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A B S T R A C T

The progressive collapse resistance of reinforced concrete (RC) frame buildings involves complex interactions 
between structural topology and resisting mechanisms, which strongly influence design for structural robustness. 
When a RC frame system is subjected to sudden column loss, different complementary resistance mechanisms can 
be activated in RC beams, depending on beam cross-section detailing and column stiffness. When a double-span 
beam fails, damage can propagate upwards, affecting upper beams, or laterally, affecting adjacent columns. Both 
the interaction between resistance mechanisms and optimal design of RC frame depend significantly on the frame 
aspect ratio and column cross-sections. Taller frames require stronger beams and columns to prevent both 
vertical and horizontal collapse propagation, whereas lower frames favor weaker beams due to the less critical 
consequences of upward beam collapse propagation. In this study, the influence of frame aspect ratio and column 
cross-section on the progressive collapse behavior of planar RC frames is investigated. Analysis results show that 
the optimal risk-based design of such structures is significantly influenced by the interactions between beam and 
column moments of inertia, as result of Vierendeel and catenary action intricacies. Specifically, it is shown how 
the aspect ratio of planar RC frames under multiple ground-floor column loss scenarios leads to different optimal 
risk-based designs. Nonlinear FE analysis in OpenSees is carried out, capturing Vierendeel, compressive arch and 
catenary actions in lower, intermediate, and taller RC frames. Weighted Average Simulation is used to compute 
failure probabilities, and Inverse Distance Weighting is adopted when integrating structural modeling, reliability 
analysis and risk-based optimization. In contrast to previous investigations, optimal design against progressive 
collapse is found to mainly depend on balance between beam and column flexural capacities. For the case-study 
frames, squared cross-section columns lead to greater beam depths, as columns are unable to resist the increased 
bending moments produced by beams in catenary action. In such cases, ultimate capacity is enhanced by means 
of compressive arch action. Yet, columns with rectangular cross-sections allow catenary action to be efficiently 
mobilized in all investigated frames. This later solution closely resembles the ‘weak beam – strong column’ 
design philosophy adopted against lateral actions produced by earthquake ground motion and wind.

1. Introduction

Progressive collapse is a cascading failure mode where the loss of a 
small structural area may lead to widespread and disproportionate 
damage throughout the structure. Typically triggered by abnormal loads 
due to extreme events such as fires, earthquakes, floods, and malevolent 
attacks, progressive collapse is considered as Low Probability/High 
Consequence (LPHC) event due to its low likelihood of occurrence and 
extreme consequences. Initial severe damage to either single or a few 
structural components subjected to abnormal loading can create 

dynamic load amplification in directly affected parts of the structure, 
undermining structural integrity in case of limited force redistribution 
capacity [1–4].

Mitigation strategies depend on the strength of individual members, 
their interaction capacity, triggering event, and size of initial damage 
[5–7]. Code-based design approaches typically consider the sudden loss 
of a supporting element as threat-independent initial damage, high
lighting redistribution-type progressive collapse and the role of Alter
native Load Paths (ALPs) by means of the Alternative Path Method 
(APM). In terms of sudden column loss in framed buildings, structural 
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typology also influences the strengthening strategies as it guides how 
collapse propagation develops. For instance, slender tall frames pri
marily experience vertical collapse propagation, whereas wider frames 
exhibit both vertical and lateral collapse spread [6]. In this regard, Beck 
et al. [8] demonstrated that the optimal risk-based allocation of 
strengthening between beams and columns in reinforced concrete (RC) 
frames depends on the frame’s aspect ratio. As beam failures propagate 
vertically and column crushing (pancake) spreads laterally, lower 
frames have optimal design margins for beam bending offset by larger 
margins against column crushing. For lower and wider frames (i.e., 
small aspect ratio), consequences of beam failure (vertical propagation) 
are smaller, whereas consequences of column failure (lateral spread) are 
higher. For taller frames (i.e., larger aspect ratio), failures of both beams 
and columns tend to be equally severe; hence, risk-based design opti
mization leads to beams and columns being strengthened simulta
neously. Optimal risk-based solutions [8] reveal a competition for a 
cost-effective allocation of resources to deal with beam failure (verti
cal propagation) and column crushing (lateral propagation), which 
strongly depends on the frame’s topology.

The investigation in [8] was the starting point for the investigation 
developed herein. Beck et al. [8] employed the simple analytical model 
by Masoero et al. [9] to predict progressive collapse response, which 
could not capture the damaged frame’s Vierendeel action, nor the 
beam’s nonlinear post-yielding capacity. Consequently, the optimal 
risk-based analysis in [8] assumed no complementary resistance mech
anisms beyond beam bending and column crushing. While this 
assumption is reasonable for columns, supplementary mechanisms like 
compressive arch action (CAA), catenary action (CA), and Vierendeel 
action (VA) significantly enhance ultimate beam capacity [7,10]. Since 
these mechanisms depend on substantial axial forces in the beams, the 
combined axial force and bending moment demands in the columns may 
exceed those predicted by the analytical model used in [8] until frame 
collapse occurs.

The analytical model developed by Masoero et al. [9] allows some 
axial catenary effects to be considered through additional terms in the 
formulation of ultimate beam capacity. Beck et al. [8] briefly explored 
those assumptions, demonstrating that catenary effects reduce the 
likelihood of beam collapse, even with significantly smaller optimal 
beam design factors. Furthermore, accounting for catenary effects even 
in the intact frame makes those reduced beam design factors 
cost-effective for any initial damage probability. Yet, the authors note 
that this has limited practical relevance, as minimal beam strength 
would still be required to satisfy serviceability limit states.

In another study, Ribeiro et al. [11] showed that the optimal 
risk-based design of a fully clamped RC beam leads to an almost squared 
beam cross-section with increased rebar and stirrup reinforcements, in a 
progressive collapse situation, and greater beam depth with just enough 
reinforcements in the intact scenario. Although the optimal beam depth 
is significantly reduced under greater likelihood of midspan column loss, 
optimal reliability indices for serviceability failure (i.e., attainment of 
admissible beam vertical displacement) consistently remained around 3, 
which was observed to be sufficient to maintain negligible expected cost 
for this failure mode. In terms of beam bending capacity, the results in 
[11] agree with those from Beck et al. [8], as a significantly reduced 
beam moment of inertia is optimal to favor catenary action. As catenary 
effects are not considered in conventional design (intact frame scenario), 
beam failure modes related to bending, shear and deflection are more 
adequate. Hence, results in Ribeiro et al. [11] show that APM 
strengthening of beams, fully accounting for catenary effects, only be
comes cost-effective for local damage probabilities beyond a threshold 
value, as discussed in Section 3.

In a pioneering study addressing risk-based optimization of RC 
frames, Ribeiro et al. [12] showed how the optimal frame configurations 
balance the moments of inertia of beams and columns to prevent pre
mature failure in adjacent columns. When improving column bending 
capacity is too costly, optimal beam design prioritizes greater depths to 

enhance its CAA capacity instead of CA, reducing transfer of bending 
moments to adjacent columns due to VA. Yet, the results in [12] high
lighted that columns with rectangular cross-section and greater bending 
capacity lead to shallower beams with greater CA capacity, which aligns 
to the optimal solutions in [8] and [11].

Given the impact of beam catenary effects over columns, this study 
seeks to deepen how the RC frame’s aspect ratio influences the optimal 
risk-based design for structural robustness of a planar RC frame system. 
Specifically, the investigation examines whether the optimal compro
mises between beam and column strengths identified in [8] remain valid 
when accounting for systemic effects of catenary action induced by 
Vierendeel behavior.

It is known that 3D modeling offers a more complete representation 
of structural behavior during progressive collapse, particularly due to 
the contribution of slabs, walls, and other spatial effects. However, this 
study focuses exclusively on planar RC frames, and this limitation is 
acknowledged. The primary objective of this work is to understand how 
progressive collapse influences the optimal configuration of reinforced 
concrete frames of different aspect ratios. To that end, a 2D approach 
provides a practical and insightful starting point. Despite its limitations, 
two-dimensional modeling captures key resisting mechanisms such as 
flexural action, compressive arch action, and catenary action, all of 
which are central to progressive collapse mitigation (Section 3.4). While 
3D resisting mechanisms can enhance robustness, such as compressive 
and tensile membrane actions in slabs, they are largely extensions of the 
mechanisms already captured in 2D. Floor slabs may significantly 
contribute to the total resistance, but their influence may be considered 
secondary compared to the primary frame behavior in many typical RC 
structures with unidirectional slab systems. Yet, to mitigate underesti
mation, floor slabs and walls are accounted for through their self-weight 
in the load modeling, and the case studies presented herein are limited 
to bare RC frames without wall contributions or torsional floor dia
phragm effects. Hence, focus is kept on the most influential and funda
mental load-carrying members: beams and columns. In addition, the 
significant influence of central cores is not addressed in this study. 
Finally, the adopted 2D framework allows the integration of nonlinear 
structural modeling, reliability analysis, surrogate modeling techniques, 
and risk-based optimization (each computationally intensive on its own) 
within a tractable and feasible methodology. This study serves as a 
rigorous foundation upon which future work will build, including the 
incorporation of more complex 3D systems.

2. Case-study structures

Five planar RC frames with similar tributary area (number of stories 
× number of bays) but distinct aspect ratios are investigated, with 
optimal risk-based design being targeted for lower, intermediate and 
taller frames (Fig. 1). All configurations have beam spans of 6.00 m, 
column height of 3.00 m, and columns fully clamped to the ground. For 
simplicity, all beam spans and columns share identical detailing. Each 
frame is studied in the intact condition, and in three ground-floor col
umn loss scenarios: exterior column loss (ECL), penultimate column loss 
(PCL), and middle column loss (MCL). Multiple column loss scenarios 
are addressed, assuming a single column loss case as initial damage. 
Some configurations have an even number of columns; in those cases, 
MCL relates to one of the innermost columns. Besides, non-seismic 
design conditions are assumed herein.

Unlike [12], this study considers frames extracted from the build
ing’s interior, where unidirectional floor slabs impose loads from both 
sides of the beams. This is done to investigate a worst-case scenario of 
larger column demands, potentially avoiding the identical optimal col
umn design for both intact and damaged frames that were found and 
motivated in [12]. Although peripheral columns at the ground floor are 
more exposed to certain hazards, such as improvised explosive devices 
(IEDs) and vehicular impacts, it is herein assumed buildings with easy 
access for vehicles and people at ground floor. Hence, all ground floor 
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columns within the building become potential targets.
Herein, the consequences of vertical and horizontal collapse propa

gation are addressed, following [8]: in such analyses, it is essential to 
simplify the problem by identifying critical failure sequences [13]. In 
this study, if the double-span beam above the missing column(s) reaches 
failure, all beam spans above are assumed to fail, as all beams share the 
same detailing. This assumption represents a worst-case scenario in 
which upward failure propagation is inevitable, thereby ensuring that 
the potential extent of collapse is not underestimated. Additionally, 
since all beams in the frame share identical detailing, the failure of a 
lower story beam in catenary action strongly suggests that the beam 
immediately above, subject to similar geometric and material con
straints, would also enter catenary action and likely fail under redis
tributed loads, and so on. Importantly, it is not assumed that all upper 
beams fail simultaneously once the first double-span beam fails, but 
rather that an inevitable progression of upward beam failures occurs in 

this scenario. Hence, the final damaged area due to this sequential up
ward beam failure is assumed to encompass all beams above the first 
double-span beam, as shown in Table 1.

If the adjacent columns fail, the damaged area includes the increased 
beam spans above the total number of failed columns. When the initial 
set of adjacent columns fails, lateral collapse spread keeps advancing 
until the increased beam spans reach rebar rupture or shear failure. 
According to [12], for RC frames with bay length of 6 m, a single stage of 
adjacent column collapse is observed, as the probability of rebar and 
shear failure for the increased span exceeds 0.99 (span of 18 m in PCL, 
and 24 m in MCL).

In this study, the only progressive collapse mitigation strategy is full 
frame strengthening, achieved by increasing reinforcements, concrete 
strength, and cross-sectional dimensions. While structural segmentation 
might be more suitable than APM strengthening for horizontally aligned 
frames [14,15], segmentation is not addressed herein to enable a direct 

Fig. 1. Studied planar RC frames: column loss scenarios and aspect ratios (stories × bays).

Table 1 
List of failure modes considered, limit state functions and damaged areas.

Scenario Failure mode k Limit state function Sketch of damaged area

Intact structure 
(I)

Large deflection 5 gI,SE(x) = δlim − δ(qI)

Bending (midspan) 30 gI,BM(x) = MRM − MM(qI)

Bending (beam ends) 30 gI,BE(x) = MRE − ME(qI)

Shear failure 60 gI,SH(x) = VR − V(qI)

Column failure 60 gI,COL(x) = R(NR ,MR) − S(NSI ,MSI)

Column loss(CLi) Rebar rupture 40 gCLi ,SR(x) = qCLi ,SR − qCL

Shear failure 60 gCLi ,SH(x) = VR − V(qCL)

Column failure 80 gCLi ,COL(x) = R(NR,MR) − S(NSCLi,MSCLi)
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initial comparison between frame configurations. Moreover, ‘strength
ening’ relates to APM-oriented design of new structures against pro
gressive collapse in further results shown in this study.

Partial frame strengthening has been shown to be more cost-effective 
in prior studies [8,12,16], aligning with findings from Praxedes and 
Yuan [17]. The study by these latter researchers indicated that the first 
floor requires the highest level of strengthening against an inner column 
loss, followed by the second floor, to achieve optimal robustness. This is 
primarily due to the critical failure path associated with catenary action 
in the double-span beam above a lost column. However, they also 
observed some beam strengthening extending to upper floors, with re
inforcements gradually decreasing at higher floor levels.

Bay pushdown analysis of frames partially strengthened on the first 
two floors reveals a distinct Vierendeel action behavior compared to 
fully strengthened frames, altering the overall force vs displacement 
(pushdown) response until rebar rupture. For squared and horizontally 
aligned frames, these differences are less pronounced, allowing for the 
use of the same pushdown curves when estimating progressive collapse 
response for the sake of simplification. However, in taller and slender 
frames, bending moments in the first non-strengthened columns often 
exceed those at the ground floor, leading to notable deviations in the 
overall pushdown behavior. Consequently, full frame strengthening is 
employed to ensure realistic results for all configurations. Future studies 
will explore these aspects in greater detail.

3. Methodology

This study investigates the optimal risk-based design of conventional 
RC frames with varying aspect ratios under gravity loads and column 
loss scenarios, focusing on how their topologies influence allocation of 
the strengthening budget between beams and columns, accounting for 
nonlinear structural behavior of the entire frame. Redistribution-type 
progressive collapse due to single column loss is analyzed, considering 
only intrinsic resisting mechanisms. Progressive collapse is mitigated by 
enhancing ALPs through APM design, following typical codified 
frameworks. The analysis is limited to primary RC frames supporting 
unidirectional floor slabs, for which 3D effects can be neglected. Opti
mization variables of beams and columns include cross-sectional di
mensions, concrete strength, and longitudinal and transverse 
reinforcements.

Under multiple hazards, progressive collapse probability P[C] can be 
computed as follows [18]: 

P[C] =
∑

H

∑

LD
P[C|LD,H]P[LD|H]P[H] (1) 

where P[H] is the annual probability of hazard occurrence; P[LD|H] is 
the conditional probability of local damage given H; and P[C|LD,H] is the 
conditional probability of collapse given LD and H. Although P[H] in Eq. 
(1) relates to an annual rate of hazard occurrence, herein we address the 
probability of hazard occurrence over a 50-year period P[H50], corre
sponding to the typical design lifespan of buildings. This probability is 
derived from the assumed annual occurrence rate of the hazard P[H50] =

1 − (1 − P[H] )
50.

In order to focus on structural system behavior, given single column 
loss scenarios, the threat-independent approach proposed by Beck et al. 
[8,19,20] is used when computing P[C]. The authors addressed Eq. (1) by 
considering the (fifty-year) probability of local damage, pLD =
∑

HP[LD|H]P[H50], as an independent parameter related to epistemic 
uncertainty in abnormal loading scenarios and local damage occurrence 
[19]. With this approach, risk analysis can be carried out with no need to 
estimate P[LD|H] and P[H] (or P[H50]), so P[C] is given in terms of optimal 
system behavior under given values of pLD. Varying pLD from ~0–1 
covers situations of negligible to significant column loss threats, 
revealing how the optimal risk-based solutions adapt to increasing 
threats [8,21]. Hence, pLD is the main parameter to decide if a specific 
building should be strengthened against progressive collapse, or not. 

The local damage probability threshold pth
LD represents the break-even 

point, which makes the additional cost of APM strengthening equal to 
the reduction in expected cost of progressive collapse failure [8,11,12]. 
When risk analysis for a specific building shows that pLD > pth

LD, APM 
strengthening becomes cost-effective. For a particular building, pLD is 
estimated in a risk assessment considering building location, surround
ings, ownership, use, and all potential hazards and possible local dam
age scenarios [8,11,12]. Therefore, cost-effectiveness of APM 
strengthening relies on whether the estimated pLD is below or above pth

LD.
As shown by Beck et al. [8] and confirmed herein, the threshold local 

damage probability pth
LD varies significantly with frame aspect ratio, 

particularly when accounting for Vierendeel and catenary systemic ef
fects. In this work, pLD is varied between pmin

LD = 5 × 10− 6 to 0.1 (in a 
lifetime of 50 years), describing scenarios where the threat of local 
damage is negligible, to very significant threat. Besides, pmin

LD relates to 
the 50-year lifespan equivalent to the “de minimis” annual probability p 
= 10− 7 [22].

3.1. General framework

Risk-based optimization is used to find the optimal tradeoff between 
safety and economy, explicitly accounting for uncertainties (specified in 
Table 2) and individual consequences of all failure modes [23]. Vector of 
design variables d includes beam and column cross-section dimensions, 
concrete strength, and reinforcement ratios, whereas a vector of random 
variables X encompasses uncertainty in loads, material properties, 
geometric parameters, and structural model. More specifically, design 
variables are the beam depth hB, beam rebar diameter ϕB (symmetric 
bottom and top layers, for simplification), beam stirrup spacing st , col
umn size hC (squared cross-section), diameter of column reinforcement 
ϕC, and frame’s concrete strength fʹc. Every design variable in d =

{
hB,

ϕB, st , hC,ϕC, fʹc
}

within a design domain D represents the mean value 
of a random variable, so d relates to random design variables.

The framework proposed by Ribeiro et al. [11,12] is used, which 
relies on integrating risk-based optimization, reliability analysis, 
nonlinear structural modeling, and pushdown response analysis. In this 
approach, the balance between construction costs and expected costs of 
failure is optimized for each pLD via Firefly Algorithm [24]. Probabilities 
of failure are addressed by Weighted Average Simulation (WASM) [25, 
26], which is required to later compute the respective expected cost of 
failure. As a simulation method is used for computing failure probabil
ities, OpenSees [27] is adopted to conduct nonlinear static pushdown 
analysis [28] via FEM at sample points created over a sampling domain 
S via Latin Hypercube Sampling (LHS) [29–31].

Solving an optimization problem that integrates reliability analysis 
and nonlinear structural response analysis is computationally expensive 
via traditional methods, as the millions of sample point estimates render 
the procedure nearly prohibitive. An efficient approach to address this 
computational burden is the use of metamodels [11,32] or interpolation 
[12]. Herein, Inverse Distance Weighting (IDW) [33] is used to inter
polate the structural response at any point in S based on the 
high-fidelity FEM response at the closest support points. Thus, IDW is 
also used for computing reliability index to hasten the integration be
tween reliability analysis and risk-based optimization, enabling very fast 
optimization loops [12].

A sample set is created via LHS across the design domain D . For each 
design sample point, a previous large random variable sample set with 
their limit state results are used as basis to compute the probability of 
occurrence and respective reliability index for all failure modes via 
WASM. Then, a new sample set is then created via LHS across D for risk- 
based optimization purposes (initial set of fireflies in the Firefly Algo
rithm). The reliability indexes for this last sample points are quickly 
(and accurately) estimated via IDW interpolation in terms of the support 
points previously evaluated in reliability analysis.
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In terms of Eq. (1), pLD =
∑

HP[LD|H]P[H50] refers to the probability 
that the initiating local damage (column loss) occurs due to an un
specified hazard within a 50-year design life. Importantly, pLD refers to 
the initiating member loss, i.e., the column assumed to be removed. The 
subsequent structural response and potential for further damage prop
agation to directly or indirectly affected members are captured by 
P[C|LD,H], which is computed through the proposed framework. While 
APM relates to a deterministic scenario in which a column is assumed to 
be suddenly removed, this does not imply that pLD is equal to 1 in a 
probabilistic context. Instead, the column removal is a modeling 
assumption used to assess structural robustness under a rare but plau
sible initiating event for the addressed structure. Herein, this propensity 
is given in terms of pLD.

3.2. Risk-based optimization

To find the optimal compromise between safety and economy, the 
total expected cost CTE is minimized for each frame and for each pLD. 
Herein, CTE addresses manufacturing costs and expected costs associated 
with all failure modes: 

CTE(X, d) = CM +
∑NIF

i=1
kiCMAipfi +

∑NCL

k=1

∑NCLF

j=1
kjCMAjpfjpLDk (2) 

where CM is the frame construction cost; NIF and NCLF are the 
number of failure modes for intact and damaged structure, respectively; 
NCL is the number of missing column scenarios; k is a subjective failure 
consequence factor; pf is the probability of occurrence; CMA is the con
struction cost of the damaged frame area affected by a given failure 
mode; and pLD is the local damage probability assumed. Additional life- 
cycle costs could be included in this objective function, but only those 
related to construction and expected losses are considered herein. Be
sides, failure modes are assumed to be uncorrelated with each other.

Following Marchand and Stevens [34], multipliers k address the 
consequence of a specific failure mode in terms of construction cost CMA 
for the corresponding damaged area [8,12]. Failure cost multipliers are 
estimated based on construction costs and collapse costs of the Alfred P. 

Murrah Federal Building, World Trade Center, and Pentagon. Less se
vere failure modes, such as serviceability (deflections) or bending failure 
(yielding onset), are assigned with smaller k values. Conversely, brittle 
shear and column failures are assigned with larger k values, in com
parison to ductile beam failures, as shown in Table 1. These values of k 
are adequate for risk optimization purposes, consistently leading to 
adequate optimal reliability indexes based on the severity of failure 
modes [11,12].

The risk-based optimization problem is formulated as follows:

find ​ d∗

which minimizes ​ CTE(d)
subject to ​ d ∈ D

(3) 

Beam design variables are depth hB, rebar diameter ϕB (symmetric 
layers), and stirrup spacing st, whereas column design variables are 
(square) cross-section size hC and rebar diameter ϕC. Concrete strength 
fʹc also is a design variable, with the same value being assigned for all 
beams and columns. To ensure that a unique detailing covers all frames 
in all scenarios, 3 rebars are chosen for both beam layers and 16 rebars 
for the columns (Fig. 2). Only lower frames (below 6 × 6) under Normal 
Loading Condition (NLC) could have smaller amount of column rebar 
given the lower bounds in D (300 mm for hC and 12 mm for ϕC, as 
shown in Table 2).

Firefly algorithm is used to solve the optimization problem, relying 
on 10 optimization runs for each pLD value, 100 iterations per run, and 
40 fireflies. An extensive auxiliary search with 104 fireflies is quickly 
done over D to improve convergence around global optima, keeping 
only the 40 brightest fireflies in remaining iterations.

3.3. Limit states and reliability analysis

Table 1 shows the limit state functions, the values of failure conse
quence factor k, and the extent of final damaged area affected by each 
failure mode (in red), which are based on [12].

Variables in Table 1 are as follows: 

Table 2 
Uncertainty modeling.

Category RV Distribution Mean and D bounds [ ] Standard deviation Coefficient of variation Reference

Geometry Beam 
depth (hB)

Normal To be 
optimized 
[300, 600] mm

1 mm -
[41]

Beam rebar 
diameter (ϕB)

Normal To be 
optimized 
[12, 30] mm

- 0.05
[41]

Stirrup 
spacing (st)

Normal To be 
optimized 
[10, 30] mm

- 0.05 
(assumed) [12]

Column 
size (hC)

Normal To be 
optimized 
[300, 600] mm

1 mm -
[41]

Column rebar 
diameter (ϕC)

Normal To be 
optimized 
[12, 30] mm

- 0.05
[41]

Material Concrete 
strength (fʹc)

Lognormal To be 
optimized 
[25, 45] MPa

- 0.12
[42,43]

Rebar yield 
strength (fy)

Normal 510 MPa - 0.05
[42]

Ultimate steel 
strain (εsu)

Normal 0.20 - 0.14
[42,44]

Loads Dead load (D) Normal 1.05Dn - 0.10
[45]

50-year live 
load (L50)

Gumbel 1.00Ln - 0.25
[45]

Arbitrary point in time live load (Lapt) Gamma 0.25Ln - 0.55
[45]

Structural model Model 
error (ME)

Lognormal 1.101 0.187 -
[12]
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✓ qI and qCL are the distributed loads for intact (I) and column loss (CL) 
scenarios, respectively;

✓ δlim is the admissible beam displacement of 15 mm [35];
✓ δ(qI) is the beam vertical drift in the intact frame;
✓ MRM = MRE = MR relate to beam bending capacity at midspan (M) 

and ends (E), respectively [35];
✓ MM(qI) and ME(qI) are the beam bending demands at midspan (M) 

and ends (E), respectively;
✓ VR is the beam shear capacity [35];
✓ V(qI) and V(qCL) are the shear demands in the beams for intact and 

damaged structure, respectively;
✓ R(NR,MR) relates to the columns axial force vs bending moment 

resisting envelope [35];
✓ S(NSI,MSI) and S(NSCLi,MSCLi) are the columns axial force vs bending 

moment demands for intact and damaged fame, respectively;
✓ qCLi ,SR is the beam capacity in terms of top layer rebar rupture at the 

adjacent beam-column joints.

For column loss scenarios, parameters qCLi ,SR, V(qCL) and S(NSCLi,

MSCLi) are obtained in terms of pseudo-static pushdown curve [36–39]. 
Beam failure modes in the intact frame are considered to happen in a 
single story, since it is unlikely that live load reaches its 50-year extreme 
value in all stories simultaneously. Column failure for the intact scenario 
is checked for at the frame’s top corner (greater bending moments) and 
at the foot of its innermost column (greater axial forces). Hence, the 
evaluation of column failure in the intact structure scenario is based on 
two distinct criteria, owing to the symmetry of the planar frame. Spe
cifically: a) in the innermost column located at the first story, both axial 
force and bending moment demands are checked against their capacity 
envelope, as those internal forces are significant in that location; b) at 
the top corner of the frame, only the bending moment is evaluated, since 
the axial force is negligible in that region, and also to avoid one more 
structural analysis output in surrogate estimation. Therefore, column 
failure is deemed to occur if either of these two criteria is not satisfied for 
a given sample point. This dual-check approach ensures that both crit
ical regions of the column are adequately considered in the reliability 
evaluation.

For clarity, middle column loss scenario in the squared frame is 
chosen to depict the damaged areas in Table 1, but the actual damaged 
frame portion depends on which column is suddenly lost and on the 
frame topology.

In the column loss scenarios, both rebar rupture and shear failure 
refer exclusively to failure mechanisms in the beams, not the columns. 
The red area in the sketch (Table 1) indicates the portion of the struc
tural frame ultimately affected by the assumed failure mode. This 

includes the area influenced by upward propagation of beam failure. 
While the structural assessment focuses on the first-story double-span 
beam directly above the removed column, it is assumed that if this beam 
fails (by rebar rupture or shear), then the beams directly above are also 
considered susceptible to failure due to identical detailing. This leads to 
a worst-case scenario in which the entire vertical bay of beam spans 
above the removed column is assumed to collapse, thereby also 
involving the interstory columns between these beams. Besides, as it is 
unlikely that a value close to the 50-year extreme live load is acting 
during a hazard even able to trigger column loss, the arbitrary point in 
time live load is used for the damaged scenarios.

Horizontal failure propagation following adjacent column loss is 
treated in a simplified yet conservative manner [12]. In reality, the 
lateral spread of collapse may extend beyond the second spans, 
depending on complex dynamic effects such as impact forces from fall
ing members, inertial amplification, and system-level interactions (e.g., 
inward pulling mechanisms typical of domino-type progressive 
collapse). Nevertheless, these phenomena are not explicitly modeled 
here, as doing so would fall beyond the scope of this study. Instead, it is 
assumed that lateral propagation is governed by the residual capacity of 
individual members and their span lengths.

In the configuration considered, failure is assumed to extend up to 
the second adjacent spans on each side, beyond which the resulting 
beam spans are considered too long for the RC beams to sustain redis
tributed loads without intermediate support (e.g., 12 m for external 
column loss and 24 m for middle column loss). In the other extreme, 
assuming a full-structure collapse from lateral propagation would result 
in unrealistically long, unsupported beam spans, and thus it does not 
represent a suitable general-case assumption. It is acknowledged that 
this simplification does not fully capture the complexity of real collapse 
scenarios. Nonetheless, it offers a practical balance between accuracy 
and computational feasibility within the adopted optimization-based 
methodology. Importantly, even under this simplified assumption, 
further results demonstrate a consistent tendency to avoid lateral pro
gression of collapse following adjacent column failure. As reflected in 
the optimal solutions, reliability indexes associated with these scenarios 
are systematically the highest when compared to other failure modes, 
highlighting their critical influence on structural safety.

Table 2 shows the adopted uncertainty modeling for reliability 
analysis at the design support points. Based on [11,12], boundary values 
for S are chosen in terms of μ ± 2σ for each random variable. Although 
this range is not optimal for computing small probabilities via WASM, it 
is accurate enough for our risk optimization purposes (i.e., probabilities 
below 10− 4 relate to negligible expected costs of failure). Therefore, 
high accuracy for smaller probability values is not necessary.

Fig. 2. Adopted cross-section detailing of (a) beams and (b) columns.
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Table 2 also depicts the boundary values in D for all random design 
variables d. For those bounds, reasonable values are chosen to ensure 
compliance with minimal and maximal design requirements related to 
cross-section dimensions, reinforcement ratios (longitudinal and trans
versal) and member slenderness [35]. Hence, the chosen design domain 
leads to all optimal solutions in 4 satisfying these expected guideline 
requirements. Fixed parameters are as follows: concrete cover of 40 mm; 
rebar spacing of 100 mm for beams and at least 100 mm for columns; 
beam stirrup diameter of 8 mm (2 legs); and column transversal de
tailing consisting of 6-mm stirrups spaced by 150 mm (2 legs).

3.4. Structural analysis

OpenSees is used for structural analysis via FEM. Following Praxedes 
[40], each span is discretized in 5 fiber displacement-based finite ele
ments, each of them having 3 Gauss-Lobatto integration points). Spe
cifically, 3 elements are used for the member itself and 1 element for 
each beam-column joint. Co-rotational transformation is used to account 
for large geometrical nonlinearities, and cross-section layering consists 
of 200 fibers for confined concrete and 10 fibers for each unconfined 
concrete cover, which is enough to avoid convergence issues across S . 
Bay pushdown analysis [28] is performed with a displacement-based 
integrator, using Krylov-Newton method to solve the nonlinear prob
lem. An initial displacement increment of 1 mm is adopted at the loca
tion of the missing column, but an adaptive algorithm is used to enhance 
or decrease the step depending on the lack of or need for convergence 
improvement, respectively.

Two load steps are considered in bay pushdown analysis: a) nominal 
dead and live loads, along with self-weight, are applied to all beam 
spans; b) if beam rebar rupture does not occur, an increasing load is 
applied to spans adjacent to the lost column until rupture is verified. 
Constitutive models for concrete and steel rebars are similar to [12]. The 
modified Park-Kent model [46] is used to simulate concrete behavior in 
compression, whereas the tensile behavior is represented according to 
fib Model Code [47]. All parameters related to concrete modeling are 
implemented in the ‘concretewBeta’ model in OpenSees, which effec
tively captures softening and residual stresses. Rebar behavior is 
modeled with OpenSees ‘ReinforcingSteel’ to accurately represent steel 
behavior and to avoid stress discrepancies that are common in simpler 
bilinear models.

While it is true that there are some dynamic loading effects on 
adjacent, indirectly affected bay areas, their influence is comparatively 
smaller and was therefore neglected in the present study to maintain 
feasibility within the probabilistic reliability framework. Including all 
load contributions across the full structures would significantly increase 
computational demands, especially given the nonlinear simulations, 
surrogates and reliability analysis employed.

Dynamic effects of sudden column loss can be modeled using explicit 
dynamic analysis, Dynamic Amplification Factors (DAF), or the Energy 
Equivalent Method (EEM). As done in [12], EEM is chosen for its prac
ticality, using the pushdown curve and energy conservation principles to 
build the pseudo-static pushdown curve, which is a reasonable estimate 
of the dynamic behavior [17].

4. Results

In the following, superscript ‘∗’ indicates the optimal value of the 
given design variable. For each frame and column loss scenario, indi
vidually, optimal risk-based design is investigated under increasing 
value of pLD. All costs are related to a single planar frame at a time, not 
an entire building. Hence, they are naturally smaller in magnitude. Yet, 
they still reflect meaningful decisions within the optimization frame
work. Besides, as mentioned in 3, 10 independent optimization runs are 
conducted at each pLD. However, as a very low dispersion was identified 
in the results (CoV consistently less than 5 %), only the average results 
are shown further.

4.1. Optimal design solutions and column loss probability threshold

Fig. 3 shows the evolution of optimal column width h∗
C for pLD 

ranging from 5 × 10− 6 to 10− 1. Results for hB, ϕC and fʹc are omitted 
because identical values are found regardless of pLD, whereas ϕB and st 
are omitted because their transition between usual and APM beam 
design happens at a pLD greater than pth

LD (as explained later). For brevity, 
ECL is chosen to depict Fig. 3, but similar behavior modes are found for 
PCL and MCL, with differences arising in the total expected costs CTE. 
Tables and Figures in Appendix A show the optimal results for all frames 
and columns loss scenarios in greater detail, including optimal beam and 
column costs per meter.

The yellow background in Fig. 3 corresponds to small pLD values, for 
which external column loss due to an unspecified hazard is possible but 
unlikely. The optimal solutions in this region are very similar to the ones 
which would be obtained in conventional design, under normal loading 
condition (NLC). The blue background corresponds to large pLD values, 
for which external column loss due to an unspecified hazard is 
increasingly likely. In this region, optimal risk-based design solutions 
adapt to mitigate disproportionate collapse. The white background 
corresponds to local damage probability thresholds [11,12], which 
change from pth

LD≳10− 3 for lower frames, to pth
LD≲10− 3 for taller frames. 

The local damage probability threshold pth
LD is the break-even point, for 

which the costs of APM strengthening nearly match the reduction in 
expected costs of progressive collapse. Such a threshold probability in
dicates an indifference in the objective function, where two 
near-optimal solutions coexist: one solution prioritizes alternative load 
paths with reduced margins for progressive collapse, while the other 
aligns with conventional design under normal loads. Therefore, two sets 
of optimal solutions are found, divided by the local damage probability 
threshold (transition). In the first set (small pLD), optimal solutions favor 
behavior under NLC; in the second set (large pLD) optimal solutions have 
adapted to mitigate progressive collapse under column loss scenario.

Fig. 3 also shows that CTE at pth
LD may reach figures ~2 times greater 

in comparison to pmin
LD , especially for lower frames. In such cases, 

providing progressive collapse mitigation via whole frame strength
ening only pays off for larger values of pLD and greater expected costs of 
failure. This happens because the final damaged area in case of collapse 
spread is smaller for lower frames, so expected costs of progressive 
collapse do not grow as fast as in taller configurations. Hence, as pro
gressive collapse consequences are not as severe for lower and wider 
frames, APM design only pays off under greater threats. In addition, 
column bending demands due to Vierendeel action are slightly reduced 
for lower frames. Yet, alternative progressive collapse mitigation stra
tegies could be cost-effective earlier for these lower aspect ratios [12, 
14], but whole frame strengthening is chosen herein to allow more 
direct comparisons.

Figs. 4 and 5 show the typical optimal cross sections found for beams 
and columns, respectively, before and after the threshold pth

LD: conven
tional design for pLD ≤ pth

LD, and APM design for pLD = 10− 1.
Since inner primary frames receive floor loads from both sides, ex

pected costs of column failure grow faster with pLD in comparison to [12]
(as reflected in Fig. 9, to be introduced later). In comparison to primary 
perimeter frames, mitigating progressive collapse becomes 
cost-effective earlier for inner frames, especially for taller configura
tions. Following [8,20], pth

LD relates to the first transition between a 
constant optimal NLC design and an APM-oriented optimal design. 
Hence, optimal APM design for pLD≳pth

LD for squared and taller frames 
leads to column-only strengthening, to deal with bending demands 
arising from beam axial forces in both catenary and Vierendeel actions 
[12]. Horizontal collapse spread is the first propagation mechanism 
targeted by APM near pth

LD, for squared and taller frames, with only hC 

showing two transient optimal solutions at pth
LD. Upward collapse due to 

beam failure (rebar rupture or shear) becomes critical for 
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10− 3 < pLD < 10− 2, where an optimal APM beam design also becomes 
cost-effective for taller frames (as shown in Fig. 8, to be introduced 
later). Yet, for pth

LD < pLD < 10− 2, there is an optimal frame detailing 
given by APM columns and conventional beams for squared and taller 
frames, and only after pLD = 10− 2 optimal design solutions become fully 
APM-oriented.

In addition, overall concrete strength fʹc is shown to be a multipur
pose design variable, similarly to hB. Although it has negligible influence 
on the pushdown behavior [48], an increased fʹc directly provides 
greater resistance against 5 failure modes (serviceability, negative and 
positive beam bending, shear failure and column failure). Therefore, 
ensuring fʹc

∗ at its upper bound in D (i.e., 45 MPa) for all frames, sce
narios, and regardless of pLD, is the alternative with most 
cost-effectiveness.

4.2. Optimal resistance and safety margins

Optimal conventional beam design is similar to that discussed in 

[12]: beam depth up to its upper bound, rebar ratio of 0.42 %, and 
stirrup ratio of 0.17 %. Load combination qI = 1.2DL+1.6LL [35] leads 
to roughly 64 kN/m over the beam spans, with DL and LL being member 
loads (kN/m) arising from dead and live loads, respectively. In this 
framework, Demand-to-Capacity Ratios (DCRs) indicate how the ex
pected (increased) demand matches the expected (reduced) capacity, 
serving as a normalized and interpretable metric to investigate optimal 
solutions for intact and damaged structures. Herein, this approach aligns 
to the Load and Resistance Factor Design (LRFD) for checkup purposes. 
When computing DL, it is considered the nominal dead load Dn over the 
floor slabs, and self-weights of the RC beam and slab (depth of 100 mm). 
Only the nominal live load Ln over the floor slabs is adopted when 
computing LL.

Hence, DCRs for the intact structure [35] are obtained as follows: 
1.03 for bending at the beam ends (ϕ = 0.9); 0.52 for bending at the 
midspan (ϕ = 0.9); and 0.82 for shear failure (ϕ = 0.75). Since sym
metric rebars are adopted, increased safety margin is found for midspan 
bending. When computing DCR, parameters ϕ relate to strength reduc
tion according to ACI 318–19 [35].

Fig. 3. Optimal results of column width hC for each frame under ECL as a function of pLD.

Fig. 4. Optimal beam cross sections for pLD ≤ pth
LD (a) and for pLD = 10− 1 > pth

LD (b).

L.R. Ribeiro et al.                                                                                                                                                                                                                               Engineering Structures 342 (2025) 120905 

8 



In contrast to [12], optimal column designs are not constant with pLD. 
Besides, optimal conventional column design shows an increased ca
pacity for taller frames, as expected. Combination for usual loading 
condition qI = 1.2DL+1.6LL leads to roughly 64 kN/m in the beam 

spans (6 m) and ~4.8 kN/m for column spans (3 m). Therefore, the axial 
force at the base of the inner-most columns is approximately equal to 
1550 kN for the lowest frame (4 × 9), 2000 kN for the lower interme
diate frame (5 × 7), 2330 kN for the squared frame (6 × 6), 2800 kN for 

Fig. 5. Optimal column cross sections for pLD ≤ pth
LD and for pLD = 10− 1 > pth

LD: (a) lowest and lower intermediate frames, (b) squared frame, (c) taller intermediate 
frame, and (d) tallest frame.
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the taller intermediate frame (7 × 5), and 3600 kN for the tallest frame 
(9 × 4).

These expected axial demands correspond to 0.36, 0.48, 0.56, 0.52 
and 0.59 of the respective optimal axial column capacities, and even an 
eccentricity of 20 mm still keeps each axial force vs bending demand 
within the column resisting envelope. The top corner of each frame 
presents negligible axial forces and bending moments of ~5 % of its 
greatest axial demand. By comparing these demands with the columns’ 
optimal resisting envelopes, DCRs [35] ranging from 1.2 (taller frame) 
to 0.77 (lower frame) are obtained. Hence, lower safety margins are 
allowed for the columns as the frame height increases, reaching DCR > 1 
at the top corner (ϕ = 0.9, mainly flexural demand) and ~0.91 at ground 
floor (ϕ = 0.65) for the tallest frame. As the column cost/meter increases 
for taller frames, avoiding column failure for the intact structure be
comes more expensive, especially at the frame’s top corner.

Similar to [12], optimal APM beam design is similar for all frames 
and scenarios, with beam depth equal to 600 mm, maximum concrete 
strength (45 MPa), rebar ratios up to 1.03 %, and stirrup ratio up to 
0.50 %. By addressing DAF = 1.22 (usual value identified in catenary 
action via pseudo-static pushdown curves), load combination for 
abnormal loading qCL = 1.22(1.2DL+0.5LL) [49,50] leads to roughly 64 
kN/m over the beam spans. Ultimate load-carrying capacity is found via 
static pushdown analysis for each frame and each column loss scenario, 
leading to the DCR factors for rebar rupture shown in Fig. 6 [49, 50]. 
Since DCR relates to a material property in this case, no strength 
reduction factor ϕ is used.

Overall DCR factors are ~0.9, indicating a rebar rupture safety 
margin of ~10 % for all frames over all column loss scenarios 
(Figure A.1). In terms of reliability index, rebar rupture is related to 
β∗

CLi,SR ≈ 3.9 for all frames in all scenarios, as shown in Fig. 7. Although a 
previous study for perimeter primary frames have shown β∗

CLi,SR ranging 
from 2.32 to 3.20 [12], the greater expected load for an inner frame and 
imposed use of symmetric beam rebars result in a slightly larger safety 
margin.

Fig. 6 also reveals a slight decrease in DCR factors for taller frames 
and scenarios of inner column loss. Larger safety margins for these cases 
are related to more efficient development of catenary and Vierendeel 
actions (Figure A.2), so a similar optimal APM beam design is able to 
attain slightly greater ultimate capacity values. This indirectly explains 
the reduction in the gap between CM and CTE for PCL and MCL as the 
frame height increases (Tables A.2 and A.3 in Appendix A).

When addressing PCL and MCL, lower frames have less stories above 
the double beam span, and slightly lower axial forces develop during 
Vierendeel action (Figures A.2 and A.3 in Appendix A). Although the 
impact on beam capacity is little, it implies a reduced bending demand 
to the adjacent columns due to the lower number of hanging stories. 
Thus, the final damaged area is reduced for lower frames in case of 

lateral collapse spread, as the increased beam span prevents further 
propagation after failure of a single adjacent column [12]. This results in 
lower column safety margins (Fig. 7) for configurations with less stories, 
with β∗

CLi,CO ranging from 3.0 (lower frame) to 3.5 (square frame), and 
consequently to greater gaps between CM and CTE for lower frames 
(Tables A.2 and A.3 in Appendix A). On the other hand, Fig. 6 reveals 
that external column loss (ECL) leads to the greatest DCR for rebar 
rupture. Yet, this relates to the unconditional failure event (disregarding 
pLD, solely addressing the failure mode itself), as Fig. 7 shows a condi
tional β∗

CLi,SR ≈ 4.0 regardless of aspect ratio. Since catenary action does 
not develop for ECL (Figure A.2), a reduced size for the squared column 
section is enough for greater safety margin against horizontal collapse 
propagation: β∗

CLi,CO ≈ 4.5 for smaller frames and β∗
CLi,CO ≈ 6.0 for taller 

frames (Fig. 7 and A.3). Hence, the gap between CM and CTE is negligible 
for ECL (Table A.1 in Appendix A).

Taller frames have a reduced number of columns, since the tributary 
area is kept constant, for fair comparisons. Therefore, as the number of 
remaining columns decreases in column loss scenarios, there is an in
crease in vertical loads and bending moments to be redistributed to 
remaining columns, particularly to the adjacent ones. Column bending 
moments due to Vierendeel action increase for taller frames (Figures A.2 
and A.3). This also implies strengthened optimal APM column design 
solutions, explaining why β∗

CLi,CO for taller frames increases even for ECL, 
where catenary action does not develop.

Regarding shear forces, an expected load of 64 kN/m on the affected 
spans leads to approximately 384 kN of shear at the beam ends. Since 
the beam has only one vertical support after the column removal, nearly 
the entire gravity load is transferred to the adjacent beam end by shear. 
Thus, for a simplified assessment of shear failure DCR, the total 
distributed load times the entire span length directly corresponds to the 
shear force at the supported end. Optimal APM beam design leads to 
DCRs up to ~0.99 (with ϕ = 0.65), demonstrating that the algorithm 
ensured a minimal amount of safety margin against shear failure, and 
Fig. 7 shows β∗

CLi,SH ranging between 4.0 and 4.6. Symmetric rebars 
provide greater ultimate load capacity in terms of steel rupture, but 
without significant increase in shear capacity. Thus, setting beam depth 
and concrete strength to their upper bounds in D addresses all failure 
modes, including shear demands. Yet, stirrup spacing st has to be 
reduced in APM design to produce sufficient shear safety margins. 
Further reduction in st below s∗t incurs additional strengthening costs 
that are not compensated by the reduction in expected costs of shear 
failure.

To characterize the increase in optimal beam resistance, for 
increasing column loss probability threats (pLD), Fig. 8 shows the 
optimal resistance factors γ∗, defined in terms of optimal design for pmin

LD , 
for bending and shear failure, for each frame and column loss scenario, 
as in Eq. (4). Hence, γ∗ represents the ratio between optimal strength 
capacity for pLD relative to pmin

LD : 

γ∗CLi,fm =
R∗

CLi,fm(pLD)

R∗
CLi,fm(pmin

LD )
(4) 

where: CLi is the column loss scenario being addressed; and 
R∗

CLi,fm (pLD) is the optimal resisting capacity of the failure mode fm at CLi 
and pLD.

The overall increase in optimal bending capacity is approximately 
2.2 for pLD ≥ 10− 2, while being 1.8 for shear capacity and pLD > 10− 2. 
Although lower frames have a smaller damaged area in case of upward 
collapse propagation, weaker beams are never justified, in contrast to 
previous results by Beck et al. [8]. In ref. [8], a progressive collapse 
capacity model that neglects bending moments at adjacent columns 
shows that stronger beams are only cost-effective for taller frames, 
where upward collapse propagation is as severe as lateral collapse 
propagation. Nonetheless, more realistic capacity models reveal that 
significant axial forces and bending moments in Vierendeel action have Fig. 6. Rebar rupture DCR factors for APM design (pLD = 10− 1), as function of 

frame aspect ratio.
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major impacts over adjacent columns.
Weaker beams are able to develop greater ultimate capacity in 

catenary action [11,12]; however, this also requires earlier onset of 
catenary action, prematurely increasing bending demands on adjacent 
columns. For squared-section columns, regardless of frame aspect ratio, 
enhancing their bending capacity to counteract these demands from 
catenary action proves cost-ineffective, confirming findings by Ribeiro 
et al. [12] also for lower and taller frames.

The additional column flexural demand due to tensile forces asso
ciated with catenary action increases the likelihood of column failure. In 
case of column rebar tensile yielding, full achievement of beam ultimate 
capacity is severely compromised, while column rebar buckling leads to 
a brittle and sudden column collapse [12]. Nevertheless, an APM beam 
design with greater depth hB promotes its ultimate capacity by means of 
compressive arch action: the onset of catenary action is postponed, 
reducing the bending demand over the adjacent columns and keeping 
the expected abnormal loading closer to compressive arch capacity. This 
motivates the risk-based algorithm’s preference for stronger beams 
independently of the frame’s configuration or column loss scenario. Yet, 
frame ductility prior to collapse is significantly reduced [12].

To address the increase in column resistance, Fig. 9 shows the 
optimal resistance factors γ∗ in terms of axial capacity for each frame 
and each column loss scenario, as function of pLD. Column axial capacity 
increases by 90 % for lower frames and 60 % for taller frames, but taller 
frames still end up with columns of greatest axial capacities. To avoid 
misinterpretations, the lower frame is used as general reference in the 
denominator of Eq. (4) (for pmin

LD ). This leads to γ∗ greater than 1 (at pmin
LD ) 

for taller frames, as their column axial capacities are greater than the 
reference (lower). This allows, in dimensionless terms, the absolute 
behavior of optimal column axial capacity to be captured.

Although beam APM strengthening becomes cost effective for pLD 

between 10− 3 and 10− 2 (Fig. 8), column APM strengthening turns out to 
be cost-effective earlier for taller frames (Figs. 3 and 9), even for exterior 
column loss scenario. Therefore, taller frames have pth

LD characterized 
just by column APM strengthening, reducing the expected cost of col
umn failure caused by greater axial forces and bending moments due to 
Vierendeel action (Figure A.2).

Fig. 10 shows, for pLD = 10− 1, how the optimal resistance factors 

change with the aspect ratio. Optimal APM beam resistance (steel 
rupture and shear) is found to be insensitive to the frame’s aspect ratio 
and column loss scenario, because stronger beams are required to avoid 
magnified bending moments being transmitted to the columns, regard
less of aspect ratio (Figure A.3). Only column axial capacity is found to 
be sensitive to frame’s aspect ratio, with increasing values being 
required for taller frames (Fig. 9). Hence, only column results align with 
those by Beck et al. [8]. Inner column loss scenarios are associated with 
column-related γ∗ factors ranging from 2 (lower frames) to 2.5 (taller 
frames), while for external column loss such factors range from 1.0 to 
1.8, respectively.

4.3. Interpretation of results

This section relates to the case-study frames and assumptions 
addressed herein. For squared and taller frames, and for pLD≳pth

LD, 
optimal APM design initially strengthens columns to deal with bending 
demands caused by catenary and Vierendeel actions. Beyond this 
threshold, optimal design solutions gradually increase beam strength, 
delineating a fully APM-oriented design for greater pLD values. For lower 
frames, strengthening the entire structure is cost-effective only under 
larger pLD and higher expected failure costs. Lower frames experience 
less severe consequences of progressive collapse due to smaller final 
damaged areas, reducing the need for extensive mitigation. While 
Vierendeel action demands are slightly reduced for lower frames, 
alternative mitigation strategies could become cost-effective earlier for 
lower aspect ratios, such as segmentation or partial frame 
reinforcement.

Taller frames show slightly decreased demand-to-capacity ratios 
under inner column loss scenarios, because both catenary and Vier
endeel actions develop more efficiently, enhancing ultimate capacity. 
Regardless of the frame’s aspect ratio, external column loss is the most 
critical scenario, in terms of DCR. However, conditional reliability in
dexes for column and beam failures, given ECL, remain consistently 
above 4 across all frame aspect ratios.

Increased ultimate capacity is ensured for pLD > pth
LD, with larger 

longitudinal and transverse reinforcement ratios, and concrete strength 
at its upper bound. Since columns were assumed with squared cross- 

Fig. 7. Optimal reliability indices in terms of frame aspect ratio, for pLD = 10− 1.
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sections, it was found to be too expensive to ensure enough flexural 
capacity to deal with tensile forces that develop under catenary action. 
Therefore, an optimal beam depth at its upper bound aims at ensuring 
ultimate capacity by means of compressive arch action. This alleviates 
the bending demands over adjacent columns and keeps the expected 
abnormal load closer to compressive arch capacity, while limiting the 
frame ductility (Figures A.1 to A.3).

Beam cross-section depth and concrete strength are design variables 
able to ensure capacity against multiple failure modes. Consequently, 
the risk-based algorithm tends to favor high values for those parameters. 
Moreover, concrete strength is a design variable with significant un
certainty, so higher values help ensuring sufficient column safety margin 
in case of non-compliant concrete [51].

ACI provisions [35] for conventional design and both GSA and UFC 
requirements [49,50] for progressive-collapse-resistant design are met 
by the optimal solutions found herein, with few exceptions related to 
DCRs slightly greater than unity. In those few cases, the risk-based al
gorithm does not show cost-effectiveness in providing greater re
inforcements solely to meet safety margins required by the 
abovementioned guidelines. Yet, slightly more conservative design so
lutions would be needed to comply with the requirements.

4.4. Remarks on multi-hazard optimal design

International design standards primarily address progressive 
collapse caused by the sudden loss of a single column [49,50,52], typi
cally triggered by severe (yet often local) events – such as IED detonation 
or vehicle impact – and propagated through amplified vertical loads. 
However, progressive collapse can also result from amplified horizontal 
loads, such as those occurring during seismic events. In such cases, shear 
forces at the base, excessive node rotations, or extreme inter-story drifts 
can compromise structural stability and reduce load-bearing capacity 
[53,54]. Regardless of the triggering mechanism, the propagation of 
collapse depends on the availability of alternative load paths to redis
tribute forces and mitigate disproportionate damage [5].

As discussed in [12] and verified by previous results, ultimate beam 
capacity – defined here by rebar rupture – is directly linked to the 
flexural capacity of adjacent columns. Resisting mechanisms, such as 
Vierendeel action, compressive arch action, and catenary action, rely on 
horizontal restraints provided by the columns. This creates a tradeoff 
between beam and column moments of inertia: stronger columns with 
higher moments of inertia enhance ductility and catenary action in 
weaker beams, while weaker (e.g., squared cross-section) columns 

Fig. 8. Behavior of optimal beam γ∗ with pLD for each frame and column loss scenario.
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primarily mobilize compressive arch action in stronger beams but 
exhibit reduced ductility before collapse. This compromise is found to be 
significant across a broad range of frame aspect ratios and, contrary to 
[8], only minor variations are attributable to the frame’s topology.

Aligned with results in [12], ‘strong column – weak beam’ configu
rations, which are widely used against hazards capable of inducing 
abnormal lateral loads, such as seismic events, can also optimize pro
gressive collapse resistance for a broad range of frame aspect ratios. 
Given the increasing frequency of extreme events associated with 
climate change, such as tornados and flooding, simultaneous 

optimization for multi-hazard scenarios represents a cost-effective and 
robust solution [55]. Therefore, results shown in this paper complement 
those in [12], suggesting optimal configurations which can be 
cost-effective for progressive collapse mitigation and under abnormal 
lateral loads, which is particularly relevant for critical infrastructure and 
taller frames [56]. Optimal designs with weak beams (corresponding to 
a low moment of inertia) may perform well under multiple hazards 
during the structure’s lifespan, provided that adjacent columns have 
sufficient flexural capacity. Furthermore, while strong columns with 
squared cross-sections are not cost-effective for column loss scenarios 

Fig. 9. Behavior of optimal column-related γ∗ with pLD for each frame and columns loss scenario.

Fig. 10. Behavior of each γ∗ with frame aspect ratio.
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alone, they may become viable if the optimization also considers, for 
instance, significant multi-axial earthquake and tornado actions. These 
aspects will be further explored in future studies.

5. Conclusions

The optimal risk-based design of 2D reinforced concrete frames 
vulnerable to progressive collapse depends heavily on the interaction 
between the moments of inertia of beams and columns. This study ex
plores how the frame’s aspect ratio influences optimal designs to miti
gate collapse propagation. The findings highlight the importance of 
balancing strengthening costs against expected costs of progressive 
collapse across various column loss scenarios for low, intermediate, and 
tall frames. The results also identify when robust designs using the 
Alternative Path Method become cost-effective.

Even though the investigation of 3D structural models is more 
comprehensive than its 2D counterpart, the principles derived from this 
study can guide practical decision-making, especially during pre
liminary design. Moreover, the 2D framework allows the integration of 
detailed nonlinear modeling, reliability analysis and risk-based optimi
zation, which would be significantly more complex for 3D structural 
systems. Hence, the adopted approach strikes a balance between feasi
bility and depth of investigation, offering practical insights that are 
directly transferable to engineering practice.

Firstly, it is emphasized that decisions made prior to optimization 
can influence the preferred balance between beam and column moments 
of inertia, such as adopting squared cross-sections for columns – a very 
common approach in studies on the progressive collapse of reinforced 
concrete frames [38, 42, 57–70]. For the investigated frames, 
squared-section columns require deeper beams, as they are less effective 
at resisting large bending moments when beams experience catenary 
action, and achieving sufficient moment of inertia for squared 
cross-sections is too expensive. In contrast, rectangular-section columns 
can efficiently mobilize catenary action across various scenarios. Thus, 
similarities are observed between progressive collapse-resistant design 
and the ‘weak beam – strong column’ philosophy typically used in 
seismic design. This alignment suggests that multi-hazard optimization 
can be achievable through coordinated design strategies.

Results obtained herein indicate that balance between beam and 
column moments of inertia is crucial, regardless of the frame’s aspect 
ratio (in contrast to [21]), as beam behavior under large displacements 
directly influences column performance. The use of a nonlinear model 
that captures the complex interactions among all members in a frame 
until collapse proves crucial, as simpler models fail to account for the 
interplay between beams and columns flexural capacities.

This research establishes a foundation for future studies on optimal 
multi-hazard design, emphasizing its importance particularly for taller 

frames, where columns play a more critical role and progressive collapse 
mitigation becomes justifiable for smaller threat probabilities. Further
more, future developments might incorporate ageing and deterioration 
phenomena in optimal risk-based design, hence accounting for climate 
change and lacking/ineffective maintenance during the structure’s 
lifetime.
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Appendix

Tables A.1 to A.3 present detailed risk-based optimization results for external (ECL), penultimate (PCL) and middle (MCL) column loss at the 
ground floor of the case-study RC frames. Figures A.1 to A.3 present complementary results, as described in figure captions.

Table A.1 
Optimal risk-based design addressing sudden loss of the external ground-floor column (ECL)

Frame 
(nstor × nbays)

pLD h∗
B (mm) ϕ∗

B (mm) s∗t (mm) fʹc
∗ (MPa) h∗

C (mm) ϕ∗
C (mm) C∗

TE 
(€)

C∗
M 

(€)
C∗

Beam (€ / m) C∗
column (€ / m)

Lower 
(4 × 9)

≤ 10− 3 600 18 200 45 300 12 32801.41 32708.88 92.38 106.29
10− 2 585 27 66 45 310 12 50985.57 50794.08 169.93 117.41
10− 1 579 28 74 45 310 12 51456.25 51377.28 172.63 117.41

Lower intermediate 
(5 × 7)

≤ 10− 3 600 18 200 45 300 12 32567.64 32154.60 92.38 106.29
10− 2 595 28 62 45 314 12 50975.33 50649.30 178.61 119.51
10− 1 597 28 60 45 314 12 54257.57 54050.10 182.17 119.62

(continued on next page)
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Table A.1 (continued )

Frame 
(nstor × nbays) 

pLD h∗
B (mm) ϕ∗

B (mm) s∗t (mm) fʹc
∗ (MPa) h∗

C (mm) ϕ∗
C (mm) C∗

TE 
(€) 

C∗
M 

(€) 
C∗

Beam (€ / m) C∗
column (€ / m)

Square 
(6 × 6)

≤ 10− 4 600 18 200 45 300 12 33785.22 33346.62 92.38 106.29
10− 2 590 28 67 45 363 12 53785.37 53534.34 177.15 121.19
10− 1 599 28 60 45 363 13 55997.45 55774.44 182.37 130.02

Taller intermediate 
(7 × 5)

≤ 10− 4 600 18 200 45 350 12 34375.57 34271.58 92.38 118.03
10− 2 594 28 67 45 427 13 55978.78 55715.94 177.54 146.29
10− 1 594 27 60 45 427 13 56157.77 55928.04 178.55 146.29

Taller 
(9 × 4)

≤ 10− 4 600 18 200 45 375 12 36975.76 36714.33 92.38 124.15
10− 2 598 28 81 45 439 12 56823.73 56517.75 171.50 144.25
10− 1 598 28 69 45 439 13 58787.46 58549.50 177.65 149.46

Table A.2 
Optimal risk-based design addressing sudden loss of the penultimate ground-floor column (PCL)

Frame 
(nstor × nbays)

pLD h∗
B (mm) ϕ∗

B (mm) s∗t (mm) fʹc
∗ (MPa) h∗

C (mm) ϕ∗
C (mm) C∗

TE 
(€)

C∗
M 

(€)
C∗

Beam (€ / m) C∗
column (€ / m)

Lower 
(4 × 9)

≤ 10− 3 599 18 200 45 300 12 33076.68 32708.88 92.38 106.29
10− 2 593 28 73 45 354 13 54614.52 53008.80 174.40 127.82
10− 1 590 27 65 45 449 12 64986.27 53919.36 170.01 143.31

Lower intermediate 
(5 × 7)

≤ 10− 3 600 18 200 45 300 12 32862.40 32154.60 92.38 106.29
10− 2 595 28 73 45 366 13 53047.75 52355.10 174.59 130.76
10− 1 591 27 63 45 454 13 57234.38 53431.80 171.30 145.49

Square 
(6 × 6)

≤ 10− 4 600 18 199 45 300 12 33398.56 33346.62 92.38 106.29
10− 2 595 28 77 45 425 12 54329.12 54184.86 170.98 136.93
10− 1 597 28 69 45 456 12 60276.95 57273.84 175.79 153.20

Taller intermediate 
(7 × 5)

≤ 10− 4 600 18 200 45 350 12 35508.21 34271.58 92.38 118.03
10− 2 596 28 78 45 442 12 54354.12 53851.98 171.58 141.43
10− 1 596 28 63 45 470 13 58232.14 57498.00 179.09 157.85

Taller 
(9 × 4)

≤ 10− 4 600 18 199 45 375 12 36955.13 36714.33 92.38 124.15
10− 2 596 27 66 45 456 13 57823.92 57732.21 171.01 154.03
10− 1 595 28 67 45 480 13 61239.74 59211.54 173.74 160.62

Table A.3 
Optimal risk-based design addressing sudden loss of the middle ground-floor column (MCL)

Frame 
(nstor × nbays)

pLD h∗
B (mm) ϕ∗

B (mm) s∗t (mm) fʹc
∗ (MPa) h∗

C (mm) ϕ∗
C (mm) C∗

TE 
(€)

C∗
M 

(€)
C∗

Beam (€ / m) C∗
column (€ / m)

Lower 
(4 × 9)

≤ 10− 3 600 18 200 45 300 12 32808.77 32708.88 92.38 106.29
10− 2 597 27 79 45 353 15 57923.21 54877.44 172.19 147.37
10− 1 597 28 71 45 421 14 65687.80 56469.84 175.74 154.25

Lower intermediate 
(5 × 7)

≤ 10− 3 600 18 200 45 300 12 32210.75 32154.60 92.38 106.29
10− 2 594 28 81 45 403 13 53783.46 52428.60 171.14 137.41
10− 1 600 28 66 45 405 14 60749.27 56522.10 178.69 158.31

Square 
(6 × 6)

≤ 10− 4 600 18 200 45 300 12 33353.43 33346.62 92.38 106.29
10− 2 596 27 73 45 394 12 53258.59 52196.04 167.39 127.30
10− 1 594 28 74 45 413 14 60161.73 57777.84 174.04 160.20

Taller intermediate 
(7 × 5)

≤ 10− 4 600 18 200 45 350 12 34508.48 34271.58 92.38 118.03
10− 2 584 28 72 45 395 13 54123.66 53933.46 174.02 138.01
10− 1 600 30 87 45 499 12 59779.25 59062.08 180.49 167.93

Taller 
(9 × 4)

≤ 10− 4 600 18 198 45 375 12 36872.02 36714.33 92.38 124.15
10− 2 597 27 73 45 426 13 55994.15 55890.54 167.49 146.02
10− 1 596 28 63 45 506 13 62094.55 61569.99 180.09 167.93
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Figure A.1. Bay pushdown behavior of each optimal APM-oriented solution (pLD = 0.1) and comparison to expected loads qCL (dynamic effects accounted for when 
multiplying by 1.22)
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Figure A.2. Axial forces developed in the affected beam spans for the optimal APM-oriented solutions (pLD = 0.1) under each column loss scenario
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Figure A.3. Demand profiles vs optimal APM-oriented columns resisting envelopes (pLD = 0.1) under each column loss scenario
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