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Caused by the protozoan Trypanosoma cruzi, Chagas disease affects six to seven million people 
worldwide, mainly in Latin America. The drugs currently available for treating the disease are 
ineffective during its chronic phase and have serious adverse effects. Essential for the survival of T. 
cruzi, the enzyme dihydroorotate dehydrogenase (DHODH) has become a key molecular target for 
drug discovery in Chagas disease. This study investigates the bi-dimensional and three-dimensional 
quantitative structure-activity relationships (QSAR) for a series of 64 T. cruzi DHODH inhibitors. The 
results indicate a highly predictive 2D Hologram QSAR (HQSAR) model (q2 = 0.65, r2 = 0.88, and 
r2

pred = 0.82) that identified key molecular fragments that correlate with DHODH inhibition. Moreover, 
3D Comparative Molecular Field Analysis (CoMFA) models (q2 = 0.75, r2 = 0.99, and r2

pred = 0.66) 
pointed out the 3D molecular features that determine the activity of the inhibitors. Although restricted 
to a congeneric series and focused solely on 2D and 3D descriptors, these QSAR models and molecular 
docking analyses identified key properties and intermolecular interactions for designing and optimizing 
new compounds as potent T. cruzi DHODH inhibitors.

Keywords: Trypanosoma cruzi. Medicinal chemistry. QSAR. Dihydroorotate dehydrogenase. Inhibitors. 
Chagas disease.

INTRODUCTION

Neglected tropical diseases (NTDs) comprise a 
diverse group of 20 conditions affecting over 1.5 billion 
people in more than 150 countries, primarily in developing 
nations (Ferreira, Andricopulo, 2019). Among NTDs, 
Chagas disease is an endemic anthropozoonosis in Latin 
America and has become a global health issue affecting 
6-7 million people worldwide (WHO, 2024). The highest 
burden in a nonendemic country occurs in the USA, where 
approximately 300,000 people are estimated to have the 
disease (Irish et al., 2022). Chagas disease significantly 

affects the economies of endemic countries, causing 
annual losses exceeding US$ 7.2 billion and a burden of 
138,000 disability-adjusted life years (DALYs) (Arnal 
et al., 2019) (GBD 2017 DALYs, HALE Collaborators, 
2018).

The etiological treatment for Chagas disease 
has not advanced since the 1970s and continues to 
rely on nifurtimox and benznidazole (Figure 1), two 
nitroheterocyclic drugs known for their limited efficacy 
during the chronic phase of the disease and their severe 
adverse side effects. These adverse reactions include 
anorexia, gastrointestinal symptoms, neurological toxicity, 
irritability, insomnia, weight loss, and seizures (Pérez-
Molina et al., 2021). According to the WHO’s 2021-2030 
roadmap for NTDs, these challenges, compounded with 
emerging drug resistance, indicate the urgent need for new 
and innovative treatments for this disease (WHO, 2021).
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FIGURE 1 - Structure of nifurtimox and benznidazole, two drugs currently available for the chemotherapy of Chagas disease.

The identification, validation and exploration of 
novel molecular targets have been a challenging topic 
in Chagas disease and NTD drug discovery (Ferreira, de 
Moraes, Andricopulo, 2022). In this situation, the genetic 
validation of dihydroorotate dehydrogenase (DHODH) 
as an essential enzyme for the survival of T. cruzi is an 
important advance in the field (Hashimoto et al., 2012). 
DHODH has additionally been explored as a molecular 
target in other parasitic diseases such as leishmaniasis, 
malaria, and sleeping sickness (Pinheiro, Emery, Nonato, 
2013; Singh et al., 2017; Chibli et al., 2018; Arakaki et 
al., 2008). The enzyme catalyzes the oxidation of (S)-
dihydroorotate to orotate, a key step in the synthesis of 

pyrimidine, which plays a central role in the metabolism 
of DNA, RNA, glycoproteins, and lipids. Following these 
findings, multiple classes of inhibitors such as natural 
products, substrate-based, chalcone and flavone hybrids, 
and pyrimidine derivatives have been designed as DHODH 
inhibitors to target protozoan diseases (Chibli et al., 2018; 
Thillainayagam, Malathi, Ramaiah, 2018; Azeredo et 
al., 2017). The significance of DHODH as a molecular 
target for protozoan diseases has been demonstrated by 
DSM-265, a triazole derivative that advanced to phase 2 
clinical trials for its potential in treating and preventing 
malaria (Figure 2) (Llanos-Cuentas et al., 2018).

FIGURE 2 - X-ray structure of DHODH from Plasmodium falciparum in complex with the inhibitor DSM-265 (PDB 5BOO, 2.80 Å). Protein 
structure is shown as a cartoon and inhibitor is depicted as sticks.
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In the present study, we have investigated the 
molecular features that determine the activity of a series 
of orotate derivatives as T. cruzi DHODH inhibitors. 
To this end, we have applied for this series of inhibitors 
(Inaoka et al., 2017), the 2D quantitative structure-
activity relationship (QSAR) method Hologram QSAR 
(HQSAR) and the 3D approach Comparative Molecular 
Field Analysis (CoMFA) (Salum, Andricopulo, 2010; 
Cramer, Patterson, Bunce, 1988). HQSAR is a molecular 
fragmentation method. It generates all possible fragments 
(linear, cyclic, or branched) and correlates the occurrence 
of these fragments with the dependent variable, i.e., 
the biological activity, enzyme inhibition, or any other 
activity parameter, which was an innovation in QSAR 
when the method was published (Wang et al., 2017; 
Salum, Andricopulo, Honório, 2012). The method has 
the great advantage of not requiring 3D conformations or 
molecular alignment. However, it may overlook aspects 
of activity linked to the shape of the compounds under 
study. CoMFA is a 3D method, which has as its main 
disadvantage the need for 3D conformation and molecular 
alignment, which can be challenging to achieve depending 
on the features of the data set compounds (Ghasemi et al., 
2013; Cherkasov et al., 2014). However, CoMFA has the 
advantage of addressing steric and electrostatic features of 
the compounds as well as their shape. Importantly, CoMFA 
was the first method to address these descriptors in QSAR 
(Cramer, Patterson, Bunce, 1988). This is an important 
characteristic of the method given that biological activity 
and binding to enzymes and receptors are directly related 
to shape and electrostatic features.

Additionally, molecular docking was used for the 
structural alignment of the compounds and to assess their 
binding conformations in the binding cavity of DHODH. 
The combination of these approaches has resulted in 
solid QSAR models that can predict the activity of newly 
designed DHODH inhibitors. Furthermore, the integration 
of the QSAR and molecular docking results provided 
useful knowledge on the intermolecular recognition 
between DHODH and the compounds under study.

MATERIAL AND METHODS

Computational resources

The HQSAR and CoMFA models were built as 
previously described in our group (Souza, Ferreira, 
Andricopulo, 2017; Medeiros et al., 2021) using the 
molecular modeling package SYBYL-X 2.1 (Certara Inc., 
Princeton, NJ, USA). The minimum-energy 3D structures 
for each dataset molecule were generated using the default 
parameters of the Tripos force field (Clark, Cramer III, 
Van Opdenbosch, 1989). The conjugate gradient method 
(Powell, 1977) was used with a 0.005 kcal/mol Å energy 
step and Gasteiger-Huckel charges with the dielectric 
constant of water (80) (Gasteiger, Marsili, 1980). The 
X-ray structure of DHODH deposited in the Protein Data 
Bank (PDB 2E6A, 1.64 Å) and GOLD 5.3 (Cambridge 
Crystallographic Data Centre, Cambridge, UK) (Jones 
et al., 1997) were used for the molecular docking and 
structural alignment. The enzyme-inhibitor complexes 
resulting from the molecular docking runs were visualized 
using Pymol 1.3 (Schrodinger LLC, New York, NY, USA) 
(Lill, Danielson, 2011).

Dataset compounds and selection of training and 
test sets

A dataset composed of 64 orotate derivatives selected 
from the literature was used to generate the 2D and 3D 
QSAR models (Inaoka et al., 2017). Initially, the values 
of biological activity (concentration of the compounds 
required to inhibit 50% of enzyme activity, IC50 values) 
were converted into pIC50 (-log IC50) to properly scale the 
data for the QSAR modeling. The dataset pIC50 values 
range from 5.13 to 7.48, which provides a suitable 
activity range for the generation of sound QSAR models. 
Importantly, the dataset compounds inhibit DHODH by 
the same mechanism, namely competitive inhibition, 
and the IC50 values were determined under the same 
experimental conditions. Table I shows the structures 
and pIC50 values for the complete dataset of DHODH 
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inhibitors used for the QSAR modeling. The dataset was 
divided into 51 training set molecules for the development 
of the QSAR models and 13 test set compounds (1, 4, 
12, 20, 21, 31, 34, 36, 43, 50, 56, 62 and 63) for external 
validation. This selection of both training and test sets 
was performed by conducting a principal component 
analysis (PCA) (Bender et al., 2009). The similarity map 
generated by the PCA routine was built by using UNITY 

fingerprints as molecular attributes to assess the structural 
similarity between the compounds (Cereto-Massagué 
et al., 2015). The PCA algorithm derived two principal 
components which were used as the initial coordinates 
to build the similarity map. All points in the map were 
plotted by calculating the Tanimoto distances between the 
UNITY fingerprints (Willett, 2006). Both sets included 
molecules covering a broad spectrum of pIC50 values.

TABLE I - Structures and pIC50 values of the dataset compounds

Compound Structure pIC50

1 5.13

2 5.17

3 5.25

4 5.31

5 5.47

6 5.51
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Compound Structure pIC50

7 5.53

8 5.58

9 5.60

10 5.63

11

N
H

NH

OHO

O O

N

6.13

12 5.67

13 5.69



Braz. J. Pharm. Sci. 2025; 61: e24064Page 6/28

Gabriela Ciffeli de Jesus, Tatiana Santana Ribeiro, Adriano D. Andricopulo, Leonardo Luiz Gomes Ferreira

Compound Structure pIC50

14 5.71

15 5.75

16 5.79

17 5.79

18 5.85

19 5.92

20 5.95
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Compound Structure pIC50

21 5.96

22 5.97

23 5.99

24 6.05

25 6.05

26 6.07

27 6.09
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Compound Structure pIC50

28 6.10

29 6.10

30 6.12

31 6.12

32 6.13

33 6.13

34 6.15



Braz. J. Pharm. Sci. 2025; 61: e24064 Page 9/28

Molecular docking and quantitative structure-activity relationships for a series of Trypanosoma cruzi dihydroorotate dehydrogenase inhibitors

Compound Structure pIC50

35 6.21

36 6.24

37 6.25

38 6.30

39 6.32

40 6.37

41 6.43
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Compound Structure pIC50

42 6.50

43 6.51

44 6.52

45 6.53

46 6.54

47 6.57

48 6.59
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Compound Structure pIC50

49 6.61

50 6.65

51 6.65

52 6.69

53 6.70

54 6.71

55 6.74
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Compound Structure pIC50

56 6.76

57 6.81

58 6.85

59 6.86

60 6.89

61 6.96
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Compound Structure pIC50

62 6.97

63 7.34

64

N
H

NH

OHO

O O

HO O

7.48

Molecular docking

The molecular docking studies were performed using 
the X-ray structure of DHODH (PDB 2E6A, 1.64 Å) and 
GOLD 5.3 (Inaoka et al., 2008; Jones et al., 1997). The 
structure of DHODH was prepared by adding hydrogen 
atoms and excluding solvent and the co-crystallized 
compound. Only those water molecules that were observed 
to be conserved across different DHODH X-ray structures 
were kept for the molecular docking runs (Zhong et al., 
2019). The active site was defined as a 12 Å-radius sphere 
centered on the Cys25 sulfur atom, given the proximity of 
this residue to orotate. All the binding site residues were 
checked for likely flipped orientations, tautomerism, and 
protonation states (ten Brink, Exner, 2009). The active 
site for molecular docking was restricted to the solvent-
accessible surface by applying the cavity detection routine 
of GOLD 5.3. The molecular docking genetic algorithm 
was parameterized according to the following setup: 

population size = 100; selection pressure = 1.1; number 
of operations = 100,000; number of islands = 5; niche 
size = 2; crossover and mutation frequencies = 95; and 
migration frequency = 10. The scoring function GoldScore 
was used to rank the predicted binding conformations, 
and the best-scoring conformation for each inhibitor was 
used in the 3D QSAR modeling (Medeiros et al., 2021).

2D QSAR: hologram QSAR

The HQSAR models were initially developed using 
fragments containing 4 to 7 atoms and the default hologram 
lengths: 53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353, 
and 401 bins (Ferreira, Andricopulo, 2015). Atom type 
(A), bond type (B), hydrogen atoms (H), connectivity 
(C), hydrogen bond acceptor/donor (DA), and chirality 
(C) were used as fragment distinction criteria (Souza, 
Ferreira, Andricopulo, 2017). For the most statistically 
significant model, fragment sizes were varied as follows: 
2–5, 3–6, 5–8, 6–9, 7–10.



Braz. J. Pharm. Sci. 2025; 61: e24064Page 14/28

Gabriela Ciffeli de Jesus, Tatiana Santana Ribeiro, Adriano D. Andricopulo, Leonardo Luiz Gomes Ferreira

3D QSAR: comparative molecular field analysis

The CoMFA steric and electrostatic interaction 
energies between the aligned compounds and the virtual 
probe, a sp3 hybridized carbon atom, were computed using 
the default Coulomb and Lennard-Jones potentials of 
SYBYL-X 2.1, respectively (Medeiros et al., 2021). The 
default CoMFA scaling and a cut-off value of 30 kcal/mol 
were used to generate the interaction fields (Clark, Cramer 
III, Van Opdenbosch, 1989). A 3D cubic lattice generated 
to encompass the dataset compounds were created using 
a grid spacing of 2 Å. The region-focusing procedure was 
applied to refine the models and increase the resolution of 
the CoMFA contour maps. A filtering value of 2 kcal/mol 
was applied to exclude from the analysis lattice points 
with negligible energy variations and thus improve the 
signal-to-noise ratio. The contour maps were built by 
computing the pairwise products between the standard 
deviations and the partial least squares (PLS) coefficients 
of the CoMFA columns (StDev*Coeff) using the region-
focusing method (Cramer, Patterson, Bunce, 1988). The 
contour maps were generated based on the grid points 
with a StDev*Coeff above 80% or below 20% of the 
maximum computed value.

QSAR validation procedures

The HQSAR and CoMFA models were generated 
using a Partial Least Squares (PLS) regression analysis 
on the training set compounds. The optimum number 
of components was determined using the leave-one-out 
(LOO) cross-validation procedure, which derived the 
cross-validated (q2) correlation coefficient. Then, the 
optimum number of components was used to determine 
the full non-cross-validated correlation coefficient (r2) on 
the entire training set. In addition, leave-many-out (LMO) 
cross-validation was applied to split the training set into 
20 LMO groups, and, therefore, investigate the stability 
of the most statistically significant model in a context of 

slightly greater exclusions of data. Progressive scrambling 
Y-randomization was used to estimate the susceptibility 
of the models to chance correlations (Clark, Fox, 2004). 
Only the training set was used in the production and 
internal validation of the QSAR models. Ultimately, the 
best models were evaluated for their external predictive 
ability by deriving the predictive correlation coefficient 
(r2

pred) using the test set.
Furthermore, an applicability domain (AD) analysis 

was conducted. The Organization for Economic 
Cooperation and Development (OECD) has established 
that the definition of the AD is required to evaluate the 
biological and chemical space within which a QSAR 
model can be applied. Considering the structural similarity 
of novel, untested compounds to the training set that 
was used to generate the model, the AD can assess the 
degree of uncertainty for the prediction of the dependent 
variable (Weaver, Gleeson, 2008). The AD method used 
in this study applies the leverage (or influence) versus 
the biological activity (Student residues) technique. The 
Chemoface program was used to calculate the AD for 
the best HQSAR and CoMFA models developed in this 
study (Nunes et al., 2012).

RESULTS AND DISCUSSION

HQSAR models

The preliminary HQSAR models were developed 
using all available hologram lengths (53 to 401 bins) and 
fragment sizes varying from 4 to 7 atoms. The following 
combinations of fragment distinction parameters were 
used to generate the molecular holograms: A/B, A/B/C, 
A/B/C/H, A/C, A/H, A/DA, A/B/H, A/B/DA, A/B/H/DA, 
A/B/C/DA, A/B/C/H/DA, A/C/H e A/C/DA. The results 
for the LOO cross-validated and full QSAR models are 
shown in Table II. Additionally, Table II shows the r2

pred 
values for the most statistically significant models, which 
demonstrate the predictive ability of these models for the 
test set compounds.
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TABLE II - HQSAR results obtained for fragment sizes ranging from 4 to 7 atoms

Model Fragment Distinction q2 r2 SEE HL N r2
pred

1 A/B 0.558 0.844 0.356 83 7 0.720

2 A/B/C 0.500 0.888 0.375 356 3 -

3 A/B/C/H 0.380 0.658 0.300 307 3 -

4 A/C 0.592 0.878 0.342 71 7 0.801

5 A/H 0.469 0.824 0.395 53 8 -

6 A/DA 0.494 0.807 0.377 53 6 -

7 A/B/H 0.408 0.890 0.417 307 8 -

8 A/B/DA 0.658 0.885 0.310 401 6 0.822

9 A/B/H/DA 0.639 0.875 0.326 61 8 0.700

10 A/B/C/DA 0.542 0.881 0.363 59 7 0.791

11 A/B/C/H/DA 0.415 0.840 0.405 353 6 -

12 A/C/H 0.381 0.624 0.403 353 3 -

13 A/C/DA 0.602 0.883 0.334 353 6 0.772

A = atoms; B = bonds; C = connectivity; H = hydrogen atoms; DA = hydrogen bond donor/acceptor; q2 = leave-one-out (LOO) cross-
validated correlation coefficient r2 = non-cross validated correlation coefficient; SEE = standard error of estimate; HL = hologram length; N 
= optimal number of components; r2

pred = predictive correlation coefficient.

Among the 13 HQSAR analyses, model 8 exhibited 
the most significant results (q2 = 0.658, r2 = 0.885, and 
r2

pred = 0.822). Thus, while keeping the A/B/DA fragment 
distinction criteria, we evaluated the leverage of the 
fragment size on the statistical consistency of model 8. 

The results in Table III show that varying the fragment 
size led to a decrease in the key statistical indicators (q2, r2 

and r2
pred). Therefore, model 8 was used in the subsequent 

HQSAR analyses.

TABLE III - HQSAR models generated by using different fragment sizes and the A/B/DA fragment distinction criteria

Model Fragment Size q2 r2 SEE HL N r2
pred

14 2–5 0.519 0.892 0.376 356 8 -

15 3–6 0.616 0.861 0.05 401 6 0.786

16 5–8 0.640 0.870 0.05 257 9 0.803

17 6–9 0.630 0.875 0.05 353 6 0.799

18 7–10 0.580 0.870 0.04 199 10 -

A = atoms; B = bonds; C = connectivity; H = hydrogen atoms; DA = hydrogen bond donor/acceptor; q2 = leave-one-out (LOO) cross-
validated correlation coefficient r2 = non-cross validated correlation coefficient; SEE = standard error of estimate; HL = hologram length; N 
= optimal number of components; r2

pred = predictive correlation coefficient.
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Subsequent leave-many-out (LMO) cross-validation 
analyses confirmed the stability of model 8 against more 
significant data withdrawn. Randomly dividing the 
training set in 20 LMO groups, resulted in a HQSAR 
model with a q2 = 0.656 and a r2 = 0.884. These results 
are very close to those found for the LOO-validated 
model, which shows that slightly greater exclusions of 
data during the PLS analyses did not impact the quality 
of the model. Next, to assess the susceptibility of model 
8 to chance correlations, a Y-randomization test was 
conducted. The noise introduced in the model by the 
systematic perturbations in the dependent variable caused 

an expected drop in the q2 value. The randomized model 
had a Q2 = 0.55, which attests to the stability of the 
original HQSAR analysis against chance correlations. 
Stable models should, additionally, yield progressive 
scrambling effective slopes close to unity (Clark, Fox, 
2004), which is the case for model 8 (dq2/dr2

yy = 1.12). 
Besides the procedures for internal validation, model 8 
was assessed for its external predictive ability for the 
test set compounds, which is an essential requirement of 
solid QSAR models. Experimental and predicted pIC50 
values for the complete dataset are listed in Table IV and 
depicted in Figure 3.

TABLE IV - Experimental and predicted pIC50 values for the final HQSAR and CoMFA models

Inhibitor Experimental
HQSAR CoMFA

Predicted Residual¹ Predicted Residual¹

1* 5.13 5.06 0.07 5.38 -0.25

2 5.17 5.38 -0.21 5.19 -0.02

3 5.25 5.09 0.16 5.24 0.01

4* 5.31 5.54 -0.23 6.15 -0.84

5 5.47 5.45 0.02 5.44 0.03

6 5.51 5.71 -0.2 5.55 -0.04

7 5.53 5.55 -0.02 5.48 0.05

8 5.58 5.63 -0.05 5.59 -0.01

9 5.60 5.56 0.04 5.62 -0.02

10 5.63 5.87 -0.24 5.67 -0.04

11 6.12 5.99 0.13 5.66 0.46

12* 5.67 5.71 -0.04 6.13 -0.46

13 5.69 5.50 0.19 5.69 0.00

14 5.71 5.74 -0.03 5.67 0.04

15 5.75 5.91 -0.16 5.77 -0.02

16 5.79 5.98 -0.19 5.80 -0.01

17 5.79 6.09 -0.3 6.29 -0.5

18 5.85 5.50 0.35 5.85 0.00

19 5.92 6.12 -0.2 6.05 -0.13

20* 5.95 6.32 -0.37 5.85 0.10
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Inhibitor Experimental
HQSAR CoMFA

Predicted Residual¹ Predicted Residual¹

21* 5.96 6.13 -0.17 6.25 -0.29

22 5.97 6.10 -0.13 5.95 0.02

23 5.99 5.94 0.05 6.00 -0.01

24 6.05 5.86 0.19 5.97 0.08

25 6.05 6.03 0.02 6.12 -0.07

26 6.07 6.02 0.05 6.10 -0.03

27 6.09 6.02 0.07 6.78 -0.69

28 6.10 6.04 0.06 6.08 0.02

29 6.10 6.42 -0.32 6.10 0.00

30 6.12 6.32 -0.2 6.78 -0.66

31* 6.12 5.67 0.45 5.87 0.25

32 6.13 6.14 -0.01 6.18 -0.03

33 6.13 6.06 0.07 6.14 -0.01

34* 6.15 6.12 0.03 6.16 -0.01

35 6.21 6.05 0.16 6.20 0.01

36* 6.24 6.24 0 6.42 -0.18

37 6.25 6.21 0.04 6.66 -0.41

38 6.30 6.34 -0.04 6.28 0.02

39 6.32 6.24 0.08 6.33 -0.01

40 6.37 6.09 0.28 5.72 0.65

41 6.43 6.40 0.03 6.33 0.1

42 6.50 6.52 -0.02 6.48 0.02

43* 6.51 6.19 0.32 5.96 0.55

44 6.52 6.63 -0.11 6.48 0.04

45 6.53 6.56 -0.03 6.49 0.04

46 6.54 6.67 -0.13 6.51 0.03

47 6.57 6.58 -0.01 6.61 -0.04

48 6.59 6.52 0.07 6.59 0.00

49 6.61 6.57 0.04 6.68 -0.07

50* 6.65 6.60 0.05 6.72 -0.07

51 6.65 6.38 0.27 6.23 0.42

52 6.69 6.88 -0.19 6.67 0.02

53 6.70 6.45 0.25 6.72 -0.02

54 6.71 6.97 -0.26 6.76 -0.05
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Inhibitor Experimental
HQSAR CoMFA

Predicted Residual¹ Predicted Residual¹

55 6.74 6.76 -0.02 5.95 0.79

56* 6.76 6.58 0.18 6.69 0.07

57 6.81 6.69 0.12 6.17 0.64

58 6.85 6.68 0.17 6.78 0.07

59 6.86 6.82 0.04 6.87 -0.01

60 6.89 6.62 0.27 6.88 0.01

61 6.96 6.90 0.06 6.98 -0.02

62* 6.97 6.62 0.35 6.72 0.25

63* 7.34 6.91 0.43 6.96 0.38

64 7.48 7.25 0.23 7.48 0.00

1 Difference between experimental and predicted pIC50 values. * Test set compounds.

FIGURE 3 - Experimental versus predicted and estimated pIC50
 values for the best HQSAR (A) and CoMFA (B) models. Solid circles: training 

set; open triangles: test set.

Table IV and Figure 3 indicate a close agreement 
between the experimental and predicted pIC50 values for 
both training and test set compounds. These findings, 
along with an r2

pred value of 0.822, demonstrate the good 
ability of the best HQSAR model to predict the activity of 

new compounds that are structurally related to the dataset 
of DHODH inhibitors under investigation. Contribution 
maps generated by the best HQSAR model were used to 
assign negative and positive contributions of the molecular 
fragments to the biological activity. Positive contributions 
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are highlighted as yellow and green fragments. Otherwise, 
negative contributions to the biological activity are flagged 
as red, orange and red-orange fragments. White represents 

neutral contributions. Figure 4 illustrates the positive 
contribution maps generated for some compounds.

FIGURE 4 - HQSAR contribution maps for DHODH inhibitors used in the 2D QSAR modeling studies.

The HQSAR contribution maps indicate that potent 
inhibitors such as 53 (pIC50= 6.70), 54 (pIC50= 6.71), 57 
(pIC50= 6.81), 58 (pIC50= 6.85), 59 (pIC50= 6.86), and 64 
(pIC50= 7.48), have aromatic rings such as naphthalene, 
phenanthrene and benzene rings that stand out as key 
groups for biological activity. Also important is the 
flexibility allowed by the aliphatic spacer fragments 
between the two ring systems. The aliphatic spacer 
fragment was shown to be important to allow the optimal 
positioning of the two ring systems in the binding cavity 
pockets of the enzyme, as shown in the molecular docking 

studies. The data reveals that molecules with a spacer 
made up of 2 carbon atoms yielded the best results in 
terms of DHODH inhibition.

Molecular docking and structural alignment

The complete set of compounds was docked into the 
active site of DHODH to provide the structural alignment 
for the 3D QSAR CoMFA studies and to investigate the 
binding mode of the inhibitors. Each molecule was docked 
using the substrate of the enzyme, orotate, as a reference 
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for delimiting the binding site. Figure 5 depicts the dataset 
molecules aligned in the active site of DHODH. This 
alignment was used to calculate the stereochemical and 

electrostatic fields during the development of the CoMFA 
models. Also, molecular docking studies were used to 
analyze the enzyme-inhibitor intermolecular interactions.

FIGURE 5 - Inhibitors aligned in the active site of DHODH (PDB 2E6A, 1.64 Å). Protein structure is shown as a cartoon and inhibitors are 
depicted as sticks.

After the molecular docking, we observed that the 
dataset molecules interact with DHODH in a very similar 
way in the orotate binding cavity. The orotate ring of the 
inhibitors interacts with the predominantly polar binding 
site of the enzyme through an extensive hydrogen-bond 
network (Figure 6A), as observed in the X-ray structure 
of the orotate-DHODH complex. The molecular docking 
results shown herein demonstrate a highly conserved 
binding mode for the dioxo-tetrahydropyrimidine ring, 
indicating the key role played by this moiety for DHODH-
inhibitor binding. Consistent with these findings, many 
of the amino acid residues involved in the intermolecular 
hydrogen-bond interactions are conserved; these include 

Asn67, Asn127, Asn132, Asn194, Lys43, Gly70, Met69, 
and Ser195. It is worth mentioning that water molecules 
are also relevant for the binding of the inhibitors, mainly by 
hydrogen bonding with carboxylate, amide and hydroxyl 
groups, as shown in Figures 6B, 6C and 6D. Considering 
the highly polar active site of the enzyme due to the 
nature of the above-mentioned amino acid residues, it is 
worthwhile to consider the ligands’ electron-rich π systems 
of the aromatic rings attached to the orotate moiety as 
important players in the interaction with DHODH.
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FIGURE 6 - (A) X-ray structure of DHODH from Trypanosoma cruzi in complex with orotate (PDB 2E6A, 1.64 Å). (B, C and D) Binding mode 
and intermolecular interactions for DHODH-inhibitor complexes obtained through molecular docking. (B) Compound 53. (C) Compound 10. 
(D) Compound 60. Protein structures are shown as a cartoon and substrate and inhibitors are depicted as sticks. Intermolecular interactions are 
depicted as dashed lines and water molecules are represented as spheres.

CoMFA models

3D QSAR CoMFA studies were carried out to 
investigate the three-dimensional aspects that determine 
the biological activity of the DHODH inhibitors. The 
molecules as aligned in Figure 5 were used to calculate 

the Lennard-Jones and Coulomb potentials for the 
CoMFA modeling. The Standard Deviation Coefficient 
(StDev*Coeff) method was applied to exclude redundant 
descriptors and increase the weight of descriptors that 
contribute most significantly to the activity. The models 
are presented in Table V.
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TABLE V - CoMFA models generated using different values of StDev*Coeff

Model StDev*Coeff q² SEP r² SEE r²pred N S E

19 - 0.039 0.517 0.683 0.285 - 3 0.495 0.505

20 0.3 0.483 0.341 0.997 0.031 - 10 0.618 0.382

21 0.6 0.75 0.275 0.994 0.042 0.66 10 0.615 0.385

22 0.9 0.705 0.281 0.891 0.171 0.62 5 0.654 0.346

StDev*Coeff = standard deviation coefficient; q2 = leave-one-out (LOO) cross-validated correlation coefficient; r2 = non-cross validated 
correlation coefficient; SEP = standard error of prediction; SEE = standard error of estimate; N = optimal number of components; r2

pred = 
predictive correlation coefficient; S = fraction of the stereochemical field; E = fraction of the electrostatic field.

The results in Table V show that model 21, which 
was produced with a StDev*Coeff value of 0.6. exhibits 
the highest internal ability as collectively shown by the q2 
and r2 values. Additionally, the most important indicator, 
namely the predictive power of the model for the test 
set compounds (r²pred = 0.66), is also superior in model 
21. Stereochemical descriptors were most relevant than 
electrostatic variables upon generation of the model by the 
PLS routine. The experimental and predicted pIC50 values 
for model 21 are presented in Table IV and graphically 
depicted in Figure 3.

The agreement between the experimental and 
predicted pIC50 values for both the training and test sets 
demonstrate the internal statistical consistency of the 
model as well as its external predictive ability, i.e., for 
compounds that were not used in the construction of the 
model. The PLS StDev*Coeff values were converted 
into 3D plots known as contour maps, which can be 
useful for the visual examination of the structure-activity 
relationships in a 3D environment. The contour maps 
point out regions in space where the electrostatic and 
stereochemical descriptors are the most relevant for the 
variation in the dependent variable (biological activity). 
Figure 7 depicts the contour maps for potent DHODH 
inhibitors belonging to the dataset. Green and yellow 
account for stereochemical fields and represent regions 
in the 3D environment around the molecules where the 

increase and decrease of bulkiness are, respectively, 
favorable and unfavorable for the increase of the pIC50 
values. Otherwise, red and blue polyhedral account 
for electrostatic fields, and indicate regions where the 
presence of electronegative groups, are, respectively, 
favorable and detrimental to the biological activity of 
the inhibitors.

Figure 7 displays CoMFA contour maps for inhibitors 
53, 55, 57, 58, 59 and 60. The Lennard-Jones and 
Coulomb descriptors indicate the positive contribution 
of electronegative and bulky groups around the orotate 
ring. This is consistent with the binding mode of the 
substrate, which engages in several hydrogen bonds 
in the orotate binding pocket in the enzyme active site 
(Figure 6). Likewise, bulky cyclic groups such as the 
naphthalene, phenanthrene, benzene and the N-substituted 
indoline ring are highlighted as relevant in terms of the 
stereochemical variables, which indicate the relevance 
of these groups for DHODH inhibition. It is worth 
mentioning that the CoMFA results are consistent with 
the HQSAR contribution maps which also indicate the 
positive contributions of these bulky cyclic groups. 
Electrostatic contours also flag these electron-rich ring 
systems as relevant for biological activity. These findings 
agree with the polar nature of the enzyme binding site 
which contributes to a predominantly electrostatic-driven 
enzyme-inhibitor intermolecular recognition.
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FIGURE 7 - CoMFA contour maps for DHODH inhibitors.

The AD was calculated for the final HQSAR and 
CoMFA models. This tool is useful to identify structural 
and biological activity outlier compounds and determine 
the domain in which the models are more reliable and 
applicable (Gramatica, 2007). The technique uses leverage 
and Student residuals to detect these outlier compounds. 
The leverage is an indicator of the extent of the influence 
of a given compound on the developed QSAR model. 
The leverage of a molecule is the distance between this 
molecule and the center of the training set in a domain 
(or space) delimited by the independent variables, i.e., the 

molecular descriptors. The other relevant AD indicator, the 
Student residues, are values defined as units of the standard 
deviation from the mean activity value. Student residues 
higher than ± 2.5 are considered the usual statistical 
threshold to determine activity outliers. On the other side, 
molecules that present a high influence on the training 
stage of model construction are called structural outliers. 
Figure 8 indicates that compounds 58 and 62 have high 
leverage values. These molecules, therefore, exerted a 
strong influence on the generation of both, 2D and 3D 
QSAR models.
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FIGURE 8 - Applicability domain for the final QSAR models.

QSAR methods are widely used in medicinal 
chemistry and many different algorithms and studies 
have been published today in the field of NTDs. A CoMFA 
and CoMSIA investigation were developed for a set of T. 
cruzi cruzain inhibitors. Correlation coefficients such as an 
r2

pred value of 0.72 in the best CoMFA model and an r2
pred 

value of 0.97 for the best CoMSIA analysis demonstrate 
the statistical robustness of these models. A study on 
Chagas disease describes 2D HQSAR and 3D CoMFA 

and CoMSIA investigations on potent compounds bearing 
a benzimidazole core. Statistically sound models were 
obtained, and the predictive power of the analyses was 
demonstrated by an r2

pred = 0.65 for HQSAR, 0.94 for 
CoMFA, and 0.82 for Comparative Molecular Similarity 
Index Analysis (CoMSIA) (Pauli et al., 2017). Other 
methodologies such as multiple linear regression (MLR) 
and best-first algorithm have been used to develop QSAR 
models for T. cruzi targets. One such an example is an 
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investigation on semicarbazones that resulted in solid 
models with the best one yielding an r2

ext = 0.79 (Scotti et 
al., 2016). Another worth-mentioning analysis of 62 aryl 
carboxylic acid amide derivatives as DHODH inhibitors 
yielded statistically sound QSAR models (Vyas, Ghate, 
2013). Methods such as MLR (r2 = 0.85 and q2 = 0.79), 
principal component regression (PCR, r2 = 0.71 and q2 = 
0.66), and PLS (r2 = 0.84 and q2 = 0.80) were used, and 
comparable results were obtained considering our study.

Literature on QSAR modeling shows that a diversity 
of QSAR methods and strategies are available for 
the medicinal chemistry research community. These 
techniques can produce solid models in terms of both 
statistical indicators and the chemistry underlying the 
activity of the investigated compounds. The models 
described herein have statistical robustness very similar 
to published data, and more importantly, they serve 
the purpose of any QSAR model, that is, to provide 
predictive power and chemical rationale for the activity 
under investigation.

It should be noted that every QSAR model has its 
limitations. Nevertheless, the analyses reported here can 
predict the biological activity of the compounds in the 
test set and point out characteristics that are key for the 
inhibition of the target enzyme. Methods that are based on 
the bi-dimensional structure of the data set molecules, such 
as HQSAR, are independent of a non-trivial procedure, 
namely, the structural alignment. This aspect is a major 
advantage of these methods and can deliver powerful 
analyses in relatively short timelines (Kleandrova, 
Speck-Planche, 2020). Although bidimensional QSAR 
techniques are more straightforward, they have as their 
main limitation the inability to detect 3D features, such 
as steric and electrostatic fields and shapes, which are 
important determinants of biological activity. This is the 
reason why QSAR methods are more valuable when 2D 
and 3D approaches are used in a complementary way on 
the same data set.

In turn, CoMFA is a 3D approach that provides 
insights related to ligand-receptor interactions because 
molecular fields and shapes are considered in the analysis. 
The accounting of Lennard-Jones and Coulomb potentials 

allows insights into which intermolecular interactions are 
more likely to occur when the ligand-receptor complex is 
forming. This is particularly useful if the three-dimensional 
atomic coordinates of the molecular target are available. 
In these situations, the results of the QSAR analysis can 
contribute to a better understanding of the interaction 
between the ligand and the molecular target. However, the 
need for a molecular alignment is a relevant drawback of 
3D QSAR methods and this can be a serious obstacle for 
the construction of meaningful models. However, a major 
advantage of the models described in this work is that the 
structure of the molecular target is known, which renders 
the procedure for molecular alignment more rational in 
terms of the binding mode of the data set compounds.

In short, this study provided useful insights into the 
molecular features, both 2D and 3D, that determine the 
inhibition of the enzyme DHODH by a series of orotate-
based inhibitors. Additionally, the developed QSAR 
models disclosed important factors for the intermolecular 
interaction between the inhibitors and the enzyme. These 
findings can enable the design of novel DHODH inhibitors 
with improved potency, thus contributing to drug research 
and development (R&D) for Chagas disease.

CONCLUSION

Predictive and statistically sound 2D and 3D QSAR 
models for a set of orotate derivatives as inhibitors of T. 
cruzi DHODH were developed. DHODH is essential for 
the life cycle of the parasite and has been validated as 
a molecular target for drug discovery studies in Chagas 
disease. Among the main results of this study, one can 
highlight the following: the models showed internal 
consistency for the training set and revealed to be stable 
against chance correlations and withdrawals of data. 
Additionally, the final HQSAR and CoMFA models 
demonstrated to be highly predictive for the test set 
compounds, which is the most significant indicator for 
their predictive power. Additionally, the contribution and 
contour maps flagged the 2D fragments and 3D features 
most closely related to the biological activity of the 
dataset inhibitors. Furthermore, the graphical results and 
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output of the HQSAR and CoMFA models highlighted the 
aromatic ring systems and the polar substituents attached 
to these rings, and the orotate moiety as the main drivers 
for DHODH inhibition. Based on the X-ray structure of 
orotate, molecular docking studies were conducted and, 
as a result, the main elements for the enzyme-inhibitor 
interactions were identified. The findings reported herein 
indicate a very conserved binding mode of the orotate 
ring, which is mainly stabilized by an extensive hydrogen-
bonding network. A set of amino acid residues were shown 
to be key for the stabilization not only for orotate but for 
the investigated inhibitors as well. It is important to note 
that the requirement for the inhibitors to be structurally 
aligned is a relevant drawback of 3D QSAR methods such 
as CoMFA. This can be a relevant hurdle in 3D QSAR 
modeling. Regarding HQSAR, the method does not 
consider 3D features such as molecular fields and shapes, 
which can be addressed as a limitation of the technique. 
The QSAR models and the investigation of the binding 
mode of this series of DHODH inhibitors uncovered the 
main features that underline their biological activity. 
This provides valuable information for further medicinal 
chemistry studies in Chagas disease drug discovery.
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