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22nd International Conference on the Boundary Element Method

4 - 6 September 2000
New Hall College, Cambridge University, Cambridge, UK

Organised by Wessex Institute of Technology, Southampton, UK
Sponsored by International Society of Boundary Elements (ISBE)

The 22nd International Conference on Boundary Element Methods has been recently held at New
Hall, Cambridge University. The meeting was attended by participants from more than 20 countries, and
attended by well known boundary element researchers from around the world as well as statistical
members of significant number of younger scientists and engineers.

The meeting was under the Co-Chairmanship of Professors Carlos Brebbia and Henry Power, both of

Wessex Institute of Technology and with the collaboration of Dr C Y Cha from Philips Display Components,
USA as Industrial Chairman.

View of one of the sessions Group photograp

Carlos opened the meeting with the following remarks:

"Welcome to you all to this the 22nd International Conference on Boundafy Elements, held this time
in this beautiful and historical university town of Cambridge. Nearly a quarter of a century has passed
since the first paper with the name of Boundary Elements appeared in 1977. I was privileged to be co-

author of that seminal paper with my friend and colleague Jose Pepdn, then working with me at
Southampton University.

Since 1977 extraordinary advances have been made in the fundamental principles and the computational
mathematics required to solve boundary integral equations using computers. Most of those papers were
published in the International Journal of Engineering Analysis with Boundary elements (EABE), which
continues to be the most respected and well-established vehicle for the publication of new papers on the
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BEM formulations applied to gradient
plasticity FA9¢ )

C.A. Fudoli', W.S. Venturini' & A. Benallal®
1University of Sao Paulo, Sdo Carlos School of Engineering, Brazil
2Laboratoire de Mecanique et Technologie, E.N.S.-Cachan, France

Abstract

In this paper BEM formulations applied to localization problems are discussed.
The formulation is particularly dedicated to analysis of elastoplastic two-
dimensional bodies for which the formulation has successfully implemented.
First, we discuss the capability of BEM to deal with the localization phenomena.
The proposed algorithms are formulated as usual by assuming an initial stress or
strain field applied over the domain area where plastic strains take place. The
initial stress integrals are approximated over triangular and quadrangular cells.
The regularization of the plastic zone is achieved by following the gradient
plasticity approach. The plastic multiplier integral representation is derived and
several alternatives to obtain the corresponding algebraic equations are
discussed. A simple numerical example is shown to illustrate the capability of the
BEM technique to obtain regularized solutions in the context of gradient
plasticity.

1 Introduction

Along the last three decades, the Boundary Element Method (BEM) has proved
to be an appropriate numerical model to deal with an enormous number of
engineering problems. The technique is nowadays a well-established procedure
for the analysis of many practical engineering applications. In particular, the use
of BEM to analyse non-linear problems has deserved special attention of the
BEM community. Non-linear phenomena, such as plasticity, visco-plasticity and
no-tension, for instance, were treated by BEM in the earlier eighties [1,2,3]. As
the BEM formulations work on the stress space, it is expected that numerical
solutions for non-linear analysis are better than other techniques that require
differentiation of shape functions to compute the stress field.

Although proving to give good results, the BEM non-linear approaches,
appearing before this decade, were all based on the very simple explicit scheme
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62 Boundary Elements XXI1

accomplished by constant matrix procedures. Implicit approaches have been
proposed more recently. Jim et al. [4] have used implicit integration for BEM
finite deformation plasticity. Telles & Carrer [5] have also proposed an implicit
model to solve elastoplastic problems in the context of dynamic analysis for
which they followed mass matrix approach. Bonnet & Mukherjee [6] have
introduced the Consistent Tangent Operator - CTO in the boundary element
technique by following a scheme similar to the one used in finite elements [7].

Localisation phenomena is certainly appropriate to be analysed by BEM; it
exhibits small areas of interest inside the body, where the dissipation of energy
occurs, as well as rather large displacement gradients. Though localization
phenomena were and are still extensively analysed in the context of the Finite
Element Method (FEM) [8,9], in an attempt to improve the numerical simulation
of structural failures, there has been only limited interest in the context of the
BEM [10].

In this paper, the Boundary Element Method (BEM) is applied to model non-
linear structural problems where localization phenomena take place. A CTO
scheme is proposed to solve J; elastoplastic problems. Examples are solved to
illustrate that the BEM formulations based on local plasticity theories exhibit
pathological mesh dependence, while and the formulation based on gradient
plasticity guarantees the solution regularization.

2 Constitutive equations for gradient plasticity

The small strain gradient plasticity model taken for this work is a simple
modification of the flow theory of plasticity [7]. We will consider only the I, flow
theory. The following relations describe the adopted elastoplastic model:

o=C:(e-¢€P), f(o,R(p)) <0 (1,2)
Bi=g /g P 1 gP ¢* =AdF/do, p=A0F/dR (3.4,5)

where &,€ and €° are the stress rate, total strain rate and the plastic strain rate,
respectively; C is the matrix of elastic moduli, F gives the plastic potential, while
R and p represent the size of the yield surface and the cumulated plastic strain,
respectively,
The plastic multiplier A, defined in equations (4) and (5), satisfies the
complementary (Kuhn-Tucker) and the consistency conditions, i.e.
A20, <0, Af =0, f=0 (6abc7)

Assuming that R depends just on p and its Laplacian Vzp, the yield criterion,
equation (3), becomes:

f(c,p,V?p) =0. (3
The consistency condition gives now,
H -+ =0 ®
0

where (JF/0R) is assumed constant and
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where, h is the plastic modulus.

The dimension of ® is H times squared length, which gives: w=0.2, being £ a
characteristic length and o a material parameter.

(10a,b,c)

3 Integral representation of displacements and stresses

The integral representations required for the analysis of non-linear problems,
defined in a domain Q with boundary I, can be easily obtained by applying
Betti’s principle. Splitting the total strain into its elastic and plastic components,

ie. €,=€,+€, being 8;e and 8{2@ the elastic and plastic parts, respectively,
the Betti’s principle leads to [3]:

¢yl = [u,p,d = [p,8,dT+ [u;b,dQ + [c],&5,dQ (11)
r r Q Q
¢, = [Dyp,dr - [S,0,dT+ [D,b,dQ+ [F,,27,dQ +1, (12)
r r Q Q

where px and u, are traction and displacement components respectively; the
symbol "*" is related to the fundamental solution corresponding to a Dirac delta
load applied in the collocation point; the free terms c; is dependent upon the
boundary geometry; Dy, S and Fjjmy are well-known kernels and f, is a free-
term that appears due to the differentiation of a strong singular kernel given by:

-1
f,=————|(3-4v)(5,8, +5,8,) -85, [E, " 13
., 16(1_V)G[< )88, +8,8,) = 8,8, . (13)

being E . the elastic tensor.

Although equation (12) is valid only for internal points, it can be properly used
to describe the strain field over the whole domain. In this work however, we
decided to work with boundary strain values, but avoiding the usual and imprecise
procedure based on computing the normal strain parallel to the boundary by finite
differences. Equation (12) can be extended to the boundary carrying out the proper
limits, as shown by Guiggiani [11] for the linear case. Then, one finds that a
constant equal to 0.5 multiplies the left-hand side and the independent term f;;.

In order to solve a gradient plasticity problem, equation (9), which governs the
plastic multiplier, has also to be taken into consideration. Following the
collocation scheme, one may adopt the simplest fundamental solution to derive an
integral representation; i.e. one can adopt the fundamental solution of the
Laplacian equation (A)"(q,p) + 8(q, p) = 0), in Which §(q,p) is the Dirac’s delta.

Assuming that the plastic multiplier problem, equation (9), is valid only on the

region Q with boundary L, the plastic region, the integral representation of the

plastic multiplier A is obtained:
. ok oA . Hpo L. of o
—...Ci0 2 Ar-— — [ =E:¢dQ 14
ch J_an}‘dnr[)‘ —-dr mixxdmmnj’x =5 Bt (14)

where c is a free term similar the one used in equation to (11).
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Note that the third integral is eliminated if one uses a proper fundamental
solution of equation (9) that can be obtained from:

. H..
AN (q,p)—;k (q,p)+8(q,p)=0 (15)

Although the fundamental solution given by equation (15) eliminates one
domain integral in equation (14), it would be applied only to the particular case of
constant H/ . Thus, we continue the formulation using the simplest fundamental
solution. Moreover, as the kernel of both domain integrals in equation (14) is the
same, therefore only one integral has to be performed and conveniently used.

In order to complete the problem boundary conditions along the actual
boundary of the body and along the interface between the plastic and elastic
regions have to be assigned. Along the actual boundary we assume JA/on =0,
while A =0 is assumed for points defined over the interface.

4 Time discretization. Finite step problem

The relations presented in the previous sections were written in rates. Thus,
transforming them into their incremental forms is the starting point of the
numerical formulation of the boundary value problem in gradient plasticity.

Let At=t,, —t, be a typical time-step in the time discretization. The finite step

boundary value problem consists of searching the solution at the end t,,, of the
time step when it is known at the beginning t, of the time step. Thus, developing

the procedure only for the total implicit case the given relations become:
- The plastic strain increment:

oF

Ae? =AM =AAm,,, (16)

n+l

- The integral representations (11), (12) and (14):

¢, (8u,), = [u(p,),dT - [ pi(Au, ), dT + [u} (ab,),d2 + [}, (40 ) 40 (7
r r Q Q

(8¢,), =D, (4p,),dT - [, (Au,),dT + Dy (ab,),dQ + [B e (A0%,), dQ + (A1), (18)

c(AN), = 1 x(A%ii),,dr- i (M)n%%dl“——gh" x(Ax)ndQ+lm i k’(g—iEAe)ndQ (19)
- The stress increment:
Ac, =E:(Ae, - Ag}) (20)
- The Kuhn-Tucker conditions:
(AN), 20, f(o,, M) S0, an), £, =0 (21)

With the adopted time marching scheme the initial boundary value problem for
gradient plasticity is reduced to the three global and coupled integral equations,
(17), (18) and (19), complemented by the local expression (20) for the stresses and
the constraints (21). With the relevant boundary conditions this constitutes the
finite step boundary value problem.
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S Space discretization. Boundary element formulation

The continuous finite step problem described above should be discretized now in
space. This is carried out here by using the Boundary Element Method. The
boundary I' of the solid is discretized into a series of elements I, over which

displacement and traction increments, Au, and Ap,, are interpolated in terms of
their values at a series of nodal points and approximation functions. Due to the
presence of domain integrals in (17), (18) and (19), the domain Q is also divided
into cells Q, over which body forces and the plastic strains are approximated and
then the corresponding domain integrals computed numerically.

Writing the discretized form of equations (17) and (18) for the selected
collocation points, solving the system of algebraic equations, one can express
boundary value increments and strain increments in terms of the plastic strain
increments (see Brebbia et al. ). Thus, equations (17) and (18) become:

{ax, }={am, }+[R* [ : 267} (22)

{ae, }={an, }+[s fE: a2} (23)
where {AMn} and {AN n} represent the elastic solution (boundary value and strain
increments); the two remaining products are contributions of the plastic strain
field.

Similarly, after discretizing the boundary (moving) and the relevant domain,
the gradient plasticity integral relation (19) is also transformed into its algebraic
form. One may write two system of equation one related with boundary nodes and
other to express the plastic multiplier at internal points. After convenient matrix
operations they can be expressed by the following algebraic equation:

r
{Axn}=—[H*]{Ax:}+[G*‘{aM }=[Q*]{af :E:Aen} (24)
on |, do|,,,

Particular attention must be paid when choosing the boundary element and cell
approximations. Straight linear elements with linear approximations have been
adopted to transform the boundary terms. The domain integrals have been
performed using linear approximations over triangular cells. Moreover, strains
have been computed at boundary nodes defined inside the elements (given by the
dimensionless co-ordinates equal to & =+0.5).

6 Moving boundary problem

Equations (22), (23) and (24) define the incremental problem under consideration.
They have to be solved taking into account that the plastic region varies through
the iterative process. The domain denote by qr with boundary I’ at iteration n

will be r and I?, at iteration n+1. As a consequence, all matrices the matrices

computed at n must be modified to include (or eliminate) elements and cells.
Figure 1 illustrates the domain definition scheme to be followed; active plastic
points must be inside the plastic region, which is defined by internal boundary
constituted only by elastic nodes.
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=== pnwmalboundary atincam ent n+1 ¢ .#® plstc nodes atincram ent n+l
htemalboundary atihicram ent n . phstt nodes atincrem ent n

Figure 1. Internal boundary definition.

The boundary conditions, to be imposed at iteration level, have also to be
considered to define the final set of algebraic equilibrium equations. The usual
scheme to define the boundary conditions is schematized in Figure 2a. In this
article, we have adopted a simplified scheme that reduces significantly the
computations. No internal boundary is defined; instead the plastic zone is governed
by enforcing the plastic multiplier to be zero over the elastic region. Using this

simplification, computing new matrices is avoided; they are only rearranged
through the iterative process.

Elastic region

yA

/

Elastic region

[}
D

/

U
3

Plastic region
a) b)

Figure 2. Boundary and internal conditions. a) with definition of internal
boundary; b) without defining the internal boundary.

7 BEM Implicit formulations

Plastic region

7.1 Local plasticity

To obtain the implicit algorithm with the consistent tangent operator - CTO, we
can start by rearranging equation (23) in its incremental form, as follows:

[Y(Ae,)}=[Cl{A¢,} - (AN, } -[SHCllAe! 1 }=0 (25)
where [C] is the usual Hookean elastic tensor, [S1=[S1+[I] with [I] being the
identity matrix

Equation (25) is solved by a Newton-Raphson scheme. Therefore, the additive
corrections 56'; = AS,';H-— ASﬁ, to Ae’:‘il must be considered leading to the

consistent tangent operator, which is given by the derivative of equation (25) with
respect to Ae. Thus, for the correction i, the CTO matrix is given by the
approximation:
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{vcae )+ -a-{%m—fil}a&; =0 (26)
with “
C? =0Y(Ae})/0Ae, (27)
which, in closed form, can be written as:
C? =I-S8"A\LE:0m,, dAe, (28)

In the sequel, the derivative of the yield surface normal m,_,, is given in its

closed form for the particular case of J, criterion, which is the same one presented
in Simo & Taylor [7].
2G

amnﬂ = [I —il®l—mn+l ®mn+lJ (29)

dAe +2GAM, | 3

n sn+l

The yield criterion must be checked at the correction level, i.c.
f..=J,(c.,)-HA, <0 (30)

where the superscript t means trial.
One should notice that the plastic correction of the adopted algorithm

corresponds to a radial return to the yield surface from the elastic trial. Indeed, this
elastic trial is:

Ac' =0, -0, =E:Ag, (31)

n+l

from which we can also find the deviatoric stress trial S.. as

S:nl

-8, =E:Ae, = 2GAe, (32)

where Ae, is the deviatoric part of the strain increment.

Taking into account the constitutive equation (20), one can compute the
deviatoric stress at the end of the increment as

S,.=S',-2GAA.m_, (33)

n+l

7.2 Gradient plasticity

For the gradient plasticity case little modification is required in the above
formulation. Now, one has to solve the two coupled non-linear algebraic equations,
(23) and (24), for the strains and the plastic multiplier, conveniently rewritten as
follows,

{Y*(ae,, an)}=[ClAe, ) - (N, }-[S'H{CIrAe?] =0 (34a)
{Y*(ae,, A0, )}= (AR}~ (AZ,}~[S*}fm,,, : E: A’ }=0 (34b)
The consistent tangent operator is now given by differentiating equations (34)

with respect to A€ and AA . For the particular case of J, yield surface one can find
that

n+l

om

/3AN, =0 (35)

n+l
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therefore the obtained tangent matrix is the same one already shown for the local
plasticity case.

The complementary relations also are valid replacing equation (29), which now
reads:

fl . =J,(c,,)-HA +0V*A, <0 (36)

8 Numerical example

The formulation described here is validated by analysing a rectangular block
subjected to compression along its upper face. The analysis is carried out under
plane strain conditions, assuming the J, yield surfaces and using both the local and
gradient models described in the previous sections. The data used for this analysis
are: Young modulus E = 2000 Mpa; Poisson’s ratio v = 0.00; softening modulus h
= -0.0125E; yield stress 0, =2 Mpa.

Figure 3 shows the dimensions of the block, the loading and the boundary
conditions and also the coarse mesh (containing 128 cells) used in the analyses.
Two other finer discretizations, containing 512 and 2048 cells respectively were
also considered to illustrate the mesh dependency.

i 120 mm
— |
T | T T
1> —
60mm l D ham
|
4 el
E = 2000 N/mm’ h = -00125E /

8
oy=2N/mm’ (elastic limitc)

Figure 3. Rectangular block: dimensions, boundary conditions and loading

To trigger the localisation phenomenon, a weaker zone near the center of the
block was considered. The yield stress of 2.0Mpa is assumed everywhere, except
over the weaker internal square near the center, where the yielding stress is
reduced by 0.2Mpa. The plate is loaded by applying an uniform displacement
along the block vertical side as indicated in Figure 3.

Figure 4a shows the lack of objectivity of the solution obtained by using the
classical local plasticity theory. The dissipation zone is defined over a narrow
region one-cell length wide. Figure 5 illustrates the plastic strain developed over
the domain with very large values along the localized narrow region. As the plastic
strains are concentrated over the localized zone defined by the mesh length, they
are it very high for the finer meshes.

The capability of the proposed gradient plasticity BEM model to capture the
stabilised zone is clearly demonstrated in Figure 6. One can see that the plastic
strain zone is now a narrow zone that contains several row of cells, even if the
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weaker‘ region (the marked square) is greater than the localized band. The same
regularized zone has been captured for all experimented discretizations.

100 — : - 5 \ \.\\.\ —
g = 1 i TN Y 100 L . Db N
3 H a :
o [ ! \ 80 |— p .
e °F
= 40 - — g
. / L
20 |—./. ‘ - 20 :_/ v
02 lllllllllllllllll o b 11||||‘);|]1;‘1||1|
© ¥ @ @ B o W n o © o
“ ¢ ® o 4 %3 g g3 IR EREEEE
Displacement (X1000 mm) Displacement (X1000 mm)

a) b)

Figure 4. Load-displacement curves. a) local model; b) gradient plésticity model
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a) b)
Figure 5. Equivalent plastic strain. a) Narrow region; b) 3D visualization.

o

2

$ 3 ] 8 &
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Acoumulated equivalent stealn Acoumulated equivalent strain

a) b)
Figure 6. Stabilized solution. a) Plastic strain; b) 3D visualization.

Figure 6 is shown in order to better visualize the plastic strain concentration,
now clearly defined over the narrow dissipation zone formed by several rows of
cells. The same distribution of plastic strains is also computed when other
discretizations were used, demonstrating the objectivity of the computations.
Figure 4b shows the load-displacement responses for the three discretizations |
when using the gradient plasticity model. The three responses are almost the same,
exhibiting therefore regularized effects and objectivity of the computations.
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8 Conclusions

Implicit BEM formulations for local and gradient plasticity theories have been
presented. The plastic multiplier algebraic equation for gradient plasticity has been
coupled with the usual non-linear BEM equations. The global consistent tangent
operator has been derived. The selected example has demonstrated that the local
plasticity scheme gives solutions with clear lack of objectivity, while the gradient
plasticity model regularizes the numerical responses.
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