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ABSTRACT 

In this paper we consider the use of associative 
search and adaptive critic elements and artificial 
neural network for control of non-linear and unstable 
plants. The reinforcement learníng schemes we 
propose are used in the design of different 
controllers. An example of a magnetic suspension 
system is presented to illustrate the effectiveness of 
thes e controllers . We also include results of a linear 
optimal controller. 

1. INTRODUCTION 

Reinforcement learning addresses the problem of 
on-line learning using a measure of plant performance 
[1). [2] . This involves determining a function through 
experience that maps current states of a plant into 
control actions and constructing a critic to judge 
which control actions are acceptable (success) and 
which are not (failure). 

The reinforcement learning schemes proposed are 
based on the Adaptive Critic algorithm by Barto, 
S utton and Anderson [ 1] which is mod ified in 
different ways in order to ímprove learning 
performance. These schemes have led to the 
development of three controllers and incorporate: (a) 
wei ght update direction sign; (b) failure instant 
evaluation and; (c) a multilayer perceptron neural 
network to perform the controller. 

The problem of interest here is to construct a 
control system capable of driving to and holding 
around an equilibrium point the plant, allowing it an 
extended operating range. 

2. PROBLEM ST ATEMENT 

Conditions that assert the solution of control 
problems of non-Iinear systems are not available , 
except in local terms, as in the neighborhood of a 
point [3]. Also, design procedures work well only if a 
number of conditions are satisfied. 

Besides, available design procedures generally do 
not consider frequent practical constraints on the 
system, such as the limits of the control signals. 

We considera non-linear plant of the form 

x(k + 1) = f[k ,x(k),u(k)] (1) 

where x denotes the n-dimensional state vector, u is 
the m-dimensional input vector, k denotes discrete 
time and f is a function. The n-dimensional linear 
space o ver ~ is called the space state 'P. 

In this paper, it will be considered that a state x0 

is an equilibrium point of the system ( l ) i f 
f(k,x0 ,u0) =O for a given uo . By definition, a non-linear 

system is autonomous if f does not depend on its first 
argument, k [ 4]. 

This paper deals with the class of problem: 
stabilize and keep a dynamic nonlinear system around 
an equilibrium point considering constraints on the 
amplitudes of the control signal. 

The use of reinforcement learning provides an 
interesting alternative to the control of systems . Some 
of its advantages are the no need of plant parameters 
or plant model [5] , and the facility of incorporating 
practical constraints in the controller design . As a 
result, this technique can be applied to a large class 
of systems. 

3. REINFORCEMENT LEARNING CONTROL 
SCHEMES 

The strategy of the control schemes based on 
Barto, Sutton, Anderson [1] algorithm is as follows. 
The control problem is split into sub-problems by 
dividing the space state 'P in severa! partitions . Each 
partition is associated to a specific control signal by 
adaptive elements. These elements have their weights 
adjusted by a reinforcement signal, a qualitative 
measure of plant performance. The adaptive elements 
are the called adaptive search element (ASE) and 
associative critic element (ACE). 

A decoder is used to partition 'P. Its output d, is 
equal to one when the system is in partition i and zero 
elsewhere, for i= 1, .. . , i r where i r is the total o f 
partitions. 
The ASE output u(k) (2) is the contrai signal that is 
sent to the plant. 

(2 ) 

where k is the discrete time, W; is the weight 
associated with the partition i, ns is a real random 
variable with probability density function h, and f is 
either a threshold , sigmoid or identity function . 

The update weight equation is written as 

wi(k + 1) = wi(k) + of(k)ei(k) (3) 

where a. is the learning rate, r is the internai 
reinforcement signal, described bellow, and e, is the 
eligibility term, which associates the responsibility of 
the actions of the partition i to the failure occurrence. 
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The eligibility is given by 

e;(k + 1) = 5 e;(k) + (1- 5) d;(k) (4) 

where õ is a decay rate. 
The internai reinforcement signal is provided by 

the ACE. The ACE objective is to predict a failure 
before it happens, allowing antecipative weight 
adj ust. 

In this paper, the equations of the ACE are the 
same as in Barto, Sutton, and Anderson [1] and are 
presented here for easy reference. 

ir 

p(k) =L V;(k) d;(k) 
i=l 

r(k) = r(k) +r p(k)- p(k -1) 

V;(k + 1) = V;(k) + jJ r d;(k) 

d;(k + 1) = À, d;.(k) + (1- Â. )d;(k) 

(5) 

(6) 

(7) 

(8) 

where p(k) is the output of the ACE, v;(k) is the 
weight associated with partition i, d; is analogous to 
the eligibility for the ACE, r is the externai 
reinforcement signal responsible for adjusting the 
weights or not, y and À are real valued constants and 
~ is the critic learning rate. 

The control scheme described in (2)-(8) which we 
cal! Reinforcement Learning Control Scheme (RLCS) 
incorporates the sign (positive or negative) of weight 
update direction into the externai reinforcement 
criterion. This means that the plant output has to be 
analyzed to provide an appropriate criterion. 
The steps of the learning algorithm are as follows: 

L Initialize the ASE and ACE weights; 
L Initialize the state of the dynamic system; set 

t=l; 
1,_ While t < lmax , where lmax is the total of trials 

defined, do: 
U. t ·~ t+1, k=O, r=O; 
3.2. While r=O and k < kmax• do: 
.LL_L kc k+1; 
3.2.2. Generate d;(k), i=l, ... ,ir, by decodifying the 

actual system state vector x1(k),j=1, ... ,n; 
~ Calculate the element outputs u(k) (2) and 

p(k) (5): 

3.2.4. Present u(k) to the system and calculate 
x1 (ki/),j=1, ... ,n (1); 

3.2.5. Calculate e;(k-tl) (4) and d;(k+l) (8), 
i= 1 •.. . ,ir; 

3 .2.6. Determine r(k+l) using a defined criterion 
and r(k + 1) (6); 
~ Adjust the ASE weights w;(k+l) (3) and the 

ACE weights v,(k+ I) (7); 
;LL I f k = kmax, where kmax is the total of 

sampling periods define, finish the algorithm. 

3.1 Control with Failure Instant Evaluation 

The previous control scheme may be modified in 
order to have a more generic algorithm without the 

need to analyze the plant output. Thus, the 
question that arises is how to determine the sign 
of the weight adjust only by observing its effects 
on the system performance. 

Let us consider that if the failure time instant in 
the current trial is greater than the previous one 
the sign is correct, otherwise the sign must 
change. Hence the new weight update equation is: 

W;(k + 1) = W;(k) + r(k) e;(k) sg(t,k j(t)- k j(t -1)) (9) 

where 

{

sg(t -1, v), 
sg(t,v) = 

-sg(t - 1, v) , 

if v~ o 
if v< o ( 1 O) 

with k1(t) the instant k in which the failure occurs 
at trial t, and sg(O,v)=l. 
The reinforcement criterion may be defined as 

r(k) = ' 
{

-1 

o, 
failure state 

otherwise 
( 11) 

where the failure state can be defined according to 
a desired behavior, as in the example given in 
section 5. 

The learning algorithm is basically the same: 
in step 3.2.7 (3) must be replaced for (9) and in 
U the condition r=O must be substituted for the 
condition xeC where C is the set of the feasible 
states. We call this Reinforcement Learning 
Control Scheme with Failure (RLCSF). 

4. CONTROL WITH SUPERVISED 
ARTIFICIAL NEURAL NETWORK 

The main problem of the controllers described 
in the previous section is that the control signal is 
abrupt and not continuous. Also, as a specific 
control signal is associated with a entire region of 
'I', it is not possible to asymptotically stabilize 
the system, except for particular classes of 
systems . 

In order to solve these problems, we take 
advantage of the interpolation capability of 
multilayer perceptron neural networks [6]. 

In the literature, there are many applications 
which make use of reinforcement learning as a 
rule to train neural networks [5], [7]. For these 
applications, however, the number of trials to 
traiu the controller can be decreased about one 
hundred times if the decodification process we use 
here is included in the training procedure. 

In this paper, we preferred to use the 
decodification process and make subsequent use 
of an artificial neural network controller (ANNC) 
trained by a supervised learning algorithm. The 
ANNC thus used may include an hybrid scheme, 
resulting in an adaptive control system. 

The neural network is trained by the RLCS or 
the RLC SF, according to the Figure 1 [8]. 
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Figure I . ANNC training. 

5 . MAGNETIC SUSPENSION SYSTEM EXAMPLE 

The control problem is to keep around an 
operational point a magnetic suspension system, 
which is nonlinear, autonomous and intrinsically 
unstable . This system consists of a steel sphere kept 
at suspension by a magnetic field. This field is 
generated by a current circulating in a coil (Figure 2). 
The discrete dynamic equations are described in the 
Appendix [9] . 

Figure 2. Magnetic suspension system. 

This system can be controlled around an 
operational equilibrium point using linear system 
techniques. The linear quadratic regulator (LQR) can 
be used with success to find the control law (u=-kx) 
which minimize a performance function. 

The system dynamic performance is close to the 
predicted by the linearized system if it obeys the 
constraints inequality: 

X (k + I)- X (k) 
l-cp:5 1 1 :5l+tp 

x11(k+ l)-x11(k) 
(12) 

where Xji is the state in the linearized model, and rp is 
a real valued constant. If the inequality (12) is not 
satisfied, the difference between the behavior of the 
real system and the linearized one is significative , 
and · the system may become unstable. Figure 3 shows 
a region eL with cp=0 .2 , for the suspension magnetic 
system and Figure 4 shows results obtained for 
different initial positions, some of them yields 
unstable dynamics. 

5.1 Results 
In this section we present simulation results for 

the control schemes developed . 

5.1.1 RLCS and RLCSF Results: The total of 
partitions of the state space 'I' adopted is 288 for the 
first two schemes : 12 intervals for x 1, 6 for x 2 , and 4 
for x3 . 

The learning algorithm 
different initial states, as 

is executed 
follows: we 

for 
set 

x,., = I•' ..... • P. mu x l where f.lemax is the total of 
initial states; the learning algorithm is run for 
J.i. =I , . . . , f.ie max, where in step 2_ the system states 
are initialized as x(O) =X, 11 ;(J.J.). This procedure is 
repeated until r remains in zero for every x E X;.; . 
The typical number of trials for each initial state 
was 12 and 3 7 for the RLC S and RLC SF , 
respectively. The controller parameters are found 
in the Appendix. 

2,5 -----r' . . · - - - ··-

c 
u 
r 2, 125 ... .. .. . ..... ~ .. . -.. . -. --.-- ~ - --- .. --- -. . . . . . 
r ' . . . . ' 

' ' e ' ' . ' 
n 1,25 ----- ----- --- .. ----- -----
t 

0,876 

x3 0,625 

(A) 

15x 10 ·3 

Position , x 1 (m) 

Figure 3. Region o f state space with linear 
behavior for rp=0,2. The states marked by "x" are 
the initial states of Figure 3. 

o 
n 

: ·"''. 

/ ... 
! \ 

0.005 ,_____,___,..___ _ _.....;_ ____ __,---J.___ 

o 50 100 

Sampling time, k 

Figure 4. Sphere position for the optimal state 
feedback controller . 

The reinforcement criterion for the RLCS is 
developed by analyzing the magnetic suspension 
system. It is expressed by : 

1
-1 ,if x1(k) <x1cma. andx1(k}<x1(k-l) 

r:= +I, if x1(k) > xlcmin and x1(k) > x1(k -1) 
O, othe!Wise 

(13) 

where x 1cmax is the superior limit and XJcmi/1 is the 
inferior limit of the tolerance region of state x 1• 

Figure 5 shows simulation results for RLCS for 
different initial positions of the sphere . Note that 
the sphere pos1t1on oscillates in the region 
defined by externai reinforcement criterion . 
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The reinforcement criteria for the RLCSF was 
developed by imposing a mínima! acceptable 
performance . Equation (14) shows the reinforcement 
criteri on . 

where 

r(k) =lo 
-I 

if xlinr(k)<x1(k)<x1sup(k) and 

xzinr(k) <xz(k) <Xzsup(k) 
otherwise 

kc is an integer, x1 cmax is the maximum xJ in kc, 

( 14) 

x1 cmin is the minimum x1 in kc, x1 imax is the maximum 

initial xJ, x1 imin is the minimum initial xJ and 

j=! , ... ,n,. 
Figure 6 shows the reinforcement criterion for x 1 • 

Note that this criterion is satisfied by the system 
dynamics , also ptesented in Figure 6. 

(m) 

0 .014 

p 

o 
s 0 .011 

0 .010 

i 
0 .009 

0 .008 o 
n 0 .007 

0 .006 

0 .005 
o 50 100 150 200 250 300 

Sampling time, k 

Figure 5. RLCS results for different initial positions . 

0 .014 

p 0 .013 

o 0 .012 

s 
0 .01 

0 .009 

o 0 .008 

n o.oor 
0 .006 

0 .005 "----'-----'-------'----'-----'-------'-
0 50 100 150 200 300 

Sampling time, k 

Figure 6. RLCSF results for different initial 
positions. The criterion utilized is also shown . 

5.1.2 ANNC Results: The ANN used in the third 
control scheme is a three layer with 12, 6, and 1 
units, respectively, from the first to the last 1ayer. 
The activation functions are hyperbolic tangent in 
the hidden layers and linear in the output layer. 

The training and testing data sets are 

Xa =[x1
, ... ,x~'a] and U8 =[u(x\ ... ,u(x~'a)], 

X1 =[x1, ... ,x~'t] and u1 =[u(x\ ... ,u(x~'t)J, 

respectively, where u() is given by RLCSF or 
RLCS. The learning algorithm is back propagation 
with Levenberg Marquardt method. The typical 
number of epochs is 20 using J.la =1400 and 
J.1,=1200. 
Figure 7 shows the ANNC results trained by the 
RLCSF for different initial positions and Figure 8 
shows the control signal for both RLCSF and 
ANNC for initial position at 0.014 m. Note the 
behavior of the ANNC signal continuous and 
smooth. 

(m) 

0 .014 

p 0 .013 

o 0.012 
s 

0 .011 

0 .01 

i 
0.009 

o 0 .008 

n 0.007 

0.006 

0.005 o 50 

Sampling time, k 

Figure 7. ANNC trained by RLCSF . 

(V) so 
45 

40 

v 35 

o 
I 

30 

25 

a 20 

g 15 
e 

10 

0~--~~~~--~~--~~----~----~ 
o 50 100 150 200 250 300 

Sampling time, k 

Figure 8. Control signal generated by the RLCSF 
(gray curves) and by the ANNC (black curves) for 
initial position at 0,014 m. 

6. DISCUSSIONS AND CONCLUSIONS 

In this paper, reiilforcement learning schemes 
using adaptive elements are used in the design of 
diffetent controllers, providing a solution to the 
control problem described. In addition, an 
supervised ANN trained by one of the developed 
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schemes is used to perform the controller. Each 
controller developed has its own characteristics. 

The RLSC can be used on-Iine, is adaptive and 
presents a fast training process. The RLSCF can also 
be used on-line, is adaptive, and needs no knowledge 
of the plant parameters or models. Finally, the ANNC 
presents a continuous control signal removing the 
oscillation that may occur when using the other 
controllers. Hence, each control scheme can be used 
with success to solve different nonlinear control 
problems. 

The example presented showed that ali developed 
controllers can cope with an operating range of the 
plant wider than that obtained with the quadratic 
linear optimal controller presented. Well developed 
control methods can be successfully applied to 
suspension systems but they are more dependent on 
the knowledge of the plant dynamics and 
uncertainties. 

APPENDIX 

The system suspension dynamical equations: 

x2(k +I)= (11 r0Xx1(k)-x1(k -I)) 

x3(k +I)= (-
1-)(loXJ(k -1) + 1Qu(k)) 

ToR+L 

where x 1 is the sphere position, x 2 the sphere speed, x3 

the coil current, To the sampling period, u the coil 
voltage, g the gravity, m the mass of steel ball, R 
the coil resistance, L the coil inductance, L 60 the coil 
inductance when x 1 = O and a a constant. 

Parameters of real system of magnetic suspension: 
m=0 .02255 kg, R= 19.9 O, a=0.00601, Lb =0.47 H, 

L60 =0.0245 H and T0 =0.001 s. The equilibrium 

point adopted is (x 10 , x 20 , x 30 ) = (0.01; 0.0; 0.876). 
The system position and current are constrained by: 
{x,, x,, x, e 9i: 0.005 ::; x, ::; 0.015 and O::; x, ::; 2.51} · 

lntervals for x 1 : [0.0050 0.0065]; [0.0065 
0.0078]; [0.0078 0.0088]; [0.0088 0.0094]; 
[0.0094 0.0099]; [0.0099 0.0100]; [0.0100 
0.0101]; [0.0101 0.0106]; [0.0106 0.0112]; 
[0.0112 0.0122]; [0.0122 0.0135]; (0.0135 
0.0150] . Intervals for x 2 : [-0.40 -0.20]; [-0.20 -
0 .05]; [-0.05 0.00]; [0 .00 0.05); [0.05 0.20]; [0.20 
0 .40]. Intervals for x 3 : [0.00 0.94]; [0.94 1.26]; 
[1.26 1.57]; [1.57 2.51]. 

Parameters of RLSC: lmax=IOO; kmax=500; 
XJcmax=0.0105; XJcmin=0.0095; a=0.9; fJ=0.3; o==0.85; 
y=0.995, .4=0.95, f is the identity function and h a 
mean zero Gaussian distribution. 

Parameters of RLSCF: 1max=l00; kmax=500; 
kc=50; XJcmax=0.0108; XJcmin=0.092; Xumax=0.015; 
XJi 111 ;,.=0.005; X2cma.x=0 . 1; X]cmin=·0.1; X]imax=0.3; 

X3cmin = x3imiu=- 00; 

Jlemax=9; for xilli we set x2=0 and x3=0.876, and 
varied x 1=0.006 to x 1=0 .014 in steps of 0.001; 
u=3; 13=0.2; Â.=0.7; y=1, 8=0.9, again f is the 
identity function and h a mean zero Gaussian 
distribution function. 
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