

INTERNATIONAL SOCIETY OF MAGNETIC RESONANCE Xth MEETING

SCIENTIFIC PROGRAM and ABSTRACTS

MORZINE - FRANCE - JULY 16-21, 1989

PROTON NUCLEAR MAGNETIC RELAXATION STUDY OF HYDRATED Na-β"-ALUMINA

P. Donoso, Y. G. Gobato, H. Panepucci, D.P.F. de Souza*
Instituto de Física e Química de São Carlos
Universidade de São Paulo
C.P. 369 - 13.560 - São Carlos, SP, Brasil
Tel.(162) 71-9274; Telex 162374 FQSC-BR; Fax (162) 72-2218
* DEMA, Universidade Federal de São Carlos, 13560 - São Carlos, SP, Brazil

Beta aluminas are well known as prominent Na⁺ superionic conductors ($\sigma \sim 0.8~(\Omega cm)^{-1}$ at 550 K)(1). Is also known that the presence of absorbed water affect this conductivity(2). Recently Kuhns et al a ¹H NMR study of the orientation of water in hydrated Na- β "-alumina(3). According them, when exposed to moisture, water molecules are absorbed and can diffuse, by translation, into the conduction plane, making a "chimpaze swing" motion. We have measured the temperature dependence of the proton magnetic relaxation time, T_1 and T_2 , in pure and iron doped samples of hydrated Na- β "-alumina, in order to study the water motion and to examine the influence of iron on the proton motion.

Na- β "-alumina was prepared by calcining a mixture of Na₂CO₃, Li₂CO₃ and alumina by heating at 1260 °C for some hours. The composition of the product was 8.85% Na₂O + 0.75% Li₂O + 90.4% Al₂O₃(4). Three polycristalline powder samples, with particle diameter size of 150 - 250 μ m, were selected for NMR measurements: (1) a pure sample, (2) a iron doped sample (500 ppm nominal), and (3) a almost pure sample. A RPE analysis was made in order to determine the presence of paramagnetic ions. Water was introduced into the sample by exposing them to atmosphere of saturated salt solutions. The hydration was controlled to 19% H₂O of powder's dry weight.

The proton T_1 measurements were performed at 24.4 MHz in the temperature range 255 - 430 K. A T_1 maximum was observed around 385 K in sample (1). When temperature decrease, T_1 decrease and seems to reach a minimum for 288 K. This T_1 maximum appears to move to lower temperature with lower hydration levels. Activation energies for proton motion may be obtained from the slope of the $\ln(T_1)^{-1}$ vs T^{-1} curve, giving $E^{(1)}=0.21$ eV. This result is in agreement with the value estimated from the temperature dependence of both the ${}^1{\rm H}$ linewidth in hydrated Na- β "-alumina (0.18 \pm 0.03 eV)(3) and the ${}^1{\rm H}$ T_1 in ${}^1{\rm H}_3$ 0 $\pm \beta$ "-alumina (0.20 eV)(5).

The results of samples (2) and (3) show that magnetic impurities, (mainly Fe and Mn) affect considerably the temperature dependence of the proton relaxation times. The data also display a maximum around 330 K, but the variation of T_1 with the temperature was very weakly. Now, the activation energy for the proton motion were $E^{(2)} \sim E(3) \sim 0.1$ eV. Motional narrowing was apparent at 267 K for the pure sample leading to an activation energy of 0.25 eV but a constant T_2 was observed in the doped sample in the temperature range 260 - 360 K, decreasing above 370 K.

The NMR relaxation rate behaviours are not fully understood yet and further investigation are under course. (This work has been partially supported by CNPq and FINEP (Brazil)).

J.B.Bates et al, in Fast Ion Transport in Solids, eds. J.B.Bates, G.C. Farrigton, North Holland (1981); 2) N.J.Dudney et al, Phys. Rev. <u>B24</u>, 6831 (1981); 3) P.L.Kuhns, L.J.Richter, M.S.Conradi: J. Chem. Phys. <u>76(1)</u>, 6, (1982); 4) D.M.F. de Souza, Tese de Doutora, Univ. de São Paulo (1987); 5) Y. Furukawa et al, Solid St. Ionics, 3/4, 85 (1981).

Campo	Dado
****	Documento 1 de 1
No. Registro	000795397
Tipo de material	TRABALHO DE EVENTO-RESUMO - INTERNACIONAL
Entrada Principal	Donoso, José Pedro 1953-
Título	Proton nuclear magnetic relaxation study of hydrated 'NA'-'BETA' - alumina.
Imprenta	Morzine : Ismar, 1989.
Descrição	p.p1-16.
Autor Secundário	Gobato, Y G (*)
Autor Secundário	Panepucci, Horácio Carlos
Autor Secundário	Souza, D P F (*)
Autor Secundário	Meeting of the International Society of Magnetic Resonance (10. 1989 Morzine)
Fonte	Scientific Program and Abstracts, Morzine: Ismar, 1989
Unidade USP	IFQSC-F INST DE FÍSICA DE SÃO CARLOS
Unidade USP	IFQSC-F INST DE FÍSICA DE SÃO CARLOS
Localização	IFSC PROD001188