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Published: 22 Novernber 2016 Network science is an interdisciplinary field which pr_owdes an integrative approach for the study
of complex systems. In recent years, network modeling has been used for the study of emergent
phenomena in many real-world applications. Pattern recognition in networks has been drawing
attention to the importance of network characterization, which may lead to understanding the
topological properties that are related to the network model. In this paper, the Life-Like Network
Automata (LLNA) method is introduced, which was designed for pattern recognition in networks.
LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces
a spatio-temporal pattern used to extract the feature vector for network characterization. The method
was evaluated using synthetic and real-world networks. In the latter, three pattern recognition
applications were used: (i) identifying organisms from distinct domains of life through their metabolic
networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns
varying according to different lighting conditions. LLNA was compared to structural measurements and
surpasses them in real-world applications, achieving improvement in the classification rate as high as
23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition
applications using networks and demonstrates potential for general applicability.

Networks have been successfully used in many areas of knowledge that covers practically all fields of Science:
Earth!-%, Social’-!2, Life!3-!8, Physical'®-** and Formal Sciences?*?’. The main reason behind the growing interest
in networks lies in the fact that it shows a different perspective of the traditional data analysis. During centuries,
the scientific research paradigm was ruled by the reductionist approach. Scientific and technological advances
increased the amount of data and also encouraged the development of powerful computers, which are capable of
processing and storing this huge amount of data. This scenario, often called “big data”?, requires the development
of an integrative paradigm of science. Complex systems, in particular, chaos theory and networks are research
fields that have contributed with interesting approaches to this scenario. Both have shown to be able to handle
multiple actors, multiple events and multiple variable problems®-3!. Particularly, networks are a good approach to
model complex systems once they incorporate the connectivity among the elements of the system.

During the last decades, Pattern Recognition (PR) has been widely used in both fundamental and applied
sciences. Remarkably, most of the PR applications deals with a big amount of data which are difficult handle
with the reductionist approach. A classical example is the medical field, where computational and mathematical
methods dealing with huge amount of data allowed a strong innovation in the field. Networks are a natural tool
for data modeling. In face of that, the combination of PR and networks arises as an important alternative in the
big data scenario for finding, identifying, analyzing, and clustering patterns that are unfeasible to deal with other
approaches. Pattern recognition in networks aims at the characterization of networks by extracting information
regarding the correlation between vertices and their relationship with topology. This information may lead to
the comprehension of network patterns that are intrinsically related to the network model. Therefore, the choice
of adequate network descriptors is crucial for this kind of applications. Many measurements can be extracted
from the network topology and be used to distinguish network types®2. These measurements can be related to
connectivity attributes, such as the mean degree and the degree distributions and correlations. Distances and
path lengths are also important topological attributes when the spatial position of nodes is relevant. Moreover,
there are measurements related to cycles in networks such as transitivity and the clustering coefficient®®, which
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Figure 1. Pattern Recognition in networks using spatio-temporal patterns evolved by a cellular automata.
(a) Modeling a binary cellular automata over the network topology. Black cells represent the nodes in the “on”
state and white cells, the nodes in the “oft” state. (b) Spatio-temporal diagram of the evolved automaton. Each
column of the diagram represents the evolution of a single node and each row represents the configuration

of the states at each time step. (c) Network descriptor represented by a vector of attributes obtained from the
previous diagram.

quantifies the small-world phenomenon in networks. We can also mention centrality measures, such as between-
ness, closeness and eigenvectors. Other measurements include spectral and hierarchical measures as well as frac-
tal dimension among many examples®.

Structural measures have been investigated mainly in the context of network analysis, however much less
effort was made in pattern recognition applications. A few related studies have addressed this challenging topic
and have had significant advances. Costa et al.** analyzed both traditional measures regarding structural prop-
erties of networks and methods for dimensionality reduction, as many measures can be correlated to each other.
They also discuss the possibility of expanding classical pattern recognition techniques to network analysis.
Moreover, Golgalves et al.*® proposed a method based on partially self-avoiding deterministic walks to classify
network models using the agent trajectory over the network topology. The joint distribution of the transient time
and the cycle period were used to compose the feature vector. Their results indicate an improvement in the correct
classification rate when compared to traditional network measures. Networks have also been used to perform
pattern recognition tasks in Computer Vision, such as contour®** and texture analysis®*.

In this paper we proposed the Life-Like Network Automata (LLNA) which was designed as a method for
network analysis for pattern recognition applications. In the LLNA approach, networks are modeled as the CA’s
tessellation and the spatio-temporal pattern obtained from the evolution of the CA is used to extract the feature
vector for network characterization. Life-Like Network Automata uses a family of CAs inspired by the rules of
Life-like, which is an extension of the popular Conway’s Game of Life*’. The network descriptor is obtained from
the spatio-temporal pattern as described in Fig. 1.

Cellular Automata (CA) are dynamical systems defined over tessellations of the Euclidean space, which are
governed by deterministic rules that define the states of the cells at each time step. CAs are essentially discrete,
i.e., time, space and the set of states are discrete. In recent years, CAs were largely explored as modeling tools of
systems characterized by many variables which would be difficult to handle with partial differential equations. On
the other hand, the evolved spatio-temporal patterns can provide emergent behavior, resulting from the dynam-
ics of each individual cell. Therefore, they have also become a relevant tool for the study of complexity and the
formation of spatio-temporal patterns*.. CA were originally designed in regular tessellations (square-grids), not-
withstanding, most of the real-world systems are built upon irregular tessellations and present topologies that are
much more complex such as the scale-free networks.

In the 1990s, studies modeling CAs on irregular tessellations began appearing in the literature. The first stud-
ies integrating both areas of Networks and CAs can be found in refs 42, 43. Watts discusses CA computation in
small-world networks in tasks, such as the density classification problem and synchronization. Tomassini et al.
discuss properties of small-world networks in the global computing capacity of CA, such as the robustness of the
network topology*. Marr & Hiitt*>*¢ also studied the dynamics of evolving networks through the use of CAs.
Their results indicate a strong association between entropy measurements obtained from the spatio-temporal
patterns and the degree distribution of a network. Moreover, the majority problem and some related rules are
explored in this context. Dynamic pattern evolution was also studied by Zhou & Lipowsky*’ regarding scale-free
topology. The Ising model is used to describe the states of each vertex that evolve according to local majority rules.
The authors found that scale-free networks present qualitatively different dynamic behavior given a threshold
exponent of 7/2 (7y is the power law exponent). In other related works, the network topology was also explored
using CAs and other dynamical models*-*°.
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In contrast, LLNA is based on the spatio-temporal patterns of a binary CA governed by the dynamics of
rules inspired by Life-like CA. Instead of using the number of living cells, the proposed CA performs a map-
ping between the density of living neighbors and a specific Life-like rule. We evaluated LLNA in two distinct
types of applications: synthetic networks and real-world networks. In the former, we performed the classification
of theoretical network models in two experiments: general and scale-free models. We used well-known general
models namely, random, small-world, scale-free and geographical. For the scale-free classification, we consid-
ered five categories of scale-free networks generated according to the models proposed by Barabdsi & Albert®!
and Dorogovtsev & Mendes™. In the latter, we performed classification tasks for real-world applications that use
networks as data representation. These data are composed by samples of different categories, and therefore, their
automatic identification remains an important problem for each specific application. We used LLNA in three
pattern recognition applications: (i) identifying organisms from distinct domains of life, Archaea, Bacteria and
Eukaryota, through their metabolic networks. The dataset used was first studied by Jeong et al.'%; (ii) identifying
structural patterns in two online social networks, Twitter and Google+, using the samples of social interactions
obtained from the SNAP database®, and, finally, (iii) classifying stomata distribution patterns varying according
to different lighting conditions®*. Using theoretical network models supports the understanding of the obtained
results, as these topologies present known properties, and using real-world networks is a strong evidence that
LLNA is a good choice for pattern recognition applications using networks and demonstrates general applicability.

Results

Life-Like Network Automata (LLNA). LLNA is a method for pattern recognition which uses a family of
CAs inspired by the rules of Life-like. The choice of the Life-like family was due to the flexibility of these CAs
which provide a vast rule space®~". CAs are usually represented on regular tessellations (square grids) in n-di-
mensional Euclidean spaces, R", and the set of transition rules, ®, is defined over a fixed number of neighbors.
However, when considering CAs built upon irregular tessellations*>*®%, such as networks, the number of neigh-
bors of each cell may vary considerably. This issue can restrict the comparison between two systems. To overcome
this, we focused on a particular solution*?** that uses the neighborhood density instead of the number of neigh-
bors alive when applying the transition rules.

Given a CA described by the quintuple C = (7; S, sy, N, ¢), we assume the following correspondences: (i) the
tessellation 7 is represented by the network. In this approach, every network node is considered as a CA cell, i.e.
both terms “node” and “cell” are used here interchangeably. (ii) The set of states S is composed by two elements,
such thats; € N, where s;= 0 represents the “dead” state and s;= 1 represents the “alive” state. (iii) s, is the initial
configuration of the states for all the cells¢; € 7T i.e., s(c;, 0) =s,(c;). (iv) The set of neighbors A is given by the
adjacency matrix A, where A;= 1, if i is connected to j and A; =0, otherwise. Thus, the number of neighbors or
degree of node i is defined as: k; = Z?]:I A;> where N is the total number of nodes. As expected, k; varies for each
node and, therefore, each type of network has a characteristic degree distribution. Moreover, the neighborhood
density (p;) of node i for a given state s, =s can be generically defined by

LN
P,»(Sk =3) = —ZA,»-(SS,,S ),
ki U 1)

where § G =1 ifsj=scand ¢, (=0 otherwise. Specifically, A; defines the neighborhood relation and § 5
is the coﬁdition that the nodes hold the same state. For instance, for a binary state space, p; can be simpliﬁedjas

p, = ki ;":1 Aj;s(#). Finally, the last correspondence (v) is given by the transition function ¢, which determines the

state of cell ¢; in time t. The classic Life-like CA can be characterized by the notation Bx/Sy (e.g. B23/S3, B18/S246,
B567/S09, etc), such that, x = {xg, x;, ..., x,|x; € N, 0 < x; < 8}and y = {yl, Vo s Vo ly. € N,0 < y; < 8}
are two sets corresponding to the numbers of possible living cells that satisfy the conditions of birth and survival.
Notice that, when combining these conditions, there is a total of 20+ (=262144) Life-like rules. This family of CAs
are defined over a two dimensional regular tessellation and their neighbors are given by Moore’s neighborhood
which is composed by the eight nearest neighbors. Therefore, B and S are sets containing from zero up to eight ele-
ments (additional information about Life-like CAs can be found in section S1 of supplementary material). We
traced a correspondence between the number of alive neighbors, given by the Life-like rule, and the density p; of
each network node. This correspondence takes place with the definition of nine intervals. The first eight intervals are

defined as| > ";1 :{pi eER
8

interval as > 1] = { P, € R|§ <p, < 1}. The same intervals are defined similarly for y. The function

g <p < d ;r ! }, where x is defined by the value of the Life-like rule, and, the last

x+1

1,£§p,< , ifx =8
9 1
X p—
b0 =1 8 cp <1 ifx=8 ,
9 1
0, otherwise (2)

verifies whether the interval defined over x is satisfied for node i. For instance, considering rule B3/S23, three
neighbors must be alive so that a node is born (x = 3), therefore the birth condition is given by: hf (t) = 1, while
the survival condition is given by i (t) = 1orh(t) = 1. Finally, the transition function for LLNA is defined by
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Figure 2. Space-time diagrams for different network models: random, small-world, scale-free and
geographical. These networks were evolved using rule B1357/52468. (a) All the diagrams of this figure were
obtained for networks generated with N =500 nodes and four different values of (k). The CA was evolved for
t=>500 time steps. (b) Highlighted space-time diagram of a scale-free network with (k) =8. The states of the
nodes are represented horizontally (from left to right), where the white pixels correspond to the “alive” nodes
and the black pixels to the “dead” nodes. Each time step ¢ is represented vertically. The colors observed at the
bottom of the diagram correspond to the values of entropy of each node. The red cells correspond to the highest
entropy values while the blue cells, to the lowest.

||
¢(t) = 0and > k(1) > 0
1, if =1
ot +1)=1"" s,
¢;(t) =1land Zhi t)y>0 ,
j=1
0, otherwise 3)

where ¢,(t+ 1) will be the state of node i in the next time step and ¢,(¢) is its current state.

Figure 2(a) shows the spatio-temporal diagrams obtained for random, small-world, scale-free and geograph-
ical networks which were evolved by rule B1357/52468 according to Eq. 3. All the networks used to obtain the
respective diagrams present N= 500 nodes and different mean degree (k) and they were evolved for t =500
time steps. Initially, in t=0, a possible state is assigned to each node according to a uniform distribution. The
space-time diagram depicts the pattern formation where each column represents a node while each row repre-
sents the time evolution of the states for each node. Traditionally, for elementary CAs, every node is surrounded
by its neighbors, since the number of neighbors is fixed. However, in the diagrams of Fig. 2, the neighborhood
relation was not preserved due to variations in the degree of the nodes. Nevertheless, the columns were ordered
according to their connectivity where the left-most corresponds to nodes with the smallest values of k;, and, the
right-most, to the ones with the largest values of k;.
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Figure 3. Histogram of the three distributions used to quantitatively analyze the spatio-temporal patterns
of distinct network models: Shannon entropy fis, word length i,, and Lempel-Ziv complexity fi;. The
following parameters were adopted: N= 500, (k) =4 and ¢t =350.

There are four main patterns observed in these diagrams in terms of dynamics: stable, oscillating, chaotic
and complex. For instance, all of these patterns can be observed in different regions of the highlighted diagram
of Fig. 2(b), which was obtained using a scale-free network as tessellation with (k) = 8. The colors at the bottom
of this figure are related to values of the Shannon entropy which quantifies how homogeneous is the evolution
pattern and is defined in the Materials and Methods section. Red cells represent the highest entropy values.
For this example network, hubs tend to present chaotic and complex patterns once they are on the right-most
side of this diagram. Whereas in the diagram of the same network model with (k) =10 there are no stable pat-
terns. Moreover, the spatio-temporal diagrams of the other models also present some of these patterns, although
they may change considerably regarding the area of occupation. Random patterns appear more frequently as (k)
increases, consequently, the entropy also increases. This effect is due to the addition of new edges in the network.

The Shannon entropy, the word length and the Lempel-Ziv complexity were used to assess the spatio-temporal
patterns (see section S2 of supplementary material for details about their definitions). We have investigated how
these measurements vary for the different topologies studied in this paper. The evolution provided by each net-
work node was analyzed in terms of a time series containing only zeros and ones. Except for the word length,
which is calculated for the whole diagram, and, therefore is a global measurement, the other two, the Shannon
entropy and the Lempel-Ziv complexity, were calculated for each network node. Then, the distributions of the
three measurements were obtained and the corresponding histograms are illustrated in Fig. 3. Each row repre-
sents a distribution: Shannon entropy (i), word length frequency (i7,,) and the Lempel-Ziv complexity (iz, ),
while each column represents a different network model. The networks used to generate these histograms present
N=500, (k) =4 and t=350. It can be observed that the scale-free network at Fig. 3 presents large frequency of
nodes with high entropy by comparing i, among the different network topologies. These nodes correspond to the
nodes with the highest values of (k), as observed in Fig. 2. The histogram corresponding to the other topologies
also present large frequency of nodes with high entropy. This is due to the presence of oscillating spatio-temporal
patterns. Regarding j7, ., the respective histograms show that the most frequent words are the smallest ones.
Moreover, the Lempel-Ziv distribution fi; also shows significant differences among the network models.

Analysis and selection of parameters. LLNA can be influenced by the following parameters: the Life-like
rule; ¢, the number of evolution steps of the automaton, and, o, the percentage of the initial alive population in
t=0. The selection of the Life-like rule for a pattern recognition application is performed through an optimiza-
tion procedure in which classification accuracy is maximized. In this context, accuracy is the percentage of cor-
rect classified instances. All Life-like rules are evaluated regarding the accuracy they provide as transition
function (see Eq. 3) of the proposed Life-Like Network Automata. We have conducted an experiment in order to
find the most discriminating rules for classifying network models using this optimization procedure. Therefore,
each network model was defined as a class in this experiment: random, small-world, scale-free and geographical.
We used the rule-selection-dataset which contains networks of each theoretical model and is described in detail in
the Materials and Methods section. Figure 4(a) presents the histogram of the accuracy achieved by all Life-like
rules. We used k-NN classifier and the Shannon entropy distribution (17, ) as feature vector. It can be observed that
the majority of the rules provided accuracies greater than 60% and a set of specific rules provided accuracies
greater than 90%. From this set, we selected the 10 rules which provided the highest accuracies in order to be used
in the subsequent experiments with synthetic networks.

SCIENTIFICREPORTS | 6:37329 | DOI: 10.1038/srep37329 5



www.nature.com/scientificreports/

Y
=

o
=

e}
-

! [ - 100
| B01245678/53456 |
| B135678/503456 |
| B35678/513456 |
| B35678/503456 |
| B01678/50457 - |

- B01678/50457
o B035678/5023456 60 -

Accuracy (%)
8
Accuracy (%)

Frequency

08 —A— B1245678/53456 i

S & S S 690\ >90 50 150 250 350 450 020 30 40 50 60 70 80 90

<
0 & S8 N . it 1 1
N O N Time steps Initial configuration O (%)
Accuracy (%)

Figure 4. (a) Accuracy distribution for the 262144 rules of the Life-like family regarding the correct
classification rate of network models (random, small-world, scale-free and geographical). The highlighted rules
provided the best results. (b) Accuracy (%) in relation to the evolved time t for the three highlighted rules.
(c) Accuracy (%) for different initial distributions of alive nodes (o) using rule B135678/503456.

We also analyzed whether accuracy may be affected by the other two parameters: t and o and the results are
shown in Fig. 4(b) and (¢), respectively. In the first one, we can observe that the correct classification rate tends to
increase as the values of t also increases. The initial accuracy is already high given that the three illustrative rules
are amongst the ten previously selected rules. There is also a rapid convergence of the accuracy values, which
was observed for the three analyzed rules, although this behavior cannot be assumed for all the rules. However,
for patterns that do not converge, an increase in the number of time steps may provide more details about the
topology being evolved. Regarding the influence of the number of alive nodes in the initial configuration of the
automaton, we have o representing the probability of having cells ¢; such that s(c;) =1 at t=0. We performed the
same experiment of network classification considering different values of 0. We observed that values of o close to
a uniform distribution of states, i.e. 3 =50%, provided the highest accuracies, as shown in Fig. 4(c).

Based on the observed behavior of t and o, we adopted the following values t =350 and o =50% in the sub-
sequent experiments performed in this paper. Additionally, we performed an analysis of the influence of the
number of network nodes, N, which is presented in Section S5 of supplementary material.

Pattern recognition in synthetic networks. This section presents three experiments with synthetic net-
works in order to illustrate the pattern recognition approach of Life-Like Network Automata and also to validate
the parameters obtained in the training phase, as shown in the previous section. Similarly to the training phase,
the first experiment also aims at the classification of network models (random, small-world, scale-free and geo-
graphical). However, a new dataset, named synthetic-dataset, was generated containing other samples of the same
network models. Therefore, there is no intersection between the rule-selection-dataset and the synthetic-dataset
(see Materials and Methods section for a complete description of both datasets). The networks present different
combinations of N and (k) in order to increase the heterogeneity of synthetic-dataset. We compared the perfor-
mance of LLNA with the following structural measurements of networks: average degree ({(k)), average hierarchi-
cal degree of level 1 ((H, )), average hierarchical degree of level 2 ((H, )), average clustering coefficient ((cc)),
average path length (I) and degree Pearson correlation (pp). For LLNA, we used the following measurements
extracted from the spatio-temporal patterns: Shannon entropy, word length and Lempel-Ziv complexity. The
distribution of these measurements fi;; i, and i, , were used as feature vectors, respectively, as well as the com-
bination of them[Z, fz,,,, iz, ]. We also tested the accuracy of the average values of those measurements as feature
vectors: [{fts), (ftw)> (i) ]- The structural measurements were also evaluated both individually and combined. All
the experiments presented in this section were performed using SVM classifier and 10-fold cross validation.

Figure 5(a) presents the accuracy of four rules that are among the ten previously selected rules. We can observe
high accuracy values for all the feature vectors except for the vector [{s), (tw), {£4)], which is composed by the
average values of each measurement. The maximum accuracy obtained was 99.992 +0.002% for rule B135678/
$03456 using the combination of the distributions[fi, [7,,,, i, ]. When analyzed separately, the distributions also
provided high values of accuracy, especially the distribution of the Shannon entropy, /7. Figure 5(b) presents the
canonical analysis for the synthetic-dataset using i as attribute and rule B135678/S03456 as transition function.
The canonical analysis is a regression analysis that provides a linear combination of the original attributes which
maximizes the separation between the classes of interest®. Therefore, the first and the second canonical variables
correspond to the eigenvectors with the highest eigenvalues of a matrix that quantifies the intra-class variation
regarding the instances of the same class, and, another matrix which quantifies the inter-class variation among the
classes. There is a clear separation among the four network models which corroborates the high accuracies
obtained for the distributions as feature vectors. Additionally, Fig. 5(g) presents the comparison between the
structural measurements and the best LLNA rule. Both approaches provided similar results (100% of accuracy
considering the standard deviation). This can be explained by the fact that the networks used in this experiment
were generated from classical theoretical models which present known properties that can be characterized by
several measurements.

In another experiment, we evaluated the influence of the network mean degree, (k), in the spatio-temporal
pattern. As shown in Fig. 2, different evolution patterns can be observed for the same network model given differ-
ent values of (k). One question that can be raised is whether the spatio-temporal pattern for a given network model
with specific (k) is unique. We performed this investigation considering now the combinations of (k) and the
network models as classes. Therefore, we have a total of 28 classes, resulting from the combination of seven distinct

SCIENTIFICREPORTS | 6:37329 | DOI: 10.1038/srep37329 6



www.nature.com/scientificreports/

a) Synthetic-dataset b)
100 - - © Random
% B135678/S03456 * Small-world
90 = B35678/503456 o 8 ® Scale-free
= B35678/S13456 =2 ® Geographical
o 8 = BO1678/50457 'E 4
& =
E 70 §
3 £ 0
2 60 <
&
50 -
40 B
iis fiw i s i) [Ges) o), (o)) -10 5 0 5 10
1st canonical variable
) Synthetic-dataset (k) d)

100
= BO1678/50457
90 " B035678/5023456
™ B035678/50123456

80 | - i = BO157/5457 ’ . (k) =12
- B (k) =14
g - ) ‘ (k) =16
60 = < ?
-10
50 o % o Qo
40 -15 ;

-6 -4 -2 o 2 4 6

DR
EEEEEEE
I
5

Accuracy (%)
3
2nd canonical variable
&

fis fiw AL liis, fiw fic] - [(s), (), ()]
1st canonical variable

e) Synthetic-scalefree-dataset  f)
20
100 DT ® SFa=10
= _ M = BO157/5457 15 A B . SFZ:O.S
90 . = BO1678/S0457 o o e ® SFa=15
. = BO35678/50123456 5 10 o e - . © SFa =20
< 80 - - = B135678/503456 g s Y = * DM
= =
= o
Z g 0
g 7 . - 5
51 g 5
£ 60 E
g 10
50 15 @
40 -20
fis fiw i s i) (). o). (us)] 8 6 4 2 0 2 4 6 8 10
1st canonical variable
g) h) i)
100
80
&
= 60
9
s
E 40
) D D D
0
(k) (Hi) (His) (cc) (I)  prCombined LLNA (Hyiy) (Hig) (ec) () pr Combined LLNA (Hyiy)  (Hi)  (ec) () pr Combined LLNA

(8135678/503456) (B01678/50457) (B0157/5457)

Figure 5. Synthetic network characterization with LLNA. (a) Accuracy (%) and standard deviation obtained
in classifying network models: random, small-world, scale-free and geographical, using five different feature
vectors and four Life-like rules. The vectors 1i;;, 17, and [, represent the distributions of the Shannon entropy,
the word length and the Lempel-Ziv complexity, respectively. The vector [i, [, i, ]is composed by the
combination of these distributions, and, [{s), {ttw), (¢;)] contains the average values of the same
measurements. (b) Canonical analysis of the four network models using rule B135678/503456 and [fi, [z, [t,]
as feature vector. (c) Accuracy (%) obtained in classifying network models in combination with (k) as classes.
(d) Canonical analysis of the 7 distinct values of (k) for the geographical network model using rule B01678/
S0457 and (i, jt,,,, i1, ] (€) Accuracy (%) obtained in classifying scale-free network models generated with
linear and non linear preferential attachment. (f) Canonical analysis of (e) using rule B0157/5457 and

[, 12, I, ] Plots (g), (h) and (i) present the comparison with structural measurements which are related to
the plots presented in (a), (¢) and (e), respectively. The following measurements were used: mean degree ((k)),
average hierarchical degree of level 1 ((H, )), average hierarchical degree of level 2 ((H, )), average clustering
coefficient ({cc)), average path length (I) and degree Pearson correlation (pp). The best accuracy obtained by
LLNA is highlighted in yellow.

values of (k), varying from (k) =4 to (k) =16, and four network models. This experiment was also performed with
synthetic-dataset. The results regarding accuracy are shown in Fig. 5(c). The four rules highlighted in this figure are
the ones that provided the highest accuracies among the ten selected rules. Using the same set of feature vectors,
the maximum accuracy obtained was 90.76 = 0.07% for rule B01678/S0457. This rate was also achieved using the
combination of the distributions as attributes, and, when comparing the three distributions separately, we can see
that /i provided the highest accuracies individually for the selected rules. This result shows that we can distinguish
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the evolution pattern not only for the network models, but also for networks with distinct values of (k). The average
measurements did not present a good performance as well as for the classification of the network models.

Figure 5(d) presents the canonical analysis regarding the 7 distinct values of (k) for the geographical network
model using the feature vector and the rule that provided the best performance in Fig. 5(c). The confusion matrix
for rule B01678/S0457 and the canonical analysis for the other network models are shown in Figs S2 and S3 of
supplementary material, respectively. It can be observed that as the values of (k) increases the network topology
tends to be highly connected, and, therefore, the error rate also increases and the discrimination among the
classes becomes less clear, as shown in Fig. 5(d). These results are corroborated by measurements derived from the
confusion matrix (see Table S6 of supplementary material). Considering, for instance, the values of the area under
the curve in the ROC (Receiver Operating Characteristic) analysis, it can be observed that the AUC value decreases
for larger values of (k) for all the network models. The performance measurements for all the 10 selected rules
and for both experiments described so far can be found in Sections S6 and S7 of supplementary material. Finally,
Fig. 5(h) presents the comparison between the structural measurements and the best LLNA rule (B01678/S0457).
In this case, there was an improvement in the accuracy rate when using LLNA. The maximum accuracy obtained
with the structural measurements as attributes was 65.2 +0.2% when combining five measurements in the same
feature vector ([(H, ), (H kz>’ (cc), I, ppl). Therefore, the improvement in accuracy using LLNA was 25.540.3%. In
this analysis, we did not used (k) as attribute since we want to classify the network model in combination with
(k).
In the third experiment with synthetic networks, we evaluated LLNA in the characterization of different
scale-free models. We performed the classification of scale-free networks with both linear and non-linear prefer-
ential attachment: &« =0.5, 1.0, 1.5, 2.0. These networks were generated according to the well-known method
proposed by Barabasi & Albert®. We also considered another set of scale-free networks generated using the
method proposed by Dorogovtsev & Mendes®>. We used the synthetic-scalefree-dataset in this experiment, which
contains instances of five distinct classes representing the different scale-free models. Similarly to the other exper-
iments, the performance of each feature vector is shown in Fig. 5(e). The combination of the distributions also
provided the highest accuracies for the synthetic-scalefree-dataset and the maximum accuracy obtained was
98.3 £0.2% by rule B0157/5457. The performance of the Shannon entropy and the Lempel-Ziv complexity distri-
butions can also be highlighted. However, there is an heterogeneity regarding the performance of the feature
vectors for each rule, e.g., the vector [{1s), (tw), (11)] performed very well for rule B035678/5S0123456
(89.5£0.2%). In contrast, the same feature vector provided accuracy of 70 £ 1% for rule B01678/S0457 (see
section S8 of supplementary material for quantitative results of all the ten selected rules). The obtained results
indicate that even networks with similar topologies can provide specific temporal evolution, which may be used
as signature vectors in a pattern recognition context. Figure 5(f) presents the canonical analysis for rule B0157/
S$457 and [fi,, [7',,, [i; | as feature vector. There is a clear separation among the three classes and an intersection
between the scale-free models with v=1.5 and o = 2.0. Finally, Fig. 5(i) presents the comparison with structural
measurements for the synthetic-scalefree-dataset. LLNA also surpasses the accuracy obtained with the combina-
tion of structural measurements (96.20% =+ 0.03) providing an improvement of 2.08 £ 0.25%.

Pattern recognition in real-world applications. Three examples of LLNA in real-world applications are
described in the next subsections. In all the experiments performed, we used the LLNA method to classify specific
categories of each application. All the datasets used in the experiments were split into rule-selection and classi-
fication sets. The rule-selection set was used to perform the selection of the Life-like rules that could provide the
best classification rates to discriminate classes of interest, whereas the classification set was used to evaluate the
model. The details of the statistical approach used for the classification are described in Materials and Methods
section.

Identifying organisms using metabolic networks. Metabolic networks describe the chemical reactions of the met-
abolic pathways that rule the transformations between chemical compounds through the action of enzymes.
The aim of using LLNA is to characterize the metabolic networks of distinct organisms grouped by evolutionary
classes. In this application, we investigated whether three distinct classes of organisms could be distinguished by
the proposed method. The dataset used for this task was previously constructed by Jeong et al.'* and is publicly
available®. This dataset contains 43 metabolic networks, which provides a description of the metabolic pathways
of three types of organisms: archaea, bacteria and eukaryotes!®. The original database was built based on the
metabolic reactions found in the WIT database®”. These metabolic networks were generated considering the
educt-educt complexes and associated enzymes as representations of nodes and edges respectively.

The first plot of Fig. 6(a) shows an example of the histograms representing the distributions of the Shannon
entropy (jz,) for one sample of each of the three classes. This histogram is used as the network descriptor and
illustrates its behavior. These distributions were obtained through the spatio-temporal patterns resulting from the
Life-like dynamics over the respective metabolic network. It can be observed distinct distributions for the three
classes. For instance, the network of the “Eukaryote” class provided high frequency of low entropy values, which
can be understood as the presence of more stable and/or oscillating patterns in the respective spatio-temporal
diagram. The separation of the “Eukaryote” class is also clear in Fig. 6(b), which presents the canonical analysis
for the metabolic-dataset using the same parameters and the same feature vector of the samples of Fig. 6(a). Both
figures highlight the potential of the network descriptor to identify the classes of organisms.

The results regarding the performance of LLNA in the classification set for the metabolic networks are pre-
sented in Fig. 7(a). Specifically for the metabolic-dataset we used the re-sampling strategy, as described in the
Materials and Methods section, as the number of samples per class is not uniform. The feature vector composed
by the distribution of the Shannon entropy /i provided the highest accuracy value, 87 4 13%, using rule B05/
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Figure 6. Characterization of real-world applications with LLNA. (a) Histogram of the Shannon entropy, /i,
for three samples of each category of organisms. These histograms were generated using rule B05-S13568.

(b) The corresponding canonical analysis of the metabolic-dataset highlighting the separation among the three
classes. Similarly, (c) and (d) present the histogram of each class of the social-dataset and its canonical analysis.
For this dataset the histograms were generated using the distribution of the Lempel-ziv complexity, ji , as
feature vector and rule B0167-S248. Finally, (e) and (f) present the corresponding plots for the stomata-dataset
using rule B12345/S04568. Specifically, (e) shows the average values of Shannon entropy (i) at each threshold
Oy for the different lighting conditions.

$13568. This percentage corresponds to the highest accuracy for the classification of the different domains of life.
Additional performance measurements for this dataset can be found in section S9 of supplementary material. For
instance, it is possible to observe from Table S10 that the descriptors obtained with LLNA could completely sep-
arate the “Eukaryote” class from the others. F-measure, MCC (Matthews Correlation Coeflicient) and AUC (Area
Under the Curve) using ROC analysis achieved 1.0 for this class. Finally, in Fig. 7(b) we can observe the compar-
ison between the best accuracy obtained with LLNA and the accuracies obtained with different structural net-
work measurements. In this case, LLNA provided an increase in the classification accuracy of 23 4-23% when
compared to the clustering coefficient attribute which provided the best accuracy among the network measure-
ments, 64 + 10%.

Identifying structural patterns in social networks. ~Social networks are examples of complex systems that have
been studied for many decades using different theoretical approaches. More recently they have been used to
illustrate several properties of complex networks. Online social networks offer a great variety of ways for social
interactions and, in addition, supported by the technological advances, they can store a huge amount of data.
Some of them present tools for sharing and grouping people in communities of specific topics. Different soft-
wares for constructing social networks can bias the way people connect to each other, yielding this way, specific
structures in the network. The goal of this experiment is use LLNA to identify the software tool used to create the
social network. We used networks from the SNAP database>* in order to distinguish networks from Google+
and Twitter. In this context, LLNA was used to analyze different structural properties of both types of networks,
which correspond to the classes of this application.

Figure 6(c) and (d) illustrate the differences regarding the spatio-temporal dynamics of each social network,
Google+ and Twitter (see Materials and Methods for details about the social-dataset). The distributions presented
in Fig. 6(c) illustrate that the descriptor can distinguish very well between the two classes. Notice that, the Twitter
histogram presents the Lempel-Ziv values concentrated between 0.6 and 0.9, whereas the Google+ histogram
presents the Lempel-Ziv values distributed across the histogram, with peaks in the beginning. The separation
between both classes is clear in Fig. 6(d), which presents the canonical analysis for the social-dataset.
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Figure 7. LLNA Validation: Plots (a), (c) and (e) present the classification accuracy and standard deviation
obtained for the respective validation sets of each application for the best four rules and for all the feature
vectors: the distribution of the Shannon entropy (jz), the distribution of the word length ;TW) the distribution
of the Lempel-ziv complexity (jz, ), the combination of the previous three distributions ([, i.]) and
average values of the same measurements ([{s), (ttw)» (r)]). Plots (b), (d) and (f) show tshe c%sm cation
accuracy (%) and standard deviation of the classes related to real-world applications using structural network
measurements as feature vectors: mean degree ((k)), average hierarchical degree of level 1 ({H k) ) average
hierarchical degree of level 2 ((H )), average clustering coefficient ({cc)), average path length (l) and degree
Pearson correlation (pp) in comparison with the best accuracy obtained using LLNA (yellow).

Regarding the classification performance of LLNA for this dataset, Fig. 7(c) presents the accuracies obtained
for the different feature vectors and their combinations. The best accuracy value for distinguishing the evolution
patterns of both social network tools, Google+ and Twitter, was obtained using the distribution of the Lempel-ziv
complexity (f, ), 92+ 1%, and, rule B0167/5248. However, the feature vector i, provided good accuracy as well
for the same rule When compared to the performance of the structural measurements (Fig. 7(d)), LLNA also
surpasses the accuracy obtained when using the combination of these measurements as feature vector, 88 4-2%.
Therefore, we have an increase in the classification rate of 4 + 3% for the social-dataset (see section S10 of supple-
mentary material for additional performance measurements for the social-dataset).

Classifying stomata distribution patterns. ~Stomata distribution in leaves represents the phenotypic plasticity
of plants, which is the ability to adapt their behavior to environmental conditions, such as light, temperature,
amount of nutrients, among others. We used the LLNA method in order to characterize the phenotypic plasticity
of the species Tradescantia zebrina to different light conditions regarding the distribution patterns formed by their
stomata. We used an image dataset yielded by Florindo et al.>, which consists of six images for each lighting con-
dition: sunlight (natural), 4hours (L4) and 24 hours (L24) of artificial light. For modeling the stomata into a net-
work, each stoma was segmented from the leaf image and its coordinates were assessed. For each image, a stomata
network was modeled. The network represents the relationship of the centroids distance given a threshold radius
Or. As drincreases, more connections will be established between the centroids, and, therefore, the density of the
network will be higher, producing a network dynamics that is used for image modeling. The construction of this
network is detailed in Fig. S4 of the supplementary material. This approach for modeling images into networks
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was adapted from ref. 36. The main characteristic of this method is the concatenation of the network descriptors
obtained at each value of ;. We used 16 threshold values with 6;=0.25, incremented by 0.0625 until reaching a
final threshold of §,= 1. Figure 6(e) presents the LLNA analysis of the stomata-dataset. We obtained the LLNA
descriptors for the networks generated at each threshold 6. The bar-plot shows the average values of the Shannon
entropy (fs) at each threshold ¢; for the different lighting conditions. The separation among the three classes is
also highlighted in the canonical analysis shown in Fig. 6(f). We can see that the class “L24” is linearly separable
from the others.

Figure 7(e) and (f) present the classification results for the stomata-dataset. The highest accuracy obtained
for this dataset was 90 &= 6% using rule B12345/504568 and [{1ts), {ftw)> (1er)] as feature vector, as reported in
Fig. 7(e). The standard deviation for this dataset is higher due to the small number of instances for each class,
and, there is also a higher heterogeneity regarding the behavior of the rules for the different feature vectors (see
section S11 of supplementary material for the additional performance measurements for the stomata-dataset).
When compared with structural measurements, LLNA provided an improvement in classification rate of 7 £ 9%.
The best classification rate obtained using structural measurements was 83 +4%.

Discussion

In this paper, we presented the Life-Like Network Automata (LLNA) method for pattern recognition in networks.
LLNA uses a network as a tessellation of a CA and the feature extraction is based on the spatio-temporal patterns
obtained through its evolution. We evaluated the performance of LLNA in two type of datasets: synthetic and
real-world networks and we also performed the comparison of LLNA with structural network measurements
obtained directly from the network topology when used as feature vectors.

The importance of the characterization of theoretical network models is related to the known properties of
these models which may be useful in the comprehension of their spatio-temporal patterns. The first experiment
considering four network models as classes (random, small-world, scale-free and geographical) provided a basic
classification problem to evaluate the proposed method and LLNA could distinguish them with 99.992 +0.002%
of accuracy. Additionally, we evaluated LLNA regarding its robustness to noise. We made structural changes in
the network topology by randomly adding and removing edges according to a noise rate py (see Section S6.1 of
supplementary material). The classification results obtained using this set of “noisy” networks also show a good
performance of the proposed method, which evidences its robustness.

In the second experiment, we performed the classification considering the combinations of (k) and the net-
work model as classes. Besides the heterogeneity of the dataset, which is composed by networks with different
values of (k) and N, LLNA provided a good performance achieving 90.76 = 0.07%. This experiment provided an
analysis of the influence of the connectivity of the network in the spatio-temporal pattern. As the connectivity
increases, the distinction between the patterns of network models is less accurate. We can see from the confu-
sion matrix presented Fig. S2 of supplementary material that the error rate is higher for the classes representing
networks with also higher (k). In the last experiment with synthetic networks, different scale-free models, with
linear and non-linear preferential attachments, were distinguished using LLNA being 98.3 £ 0.2% the highest
accuracy obtained. The synthetic-scalefree-dataset is composed by networks whose degree distributions are very
similar. Nevertheless, LLNA could also capture the structural differences among the distinct classes of scale-free
networks. Therefore, the preferential attachment parameter directly influences the spatio-temporal patterns.

For all experiments using synthetic networks, the analysis of the different feature vectors shows that the overall
performance of the distributions (7z), (7,,,) and, (jz, ) was higher when compared to the feature vector composed
by the average values of the same measurements. The combination of the distributions of the selected measures
(g > 7)) provided the best results when distinguishing the categories of interest in each experiment.
Moreover, when analyzed separately, all the distributions were also very discriminative in many cases.

The accuracy provided by LLNA was compared with other structural network measurements. In the case of
classifying network models, the performance of LLNA is as high as the performance obtained for a specific set
of structural network measurements. Both approaches achieved maximum performance, which makes difficult
to compare the methods. For the other two experiments (classification of (k) in combination with the network
model and the classification of scale-free models), the classification task provided a better performance analysis,
since both methods did not achieve the maximum performance. LLNA provided an improvement in accuracy of
25.5£0.3% for the former, and 2.08 & 0.25% for the latter, demonstrating to be a better discriminative method.

LLNA was evaluated in three real-world applications: identifying organisms using metabolic networks, iden-
tifying structural patterns in social networks, and, classifying stomata distribution patterns. Each application has
a different scope allowing to analyze LLNA as a general tool for pattern recognition. Regarding the analysis of
the metabolic networks, in the original study", the authors showed that even organisms of distinct evolutionary
classes present metabolic networks with similar topology. All of them have power-law degree distributions what
characterizes them as scale-free networks. In addition, in this study, we have shown that pattern recognition
algorithms can go a step further in terms of analyzing the network topology as they are able to find subtleties
that can be used to distinguish networks within the same topological group, allowing the characterization of
sub-categories of networks. The maximum accuracy obtained with LLNA was 87 & 13% in contrast to 64 4+ 10%
using the clustering coefficient as feature vector. The two-class problem of distinguishing Twitter and Google+,
and, the analysis of the stomata distribution patterns also demonstrated the feasibility of the proposed method
as a pattern recognition tool. In the former, the different tools provided by each social network may influence
the way people connect to each other resulting in structural differences between both social networks, although
some properties such as the preferential connection of nodes and presence of hubs may exist in both of them. The
maximum accuracy obtained with LLNA for this application was 92 + 1% in contrast to 88 4= 2% using the com-
bination of five structural measurements as attributes. In the latter application, the plant plasticity for different
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lighting conditions is reflected in the network of connections between the stomata centroids. In this case, the
proposed method could capture the specific characteristics of the three classes of interest. For this application, the
maximum accuracy obtained with LLNA was 904 6% in contrast to 83 +4% using the hierarchical mean degree
as feature vector. The performance of LLNA in the real-world applications was compared with the structural
measurements. It provided a significant improvement in the correct classification rate as high as 23 4= 23% for the
first, 4 £ 3% for the second and 7 = 9% for the third application. The accuracy obtained using LLNA surpasses the
accuracy obtained using traditional measurements as attributes, both individually and combined.

Besides the good performance of the proposed method, some characteristics of the method can be high-
lighted. LLNA is invariant to the size of the network. Networks with the same topology but with different sizes
preserve the descriptor. This property is demonstrated in the Section S5 of supplementary material. The four
synthetic networks (random, small-world, scale-free and geographical) were built with different number of nodes
(500, 1000, 1500 and 2000) and the signature of each network model preserves its shape independently of the size.
The method can also be extended to weighted and directed networks, which makes it suitable to a large number of
applications which are based on di-graphs and that the weight of each link is important for the characterization.
It was also demonstrated that the Life-like rule is the most influential parameter as the set of rules that provided
the best classification rates are different for the distinct applications. In this study, we pointed out that among
the 262144 rules of Life-like CA, there is a set of them that provides optimal solutions for a specific problem.
Therefore, this set must be validated for each application. This issue can be explored in future studies by using
optimization algorithms in order to reduce the time taken for the training phase. The proposed method outper-
formed structural measurements for the characterization in both synthetic and real-world networks, demon-
strating to be a good choice for pattern recognition in networks. Therefore, potentially any pattern recognition
application whose data is represented as a network can consider LLNA.

Materials and Methods

Generation of network models. We used the igraph library, a network analysis package, to support the
implementation of some of the network models we used in this paper®. Random, small-world and scale-free
networks of the Barabasi & Albert model were generated using this library. The Dorogovtsev & Mendes scale-free
networks and the geographical networks were implemented according to the proposed models***2. Specifically,
the geographical networks consist of nodes with specific spatial positions in contrast to networks defined in
abstract spaces. Therefore, the connection between two nodes is given by the distance or geographical boundaries
between them. We generated geographical networks by first defining the distribution of N nodes randomly in a
bi-dimensional space. Then, the connections between the links were defined according to the following probabil-
ity: P(i — j) = e i, where s; is the distance between nodes i and j and ) is the scale factor. The datasets of syn-
thetic networks can be downloaded at: http://scg.ifsc.usp.br/LLNA.

Datasets. In this section, we present the datasets used in order to evaluate our methodology, as well as the
design of each experiment. We conducted experiments with two distinct types of networks. The first one consists
of synthetic networks and the second one is composed by real-world networks. The first category of networks is
organized into three datasets: synthetic-dataset, rule-selection-dataset and synthetic-scalefree-dataset. The second
category is composed by the metabolic-dataset and the rule-selection-metabolic-dataset. Detailed information
about these datasets is described next.

o Synthetic-dataset - composed of synthetic networks generated according to the following models: 1) random,
with connection probability between two nodes of p = (k)/n; 2) small-world, with rewiring probability of
p=0.1; 3) scale-free, with both linear and non-linear preferential attachments, and, 4) geographical. For each
model, there are networks with the following values of (k): 4, 6, 8, 10, 12, 14, 16; and, the following values of
N: 500, 1000, 1500 and 2000. We generated 100 networks for each of the 28 combinations of (k) — N. There-
fore, the total number of networks in this dataset is 11200, and there are 2800 of each model;

o Rule-selection-dataset - composed of synthetic networks of the same four theoretical models used in
synthetic-dataset and with the same generation parameters. However, in contrast, this dataset contains only
networks with N =500 nodes and 50 networks for each of the 7 combinations of (k) — N. The instances of this
dataset are totally different from the synthetic-dataset;

o Synthetic-scalefree-dataset - composed of scale-free networks generated according to the models proposed
by Barabdsi & Albert™ and Dorogovtsev & Mendes®. For the first model, we generated networks with both
linear and non-linear preferential attachments («): 0.5, 1.0, 1.5 and 2.0. Therefore, we have five classes in this
dataset. The dataset contains 100 networks for each of these five classes with N=1000 nodes and (k) =8;

o Metabolic-dataset - The dataset of metabolic networks contains 43 samples which provide a description of
the metabolic pathways of three types of organisms: 6 archaea, 32 bacteria and 5 eukaryotes'>®!. This dataset
was divided into two sets: rule-selection and classification. The first contains 2 randomly selected samples of
each class, which were used to find the set of the best Life-like rules regarding their accuracy in distinguishing
among the evolutionary classes. The second set consists of the remaining networks;

o Social-dataset This dataset contains networks from the SNAP (Stanford Network Analysis Project) platform®.
We randomly selected 65 network samples for both Google+ and Twitter, which were divided into 15 samples
of each one for the selection of the best Life-like rules and 50 for validation. All the social networks, also called
“ego-networks” represents the social relationships or friends of a specific user (“ego”) that is not represented
in the network;

o Stomata-dataset This dataset comprises digital binary images which represent the stomata distribution pat-
terns of Tradescantia zebrina under three different illumination conditions: (i) sunlight (Natural), in which
the plant is exposed to the sun light, (ii) 4hours (L4) of artificial light, in which the plant is exposed to
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artificial light during 4 hours, and, (iii) 24 hours (L24) of artificial light, in which the plant is also exposed to
artificial light, however during a larger period of 24 hours. The plants were expose to this conditions during 69
days. There are a total of 6 images for each condition, from which 2 were used for the rule-selection procedure
and the other 4 for validation.

Spatio temporal measurements. The Shannon entropy (ug)® for node i is given by p = —(p log,p’+

p log, p, "), in which p is the probability of zeros and p is the probability of ones in the time series. Word length
(Mw) distribution considers the length of each word in the spatio-temporal series. A “word”, in this context, is a
sequence of ones limited by zeros, e.g., ¢=(0011101100), on which there is one word of length three and one
word of length two. The Lempel-ziv complexity (4;)% is based on the number of different blocks of a sequence.
The leftmost bit of a binary sequence q is the first block from which all other sub-sequences are constructed. Each
new block is added to the dictionary. For example, the following binary sequence 4= (01010101010101010101)
has length /=20 and is decomposed in seven g =7 blocks as follows: “0|1|01|010|10|101|0101”. The Lempel-Ziv
complexity is given by yi, = 5~ log = 1.049.

Feature vectors. We selected a set of measurements in order to compose the feature vectors based on their
discriminatory characteristics: fi;, ff,,, and 7, . The first feature vector fi; consist of the distribution of the Shannon
entropy. The values of this measurement belong to the interval [0, 1]. In order to obtain i, we calculated the
Shannon entropy for each node, then, from these values we obtained a histogram by dividing the interval [0,1]
into 20 bins. Therefore, ji; is composed by these 20 attributes, which represent the respective frequencies. The
second feature vector j7, is composed by the word length distribution. In this context, a word is a sequence of
ones limited by zeros, for instance, in the following sequence g = (0011101100), we have one word of length three
and one word of length two. The maximum word length is bound by the number of evolution steps, but due to the
fact that the frequency of words with a length larger than 40 is very low, we considered only words smaller than
this value. The histogram bin has length 2, so we also have 20 features for 7. The last feature vector /i, contains
the Lempel-Ziv complexity distribution divided into 20 bins, this vector was normalized by the maximum value
achieved among the group of samples. We also tested the average values for the same measures as attributes: aver-
age Shannon entropy, average word length and average Lempel-Ziv complexity: (/is), {ftw)> {1i1)-

Training and validation strategies. We used n-fold cross-validation strategy in all the experiments. This
validation is a statistical method which consists of a generalized way to evaluate the prediction capacity of a
model. Specifically in our case, we used cross-validation to evaluate LLNA regarding the accuracy in the classifi-
cation performance for the pattern recognition applications. All datasets used were divided into a rule-selection
dataset and a classification dataset. The cross-validation procedure was applied 100 times in both of them.
Therefore, the standard deviation obtained is related to the variation in accuracy for each run of this procedure,
since the assignment of the dataset instances to each fold is given randomly. k-NN (k - Nearest Neighbors) and
SVM (Support Vector Machines) classifiers were used in the experiments. K-NN classifier is a simple voting algo-
rithm in which the classes of the k nearest neighbors of a given instance are considered®”. Whereas, SVM uses
hyperplanes as decision boundaries of a classifier. The optimal hyperplane provides the maximal separation of the
boundaries between two classes and is obtained by the solution of a quadratic optimization problem®. When the
datasets did not present a uniform distribution of the classes, we used a random sub-sample strategy as the case
for the metabolic-dataset. Specifically, we performed the classification step under a resampling k-fold strategy,
with k= 3-folds using 100 random configurations for every group.
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