn is a natural number depending only on the dimension and Cα,β,n, C do not depend on 
ε,M and h.

For the zero order term we have

eλ(x,D) ◦ a0,ε(t)b0,ε(x) ◦ {eλ(x,D)}−1 = a0,ε(t) c̃0,ε(x,D) ◦ s(x,D)⏞ ⏟⏟ ⏞
=:c0,ε(x,D) 

,

where

c̃0,ε(x, ξ) = Os −
∫︂∫︂

e−iyηeλ(x,ξ+η)b0,ε(x + y)e−λ(x+y,ξ)dyd− η.

Hence

eλ(x,D) ◦ a0,ε(t)b0,ε(x) ◦ {eλ(x,D)}−1 = a0,ε(t)c0,ε(x,D), (6.11)

and we have the following estimate

|a0,ε(t)∂
α
ξ ∂β

x c0,ε(x, ξ)| ≤ Cα,β,nε
−N0−N1−ιn−|β|eCM ⟨ξ ⟩−|α|

h , (6.12)

where ιn is a natural number depending only on the dimension and Cα,β,n, C do not depend on 
ε,M and h.

Combining (6.7), (6.8), (6.9), (6.10), (6.11) and (6.12) we conclude that

Sε,λ = Dt + aε(t)

n ∑︂
j=1 

D2
xj

+
n ∑︂

j=1 
aj,ε(t)bj,ε(x)Dxj

+ aε(t)2i

n ∑︂
j=1 

∂xj
λ(x,D)Dxj

+ d0,ε(t, x,D),
(6.13)
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where

d0,ε(t, x, ξ) = aε(t)q0(x, ξ) + eε,0(t, x, ξ) + a0,ε(t)c0,ε(x, ξ),

and we have the following estimate

|∂α
ξ ∂β

x d0,ε(t, x, ξ)| ≤ Cα,β,nε
−N0−N1−θn−|β|eCM ⟨ξ ⟩−|α|

h , (6.14)

where θn denotes a natural number depending only on the dimension and the constants Cα,β,n, 
C do not depend on ε,M and h.

6.3. Energy estimate for the regularised problem

In order to derive an L2 a priori energy estimate for Sε,λ we write

iSε,λ = ∂t + iaε(t)

n ∑︂
j=1 

D2
xj

+
n ∑︂

j=1 
{−Im (aj,ε(t)bj,ε(x)) − 2aε(t)(∂xj

λ)(x,D)}Dxj

+ 1

2

n ∑︂
j=1 

{2iRe (aj,ε(t)bj,ε(x))Dxj
+ ∂xj

Re (aj,ε(t)bj,ε(x))} − 1

2

n ∑︂
j=1 

∂xj
Re (aj,ε(t)bj,ε(x))

+ d0,ε(t, x,D).

We immediately note that

Re

⟨︄
iaε(t)

n ∑︂
j=1 

D2
xj

u,u

⟩︄
L2

= 0,

Re

⟨︄
1

2

n ∑︂
j=1 

{2iRe (aj,ε(t)bj,ε(x))Dxj
+ ∂xj

Re (aj,ε(t)bj,ε(x))}u,u

⟩︄
L2

= 0

and ⃓⃓⃓⃓
⃓⃓
⟨︄

1

2

n ∑︂
j=1 

∂xj
Re (aj,ε(t)bj,ε(x))u,u

⟩︄
L2

⃓⃓⃓⃓
⃓⃓≤ Cnε

−N0−N1−1∥u∥2
L2 .

On the other hand, Calderón-Vaillancourt theorem implies

|⟨d0,ε(t, x,D)u,u⟩L2 | ≤ Cnε
−N0−N1−θneCM∥u∥2

L2 .

The estimate of⟨︄
n ∑︂

{−Im (aj,ε(t)bj,ε(x)) − 2aε(t)(∂xj
λ)(x,D)}Dxj

u,u

⟩︄

j=1 L2
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is more complicate. We first consider the split

−Im (aj,ε(t)bj,ε(x))ξj {χ(h−1|ξ |) + (1 − χ)(h−1|ξ |)}
= −Im (aj,ε(t)bj,ε(x))ξj (1 − χ)(h−1|ξ |)χ(⟨x⟩|ξ |−1)

− Im (aj,ε(t)bj,ε(x))ξjχ(h−1|ξ |)χ(⟨x⟩|ξ |−1)

− Im (aj,ε(t)bj,ε(x))ξjχ(h−1|ξ |)(1 − χ)(⟨x⟩|ξ |−1)

− Im (aj,ε(t)bj,ε(x))ξj (1 − χ)(h−1|ξ |)(1 − χ)(⟨x⟩|ξ |−1).

On the support of (1 − χ)(⟨x⟩|ξ |−1) it holds ⟨x⟩−1 ≤ |ξ |−1, so from the decay ⟨x⟩−2 of the 
coefficients bj,ε we conclude

|∂α
ξ ∂β

x {Im (aj,ε(t)bj,ε(x))ξjχ(h−1|ξ |)(1 − χ)(⟨x⟩|ξ |−1)}| ≤ Cα,β,nε
−N0−N1−|β|⟨ξ ⟩−|α|

h ,

|∂α
ξ ∂β

x {Im (aj,ε(t)bj,ε(x))ξj (1 − χ)(h−1|ξ |)(1 − χ)(⟨x⟩|ξ |−1)}| ≤ Cα,β,nε
−N0−N1−|β|⟨ξ ⟩−|α|

h .

Using the support properties of χ(h−1|ξ |) we get |ξ | ≤ h, hence

|∂α
ξ ∂β

x {Im (aj,ε(t)bj,ε(x))ξjχ(h−1|ξ |)χ(⟨x⟩|ξ |−1)}| ≤ Cα,β,nhε−N0−N1−|β|⟨ξ ⟩−|α|
h .

By the definition of the transformation λ we get

pε(t, x, ξ) :=
n ∑︂

j=1 
{−Im (aj,ε(t)bj,ε(x))(1 − χ)(h−1|ξ |)χ(⟨x⟩|ξ |−1) − 2aε(t)(∂xj

λ)(x, ξ)}ξj

≥ {2CaM − C(aj , bj , n)ε−N0−N1}|ξ |⟨x⟩−2(1 − χ)(h−1|ξ |)χ(⟨x⟩|ξ |−1).

(6.15)

Choosing

M = C(aj , bj , n)

2Ca

ε−N0−N1

we obtain pε(t, x, ξ) ≥ 0 for all t, x and ξ . Besides, the following estimate holds

|∂α
ξ ∂β

x pε(t, x, ξ)| ≤ Cn,α,βMε−N0−N1−|β|⟨ξ ⟩1−|α|
h .

Sharp Gårding inequality then gives

Re ⟨pε(t, x,D)u,u⟩ ≥ −CnMε−N0−N1−θn∥u∥2
L2 .

Finally, gathering all the computations above we get

∂t∥u(t)∥2
L2 = 2Re ⟨∂tu,u⟩L2 (6.16)

≤ ∥Sε,λu∥2
L2 + ∥u∥2

L2 + Cnε
−N0−N1−θneCM∥u∥2

L2 .
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To obtain (6.16) with general Sobolev norms we apply the same argument to the operator

⟨Dx⟩mSε,λ⟨Dx⟩−m

which is equal to Sε,λ plus a zero order term, which can be easily estimated using Theorem 4.4. 
So,

∂t∥u(t)∥2
Hm ≤ ∥Sε,λu∥2

Hm + ∥u∥2
Hm + Cn,mε−N0−N1−θn,meCM∥u∥2

Hm,

where θn,m denotes a natural number depending only on n and m. Gronwall inequality and the 
definition of M give

∥u(t)∥2
Hm ≤ exp

{︂
CT,m,ne

ε−N0−N1−θn,m
}︂⎛⎝∥u(0)∥2

Hm +
t∫︂

0 

∥Sε,λ(τ )u(τ)∥2
Hmdτ

⎞⎠ . (6.17)

Let us summarise what we have done:

- first we proved that if

h ≥ h0(M) = AeCM,

for some constants A,C > 0 independent from M and ε, then the operator eλ is invertible 
(cf. Lemma 6.2);

- next, after some technical computations and estimates, we proved that if

M = C(aj , bj , n)

2Ca

ε−N0−N1

then we may apply sharp Gårding inequality to get the energy inequality (6.17).

In other words, setting M and h(M) as above we come to the energy inequality (6.17) where the 
precise dependence on the parameter ε is exhibited.

The next proposition is a consequence of (6.17).

Proposition 6.3. Let f̃ ∈ C([0, T ];Hm(Rn)) and g̃ ∈ Hm(Rn). There exists a unique solution u
in C([0, T ];Hm(Rn)) to the Cauchy problem{︄

Sε,λu(t, x) = f̃ (t, x), t ∈ [0, T ], x ∈Rn,

u(0, x) = g̃(x), x ∈ Rn,
(6.18)

and the solution u satifies (6.17).

We are finally ready to conclude the desired H∞ well-posedness for the problem (3.9) in the 

n-dimensional case. We first consider the auxiliary problem
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{︄
Sε,λv(t, x) = eλ(x,D)f (t, x), t ∈ [0, T ], x ∈Rn,

v(0, x) = eλ(x,D)g(x), x ∈ Rn.
(6.19)

We observe that Calderón-Vaillancourt theorem gives

∥eλ(x,D)u∥Hm ≤ Cn,meCM∥u∥Hm, ∥{eλ(x,D)}−1u∥Hm ≤ Cn,meCM∥u∥Hm,

where Cn,m and C do not depend on ε, M and h.
Let vε ∈ C([0, T ];H∞(Rn)) be the solution of (6.19). Then uε = {eλ(x,D)}−1vε dfines a 

solution for the regularised Cauchy problem (3.9). Next we observe that the energy inequality 
(6.17) implies for every m ∈N0

∥uε(t)∥2
Hm = ∥{eλ(·,D)}−1vε(t)∥2

Hm ≤ Cn,meCM∥vε(t)∥2
Hm

≤ Cn,meCM exp
{︂
CT,m,ne

ε−N0−N1−θn,m
}︂⎧⎨⎩∥eλ(·,D)g∥2

Hm +
t∫︂

0 

∥eλ(·,D)f (τ)∥2
Hmdτ

⎫⎬⎭
≤ C2

n,me2CM exp
{︂
CT,m,ne

ε−N0−N1−θn,m
}︂⎧⎨⎩∥g∥2

Hm +
t∫︂

0 

∥f (τ)∥2
Hmdτ

⎫⎬⎭ .

The uniqueness of the solution follows by standard arguments. We summarise what we have 
obtained in the following theorem.

Theorem 6.4. For every ε ∈ (0, ε0], where ε0 is a small parameter so that (3.2) holds, con
sider the regularised Cauchy Problem (3.9) with initial data f ∈ C([0, T ];H∞(Rn)) and 
g ∈ H∞(Rn). Then there exists a unique solution uε ∈ C([0, T ];H∞(Rn)) for the problem (3.9). 
Besides, the solution uε satifies for every m ∈ N0 the following estimate:

∥uε∥2
Hm ≤ Cn,m exp

{︂
CT,m,ne

ε−N0−N1−θn,m
}︂⎧⎨⎩∥g∥2

Hm +
t∫︂

0 

∥f (τ)∥2
Hmdτ

⎫⎬⎭ , (6.20)

where

(i) Cn,m and CT,m,n are constants depending on the coefficients a, aj , bj , j = 0,1, . . . , n, and 
on the mollfiers ρ,φ,ϕ;

(ii) N0 stands for the maximum of the orders of a0, a1, . . . , an plus 1;
(iii) N1 is a positive number depending on the coefficients b0, b1, . . . , bn and on the dimension;
(iv) θn,m is a natural number depending only on m and on the dimension n.

We remark that Theorem 6.4 is the n-dimensional version of Theorem 5.2 with a greater con
stant in the energy estimate. From now on we shall continue the proof of Theorem 2.8 referring 
only to the n-dimensional case, since the final result for the regularised problem in the monodi

mensional case is a particular case.
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7. Proof of Theorem 2.8

We can now conclude the proof of Theorem 2.8. We know that the regularised Cauchy data 
fε(t), gε fufil the following estimate: for all m ∈ N0 there exists C > 0, Nf ∈ N0 and Ng ∈ N0
such that

∥fε(t, ·)∥Hm ≤ Cε−Nf ,

∥gε∥Hm ≤ Cε−Ng ,

uniformly in ε and t , and from Theorem 6.4 the regularised problem (3.9) with data fε(t) and gε

has a unique solution uε ∈ C([0, T ];H∞(Rn)) satisfying for every m ∈N0

∥uε∥2
Hm ≤ Cn,m exp

{︂
CT,m,ne

ε−N0−N1−θn,m
}︂⎧⎨⎩∥gε∥2

Hm +
t∫︂

0 

∥fε(τ )∥2
Hmdτ

⎫⎬⎭
≤ Am exp(Bmeε−Nm

)ε−(Nf +Ng), ε ∈ (0, ε0), t ∈ [0, T ]
where Am,Bm > 0 are independent of ε and Nm = N0 + N1 + θn,m ∈N0 is independent of ε but 
depends on the coefficients bj , aj , j = 0,1, . . . , n, on the dimension n and on Sobolev index m.

Next we can obtain moderate estimates for the net (uε)ε if we regularise the coefficients 
bj , aj , j = 0,1, . . . , n, using the following positive scale

ω(ε) = {log(log(log(log(ε−1))))}−1, ε ∈ (0, ε0). (7.1)

This means to replace ε with ω(ε) in all the estimates above. First, we note that following ele
mentary inequality: for any r ≥ 1 we have

log(y) ≤ Cry
1
r , ∀ y ≥ 2. (7.2)

Hence, denoting X = log(log(ε−1)) we get

ω(ε)−Nm = {log(log(X)}Nm ≤ C
Nm

Nm
log(X) = log

(︃
X

C
Nm
Nm

)︃
=⇒ eω(ε)−Nm ≤ X

C
Nm
Nm .

Applying (7.2) once more we conclude

BmXCN
N ≤ BmC̃

C
Nm
Nm

Nm
log(ε−1) = log(ε−DNm ),

where DNm ∈ N0 is a large number depending on Nm and on Bm. So, if we use the regularisations

bj,ε := ρω(ε) ∗ bj , aj,ε = ϕω(ε) ∗ aj , j = 0,1, . . . , n,

where ω is given by (7.1) we get the following estimate for the net of solutions (uε)ε: for any 
m ∈N0 we find constants Am,DNm such that
∥uε(t)∥2
Hm ≤ Amε−DNm−(Nf +Ng), t ∈ [0, T ], ε ∈ (0, ε0).
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By Definitions 2.2 and 2.4 we can conclude that the Cauchy problem (1.1) admits very weak 
solutions of H∞-type. The main result of this paper is then proved.

Remark 7.1. We stress the fact that in order to obtain a H∞-moderate net of solutions we need 
to use the special positive scale ω (given in (7.1)) just for the coefficients of order one and order 
zero, meanwhile we are free to use the standard scale (ω(ε) = ε) for the leading coefficient and 
Cauchy data.

8. Uniqueness of the very weak solution and consistency with the regular theory

We conclude the paper by discussing in which sense the very weak solution of our Cauchy 
problem is unique and by proving that our result is consistent with the classical theory when the 
coefficients are regular enough.

8.1. Uniqueness

The very weak solution (uε)ε that we found is unique in the following sense: if we perturb 
the coefficients of the regularised operator by suitable negligible nets, then the net of solutions 
of the Cauchy problem associated with the perturbed operator will differ from (uε)ε by a H∞
negligible net. Being more precise, suppose that we perturb the coefficients of the regularised 
operator Sε given by (5.1) in the following way

S′
ε := Dt + (aε(t) + nε(t))

n ∑︂
j=1 

D2
xj

+
n ∑︂

j=1 
(aj,ε(t) + nj,1,ε(t))(bj,ε(x) + lj,1,ε(x))Dxj

+ (a0,ε(t) + n0,ε(t))(b0,ε(x) + l0,ε(x))

where

(a) nε ∈ C([0, T ];R), nε ≥ 0 for all values of ε and for any q ∈ N0 there exists C > 0 such that

sup 
t∈[0,T ]

|nε(t)| ≤ Cεq

for all values of ε;
(b) nj,1,ε, n0,ε ∈ C([0, T ];C) and for any q ∈N0 there exists C > 0 such that

n ∑︂
j=1 

sup 
t∈[0,T ]

|nj,1,ε(t)| + sup 
t∈[0,T ]

|n0,ε(t)| ≤ Cεq

for all values of ε;
(c) lj,1,ε ∈ B∞(Rn), |lj,1,ε(x)| ≤ C⟨x⟩−2 and for any q ∈N0 and any β ∈Nn

0 there exists C > 0
such that

β q
sup 
x∈Rn

|∂x lj,1,ε(x)| ≤ Cε (8.1)
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for all values of ε;
(d) l0,ε ∈ B∞(Rn) and for any q ∈N0 and any β ∈Nn

0 there exists C > 0 such that

sup 
x∈Rn

|∂β
x l0,ε(x)| ≤ Cεq

for all values of ε.

Let the net (u′
ε)ε satisfy{︄

S′
εu

′
ε(t, x) = fε(t, x) + pε(t, x), t ∈ [0, T ], x ∈Rn,

u′
ε(0, x) = gε(x) + qε(x) x ∈Rn,

where (pε)ε and (qε)ε are H∞-negligible nets. We now want to compare the two very weak 
solutions of H∞-type we obtained. We have{︄

Sε(uε − u′
ε)(t, x) = −pε(t, x) − (Sε − S′

ε)u
′
ε(t, x), t ∈ [0, T ], x ∈ Rn,

(uε − u′
ε)(0, x) = −qε(x), x ∈Rn.

By applying estimate (6.20) with a suitable regularisation scale, we have that for all m ≥ 0 there 
exist C > 0 and N ∈ N0 such that

∥uε − u′
ε∥2

Hm ≤ Cε−N

⎧⎨⎩∥qε∥Hm +
t∫︂

0 

∥pε(τ) + (Sε − S′
ε)u

′
ε(τ )∥2

Hmdτ

⎫⎬⎭ . (8.2)

Since (pε)ε and (qε)ε are both H∞-negligible, the coefficients of the operator (Sε − S′
ε)ε satisfy 

negligible estimates and (u′
ε)ε satifies H∞-moderate estimates we conclude that the right-hand 

side of (8.2) can be estimated by any positive power of ε. Hence, (uε − u′
ε)ε is H∞-negligible. 

Summarising, we have proved the following uniqueness result.

Proposition 8.1. The very weak solutions of H∞-type of the Cauchy problem (1.1) are unique in 
the following sense: negligible perturbations satisfying (a), (b), (c) and (d) on the regularisa
tions of the equation coefficients and H∞-negligible perturbations of the regularisations of the 
initial data give H∞-negligible perturbation of the corresponding very weak solution.

Remark 8.2. Let us interpret the proposition above in the following particular case:

• a ∈ C∞([0, T ];R) and

a(t) ≥ C > 0;
• bj ∈ B∞(Rn), j = 0,1, . . . , n and

|bj (x)| ≤ C⟨x⟩−2, j = 1, . . . , n;

• aj ∈ C∞([0, T ]), j = 0,1, . . . , n.
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In this situation Proposition 8.1 implies that the very weak solution does not depend on the 
mollfiers that we use to regularise the coefficients, provided that the mollfiers have all vanishing 
moments. Indeed, for ℓ = 1,2 consider

ρ(ℓ) ∈ S (Rn), 
∫︂

ρ(ℓ) = 1, 
∫︂

xαρ(ℓ) = 0 for any α ≠ 0.

Then, for j = 1, . . . , n dfine

b
(ℓ)
j,ε = bj ∗ ρ(ℓ)

ε .

From Proposition 2.1 we conclude that (b(1)
j,ε −b

(2)
j,ε)ε is H∞-negligible and it is easy to check that 

|b(ℓ)
j,ε| ≲ ⟨x⟩−2, in other words (b(1)

j,ε −b
(2)
j,ε)ε satifies (8.1). Analogous considerations can be done 

for the regularisations of the coefficients a, aj and b0 via mollfiers with all vanishing moments. 
Hence, Proposition 8.1 gives that all very weak solutions obtained by all possible mollfiers with 
all vanishing moments are unique modulo H∞-negligible nets.

Remark 8.3. Combining Theorem 2.8 with Proposition 8.1 we can deduce that our Cauchy prob
lem is well-posed in a suitable space of Colombeau type, i.e., the Colombeau space GE with 
E = C([0, T ],H∞(Rn)). We refer the reader to [10] for the definition of GE . Note that the 
choice of working with very weak solutions gives us more flexibility with respect to the tradi
tional Colombeau setting in terms of notions of moderateness, choice of mollfiers and scales. 
This motivates the approach to Cauchy problems with singular coefficients employed in this 
paper.

8.2. Consistency with regular theory

Suppose that the coefficients of the operator S are regular as in the classical results, that is:

(i) a ∈ C([0, T ];R) and a(t) ≥ Ca > 0;
(ii) aj ∈ C([0, T ];C), j = 0,1, . . . , n;
(iii) bj ∈ B∞(Rn), j = 0,1, . . . , n, and |bj (x)| ≤ C⟨x⟩−2, j = 1, . . . , n.

In this situation the Cauchy problem (1.1) for the operator S given in (1.2) with data f ∈
C([0, T ];H∞(Rn)) and g ∈ H∞(Rn) admits a unique solution u ∈ C([0, T ];H∞(Rn)) sat
isfying an energy estimate like (6.20) with a constant independent of ε. The goal here is to verify 
that the net obtained in Theorem 2.8 converges to u in the H∞(Rn) topology.

Let uε be the solution of the Cauchy problem (2.1). Then u − uε solves the following Cauchy 
problem

{︄
S{u − uε}(t, x) = (f − fε)(t, x) + Qεuε(t, x), t ∈ [0, T ], x ∈ Rn,

{u − uε}(0, x) = (g − gε)(x), x ∈ Rn,
(8.3)
where
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Qε = (aε(t) − a(t))

n ∑︂
j=1 

D2
xj

+
n ∑︂

j=1 
(aj,ε(t)bj,ε(x) − aj (t)bj (x))Dxj

+ (a0,ε(t)b0,ε(x) − a0(t)b0(x)).

So, we have the following estimate

∥{u − uε}(t)∥2
Hm ≤ Cm

⎧⎨⎩∥g − gε∥2
Hm +

t∫︂
0 

∥(f − fε)(τ ) + Qεuε(τ )∥2
Hmdτ

⎫⎬⎭
≤ Cm∥g − gε∥2

Hm + Cm

t∫︂
0 

∥(f − fε)(τ )∥2
Hmdτ + Cm

t∫︂
0 

|aε(τ ) − a(τ)|2∥uε(τ )∥2
m+2dτ

+ Cm

t∫︂
0 

n ∑︂
j=1 

max |α|≤m
sup 

x∈Rn

|aj,ε(τ )Dα
x bj,ε(x) − aj (τ )Dα

x bj (x)|2∥uε(τ )∥2
m+1dτ

+ Cm

t∫︂
0 

max |α|≤m
sup 

x∈Rn

|a0,ε(τ )Dα
x b0,ε(x) − a0(τ )Dα

x b0(x)|2∥uε(τ )∥2
mdτ.

Now we observe the following:

(i) Since in this case we are regularising regular functions, it is easy to conclude that the regu
larisations aε , aj,ε and bj,ε satisfy uniform estimates with respect to ε. So, in this particular 
case, we obtain estimate (6.20) uniformly with respect to ε. Hence, for any m ∈N0,

∥uε(τ )∥2
m ≤ Cm, ∀ε ∈ (0, ε0).

(ii) We have the following uniform convergence

sup 
t∈[0,T ]

|aε(t) − a(t)| → 0 and sup 
t∈[0,T ]

|aj,ε(t) − aj (t)| → 0.

(iii) We also have bj,ε → bj in B∞(Rn) as ε → 0, i.e., for any β ∈ Nn
0 it holds

sup 
x∈Rn

|∂β
x bj,ε(x) − ∂β

x bj (x)| → 0, as ε → 0.

(iv) (g − gε)ε and ((f − fε)(t))ε are H∞-negligible nets, provided that we regularise the initial 
data g and f via mollfiers with all vanishing moments.

We therefore conclude uε → u in C([0, T ];H∞(Rn)).

Proposition 8.4. Assume that a ∈ C([0, T ];R), a never vanishes, aj ∈ C([0, T ];C), bj ∈
B∞(Rn) for j = 0,1, . . . , n and |bj (x)| ≤ C⟨x⟩−2 for j = 1, . . . , n. Assume moreover g ∈

H∞(Rn) and f ∈ C([0, T ];H∞(Rn)). Then, if we use mollfiers with all vanishing moments 
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to regularise the Cauchy data, any very weak solution converges to the unique classical solu
tion in the space C([0, T ];H∞(Rn)). In particular, in the classical case, the limit of very weak 
solutions always exists and does not depend on the regularisation.

Data availability

No data was used for the research described in the article.
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