

Cutter: I12

III Iberian Latin American and Caribbean Regional Congress of Medical Physics IX Brazilian Congress of Medical Physics

PRO CEEDINGS

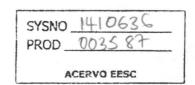
Diagnóstico em mamografia: considerações sobre esquema de auxílio computadorizado com gerenciamento da qualidade da imagem

H. Schiabel¹; R. B. Medeiros²

¹ Laboratório de Análise e Processamento de Imagens Médicas e Odontológicas, Dept. Eng. Elétrica – EESC/USP, São Carlos, SP, Brasil; ²Dept. Diagnóstico por Imagem, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brasil.

Introdução: Esquemas computacionais para auxílio ao diagnóstico (ou esquemas CAD) têm tido um emprego cada vez mais amplo em mamografia dadas as características das imagens e a relevância da detecção precoce do câncer de mama. Além disso, mamas densas constituem um desafio a mais para tais esquemas em função do baixo contraste. Somando-se a isso os problemas que afetam a qualidade da imagem mamográfica no que se refere ao processo de geração, o desafio de obtenção de alta performance para esquemas CAD se torna ainda maior. Por essas razões, discutem-se aqui aspectos importantes correspondentes ao desenvolvimento de um esquema CAD em mamografia, que, além de enfocar o problema das imagens de mamas densas, também tem em vista as questões relacionadas à qualidade da imagem, a partir da avaliação dos parâmetros relacionados ao sistema mamográfico.

Métodos: O esquema aqui em discussão foi subdividido em 2 estágios básicos: (1) o de avaliação de qualidade dos sistemas e das imagens; e (2) o de processamento dessas imagens. Cada um desses estágios passa a ser composto de outros blocos essenciais: o primeiro, com os métodos de avaliação de parâmetros do equipamento e de processamento dos filmes; e o segundo, com outras 4 subdivisões — digitalização de imagens (que inclui a formação da base de dados), pré-processamento para realce de estruturas e redução de ruído, segmentação para detecção das estruturas de interesse, e classificação automática dos achados.


Resultados: O esquema CAD nos moldes considerados foi testado com extensos conjuntos de imagens que compõem a nossa base de dados – 4000 imagens mamográficas reais de 6 diferentes hospitais, digitalizadas por *scanners* laser com resoluções de 0,075-0,150 mm e 12 bits. Tais testes, avaliados por comparação aos laudos radiológicos (e anátomopatológicos, quando existentes), produziram taxas de acerto bem satisfatórias. Na técnica para detecção de microcalcificações agrupadas, testes com 200 imagens proporcionaram índice de verdadeiro positivo de cerca de 96%, embora com falso positivo de 28% quando ajustado desvio-padrão de 0,5. A situação melhor resultou numa média de 93% de acerto para esse caso. Técnica de detecção de nódulos testada em 149 imagens produziu 88% de eficiência, enquanto classificadores automáticos desenvolvidos segundo técnicas distintas (*wavelet* e redes neurais artificiais) para ambas estruturas mostraram cerca de 92% de eficiência quando comparados os resultados com os dados de laudos médicos. Paralelamente, uma outra base de dados de qualidade foi desenvolvida⁽¹⁾ e tem sido útil na definição das características de, ao menos, 9 mamógrafos que geraram imagens para a base de testes.

Discussão e Conclusões: Os resultados são promissores e permitem-nos conduzir o trabalho adiante a partir daqui para a próxima etapa de avaliações, que corresponderá à aplicação clínica do esquema desenvolvido. Independentemente dessa etapa, porém, o esquema em questão já proporciona ferramentas, tanto em termos de técnicas de processamento digital de imagens mamográficas como de metodologias de avaliação de qualidade dos sistemas geradores de imagens.

Referências

(1) PIRES, S. R.; MEDEIROS, R. B.; SCHIABEL, H. Management software for a database of mammography images classified by quality index, *World Congress on Medical Physics and Biomedical Engineering*, Sydney, Australia, Aug, 24-29, 2003.

14/0636

