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ABSTRACT

In this paper we consider the use of associative
search and adaptive critic elements and artificial
neural network for control of non-linear and unstable
plants. The reinforcement learning schemes we
propose are wused in the design of different
controllers. An example of a magnetic suspension
system is presented to illustrate the effectiveness of
these controllers. We also include results of a linear
optimal controller.

1. INTRODUCTION

Reinforcement learning addresses the problem of
on-line learning using a measure of plant performance
[1]. [2]. This involves determining a function through
experience that maps current states of a plant into
control actions and constructing a critic to judge
which control actions are acceptable (success) and
which are not (failure).

The reinforcement learning schemes proposed are
based on the Adaptive Critic algorithm by Barto,
Sutton and Anderson [1] which is modified in
different ways in order to improve learning
performance. These schemes have led to the
development of three controllers and incorporate: (a)
weight update direction sign; (b) failure instant
evaluation and; (¢) a multilayer perceptron neural
network to perform the controller.

The problem of interest here is to construct a
control system capable of driving to and holding
around an equilibrium point the plant, allowing it an
extended operating range.

2. PROBLEM STATEMENT

Conditions that assert the solution of control
problems of non-linear systems are not available,
except in local terms, as in the neighborhood of a
point [3]. Also, design procedures work well only if a
number of conditions are satisfied.

Besides, available design procedures generally do
not consider frequent practical constraints on the
system, such as the limits of the control signals.

We consider a non-linear plant of the form

Xk +1) = 1Tk, x(k), u(k)] (1)

where x denotes the n-dimensional state vector, u is
the m-dimensional input vector, k denotes discrete
time and f is a function. The n-dimensional linear
space over R is called the space state V.
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In this paper, it will be considered that a state x,
is an equilibrium point of the system (1) if
f(k,x9,up) =0 for a given uy. By definition, a non-linear
system is autonomous if f does not depend on its first
argument, &k [4].

This paper deals with the class of problem:
stabilize and keep a dynamic nonlinear system around
an equilibrium point considering constraints on the
amplitudes of the control signal.

The use of reinforcement learning provides an
interesting alternative to the control of systems. Some
of its advantages are the no need of plant parameters
or plant model [5], and the facility of incorporating
practical constraints in the controller design. As a
result, this technique can be applied to a large class
of systems.

3. REINFORCEMENT LEARNING CONTROL
SCHEMES

The strategy of the control schemes based on
Barto, Sutton, Anderson [1] algorithm is as follows.
The control problem is split into sub-problems by
dividing the space state ¥ in several partitions. Each
partition is associated to a specific control signal by
adaptive elements. These elements have their weights
adjusted by a reinforcement signal, a qualitative
measure of plant performance. The adaptive elements
are the called adaptive search element (ASE) and
associative critic element (ACE).

A decoder is used to partition ¥. Its output d, is
equal to one when the system is in partition 7 and zero
elsewhere, for i=1,...,iy where i; is the total of
partitions.

The ASE output u(k) (2) is the control signal that is
sent to the plant.

iT
u(k)=f{zwi(k)di(k)+ns(k)l (2)
=1

where k& is the discrete time, w;, is the weight
associated with the partition i, n; is a real random
variable with probability density function A, and f is
either a threshold, sigmoid or identity function.

The update weight equation is written as

wi(k +1) = w;(k) + a7 (k)e;(k) (3)
where o is the learning rate, ¥ is the internal
reinforcement signal, described bellow, and e, is the

eligibility term, which associates the responsibility of
the actions of the partition / to the failure occurrence.
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The eligibility is given by
¢k +1) =6 (k) +(1- 6) d;(k) 4

where 6 is a decay rate.

The internal reinforcement signal is provided by
the ACE. The ACE objective is to predict a failure
before it happens, allowing antecipative weight
adjust.

In this paper, the equations of the ACE are the
same as in Barto, Sutton, and Anderson [1] and are
presented here for easy reference,.

k) = Y, (k) dy (k) (5)
i=1

(k) = r(k) +y p(k) - p(k—1) (6)

vi(k +1) = v,(k) + BF di(k) (7)

di(k +1) = Ad(k)+(1- 1) d;(k) (8)

where p(k) is the output of the ACE, v;(k) is the
weight associated with partition i, 67, is analogous to
the eligibility for the ACE, r is the external
reinforcement signal responsible for adjusting the
weights or not, y and A are real valued constants and
B is the critic learning rate.

The control scheme described in (2)-(8) which we
call Reinforcement Learning Control Scheme (RLCS)
incorporates the sign (positive or negative) of weight
update direction into the external reinforcement
criterion. This means that the plant output has to be
analyzed to provide an appropriate criterion.

The steps of the learning algorithm are as follows:

1. Initialize the ASE and ACE weights;

2. Initialize the state of the dynamic system; set
=1,

3. While ¢ < t,,¢ , where ¢,,, is the total of trials
defined, do:

3.1. ¢t=¢t+1, k=0, r=0;

3.2. While r=0 and k < k

3.2.1. k=k+1;

3.2.2. Generate d;(k), i=1,...,i; , by decodifying the
actual system state  vector x,(k), j=1,...,n;

3.2.3. Calculate the element outputs u(k) (2) and
pk) (5);

3.2.4. Present u(k) to the system and calculate
x,(kt 1), j=1,...,n (1);

3.2.5. Calculate e;(k+t1) (4) and d;(k+1) (8),
i=1....,ir;

3.2.6. Determine r(k+1) using a defined criterion
and F(k+1) (6);

3.2.7. Adjust the ASE weights w,(k+1) (3) and the
ACE weights v,(k+1) (7);

3.3. I k = kyu, where k,, is the total of
sampling periods define, finish the algorithm.

do:

3.1 Control with Failure Instant Evaluation

The previous control scheme may be modified in
order to have a more generic algorithm without the

need to analyze the plant output. Thus, the
question that arises is how to determine the sign
of the weight adjust only by observing its effects
on the system performance.

Let us consider that if the failure time instant in
the current trial is greater than the previous one
the sign is correct, otherwise the sign must
change. Hence the new weight update equation is:

wi(k +1) = w;(k) +7(k) (k) sg(t,kp ()~ k(1 -1))  (9)

where

sg(t,v) = {

ifv20
ifv<0O

sgt ~1,v),

10
~Sg(t "‘I,V) ) ( )
with ks(t) the instant £ in which the failure occurs
at trial ¢, and sg(0,v)=1.

The reinforcement criterion may be defined as

-1, failure state
(k) {0, otherwise (LL)
where the failure state can be defined according to
a desired behavior, as in the example given in
section 5.

The learning algorithm is basically the same:
in step 3.2.7 (3) must be replaced for (9) and in
3.2 the condition =0 must be substituted for the
condition xeC where C is the set of the feasible
states. We call this Reinforcement Learning
Control Scheme with Failure (RLCSF).

4. CONTROL WITH SUPERVISED
ARTIFICIAL NEURAL NETWORK

The main problem of the controllers described
in the previous section is that the control signal is
abrupt and not continuous. Also, as a specific
control signal is associated with a entire region of
W, it is not possible to asymptotically stabilize
the system, except for particular classes of
systems.

In order to solve these problems, we take
advantage of the interpolation capability of
multilayer perceptron neural networks [6].

In the literature, there are many applications
which make use of reinforcement learning as a
rule to train neural networks [5], [7]. For these
applications, however, the number of trials to
train the controller can be decreased about one
hundred times if the decodification process we use
here is included in the training procedure.

in this paper, we preferred to use the
decodification process and make subsequent use
of an artificial neural network controller (ANNC)
trained by a supervised learning algorithm. The
ANNC thus used may include an hybrid scheme,
resulting in an adaptive control system.

The neural network is trained by the RLCS or
the RLCSF, according to the Figure 1 [8].

24156



I}ILLCCSS%" Act'ioﬂ Plant Sta;es
> Learning
ANNC

AP

Figure 1. ANNC training.
5. MAGNETIC SUSPENSION SYSTEM EXAMPLE

The control problem is to keep around an
operational point a magnetic suspension system,
which is nonlinear, autonomous and intrinsically

unstable. This system consists of a steel sphere kept
at suspension by a magnetic field. This field is
generated by a current circulating in a coil (Figure 2).
The discrete dynamic equations are described in the
Appendix [9].

X3
—_———
u T

i
®

Figure 2. Magnetic suspension system.

This system can be controlled around an
operational equilibrium point using linear system
techniques. The linear quadratic regulator (LQR) can
be used with success to find the control law (u=-kx)
which minimize a performance function.

The system dynamic performance is close to the
predicted by the linearized system if it obeys the
constraints inequality:

R e (12)
xj(k+1)~x;,(k)

where x;, is the state in the linearized model, and ¢ is
a real valued constant. If the inequality (12) is not
satisfied, the difference between the behavior of the
real system and the linearized one is significative,
and-the system may become unstable. Figure 3 shows
a region 6 with ¢=0.2, for the suspension magnetic
system and Figure 4 shows results obtained for
different initial positions, some of them yields
unstable dynamics.

5.1 Results
In this section we present simulation results for
the control schemes developed.

5.1.1 RLCS and RLCSF Results: The total of
partitions of the state space ¥ adopted is 288 for the
first two schemes: 12 intervals for x;, 6 for x;, and 4
for x;.

The learning algorithm is executed for
different initial states, as follows: we set
X = [x'henn, x#emesy where g, is the total of

initial states; the learning algorithm is run for
#=1,..., Ug g » Where in step 2 the system states
are initialized as x(0)=X,,;(u.). This procedure is
repeated until » remains in zero for every xe X;.:.
The typical number of trials for each initial state
was 12 and 37 for the RLCS and RLCSF,
respectively. The controller parameters are found
in the Appendix.
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Figure 3. Region of state space with linear

behavior for ¢=0,2. The states marked by “x” are
the initial states of Figure 3.
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Figure 4. Sphere position for the optimal state
feedback controller.

The reinforcement criterion for the RLCS is
developed by analyzing the magnetic suspension
system. It is expressed by:

-1,if xl(k) < Xiome and x,(k) < xl(k — 1)
r =3+, if x1(k) > X1 puin and xq(k) > 5y (k- 1)
0, otherwise

(13)

where X;.pq. 1s the superior limit and x;.,,, is the
inferior limit of the tolerance region of state x,.
Figure 5 shows simulation results for RLCS for
different initial positions of the sphere. Note that
the sphere position oscillates in the region
defined by external reinforcement criterion.
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The reinforcement criteria for the RLCSF was 5,1.2 ANNC Results: The ANN used in the third
developed by imposing a minimal acceptable control scheme is a three layer with 12, 6, and 1
performance. Equation (14) shows the reinforcement units, respectively, from the first to the last layer.

criterion. The activation functions are hyperbolic tangent in
i the hidden layers and linear in the output layer.
0 if xlinf(_lz<xl(klz<xlmp(k; and (14) The training and testing data sets are
S P X, =[x\,....xa] and u, = [u(), .., u(x )],
X, =[x,...,x#] and u, =[ux),...,u(x")],
Whets respectively, where u(:) is given by RLCSF or
o (xj cmin —Xj imin)/kc+xj i K Xk RLCS. The learning algorithm is back propagation
Xjinf = X omins k2R with Levenberg Marquardt method. The typical
s ¢ number of epochs is 20 using p, =1400 and
i u,=1200.
= (xj cmax ~ Xj imax)/kc+xj imax> k <k Figure 7 shows the ANNC results trained by the
) sup = Tt § A RLCSF for different initial positions and Figure 8

shows the control signal for both RLCSF and
ANNC for initial position at 0.014 m. Note the

" X . Y ) behavior of the ANNC signal continuous and
Xjemin 1S the minimum x; in k., X;;pe 1S the maximum  ¢mooth.

ke is an integer, X; g is the maximum x; in k;,

initial x;, xj;p; is the minimum initial x; and

(m)
J=1 e sty 0.014
Figure 6 shows the reinforcement criterion for x;.  p ...t
Note that this criterion is satisfied by the system o
dynamics, also presented in Figure 6. - s
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Figure 8. Control signal generated by the RLCSF
(gray curves) and by the ANNC (black curves) for
initial position at 0,014 m.

6. DISCUSSIONS AND CONCLUSIONS

0 50 100 150 200 250 300 y .. .
In this paper, reinforcement learning schemes

Sampling time, k using adaptive elements are used in the design of
different controllers, providing a solution to the
control problem described. In addition, an
supervised ANN trained by one of the developed

Figure 6. RLCSF results for different initial
positions. The criterion utilized is also shown.
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schemes is used to perform the controller. Each
controller developed has its own characteristics.

The RLSC can be used on-line, is adaptive and
presents a fast training process. The RLSCF can also
be used on-line, is adaptive, and needs no knowledge
of the plant parameters or models. Finally, the ANNC
presents a continuous control signal removing the
oscillation that may occur when using the other
controllers. Hence, each control scheme can be used
with success to solve different nonlinear control
problems.

The example presented showed that all developed
controllers can cope with an operating range of the
plant wider than that obtained with the quadratic
linear optimal controller presented. Well developed
control methods can be successfully applied to
suspension systems but they are more dependent on
the knowledge of the plant dynamics and
uncertainties.

APPENDIX

The system suspension dynamical equations:

2
Toxs (k) ) +2x(k -1 -x(k-2)

k+l)=T2gs 00| ToB)
ak+D=Isg [1+x,(k—-l)/a

2am
wlk+1) = (1/ To)(x(k) - xi(k - 1)

1
TWR+L

where x, is the sphere position, x, the sphere speed, .;
the coil current, 7, the sampling period, u the coil
voltage, g the gravity, m the mass of steel ball, R
the coil resistance, L the coil inductance, L, the coil
inductance when x, = 0 and 4 a constant.

x;(k+1)=[ J(L"z(k—l)+76u(k))

Parameters of real system of magnetic suspension:
m=0.02255 kg, R=19.9 Q, a=0.00607,[,=0.47 H,
Lp=0.0245 H and T7,=0.001 s. The equilibrium
point adopted is (x,p, X320, X30) = (0.01; 0.0; 0.876).
The system position and current are constrained by:
{x.x,x €R: 00055 x <0015 and 0<x <251},

Intervals for x;: [0.0050 0.0065]; [0.0065
0.0078]; [0.0078 0.0088]; [0.0088 0.0094];
[0.0094 0.0099]; [0.0059 0.0100]; [0.0100
0.0101}; [0.0101 0.0106]; [0.0106 0.0112];
[0.0112 0.0122]; [0.0122 0.0135]; [0.0135
0.0150]. Intervals for x,: [-0.40 -0.20]; [-0.20 -
0.05], [-0.05 0.00]; [0.00 0.05]; [0.05 0.20]; [0.20
0.40]. Intervals for x;: [0.00 0.94]; [0.94 1.26];
[1.26 1.57]; [1.57 2.51].

Parameters of RLSC: tmax=100; kimax=500;

X1emax=0.0105; X;.,:»=0.0095; «=0.9; $=0.3; 6=0.85;
7=0.995, 1=0.95, f is the identity function and % a
mean zero Gaussian distribution.

Parameters of RLSCF: (,,,=100; k,..=500;
kc:50; xlcmax'—'o-olos; xlemin:O-ng; xlimax:O-Ols;
X/,',",',,:0.00S; x2cmn.\'=0-1; x2::miu='0’1; x?irna):=0-3;
x21min='0~3; X3emax=X3imax™ 05 X3emin=X3imin=" OO;

Hemax=9; for X,,;, we set x,=0 and x;=0.876, and
varied x,=0.006 to x,=0.014 in steps of 0.001;
a=3; P=0.2; A=0.7; y=1, 8=0.9, again f is the
identity function and » a mean zero Gaussian
distribution function.
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