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Abstract
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and it is unique modulo negligible perturbations. Very weak solutions converge to classical solutions when
the equation coefficients are regular enough.
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1. Introduction

The problem of existence of a unique solution to the initial value problem for Schrodinger type
equations in suitable spaces of functions or distributions has been widely investigated in litera-
ture in the past years: the Schrodinger equation is indeed the fundamental equation in Quantum
Mechanics. Many papers deal with it, in the linear and nonlinear case, in the deterministic and
stochastic case, for flat or asymptotically flat metrics, with or without potentials. Several results
of existence and uniqueness of a (possibly weak) solution have been given under suitable as-
sumptions of regularity on the coefficients of the Schrodinger operator. The aim of this paper is
to go beyond such assumptions of regularity. Although the literature on this topic is huge, let us
try to summarise some basic facts. Consider the initial value problem

Su(t,x)= f(t,x), te[0,T], xeR", (L1
u(0, x) =g(x), x e R", '

associated to a class of Schrodinger type operators of the form

n
S=D;—a®)As+ Y cj(t.x)Dy; +colt.x), te[0,T], x eR",
j=1

where A, 1= Z’;‘:l 8)%]_ and D := —id. The well-posedness of the problem (1.1) is well under-
stood in the case when the coefficients are at least continuous with respect to ¢ and of class
B> (R") with respect to x, where B°°(R") stands for the space of all complex-valued smooth
and uniformly bounded functions together with all their derivatives. When all the coefficients
c¢; are real-valued, the lower order terms define a self-adjoint operator and, in this case, well-
posedness is obtained in a straightforward way. When some of the coefficients c¢; have a non
identically zero imaginary part, the situation is more delicate. We summarise some of the known
results:

e When the coefficients do not depend on the time variable and a(¢) = 1, a necessary condition
to H* =(,,cg H" (R") well-posedness is that there exist constants M, N > 0 such that

P
n
sup Z/Imc,(x+w0)d9 <Mlog(l1+p)+N, Vp=>0,

xeR", wesn—1 j=1 0
see [15];

e the previous condition is also sufficient in the case n = 1, otherwise technical assumptions
on the derivatives of ¢; have to be added, see [16];

e if a(¢) is real-valued and continuous, c;, co are continuous in ¢ and of class B> (R’) and
[Im (cj(t,x))| < C{x)° for every x € R" and t € [0, T], where (x) := (1 + |x|*)!/2, then
the Cauchy problem (1.1) is well posed in H” (R") for every m € R if o > 1, in H*(R") if
o =1 and in Gevrey classes of index s <1/(1 — o) if 0 <o < 1, see [17];

e the case when a(?) vanishes of some order has been investigated in [5], where the authors
obtained a well posed Cauchy problem either in H* or in Gevrey classes depending on the
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vanishing order of a(¢) and on the corresponding Levi conditions that they ask on the lower
order terms c;;

o the Gevrey well posedness under assumption [/mc;(t,x)| < C{x)™?, 0 <o < 1, in the
case of a Gevrey index s > 1/(1 — o) has been investigated in [3], under exponential decay
assumptions on the data;

o the Cauchy problem for Schrodinger-type equations in Gelfand-Shilov spaces has been stud-
iedin [1] and [2].

Concerning Schrodinger equations with singular coefficients, there are several works treating
the case of singular potentials, that is when ¢ belongs to L? or modulation spaces, see for instance
[4,6,7]. In these papers, the coefficients of the lower order terms are real-valued.

The aim of this paper is to analyse a very singular situation, that is when all the coefficients of
the lower order terms may be distributions. Namely we focus on operators of the form

S=D;—a(t)Ax+ Y a;(Obj(x)Dy; +ao(bo(x). t€[0.T], xeR",  (12)
j=1

where a(t) is a real-valued bounded function which never vanishes, a; and ag are compactly
supported distributions on an interval I containing [0, 7] and b;, by are certain tempered dis-
tributions that we shall define later on. The choice of coefficients defined as tensor products is
motivated by their different behaviour with respect to time and space variables.

The situation described above is clearly very general and therefore requires a redefinition of
the notion of solution of the problem (1.1) because of intrinsic problems due to multiplication
of distributions. In the recent papers [11,12], the last author et al. treated hyperbolic equations
with discontinuous functions or compactly supported distributions as coefficients and introduced
the concept of very weak solution. Note that evolution equations with non-regular coefficients
appear frequently in geophysics when modelling wave transmission through the Earth subsoil
which has a multilayered and therefore discontinuous structure. However, allowing distributional
coefficients leads to the major problem of identifying a reasonable notion of solution since the
equation operator might fail to be well-defined when the coefficients are less than continuous.
Following the approach introduced in [12] we will replace the operator S with a family of reg-
ularised operators Sg, € € (0, 1], obtained via convolving the irregular coefficients with a net of
mollifiers @, ) (1) = w(e) " ¢(-/w(e)), where w(e) is a positive scale converging to 0 as defined
later in the paper. We therefore look at the net of solutions (u;), of the regularised problem and
we provide a qualitative analysis of (1), with respect to the parameter ¢ by analysing its limiting
behaviour as ¢ tends to 0. In a nutshell, this means to find a very weak solution for our Cauchy
problem. For recent applications of the theory of very weak solutions and for some new insights
provided via numerical experiments we refer the reader to [8,9,13,21]. The paper is organised as
follows. In Section 2 we describe our main result concerning the existence of a very weak so-
lution for the Cauchy problem (1.1) and we provide the needed preliminaries. The construction
and analysis of the regularised problem is given in Section 3. Few results concerning pseudo-
differential operators employed in the paper can be found in Section 4. The proof of our main
result is spread throughout Sections 5, 6 and 7, with a different approach for the 1-dimensional
case and n-dimensional case. The paper ends with Section 8, where we discuss the uniqueness
of the very weak solution and we prove consistency with the classical theory in case of regular
coefficients.
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2. Main result

In this section we state our main result concerning the existence of a very weak solution for
the Cauchy problem (1.1). The statement requires some preliminaries.

Let ¢ be a Schwartz function such that fR" ¢ = 1. Given a positive scale w(g), € € (0, 1], i.e.
w is positive and bounded, w(¢) — 0 as ¢ — 0" and w(e) > ce”, for some c, r > 0, we define

5 (o)
PORAVIOYA

As usual, tempered distributions can be regularised via convolutions with the net (@y¢))s. The
following result, which deals with regularisations of different kind of distributions and functions,
follows from standard arguments, as in [12,14,22], and for this reason we shall omit the proof.

P (e) x) =

Proposition 2.1.
o Ifu e .”'(R") then there exists N1(n,u) = N1 and N»(u) = Ny such that for any B € N :
107 (urie) # W) ()] < Cpar (&) M1 x) N2

for some positive constant Cg;
o Ifu € &' (R") then there exists N (n, u) such that for any B € Ny:

108 (@) * u) (x)]| < Cpaw (e) NPl

for some positive constant Cg;
o Ifu € BX(R") then for any B € N there exists cg > 0 such that

108 (@u(e) * 1) (X)] < cp;

e Ifu € B®(R") and ¢ has all moments vanishing, i.e. [ x*@(x)dx =0 for all « # 0, then for
any B € N and any q € Ny there exists cg 4 > 0 such that

108 (@ue) * 1 — u)(X)| < cpg(w(e)).

We point out that from w(¢) > ce” it follows that w (¢) V=18 and w () =¥ ~!#! in the propo-
sition above can be replaced by e ™™ for some M depending on u, n, B and the scale w.

In the sequel we consider the concept of H°-moderateness and H *°-negligibility of nets of
H(R") functions and analogously the same concepts with H replaced by B°°. Note that
we will work with nets of functions in the variables 7 € [0, T] and x € R” and that we will
always assume boundedness with respect to ¢ € [0, T]. H*°- or B°°-estimates will be therefore
considered with respect to the space variable x.

Definition 2.2.

(i) Let (ve)e € {C([0, T]; H®(R"))}O 1], We say that the net (v,), is H>-moderate if for any
m € Ny there exists N € Ny and C > 0 such that

llve(, Hlgm < Ce™™, Vrel0,T), &€ (0,1].
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(i) Let (ve)e € {C([0, T]; H®(R™))}O-11, We say that the net (v,), is H>°-negligible if for any
m € Ny and for any g € Ny there exists C > 0 such that

lve(t, Hlgm <Ce?, Vtel0,T],ee€(0,1].

(iii) Let (vy)e € {C([0, T]; B®(R™))}O11 We say that the net (v,), is B°-moderate if for all
B € Ny there exist N € Ny and C > 0 such that

sup |8fv8(t,x)| < CsiN, Vte[0,T],e €(0,1].
xeR”

(iv) Let (vy), € {C([0, T]; B> (R™))}O-11, We say that the net (vg), is B®-negligible if for all
B € Ny and for all g € Ny there exists C > 0 such that

sup |8£vg(t,x)| <Ce?, Vte[0,T],ec(0,1].

xeR~

Remark 2.3. The above definitions (iii) and (iv) are a special case of C°°-moderateness and
C*°-negligibility, respectively where we ask a uniform estimate on the whole R” instead of on
compact sets. See [14,22]. Note also that by Sobolev’s embedding theorem H*°(R") C B*°(R").
Hence, (i) implies (iii) and (i) implies (iv).

Now we introduce the concept of very weak solution that we are interested in.

Definition 2.4. The net (u,), € {C([0, T]; H®(R")}*11 is a H>® very weak solution for the
Cauchy problem (1.1) if there exist

e B%°-moderate regularisations (a.), and (a@je)eofaanda;, j=0,1,...,n,
e B°°-moderate regularisations (b; ;). of bj, j=0,1,...,n,
e H™-moderate regularisations (f¢)¢, (g¢)e of the Cauchy data f and g,

such that, for every fixed ¢, u, solves the Cauchy problem

{ng(t,x)zfg(t,x), 1€[0,T], x eR”, o

v(0, x) = gq (x), xeR,
for the regularised operator
n
Se =Dy —as(tH))Ax + Zaj,a(t)bj,s(x)ij + aO,e(I)bO,s(x)a 1€[0,T], x eR", (2.2)
j=1
and (i), is H°°-moderate.
Remark 2.5. The definition above is not affected by replacing the parameter interval (0, 1] with
any smaller interval (0, eg9]. This is actually quite natural when regularising distributions on a

bounded interval [0, T] as we will see in the next section.
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To obtain a very weak solution for (1.1) we need to solve the regularised problem (2.1), (2.2) in
H*>(R"). So, in order to apply the techniques coming from classical theory, for instance the ones
used in [17], we need the following behaviour for the regularised coefficients and regularised
data:

a.(t) should be a real-valued continuous function on [0, 7] which never vanishes;
aje(t), j=0,1,...,n, should be continuous functions on [0, T'];

bje(x), j=0,1,...,n, should belong to B> (R");

[Im(a;e®)b;(x)| S (x)7%, j=1,...,n, uniformly in ¢ and for some o > I;
fe € C([0, T]; H*®(R")) and g. € H*(R").

We therefore need a suitable set of hypotheses on the coefficients a, a;, b; and on the data f, g
in such a way that once we regularise them, the obtained regularisations satisfy the conditions
above and the needed moderateness assumptions.

Regarding the coefficients a, a;, j =0, 1, ..., n, we have the following quite natural hypothe-
ses:

a(t)is a positive bounded function such that 0 < C, < a(t) < Ca:
aj € g, j=0,1,...,n, wherelisan open interval containing [0, T].
In order to find suitable assumptions for the coefficients b;, j =0,1,...,n and data f, g
we need to take into account both regularity and behaviour at infinity. From Proposition 2.1 we
know that regularisations of tempered distributions in general do not give functions in B> (R").

Therefore we are led to consider some subclass of tempered distributions. A first possibility
based on classical distributional spaces could be assuming b; and b in

r=F 'Ou={ue s R :weOy)

where
Oy = {f € C™(R") : for any o € Ny there is p > 0 such that sup{(x) 7|8y f(x)[} < oo} .
X

In this case the regularised coefficients turn out to be Schwartz functions.
Since Schwartz regularity, in particular rapid decay, is much more than what we need, we
introduce the following spaces: for any i € Ny we consider

H*OO,i (Rn)

= {u € .7'(R"): forall |f| <i thereis pg > 0 such that Ssuﬂg |8§ﬁ(§')| < Cﬁ@:)l’ﬂ} .
e n

(2.3)

The motivation to consider the above space is the following: if u € H %%/ (R") then 77 € C! (R")
and all the derivatives 327 up to order i have at most a polynomial growth, hence the regularisa-
tion u, = u * @, will be a B(R") function with decay (x)~'. Indeed, take o € Ng and |B| <i.
By straightforward computations we have
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1 . —
Baa _(_1\B___ ixE B
xPoyue(x) =(=1) (o) / e D {u(§)0*p(w(e)§)}dE,

where d§ := (2‘;—5)”. So, for all @ € N{j and || < i there exists p = p(u,i) > 0 such that

P 0% ue (x)| < Car(e)™" 71177, (24)
which allow us to conclude our intuitive assertion. We also point out that if i > n + 1, then
u, and all their derivatives belong to L%(R"), so, in view of (2.4) we conclude that (u,); is a
H°-moderate net.

Example 2.6. For all £ € R we consider
p(&) =sin(e )e ¢
We then have
a . 52 . 52 _52
e p(§) =cos(e® )2& —sin(e® )2&e

and any higher order derivative Bg‘ p (o > 2) cannot be bounded by a polynomial. Therefore
a=F"Yp)e H®I(R) - O.

Since p has a super exponential decay for |£| — 400, then a € C*. On the other hand, if we

consider for instance

_ sin(ef — e 5 —&, £>0,
AE) = 0. £ <0,

we have b=F 1) e H~1(R) — O, but in this case b is not even a function.

Remark 2.7. For any i =0, 1, 2, ... the following inclusions hold:

gl(Rn) C O/C C H*OO,Z.+1(RII) C H*OO,Z'(RV!) C H*OO(RH) — U Hm(Rn) Cy/(Rl’l)
meR

We are finally ready to state the hypotheses that we are going to consider on the coefficients
bj,j=0,1,...,n

bj e H™®*R"), j=1,...,n, bye H ®R").
For the Cauchy data we shall ask the following:
feC(0,T], H "R, g € H TR,
Note that we endow the space H ~°>"*!(R") with the following notion of convergence (and
related topology): we say thatu ; € H —oont1(R™) converges to u € H~°"+1(R") if there exist

p > 0and C > 0 such that
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sup  faeE) P <c. s [pfaeNE T <C
&eRn |BI<n+1 £eR™ |B|<n+1
jeNy

and

sup (&) P19 @ — @) ()] > O as j — oo.
£eNo,|Bl<n+1

It easily follows from the arguments seen below that if f € C([0,T]; H —oon+l(R7Y)) then
fe(t, %) == @ue)(x) * f(t,x) € C([0, T]; H*(R")) and there exists p > 0 such that

192 fo(t,x)| < Cpe™ P~ IPlixy™=1 1 €[0,T],x eR".
We are now ready to state our main result.

Theorem 2.8. Consider the Cauchy problem (1.1) under the following hypotheses on the coeffi-
cients:

(1) a(t) is a real-valued function satisfying
0<Cy<a()<C, t€l[0,T], (2.5)

(i) aj €&'(I), j=0,1,...,n, where I is an open interval containing [0, T},
(iii) bj € H™2*R"), j=1,...,n, and by € H=O(R").

Assume f € C([0, T1, H= "t (R")), g € H=" 1 (R™). Then, (1.1) admits a very weak solu-
tion of H type.

Remark 2.9. A decay like (x)~! is enough to get a solution in H > (R") for the regularised prob-
lem (2.1), see [17], so in principle it would be sufficient to take the coefficients b; € H~>> L(R™M).
However, in this case the solution of the regularised problem would exhibit a loss of Sobolev reg-
ularity with respect to the initial data. This loss depends in general on the first order coefficients,
and hence also on the parameter ¢. This would make the dependence of the constants appearing
in the energy estimates very difficult to control. For this reason we decided to take the coefficients
bjin H —%.2(R™) because under this assumption the solution of the regularised problem has the
same regularity of the initial data.

The proof of Theorem 2.8 consists of several steps and it is organised as follows. In Section 3
we regularise the Cauchy problem (1.1), constructing then a family of regularised associated
Cauchy problems. These regularised problems will admit a unique classical solution in H*°(R").
By solving these Cauchy problems in the H* framework, we will obtain a net of solutions
(1g)ee(0,60] for some sufficiently small &g > 0. Moreover, we will also derive energy estimates
for the solutions u, writing explicitly how the constants depend on the parameter €. Since the
regularised problem can be treated in a simpler way in space dimension 1 we dedicate Section 5
to this case which easily illustrates the main ideas of our method. In Section 6, we treat the
case of arbitrary space dimension where a pseudodifferential change of variable will be needed,
leading to a more technical proof.
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3. Construction of the regularised problem

In the present section and in Sections 5, 6 we are going to use the positive scale w(€) = ¢ for
simplicity’s sake. We shall come back to a generic w(¢) in Section 7, where a specific positive
scale is needed (see (7.1)).

For any given Schwartz function ¢ € . (R”) we recall the notation

X
&

1
b= =0 (2). eec1L
3.1. Regularisation of a(t)

Let ¢ € < (R) satisfying 0 < ¢ < 1 and f ¢ = 1. In order to regularise the coefficient a(t) we
first extend it to the whole real line, then we convolve it with the family ¢, and lastly we restrict
the result to the interval [0, T']. More to the point, we consider the extension

a(t), te€][0,T],

a(T), telT, T+1],
a(0), tre[-1,0],

0, teR—[-1,T +1].

a) =

Then we set a, :=a * ¢., ¢ € (0, 1], and

ag := agljo. 17 - 3.1

Now we discuss a uniform lower and upper bound for a, with respect to the parameter ¢. By
definition, for all € [0, T'], we have

T+1
ag(t) = ae(t) = /é(s)@(t —s)ds = / a(s)ge(t — s)ds.
R -1
Since C, < a(s) < C‘a we get
T+1 ~ T+l

Ca ¢<t1>dssag<r)s@/¢<t_s)ds.
£ £ £ £

—1 -1
A suitable change of variables implies

¢ (s)ds <ag(t) <C, f é(s)ds.
T+

41
T+

Hence, taking ¢ < &g, where ¢gq is small enough, we get

Ca

+1 +1
& &
1—-t 1—t
& &
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Cq ~
7 S ae(t) S Cd7 re [07 T]’ S (09 80)' (32)

141
Indeed, denoting I.(t) = f_S”H ¢ (s)ds, it suffices to notice that lim,_, o+ I () = 1 uniformly

int [0, T].
3.2. Regularisation of a(t), j=0,1,....n

Let ¢ € . (R) such that [ ¢ = 1. We then define

r— -

1
aje(t) = (a; *%)(f):gaj <<ﬂ <T>> (3.3)

Since aj € £'(I) CE'(R), j=0,1,...,n, there exist a compact set K C R, C > 0 and No € N
such that

laj(M) <C Y sup [9%h(x)|, YheC®R).
xeK

0151\70
Hence, we immediately get
laj.o ()] < Ce™™0 max [|9%¢]|oo, (3.4)
a<Nyp
where N is the maximum of the orders of aj, j =0,1,...,n, plus 1.

3.3. Regularisation of bj(x), j=0,1,....n

Let p € #(R") with [ p = 1. We then define

1 —.
bje(x):=(bj*pe) = S_nbj (p (x . )) . (3.5)

Since b; € H=®2(R"), j =1,...,n, and by € H=O(R"), we get bj. € BXR"), j =
0,1,...,n, and the following estimates hold

108b; o (x)] < Cpe™PITN1L ()20 18P by o (x)] < Cpe™PI7NT, (3.6)

where N1 > 0 is a number depending on the coefficients b;, j =0, 1, ..., n, and on the dimen-
sion.
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3.4. Regularisation of the Cauchy data

Let u € (R") with [ =1.
Let f € C([0, T], H~®"+(R")) and g € H~°>"*t1(R"). We then define f,(z, x) = e (x) %
f(t,x) and g.(x) = ue(x) * g(x). The following estimates hold:

108 fo (1, )] < Cpe™ BI7Ns ()= 9B | < Cpe BI=Ne (x)=(nHD), 3.7)

where N > 0 is a number depending on f(¢) and on the dimension 7, Ng > 0 is a number
depending on g and on the dimension n. By these estimates we immediately get that for all
m € Ny there exist C > 0 and Ny € Ng and N, € Ny such that

I fet. Hlam < Cunye™™F, V1 €[0,T], &€ (0, 1]

lgellm < Cmvee™ e, Ve (0,11

We are finally ready to define the family of regularised Cauchy problems that we shall study
in the next sections. We consider the family of regularised operators

n
Se=D;—a:()Ay+ Y aje(t)b)c(x)Dy; +a0:(Oboc(x), 1€[0,T],x eR", € (0,0,
Jj=1
(3.8)
and then the family of regularised problems

Sev(t,x)= f(t,x), tel0,T], xeR",

3.9
v(0, x) = g(x), x eR”",

where f € C([0, T]; H®(R")) and g € H*°(R"). In the next sections we will obtain a net of so-
lutions (u¢)ec(0,¢,] Where for every ¢ the function u, € C([0, T]; H*°(R")) is the unique solution
of the Cauchy Problem (3.9). Moreover, we will also derive energy estimates for the solutions
u, expliciting how the constants depend on the parameter ¢. Finally, thanks to these energy esti-
mates, we will be able to prove the main result of the paper.

4. Pseudodifferential operators

In this section we collect some results and definitions concerning pseudodifferential operators
that we will employ in the next sections. For the proofs we address the reader to [19].

Definition 4.1. Given m € R, p € [0, 1], € [0, 1), we denote by SKB(RZ") the space of all

smooth functions p(x, &) € C*(R?") such that for any o, # € Ny there exists a positive constant
Cy,p satisfying

19200 p(x, )] < Cyp ()OIl
The Frechét topology of the space S7' ;(R*") is induced by the following family of seminorms
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Y= max sup [9g0l p(x, £)|(5) Ol p e s R™), € e Ny.

[P
| <CIBISE ¢ g cRon

Remark 4.2. When p =1 and § = 0 we simply write S™ (R?") instead of S;’fO(R”’). When
p =8=0wehave S ,(R™") = B (R>").

Given a symbol p(x,&) we associate to it the linear and continuous operator p(x, D) :
S (R") - L (R") defined by

p(x, Dyu(x) = / e p(x, )UE)AE, ue SR,

We will sometimes also use the notation op(p(x, §)) instead of p(x, D). The next result concerns
the action of such operators on Sobolev spaces.

Theorem 4.3. [Calderon-Vaillancourt] Let p € S/'f B(RZ”). Then for any real number s € R there
exist £ :={€(s,m,n) € Ng and C := Cy ,, > 0 such that

lp@e. Dyullas < Clply™ llullgson, Vue HT".
Moreover, when m = s = 0 we can replace |p|,(1m) by

max  sup 829 p(x,&)|(g) OBl
al<trIBl<ts s gon § FT

where

51:2Lf+1j, erLLHJ.
2 2(1—9)

Now we consider the algebra properties of S;"y 5(R2”) with respect to the composition of
operators. In the sequel Os— in front of the integral sign stands for oscillatory integral. Let
pj€ SZ%(RQ”), Jj = 1,2, and define

4(x.6) = 05 — / / e p1(x &+ M pa(x + v, E)dydy @.1)

= Ay /f e pi(x, &+ ) palx + y, E)e e I gy,

Theorem 4.4. Let p; € SZ'Q(RZ"), Jj = 1,2, and consider q defined by (4.1). Then q €

S;:ig+m2 (R?") and q(x, D) = pi(x, D)p>(x, D). Moreover, the symbol q has the following
asymptotic expansion

1
g, 6)= Y — P, DI pa(x, 6) +rv(x, §),
la|<N ~°
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where
N 1
v &= 3 S [a=0N 05— [[[ 0 pie &+ 0m D pats + v, Oy
lyl=N"" 0

and the seminorms of ry may be estimated in the following way: for any £y € Ng there exists
Ce.n.n > 0 such that

(m2)

(my+m2) (m1)
|rN|go fCZ,N,n|p1|gO+N+n+1|p2|gO+N+n+1-

The last theorem that we recall is the celebrated sharp Géarding inequality (see Theorem 2.1.3
in [18]).

Theorem 4.5. Let p € S'(R?") and suppose Re p(x, &) > 0 for all x € R" and |&| > R for some
R > 0. Then there exist k = k(n) € Ny and C = C(n, R) such that

1
Re (p(x, Dyu,u)2 > —Clpl ul2,,  ue S ®RM.
5. Solving the regularised problem: the case n =1
Let us consider the Cauchy problem (1.1) in the case n = 1. We apply to the coefficients

and to the Cauchy data the regularisation described in Section 3 and we come to the regularised
problem (3.9) for the operator

Se =Dy —}—ag(t)D% +a1e(t)b1.:(x)Dx +ao ()b (x), t€[0,T],xeR,ee(0,e0]. (5.1)

We now consider the function

X

Bro(r) = f bro()dy, xeR.
0

Using the fact that |by .| < Ce~M (x)~% we conclude B € B*(R) and
108 By ¢ (x)] < Cpe™M17F. (5.2)
Since a, never vanishes, we can define

iay (1) By (x)

Fet.0)=—2"0

, tel0,T], xeR.

Conditions (3.2) and (5.2) imply that F, € C([0, T]; B*°(R)) and

’eFE(t,x)

<exp (CC;IE_NO_N'>. 5.3)
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Our idea, inspired by [20], is to eliminate the first order coefficient by performing the follow-
ing conjugation

p— er(l;x)

S&‘,Fg : *Fs(lvx).

oS;oe
We have:

Bie(x) are(tag(t) — ay (Dae(t)
2 az(t) ’
efe oa.(t)D? 0 e = a, (1) D2 — a1 ¢ (1)b1 ¢ (x) Dy + ag (V{82 Fe — (3x F)?)

ef*oD,oe ™ =D, — D,F. =D, +

i
= as(t)D,% - al,s(t)bl,s(x)Dx + Eal,s(t)axbl,s(x)

1 2
+ m(al,s(t)bl,s(x)) ,

(a1,6(0)b1,6(x))*

ef* 0ay (b1 (x)Dy 0 e = ay ()1 £ (x) Dy —
2a, (1)

Therefore

Se.r, = Dy +ae (1) D? + Ag 4 (t, x),
where

By e (x)(a1e(Day(t) —a) (Dag(1)) i
2613(1‘) + Eal,s(t)axbl,s(x)

Ag,e(t,x) = a0, (1)bo. (x) +
_ (a1,6(1)b1 ¢ (x))?
da. (1)
We remark that the operator S, r, maintains the same structure as (5.1) but has no terms of order
one. Writing 8, = iS¢, — ias(t)D? —iAg¢(t, x), we obtain
Illu(®)|7 > =2Re (du(t), u()) 2
=2Re (iS¢ pu(t),u(t));2 —2Re(ia (t)Dfu(t), u(t))2 —2Re (iAo (t)u(t), u(t));2

=0

< Se,u@Z2+ | 14+2 sup [Age(t, )| | [u@)l3..
t€[0,T]
xeR

Applying Gronwall lemma we get
1
()72 < exp (r (1 +2sup| Ao, (1, x>|>) @)1 + / IS¢, Fu ()1 72d7
t,x
0
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We estimate Ag (¢, x) in the following way
|Ag,e(t, )| < CC e Not N

where C > 0 denotes a constant which may depend on a, ay, ag, b1, bo, ¢, ¢, p, but does not
depend on ¢. Therefore

t
lu(®)||3, < exp (1€ Cr2e2N0TNO=1) Ly )12, + | 1S, (D) 0dt . (54)
L L L
0

To obtain (5.4) with general Sobolev norms, m € Ny, we observe that
Se.Fom 7= (Dx)" 0 8¢, 0 (Dy) ™™ = Dy + ag(t) Dy + (Dy)" Ao,e (t, x) (D)™™
We have
(Dx)" Ag,e(t, x)(Dx) ™" = o e (t, x, D)
where
Om,e(t,x,8) = Os — ff eTVE 4+ )" Ao.e (1, X + y)(§) " dydn
= [[ 020, {2 D (e " At 4 067
Calder6n-Vaillancourt Theorem implies
lom,e (1, x, Dyull 2 < CruCy2e2MFNO= =3y,
In this way, proceeding in analogous manner as before, we obtain for any m € Ny the follow-

ing a-priori estimate:

t
()| 2m < exp (zcmc;25—2<N0+N1>—m—5) 11 (0) | 2m + / 1Se. £ u() [ 5mdT § . (5.5)
0

Energy inequality (5.5) gives the following proposition.

Proposition 5.1. Let f e C([0, T]; H™(R)) and g € H™(R). There exists a unique solution u in
C ([0, T]; H™(R)) for the Cauchy problem

{Ss,psu(r,x)zf(t,x), te[0,T],x €R, 56

u(0, x) =g), x eR,
and the solution u satisfies (5.5).
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The above proposition gives H*°-well-posedness for the problem (3.9). Indeed, first let us
consider the auxiliary problem

Se.pvt,x)=e9 f(t,x), te€[0,T],x R, 5.7)
v(0, x) = e O g(x), x eR. '

It is not hard to conclude that for h € H™ (R) (m € Np)

leXFe U h ()| gm < €,y max sup |98 eEF | 11| grm
=My eR

_ —(Nop+Nyp)
meCa‘

< Cpe s

Let v, € C([0, T], H°°(R)) be the solution of (5.7). Then u, = e Fe v, defines a solution for
the regularised Cauchy problem (3.9). Next we observe that the energy inequality (5.5) implies
for every m € Ny

2 —F, 2 —2m 2Ce2(No+Np) 2
e ) 3m = lle™ e Qv (0) | Fm < Crye™ 2" e** [ve (D)

t
_ —2(Ng+N1) _ o —
< C, e~ 2m2Ce N0 1exp(tcms 2(No+N1)—m 5) ||er<°>g||%,m+/||er<f>f(r)||§,mdr
0

t
_ —2(No+Np) _ —m—
Scmg 4me4C8 0 lexp(tcme 2(No+N1)—m 5) ”g”%]m‘i_/”f(f)”%]mdr
0

The uniqueness of the found solution follows by standard arguments. We summarise what we
have done in the following theorem.

Theorem 5.2. For every ¢ € (0, gg], where &g is a small parameter so that (3.2) holds, consider
the regularised Cauchy problem (3.9) with initial data f € C([0, T]; H*(R)) and g € H®(R).
Then there exists a unique solution u, € C([0, T]; H*(R)) for the problem (3.9). Besides, the
solution u, satisfies for every m € Ny

t
llite | 2m < Cpm exp (Cm,Ts‘2<N°+N‘>‘9'") llglm +/ I £ (@ 3mdr ¢, (5.8)
0

where

(1) Cp and Cp,, T are constants depending on the coefficients a, ay, ag, b1, by and on the molli-
ﬁers P, ¢a @y

(i) Ng stands for the maximum of the orders of ag and a; plus 1;

(iii)) N is a positive number depending on the coefficients bg, by;

@iv) 6y, is a natural number depending on m.
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6. Solving the regularised problem: the n-dimensional case

Let us now come to the regularised problem (3.9) for the operator (3.8) in the case of space
dimension n > 2. To solve this problem we need a change of variable as in the monodimensional
case but in this more general situation, the change cannot be driven by a function, it has to be
expressed in terms of a pseudodifferential operator.

We will follow the argument used in [17]. For any M > 0 there exists a real-valued function
A(x, &) satisfying the following conditions

10¢ 9P A (x, £)| < MCaplg| !, xeR" €| > 1,0, NG,

D EjdAx,E) < —M(x) 7 x (%) €,

j=1
where y (t) € C2°(R) satisfies x(t) =1 for |¢t| < % x(@)=0for |t|>1,tx'(t) <0and 0 <

x (t) < 1. For a large parameter # > 1 to be chosen later on, we consider

M, E) =A(x, E)(1—x) ('fl—') 6.1)

Then, since (£}, < +/5h on the support of (1 — x) (" [&]),
108 0L 1(x. )] < MCa,p(8),

where (£)), := +/h? + |£]2 and the constants Cq,p do not depend on M and on A. So, X is a
symbol of order zero with respect to the basic weight (§);,. Moreover, we also have

3 Ejdy . 6) < —Mix) 2y (%) £1(1 =) (%) . 6.2)

j=1

For a suitable choice of M and 4 := h(M) (M and h will depend on the parameter ¢) we will
prove that e*(x, D) is invertible and the conjugated operator

Ses :=e*(x, D)o S o {e*(x, D)}

satisfies a priori energy estimates, yielding a well-posed associated Cauchy problem. The main
effort here is to check carefully how the constants in the energy estimate depend on the parame-
ters M, h and ¢.

6.1. Invertibility of ¢*(x, D)

We begin with the following elementary lemma.
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Lemma 6.1. The following estimates hold

|e:tA(x,§)| SeCM’ |3gafeik(x,é)| 5M“”ﬁ'cmﬁ(g),j'“'eﬂ(x@,

where the constants Cy g and C do not depend on M and on h. In particular, e is a symbol of
order zero and its seminorms can be estimated as

|eﬂ|§0) <CM* M g eN,,
where Cy does not depend on M and on h.
Now we consider the composition
e)‘(x, D) oe_)‘(x, D)=o(x, D),

where

o(x,€)=0s — // e—iyne)\(x,&n)e—x(xﬂ,g)dydn

=1+ ) 0, Mx, £)d; A(x, £) +72(x, £),

j=1

=r(x,§)

1

2 , ‘

roa(x, €)= Z WOS_/f e_’y”/(l —9)8;e)‘(x’5+0")d9D;/e_)‘(xﬂ’s)dy&'n. (6.3)
yl=2"" 5

The estimates provided by Lemma 6.1 give
|r72|§72) < Ce)nM4Z+2n+662CM < Cg,ne(ZC“)M, ¢ e N,
where Cy , and C do not depend on M and on /. Next we observe that
ek(x, D)o e_)‘(x, D)=1+r(x,D),
r(x, &) has order —1 and

1=
192987 (x, €)] < Capne® DM (g), 17

S Ca,ﬂ’ne(2c+l)Mh_l (€>—|Dt|

Hence, if we chose h > ho(M, n) := Ae@CHtDM where A > 0 is a number depending on the
dimension and on a finite number of derivates of r (x, £), Calder6n-Vaillancourt theorem implies

r(x,D): L>(R") - L*(R")
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continuously and the norm sup{||r(x, D)u||;2: |lu|| < 1} < 1. Let us also notice that due to our
choice of hg, for all 1 > hg the zero seminorms of r do not depend on M. So,

U+r(, DY ' =) {=r(x, D) : L’ (R") > L*R")
j=0

and Theorem 1.1 of [19] (page 372) gives that
{I+r(x,D) " =s(x, D)
where s(x, &) is a symbol of order zero satisfying: for any £ € Ny there exists £’ € Ny such that
51y < Co(ir1)P < €t
Lemma 6.2. Forall h > ho(M, n) := AeCCHDM 10 operator e*(x, D) is invertible and we have

(¢*(x, D))" =e*x. D)oY (~r(x. D)),

j=0
where, for r_, given by (6.3),
PO, E) =0 0 A(x, £)d A(x, ) +ro(x, £).
j=1

Moreover,

> (=r(x. D)) =s(x, D),

j=0
where s(x, &) is a zero order symbol and its zero seminorms do not depend on h and on M.

We close this subsection writing the symbol s(x, £) in a convenient way:

s(x,D)=1I1—-r(x,D)+ Z(—r(x, D))j =1—-r(x,D)+ (r(x, D))zs(x, D)
Jj=2

=1—-opli anagj)»(x, §)0x;A(x, &) | —r—2(x, D)+ (r(x, D))%s(x, D).
Jj=1
So,
s(x,&)=1—i Xn:ag_,x(x, §)0x A(x, &) +5-2(x, §), 6.4)
j=l1
where s_;(x, &) has order —2 and satisfies
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i,

1088052 (x,£)] < Capne™ (£),> 7,
where the constants Cy g, and C do not depend on M and on 4.
6.2. Computing the operator S )

We start computing the symbol of

e}‘(x, D)D)%/_e_)‘(x, D),

which is
n
2, ) )
S‘] + Zlg/a)fj)"(-xq s) +l Zg‘] 8&7}&(}(, S)a)%)\’(_x7 %:) + qj,o(.x, 5)7
(=1
where
) 1
qjo(x,&) = Z —Os — // e—iyn/(l —9){8?(6}‘512)}()(’%‘+6n)d9D;’e—A(x+y,g)dyan’
=2’ )
|agaqu»0(x» &)l = Ca,ﬂ,ne(zc“)M(g);\al_
Hence
n n .
Hx,D)oac(t) y Dy oe ™ (x, D) =op | ac(t) ) &7 +ac(t)2i ) &dyA(x, &) (6.5)
j=1 = <

top|as(®)i) &) O h(x. £)dyMx.E) +a:() Y qj0(x.£)

j=1 =1 j=1
Now note that

—iag(z)ZDﬁj OZ(agzxaxlx)(x, D) =op —iag(r)Zg}ZaQA(x,g)axlx(x,g) (6.6)
j=l

=1 j=1 =1

—op [ 2a:(t)) &Y 0y {0e, M (x. £), A, £))

j=1 =1

+op |iac(t) ) Y 07 {0 h(x, §)dy A(x, £))

j=11t=1
From (6.5) and (6.6) we conclude that
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n
A 2 A —1
et (x. D)oas(1) ) D3 o {e"(x, D)}
j=1

=as(t) Y DI, +ac (02 Y (0 ), D)Dy; +ag(t)qo(x, D), (6.7)
j=1 j=1

where

qo(x, DY=op | D qjo(x, &) =2 & Y 0y {0,2(x, £)0y, A(x, §))

j=l1 j=1 =1

+Hi Y Y07 {0 Mx, £)d A, £))

j=1t=1

+2i0p | Y Ej0 AL E) +i Y EF D 0e A(x, E)0u A E) + Y qj0(x. £)
1 j=1

j=1 j=1 =1
n
oop [ —i Y B A(x.£)dcA(x. §)
j=1

n
+ e)‘(x, D)o ZD)%_;' o e_)”(x, D)os_»(x, D),
j=1

lg0(x, )1 < Cp e, (6.8)

for some positive constant C independent of &, 4 and M.

Next we study the conjugation of the first order terms. We have
¢*(x,D)oa; ()b (x)Dy; 0 e *(x, D)
= ;e (0 (x, D) 00p (b (g€ 4 i (00D (x, §)e ™))
= aj,a(t)bj,s(x)Dx_i + aj,a(t)ej,s,O(xa D),

where

eje0(x,§)=0s— // e_iy”e)‘(x’g"’”)bj,g(x + V)0 A(x 4y, E)e MO gyay

1
+ Z Os —// e_iy"/3gek(x’§+9")d9bj,s(x+y)§‘je_)“(x+y’$)dy&‘n.
lyl=1 0

Setting
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n
eco(t,x, D)= _ajc(t)ejco(x, D)
j=1

=Y Haj.c(Objc(X)Dy; +aje(t)ejco(x, D))
j=1

n
oop | i) 0 A(x, £)dyA(x, E) — s 2(x,8) |,
j=1
we get
n n
& (x, D)oY aj(Dbje(x)Dy; ofe*(x, D))" =" aj ()b o (x) Dy, +ec0(t, x, D), (6.9)
j=1 j=1
and we have the following estimate
1088l ec.o(t.x, )| < Copue™ NN =ta=IBlCM () 1o, (6.10)
where £, is a natural number depending only on the dimension and Cy g ,, C do not depend on

g, M and h.
For the zero order term we have

e*(x, D) 0 ag ¢ (t)bo ¢ (x) o {e* (x, D)} ™" = ag £ (t) &+ (x, D) o 5(x, D),

=:c0,¢(x,D)

where
C0.e(x,6)=0s — // e_"y”e)‘("’g"’”)bo,g(x + y)e_)‘(x"’y’g)dydn.
Hence
e*(x, D) 0.ap ¢ (1)bo, (x) o {e* (x, D)} = ag e (t)co.e (x, D), (6.11)
and we have the following estimate
0,6 (18838 co.e (x,8)] < Capue™ NN 7IBICM (g) 1o, (6.12)
where 1, is a natural number depending only on the dimension and Cy g, C do not depend on

e, M and h.
Combining (6.7), (6.8), (6.9), (6.10), (6.11) and (6.12) we conclude that

n n n
Sea =Dy +ac() ) Dy, + ) aje(Dbj(X)Dy; +ac(t)2i Y 3x;2(x, D) Dy +doe(t, x, D),
j=1 j=1 j=1
(6.13)
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where

do,e(t,x,8) =ag(1)qo(x,§) + ec0(t,x, &) + aoe(t)cos(x, §),
and we have the following estimate
10288 doe (1, x, )| < Ca,pne™ NN =0n=IPlCM () 1o, (6.14)

where 6, denotes a natural number depending only on the dimension and the constants Cg g,
C do not depend on &, M and h.

6.3. Energy estimate for the regularised problem
In order to derive an L? a priori energy estimate for S ; we write

iSep =0 +iac(t)y_ Dy + Y (—Im(aje(D)b)e(x)) = 2ae (1)@, 1) (x, D)} Dy,
j=1 j=1

| 1 &
+5 ;{m Re (@j(0)b)e(x) Dy, +dy; Re (a0 ()b o (1)} = 5 ; 3y Re (aj e (bj,e(x))

+d0,8(tv-xs D)'
We immediately note that

n
Re <ia8(t) Y Diu, u> =0,
L2

j=1

Re <% Z{lee (aj,g(t)bj,é‘(‘x))ij + axj Re (aj,E(t)bj,E(x))}u, M> = O
j=1 :

and
1 n
<§ > 0y, Re(aj e ()b o (x))u, u> < Cue™ NNy 2,
Jj=1 L2
On the other hand, Calderén-Vaillancourt theorem implies
|(do.e (1, x, Dy, u) 2] < Cre™ MO~ M =00 M a7,
The estimate of
n
<Z{—1m (a7,6(1)b.6 (x)) — 2ae (1) (3, 1) (x, D)} D, u, u>
j=1 L2
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is more complicate. We first consider the split

—Im (aje (b} NE{x W ED + (1 — ) E])
=—Im(a (b} ()& (1 — ) ED X ((x)IEIT)
— Im(aj.e ()b (X)E x (W ED X (x)EI™H
— Im(aj (Db (X)E x (W ENI — ) ()T
— Im (aje()bj e ())& (1 — x)(hEDA = X)(x)[E]).

On the support of (1 — x)((x)|&]~") it holds (x)~! < |&|7!, so from the decay (x)~2 of the
coefficients b; . we conclude

10892 {Im (. ()b, ()& x (W EN A — ) (x)IE] ™D < Copue™ M0 N1=1Bl(g) 1o,
10892 {Im (@), (1bj.e (0)&; (1 — X)W ENA — ) () E[DY] < Carpne ™Mo~ Plig), 1o,
Using the support properties of x (h~'|€]) we get || < h, hence
10202 {Im (@, (D). ()& x (W ED X () E]DY] < Caupnhe N~ N=IPlig) 1,
By the definition of the transformation A we get

Pe(t,x, €)=Y {=Im (aj ()b ()1 — ) ED X (X)EITY) — 2a¢ (1) (D 1) (x, §)}E;

j=1
> {2C,M — C(aj, bj,n)e M MY |(x) 721 — ) (WM ED X ((x)IEITD).

(6.15)
Choosing
M= C(aj,bj, ”)efNole
2C,
we obtain p,(t, x,£) > 0 for all #, x and £. Besides, the following estimate holds
10292 pe (1, x, 6)| < CpqpMe™ N0 N1=1Bl(g) ~ll,
Sharp Garding inequality then gives
Re (pe(t,x, Dyu,uy > —CyMe™NomN1=0n )2
Finally, gathering all the computations above we get
U llu(®)l7, =2Re (du, u) 2 (6.16)

—No—N1—6, €CM

2 2 2
< ISeaully2 + llully2 + Cre llull 72
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To obtain (6.16) with general Sobolev norms we apply the same argument to the operator
(D))" Se 3 (Dx)™™

which is equal to S 5 plus a zero order term, which can be easily estimated using Theorem 4.4.
So,

2 2 2 —No—N1—0um ,CM 112
Ol ggm < N1Sepullgm + Nuliggm + Come™ "0 m e ull gym,
where 6, ,, denotes a natural number depending only on n and m. Gronwall inequality and the

definition of M give

EfN()le —6n,m }

t
)3 < exp {Crmne JuO) e + [ 18 @@ indr | - 617
0

Let us summarise what we have done:

- first we proved that if
h>ho(M) = AeM,

for some constants A, C > 0 independent from M and ¢, then the operator ¢* is invertible
(cf. Lemma 6.2);
- next, after some technical computations and estimates, we proved that if

M= C(aj, bj, ”)S—NO—N.
2C,

then we may apply sharp Garding inequality to get the energy inequality (6.17).

In other words, setting M and k(M) as above we come to the energy inequality (6.17) where the
precise dependence on the parameter ¢ is exhibited.
The next proposition is a consequence of (6.17).

Proposition 6.3. Let f e C([0,T]; H*(R™)) and g € H™(R"). There exists a unique solution u
in C([0, T]; H™(R")) to the Cauchy problem

Seau(t,x)= f(t,x), t€[0,T],xeR", 6.18)
u(0,x) =gx), x e R, '
and the solution u satisfies (6.17).

We are finally ready to conclude the desired H°° well-posedness for the problem (3.9) in the
n-dimensional case. We first consider the auxiliary problem
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Sg,kv(t,x):e)‘(x,D)f(t,x), te[0,T],x e R, 6.19)
v(0, x) =e*(x, D)g(x), x € R, ’

We observe that Calderdn-Vaillancourt theorem gives

Py cM Py -1 cM
lle* Cx, Dyullgm < Come™ " llull g, {e” x, D)} “ullpm < Cpme™ ™ ullm,

where C, ,, and C do not depend on ¢, M and h.

Let v, € C([0, T]; H*®(R")) be the solution of (6.19). Then u, = {e*(x, D)}~'v, defines a
solution for the regularised Cauchy problem (3.9). Next we observe that the energy inequality
(6.17) implies for every m € Ny

e ()13 = 1™, D)} e () 15m < Come ™M [[ve (1) |3

e—No—N1—6n,m }

t
= Cone™™ exp{Cromne lle* (.. D)gI7m + / le* ¢, D) f () llmdT
0

—No—N1—0n,m
<C; e Mexp {CT,m,neg " }

t
lglm + / I f (O|3mdz
0

The uniqueness of the solution follows by standard arguments. We summarise what we have
obtained in the following theorem.

Theorem 6.4. For every ¢ € (0, ggl, where ey is a small parameter so that (3.2) holds, con-
sider the regularised Cauchy Problem (3.9) with initial data f € C([0,T]; H*R")) and
g € H®(R"). Then there exists a unique solution ug € C([0, T]; H*°(R")) for the problem (3.9).
Besides, the solution u, satisfies for every m € Ny the following estimate:

!
—No—Ni—6n,m
lute i < Comexp {Cramme™™ """ | gl + / If @lgmd § . (6.20)
0
where
(i) Cpm and Cr p,, are constants depending on the coefficients a,aj, bj, j =0,1,...,n, and
on the mollifiers p, ¢, ;
(i) Ng stands for the maximum of the orders of ag, ay, ..., a, plus 1;
(iii) N is a positive number depending on the coefficients by, b1, ..., b, and on the dimension;

(iv) 6y.m is a natural number depending only on m and on the dimension n.

We remark that Theorem 6.4 is the n-dimensional version of Theorem 5.2 with a greater con-
stant in the energy estimate. From now on we shall continue the proof of Theorem 2.8 referring
only to the n-dimensional case, since the final result for the regularised problem in the monodi-
mensional case is a particular case.
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7. Proof of Theorem 2.8

We can now conclude the proof of Theorem 2.8. We know that the regularised Cauchy data
fe (1), g¢ fulfil the following estimate: for all m € Ny there exists C > 0, Ny € Ng and N, € Ny
such that

I fet, lpm < Ce™™7,

Igellmm < Ce™Me,

uniformly in ¢ and ¢, and from Theorem 6.4 the regularised problem (3.9) with data f;(¢) and g,
has a unique solution u, € C([0, T]; H*°(R")) satisfying for every m € Ny

—Ng—Ny—bn,
||us||2Hm =< Cn,m exp {CT,m,nes 0—N1—=0n,m ]

t
e g + / o) md
0

< Amexp(Bue® e NItV g € (0,0),1€[0,T]
where A,,, B, > 0 are independent of ¢ and N,,, = No + N1 +6,,,,» € Ny is independent of ¢ but
depends on the coefficients b;,a;, j =0, 1, ..., n, on the dimension n and on Sobolev index m.

Next we can obtain moderate estimates for the net (u.), if we regularise the coefficients
bj,aj, j=0,1,...,n, using the following positive scale

w(e) = {log(log(log(log(e~"))N} ™!, &€ (0, ). (7.1)

This means to replace ¢ with w(¢) in all the estimates above. First, we note that following ele-
mentary inequality: for any » > 1 we have

log(y) = Cyy7, ¥y=2. (72)
Hence, denoting X = log(log(¢ 1)) we get

CNm

Nin N
w(e)™Mm = {log(log(X)}Vm < c,’;’;j log(X) = log <XCNm ) — 2®O" < X
Applying (7.2) once more we conclude
cV ~Cm 1 D
B, X"V < BmCNm"‘ log(e™") =log(e™ “Nm),
where Dy,, € Ny is a large number depending on N, and on B,,. So, if we use the regularisations

bj’g Z=,Ow(8)*bj, dje =@u() *aj, j=0,1,...,n,

where w is given by (7.1) we get the following estimate for the net of solutions (u.).: for any
m € No we find constants A,,, Dy,, such that

e ()| 3m < A PV =N HND) 1 10, T, & € (0, £9).

216



A. Arias Junior, A. Ascanelli, M. Cappiello et al. Journal of Differential Equations 425 (2025) 190-222

By Definitions 2.2 and 2.4 we can conclude that the Cauchy problem (1.1) admits very weak
solutions of H°-type. The main result of this paper is then proved.

Remark 7.1. We stress the fact that in order to obtain a H°°-moderate net of solutions we need
to use the special positive scale w (given in (7.1)) just for the coefficients of order one and order
zero, meanwhile we are free to use the standard scale (w(¢) = ¢) for the leading coefficient and
Cauchy data.

8. Uniqueness of the very weak solution and consistency with the regular theory

We conclude the paper by discussing in which sense the very weak solution of our Cauchy
problem is unique and by proving that our result is consistent with the classical theory when the
coefficients are regular enough.

8.1. Uniqueness

The very weak solution (u.). that we found is unique in the following sense: if we perturb
the coefficients of the regularised operator by suitable negligible nets, then the net of solutions
of the Cauchy problem associated with the perturbed operator will differ from (u.), by a H°-
negligible net. Being more precise, suppose that we perturb the coefficients of the regularised
operator S; given by (5.1) in the following way

S, 1= Dy + (ac(t) +ne(1) Y D2,
j=1

+ ) @y () + 11,6 (0) (b (x) + 11,6 (X)) Dy, + (@0, (1) + 10,6 (1)) (b, (X) + .6 (x))
j=1

where
(a) ng € C([0,T]; R), ny > 0 for all values of ¢ and for any g € Ny there exists C > 0 such that

sup |ng(1)] < Ce?
t€[0,7T]

for all values of ¢;
(b) nj 1,6 n0,e € C([0, T]; C) and for any g € Ny there exists C > 0 such that

n

> sup Injae(n)]+

sup |ng (1) < Ce?
STy 1elo.T] te[0,7]

for all values of ¢;
©) 11,6 € B°RM), |lj 1) < C(x)"?andforany g € Ngandany 8 € N there exists C > 0
such that

sup [861;1.-(x)] < Ce? 8.1)

xeR”
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for all values of ¢;
(d) lp,e € B>°(R") and for any g € Ng and any B € Ny there exists C > 0 such that

sup |9P1p.c(x)| < Cel
xeR”

for all values of «.

Let the net (), satisfy

Siul(t,x) = fe(t,x) + pe(t,x), t€[0,T], x eR",
U (0, x) = ge(x) + g (x) x eR",

where (pg). and (g¢). are H*°-negligible nets. We now want to compare the two very weak
solutions of H*°-type we obtained. We have

Se(ue — ul)(t,x) = —pe(t,x) — (Se — SDul(t,x), te[0,T], x eR",
(ue —uy)(0,x) = —ge(x), x € R".

By applying estimate (6.20) with a suitable regularisation scale, we have that for all m > O there
exist C > 0 and N € Ny such that

t
lue = ul 1 3m < Ce™ { lgellam +/ 1pe(T) + (Se = SDul (D) Iggmd ¢ - (8.2)
0

Since (pg)e and (g¢). are both H°-negligible, the coefficients of the operator (S, — S.), satisfy
negligible estimates and (u),), satisfies H°°-moderate estimates we conclude that the right-hand
side of (8.2) can be estimated by any positive power of . Hence, (u, — u),), is H*°-negligible.
Summarising, we have proved the following uniqueness result.
Proposition 8.1. The very weak solutions of H°-type of the Cauchy problem (1.1) are unique in
the following sense: negligible perturbations satisfying (a), (b), (c) and (d) on the regularisa-
tions of the equation coefficients and H°-negligible perturbations of the regularisations of the
initial data give H*-negligible perturbation of the corresponding very weak solution.
Remark 8.2. Let us interpret the proposition above in the following particular case:

e acC>®(0,T];R) and

a(t) > C > 0;
e bje B°(R"), j=0,1,...,n and
b <Cx)72 j=1,...m
e a;cC>®(0,T], j=0,1,...,n.
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In this situation Proposition 8.1 implies that the very weak solution does not depend on the
mollifiers that we use to regularise the coefficients, provided that the mollifiers have all vanishing
moments. Indeed, for £ = 1, 2 consider

oY e R, /p“) =1, /x”‘,o“) =0 forany o # 0.
Then, for j =1, ..., n define
0 {4
bj’szbj*pé).

From Proposition 2.1 we conclude that (b;}; — bﬂ) ¢ 1s H%°-negligible and it is easy to check that

|b§2| < (x)_z, in other words (b;?g — bg) ¢ satisfies (8.1). Analogous considerations can be done
for the regularisations of the coefficients a, a; and by via mollifiers with all vanishing moments.
Hence, Proposition 8.1 gives that all very weak solutions obtained by all possible mollifiers with
all vanishing moments are unique modulo H *°-negligible nets.

Remark 8.3. Combining Theorem 2.8 with Proposition 8.1 we can deduce that our Cauchy prob-
lem is well-posed in a suitable space of Colombeau type, i.e., the Colombeau space G with
E = C(0,T], H*®(R")). We refer the reader to [10] for the definition of Gg. Note that the
choice of working with very weak solutions gives us more flexibility with respect to the tradi-
tional Colombeau setting in terms of notions of moderateness, choice of mollifiers and scales.
This motivates the approach to Cauchy problems with singular coefficients employed in this

paper.
8.2. Consistency with regular theory

Suppose that the coefficients of the operator S are regular as in the classical results, that is:

(i) a € C([0,T];R) and a(r) > C, > 0;
(i) a; € C([0,T];C), j=0,1,...,n;
(i) b; € B°(R"), j=0,1,...,n,and |b;(x)| < C{x)72, j=1,...,n.

In this situation the Cauchy problem (1.1) for the operator S given in (1.2) with data f €
C([0,T]; H*®(R")) and g € H>°(R") admits a unique solution u € C([0, T]; H*°(R")) sat-
isfying an energy estimate like (6.20) with a constant independent of €. The goal here is to verify
that the net obtained in Theorem 2.8 converges to u in the H°(R") topology.

Let u. be the solution of the Cauchy problem (2.1). Then u — u, solves the following Cauchy
problem

S{M - l/lg}(t,.x) = (f - f&‘)(tfx) + Q&I’t&‘(ts-x)s re [Oa T]» X € Rns

(8.3)
{u —u}0,x) = (g — ge)(x), x e R",

where
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Qe = (a:(t) —a() Yy D7 + Y (@) (Db e(x) —aj(bj(x) Dy,

=1 j=1
+ (a0,£(1)bo.e (x) — ao(t)bo(x)).

So, we have the following estimate

t
I{u — e YOI 3m < Con 3 llg — gellFm + / I(f — f)(T) + Qete (D) || 3mdT
0

t

< Cullg — gellFm + Cn f I(f = fo) (@) | %mdT + Cpy f lae (1) — a(O)* lue (D)% 4odT
0

+Cm/2max sup |aJ5(t)D bjs(x)—a/(r)D“b (x)| ||u8(r)||m+1dr

|la|<m xeRn

+Cm/ max sup |ag.e (1) Db ¢ (x) — ao(t) D¥bo(x)|* lue (0)7,d.

le|<m . cRn

Now we observe the following:

(1) Since in this case we are regularising regular functions, it is easy to conclude that the regu-
larisations ag, aj . and b; . satisfy uniform estimates with respect to €. So, in this particular
case, we obtain estimate (6.20) uniformly with respect to €. Hence, for any m € Ny,

lue (DI, < Cm. Ve € (0, 20).
(ii)) We have the following uniform convergence

sup lag(t) —a(@®)|—0 and sup |a;.(t) —a;(®)|— 0.
1€[0,T] 1€[0,T]

(iii) We also have bj . — b; in B*(R") as ¢ — 0, i.e., for any 8 € Ny it holds

sup |3fbj,s(x) - 3fbj(x)| — 0, asg—0.

xeR”

(iv) (g —ge)e and ((f — fe)(t))e are H*>-negligible nets, provided that we regularise the initial
data g and f via mollifiers with all vanishing moments.

We therefore conclude u, — u in C([0, T']; H*°(R")).

Proposition 8.4. Assume that a € C([0, T]']R) a never vanishes, a; € C([0,T];C), b; €
B>XM") for j=0,1,...,n and |bj(x)| < C(x =2 for j =1,...,n. Assume moreover g €
H*®@R™) and f € C([0, T]; H*®R")). Then, lfwe use molllﬁers with all vanishing moments
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to regularise the Cauchy data, any very weak solution converges to the unique classical solu-
tion in the space C([0, T]; H*(R™)). In particular, in the classical case, the limit of very weak
solutions always exists and does not depend on the regularisation.

Data availability

No data was used for the research described in the article.
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