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Abstract: Coffee is a global commodity, with Brazil being a major producer, particularly in the Minas
Gerais state. This study applied machine learning to predict the Arabica coffee yield in the region,
analyzing two groups of cultivars (G1 and G2) using data from 1993 to 2020. The Factor Analysis of
Mixed Data (FAMD) was employed to explore the relationships between climatic factors, management
practices, and the coffee yield. Four machine learning models, such as Multiple Linear Regression
(MLR), Random Forest (RF), XGBoost (XGB), and Support Vector Machines (SVM) were calibrated and
evaluated for yield prediction. The FAMD revealed complex interactions among variables, requiring
four principal components to explain approximately 64.6% of the total variance. Management
practices, such as the planting density and pruning, had a stronger influence on G1 cultivars, while
G2 cultivars were more sensitive to climatic conditions, particularly the air temperature. Among the
machine learning models, RF and XGB performed best in the yield estimation, whereas MLR and
SVM were less effective, particularly for values above 60 bags ha=! (1 bag = 60 kg). These findings
underscore the variability in the yield across cultivars and demonstrate the potential of machine
learning to guide tailored management strategies for different coffee cultivars.

Keywords: Coffea arabica; exploratory analysis; productivity estimation; agricultural management;
climatic conditions; crop modeling

1. Introduction

Coffee stands as one of the world’s most important commodities, holding significant
economic and cultural value [1]. Its influence transcends daily consumption, serving as a
livelihood for millions of families, particularly in developing nations like Brazil, renowned
as the foremost producer and exporter worldwide [1,2].

Statistical projections for the 2023 /24 harvest pinpoint Brazil as the chief contributor,
responsible for approximately 31.4% of the global coffee production. This is closely followed
by Vietnam (18.0%) and Colombia (6.6%), encompassing both the Coffea arabica and Coffea
canephora species [3]. Notably, within Brazil, the Minas Gerais state takes the lead as a
primary coffee producer, representing a substantial share of the country’s total production,
contributing 43.1% in the 2022 /23 season [3].

The coffee yield is intricately linked to a complex combination of environmental fac-
tors like temperature, precipitation, and solar radiation, alongside various management
techniques such as irrigation, pruning, planting density, fertilization, and pest and disease
control [4-8]. Particularly, meteorological factors like temperature and precipitation signifi-
cantly impact all developmental stages of coffee, be it vegetative or reproductive [4,9-11].

Accurate estimation of the coffee yield holds paramount importance for various
stakeholders including farmers, researchers, and policymakers, facilitating planning and
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decision making within coffee cultivation [12]. This necessitates the utilization of diverse
simulation models to anticipate and forecast the coffee yield across different temporal
and spatial scales, including mechanistic or biophysical models [13-16], physiological—-
mathematical models [17-20], statistical models [11,12,21-25], as well as those incorporating
remote-sensing data [26-29].

While biophysical models offer a comprehensive analysis about physical and biological
factors shaping crop growth and yield, their intricate nature and requisite parameterization
often pose challenges, especially in data-limited environments [18,20]. With technological
advancements, more sophisticated methods for estimating the yield are emerging, such
as machine learning (ML) techniques, serving as pivotal tools for enhancing the coffee
production chain’s development, implementation, and management [26,30-32].

These models are adept at processing large datasets, identifying complex patterns, cap-
turing non-linear relationships, and dynamically adapting to new information [23,26,30,32-35].
Moreover, recent studies underscore the growing relevance of integrating ML in addressing
challenges in the coffee yield estimation [12,21,26,28,36], quality assessment [32,37,38], and
disease diagnosis [39-41]. By integrating meteorological, agronomic, and remote-sensing
data, ML enhances the precision and scalability in yield forecasting.

Thus, this study introduces the concept of “Smart Coffee”, a metaphor for applying
intelligent technologies to optimize the coffee yield prediction and management within
the broader framework of smart agriculture [35]. By applying four ML techniques, such
as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost (XGB), and Support
Vector Machines (SVM), this research aims to estimate the yield of Arabica coffee cultivars
across three key locations in Minas Gerais. Unlike conventional approaches, this study
seeks to integrate meteorological and management variables, addressing key gaps in the
current methodologies and contributing to the advancement of precision agriculture for
coffee production.

2. Materials and Methods
2.1. Study Area and Arabica Coffee Data

This study analyzed coffee yield data collected from 1993 to 2020 and provided by
partner companies involved in the project. The data encompass plantings established
between 1970 and 2016 for nine cultivars: Acaia (ACA), Bourbon (BRB), Catuai (CTI),
Catucai (CTC), Icatu (ICT), Mundo Novo (MNV), Rubi (RUB), Topazio (TPZ), and the gene
bank (BNL). These records represent three diverse locations within Minas Gerais, Brazil,
the country’s leading coffee-producing state (Table 1).

Table 1. Coffee-producing locations and their geographical and climatic characteristics.

Latitude Longitude Altitude Mean 1 Mean {\c.cun.lulalt ed
Location State Temperature Precipitation
(Degree) (Degree) (m) °Q) (mm)
Alfenas MG —21.54 —45.93 886.3 21.1 1535.0
Alfenas MG —21.30 —45.93 793.0 21.2 1442.3
Conceicao do Rio MG —21.90 —4521 929.0 205 1511.7

Verde

! Mean meteorological data considering the period from January 1991 to December 2020.

According to the Koppen climate classification system, the local climate was catego-
rized as Cwb, denoting a humid subtropical climate with temperate summers [42]. This
classification indicates favorable climatic conditions conducive for the growth of Arabica
coffee, characterized by temperatures ranging between 20.5 °C and 21.2 °C, annual rainfall
exceeding 1400 mm, and elevations surpassing 700 m above sea level [43]. The soil type of
the studied locations ranges from Latossolo Vermelho distrdfico (Oxisols) to Cambissolo Héplico
Tb distrdfico (Inceptisols) [44].
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Variables concerning coffee trees were considered, including the mean yield (Ymean,
60 kg bags ha~!), mean yield under irrigation (Yirr, 60 kg bags ha~!) and rainfed conditions
(Yrain, 60 kg bags ha~!), plant population (Pop, plants ha~'), mean age (Age, years), and
area per plant (Apl, m? plants), which is calculated by multiplying the spacing between
rows and between plants. The yield data were stratified into years of low and high yields,
mirroring the biennial nature common in coffee crops [45]. Factors such as irrigation usage
(irrigated or rainfed) and pruning practices (yes or no) were also taken into consideration
in the analytical models.

Given the extensive dataset comprising approximately 3079 yield observations and the
variability stemming from management practices influencing coffee cultivation, a cluster
analysis was conducted to explore the interplay between different Arabica coffee cultivars
based on these management variables. Subsequently, two distinct cultivar groups were
identified and utilized for the calibration and evaluation of the yield estimation models.
The mean values for each variable within the respective cultivar groups are presented in
Table 2. Group 1 (G1) exhibited higher yield levels and plant densities, while Group 2 (G2)
demonstrated wider spacing (>Apl) between plants and older planting ages.

Table 2. Mean yield (Ymean, 60 kg bags ha™1), irrigated yield (Yirr, 60 kg bags ha—1) and rainfed
yield (Yrain, 60 kg bags ha™!), plant population (Pop plants ha~!), mean age (Age, years), and area
per plant (Apl, m? pl) for the two Arabica coffee cultivar-formed groups.

Ymean Yirr Yrain Pop Age Apl
Group Cultivars
60 kg Bags ha—1 Plants ha—1 Years m? pl
ACA, BRB, BNL, CTC,
Gl RUB and TPZ 444 50.5 38.3 4642.6 10.3 2.2
G2 CTIL, ICT and MNV 40.1 41.8 384 3550.2 16.1 3.1

2.2. Agrometeorological Variables

Daily meteorological data were used, including the minimum (Tmin, °C), mean
(Tmean, °C), and maximum (Tmax, °C) air temperature, precipitation (Prec, mm), wind
speed at 2 m (U2, m s_l), relative humidity (RH, %), and global solar radiation (Qg, MJ
m~2 day~!), which were subsequently transformed to a 10-day scale, provided by partner
companies to the project. Missing data were filled in using the databases from the Brazilian
National Institute of Meteorology (INMET), the National Water and Sanitation Agency
(ANA), and the BR-DWGD data (Brazilian Daily Weather Gridded Data) described by
Xavier et al. [46].

The use of gridded data for filling gaps is well-supported by several studies demon-
strating their reliability [47-51]. Specifically, the BR-DWGD dataset has shown high ac-
curacy for meteorological variables across Brazil, performing comparably to observed
weather data. It has proven effective for gap-filling, crop simulation models, and climate
change projections [47-51].

Variables from the water balance were also considered, such as an accumulated water
deficit (WDac, mm), accumulated water surplus (SURac, mm), relative evapotranspiration
(rET = ETR/ETP, dimensionless), and the number of days with storage of less than 50%
(NDSt050), considering the phenological phase of the coffee plant between the beginning
of flowering and physiological maturation. Potential evapotranspiration (ETP, mm) was
estimated using the method proposed by Thornthwaite [52], being a suitable method
for estimating evapotranspiration in tropical regions, and the other agrometeorological
variables were calculated through the water balance, considering a water holding capacity
of 100 mm [53,54].

The beginning of flowering was calculated using the model proposed by Zacharias
et al. [55], which was later corrected using observed data on flowering dates. Thus, the
beginning of flowering corresponded to the first 10-day period in which there was an
accumulation of 1740 degree days (Tb = 10 °C) after a rainfall exceeding 7 mm, counted from
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the first 10-day period of April each year. The physiological maturity was determined after
an accumulation of 3000 degree days (Tb = 10 °C) following the beginning of flowering [19].

2.3. Exploratory Analysis of Arabica Coffee Yield

To understand how the Arabica coffee yield relates to agrometeorological and man-
agement variables, a Factorial Analysis of Mixed Data (FAMD) was conducted. This allows
for a combined analysis of data containing quantitative variables (yield, plant age, agrome-
teorological variables, etc.) and qualitative variables (use of irrigation, pruning, bienniality,
etc.) [56]. The analysis was carried out using the “FactoMineR” and “factoextra” packages
in R language [57]. FAMD is a technique that combines elements of Principal Component
Analysis (PCA) and Multiple Correspondence Analysis (MCA), effectively handling both
quantitative and qualitative variables by normalizing them during the analysis to ensure
both have an equal influence on the outcome [56].

To facilitate the interpretation of the results, a biplot graph was generated, which
allows a clear visualization of the most significant principal components. This graph is
useful for understanding the similarity among individuals based on a mixed set of variables
and for exploring the associations between all variables involved in the study.

2.4. Agricultural Modeling of Arabica Coffee Yield

Based on the two cultivars groups, four different machine learning techniques were
applied, including Multiple Linear Regression (MLR), Random Forest (RF), eXtreme Gradi-
ent Boosting or XGBoost (XGB), and a Support Vector Machine (SVM)), for estimating the
coffee yield based on agrometeorological conditions, crop characteristics such as age and
bienniality, and management practices such as irrigation, spacing, and pruning.

Multiple Linear Regression (MLR, Equation (1)) is characterized by a linear relationship
between a dependent variable (Y) and multiple independent variables (X, Xy, ..., Xn) [58].

Y =Bg+B1 X1 +BXo+ -+ PpXnt+ € (1)

where  represents the coefficients and € is the error term.

This technique is often applied when the predictors have a straightforward, additive
influence on the response variable. However, it is sensitive to multicollinearity, which can
distort the interpretation of coefficients, and assumes independence between predictors,
limiting its use in datasets with highly correlated variables [58].

Random Forest (RF) is an ensemble learning method that constructs multiple decision
trees during training and aggregates their predictions for improved accuracy [59]. Each
tree is trained on a bootstrapped sample of the data, and at each node, a random subset of
predictors is chosen to split the data, which reduces overfitting and increases the model
diversity [59]. RF is robust to outliers, multicollinearity, and irrelevant variables, making
it particularly suitable for complex datasets. On the other hand, the method is compu-
tationally expensive and can lack interpretability due to the large number of trees in the
ensemble.

Instead, eXtreme Gradient Boosting (XGB) is a powerful boosting algorithm that itera-
tively combines weak learners, typically decision trees, to minimize prediction errors [60].
Unlike traditional boosting, XGB incorporates regularization techniques to avoid overfit-
ting and uses the stochastic sampling of data and predictors at each iteration to enhance
generalization [60]. It is able to process the high-dimensional data and model complex,
nonlinear associations, but is computationally expensive and demands the cautious tuning
of hyperparameters.

Finally, a Support Vector Machine (SVM), developed by Boser et al. [61], classifies data
by identifying hyperplanes that optimally separate classes in a multidimensional feature
space. For nonlinear problems, a SVM leverages kernel functions such as a linear, polyno-
mial, and radial basis function (RBF), transforming the data into higher-dimensional spaces
where a hyperplane can effectively separate classes [61]. Although SVM is a powerful tool
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for classification, it requires the proper scaling of data and is less effective when applied to
very large datasets due to computational limitations.

For the application of machine learning techniques to the two groups of Arabica coffee
cultivars, during the testing phase (about 80% of the original data), the models” hyperpa-
rameters were calibrated using cross-validation and the Caret package (Classification and
Regression Training) available in R software, a technique that involves dividing the training
dataset into k equally sized subsets, such that one of these is used for testing and the rest
for training [62]. To address the temporal aspect of the data, the biennial variable (Bien)
was included as a predictor. This variable captures the characteristic biennial production
cycle of coffee, effectively controlling temporal variations in the yield across years [45,63].

Before modeling, outliers were identified and addressed through a visual inspection of
the data. Furthermore, predictors were normalized to ensure that variables with differing
scales contributed equally to the model’s performance. Multicollinearity among predictor
variables was also evaluated, where it was pointed out that the variables minimum air
temperature (Tmin), accumulated water surplus (SURac), and relative evapotranspiration
(rET) had a high degree of collinearity, high correlation with other predictor variables, and
were then removed from the analyses.

Both in the calibration phase and the evaluation phase, the performance of the models
was verified through the following statistical indices: mean absolute error (MAE), root mean
square error (RMSE), percent BIAS index (PBIAS%), correlation coefficient (r), coefficient of
determination (R?), index of agreement (d) [64], performance index (c) [49], and modeling
efficiency index (NSE) [65]. The performance index (c) is obtained by the product between
the coefficient (r) and (d) and interpreted as: “excellent” (c > 0.85); “very good” (c between
0.76 and 0.85); “good” (c between 0.66 and 0.75); “medium” (c between 0.61 and 0.65);
“weak” (c between 0.51 and 0.60); “very weak” (c between 0.41 and 0.50); and “poor”
(c < 0.40).

3. Results and Discussion
3.1. Exploratory Analysis Results

The Factorial Analysis of Mixed Data (FAMD) and the contribution of each variable
per principal component are presented in Figure 1 and Table 3. For this study, four
principal components were necessary to explain most of the total variance of the data.
These components presented eigenvalues equal to 4.8, 3.0, 2.4, and 2.1 and their respective
percentages of variance explanation, being 25.2%, 16.0%, 12.4%, and 11.0%. Considering
the four components, about 64.6% of the total variance of the data is explained. Moreover,
the number of necessary principal components (four) highlights the complexity of the
relationships between the studied variables.

When considering each principal component separately, the first component (PC1)
seems to capture the variation related to the water balance (WDac, SURac, rET, and ND-
5to50) and environmental conditions, suggesting that factors such as precipitation (Prec)
and relative humidity (RH) are crucial for differentiating between the analyzed groups.
Additionally, the accumulated water deficit (WDac) has the largest contribution to the first
component (PC1) with 17.08% (Table 3). This suggests that this variable is one of the main
factors differentiating the groups in their analysis along the first component.

Meanwhile, the second component (PC2) stands out for its emphasis on management
variables (Apl and Population) and temperature (Tmean and Tmin). The mean temperature
(Tmean) is the most significant variable, contributing 18.61% (Table 3). This indicates that
management practices related to the planting density and plant population are important
factors in this component, as well as the thermal conditions of the locations.
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Figure 1. Factorial Analysis of Mixed Data (FAMD) of Arabica coffee yield (YIELD, 60 kg bags
ha~1) based on agrometeorological variables and management techniques in Minas Gerais, Brazil.
Variables: Group 1 (ACA, BNL, BRB, CTC, RUB, and TPZ), Group 2 (CTI, ICT, and MNV), bienniality
(Bien-H and Bien-L), planting density (area per plant: Apl—m2 pl and plant population: Pop—plants
ha~1), mean age (Age, years), irrigation (Irrigated and Rainfed), pruning (Pruning-Y and Pruning-N),
water balance (accumulated water deficit: WDac—mm; accumulated water surplus: SURac—mm;
relative evapotranspiration: rET—dimensionless; and number of days with STO < 50%: NDSto50—
days), precipitation (Prec, mm), solar radiation (Qg, MJ m~2 10-day '), temperature (maximum
air temperature: Tmax—°C; mean air temperature: Tmean—°C; and minimum air temperature:
Tmin—°C), relative humidity (RH, %), and wind speed at 2m (U2, m s7h).
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Table 3. Contribution of each variable by principal component in the Factorial Analysis of Mixed
Data (FAMD).

Contribution of Variables by Principal Component (%)

Variables Acronym (Unit) PC1 PC2 PC3 PC4
25.2% 16.0% 12.4% 11.0%
Group Glor G2 0.00 5.14 11.57 2.06
Yield Yield (bags ha~!) 0.03 0.75 9.78 27.29
Bienniality Bien (Hor L) 0.04 0.44 6.20 25.29
Area per plant Apl (m? plants) 0.01 15.13 13.55 2.25
Population Pop (plants ha™1) 0.09 15.17 13.88 2.30
Age Age (years) 0.89 3.94 12.39 241
Irrigation Irrigated or Rainfed 0.30 7.07 0.90 1.37
Pruning Pruning (Y or N) 0.07 0.87 8.05 19.65
Accumulated water deficit WDac (mm) 17.08 0.16 0.75 0.63
Accumulated water surplus SURac (mm) 10.05 0.49 0.23 212
Relative evapotranspiration rET (--) 16.11 0.82 1.32 1.07
Number of days with Storage <50%  NDSto50 (days) 14.24 0.71 1.52 0.71
Precipitation Prec (mm) 11.10 0.51 0.16 1.67
Maximum temperature Tmax (°C) 0.83 3.74 1.44 0.26
Mean temperature Tmean (°C) 0.84 18.61 7.66 4.06
Minimum temperature Tmin (°C) 0.25 15.70 6.61 4.52
Global solar radiation Qg MJm~210-day~!) 6.73 9.46 3.67 2.24
Relative air humidity RH (%) 14.11 0.95 0.15 0.06
Wind speed at 2m U2 (ms™ 1) 722 0.33 0.18 0.05

The third component (PC3) is notable for its diversity of influential variables, including
those related to the group and management, such as the planting density (Apl and Pop)
and the age of the plants, as well as the yield, which contributes 9.78% (Table 3). This
component suggests that the yield is affected by a combination of management factors and
genetic factors, given the presence of 11.57% from the Groups (Group 1 and Group 2).

The fourth component (PC4), in turn, is dominated by the Yield, contributing 27.29%,
followed by bienniality (25.29%) and management practices such as pruning, which con-
tributes 19.65% (Table 3). This component indicates that the yield is a variable strongly
affected by specific management practices and intrinsic factors of the crop, such as the
bienniality [45,63,66].

When considering these four components together, a picture of significant complexity
emerges. The first two components seem to focus more on climatic and management
variables, while components 3 and 4 reveal the importance of the yield and specific manage-
ment practices. Meanwhile, variables such as irrigation, the maximum temperature, global
solar radiation, and wind speed had a low percentage of contribution in the four compo-
nents, suggesting that these variables may have complex and interactive effects that are not
easily captured by a single metric or component (Table 3). It should be emphasized that
deficit irrigation is commonly practiced in these regions, as water availability is the most
important limiting factor. Consequently, efforts are made to irrigate the largest possible
area by applying an irrigation depth below the optimal requirement for coffee plants.

3.2. Model Calibration and Importance of Predictor Variables

The calibrated hyperparameter values for each technique and each cultivar group are
presented in Table 4. The components of the Factorial Analysis of Mixed Data (FAMD) and
the differences in hyperparameters demonstrate that the two groups have different levels
of yield and are influenced differently by climatic and management variables.
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Table 4. Calibration of machine learning technique parameters used for estimating coffee yield for
the two cultivar groups in Minas Gerais, Brazil.

Techni N H ; R Group 1 Group 2
echnique erparameters ange
a Method yperp 8 Final Values ! Final Values !
b0 64.047 15.190
bl—Age —0.0439 —0.0124
b2—Pop 0.0015 —0.0015
b3—Apl 3.0162 * —1.8851
b4—Irrigation_NI —5.4107 e 14111
b5—Prn_Y —25.493 o —22.566 e
Multiple b6—BienL —24.244 *Hx —23.290 wx
Linear - b7—Tmax - —0.1608 0.8149 .
Regression b8—Tmean —0.5570 —2.2604 **
b9—Prec 0.0011 —0.0039
b10—U2 2.9692 3.1374
b11—RH 0.0380 0.6643
b12—Qg —0.6223 1.3001
b13—NDSto50 0.0180 0.0159
b14—WDac —0.0155 —0.0279
maxnodes 10-1000 500 200
Random ) ntree 500-1000 1000 1000
Forest nodesize 15-25 15 25
mtry 2-8 4 2
nrounds 100-10,000 1900 200
max_depth 2-6 4 2
eta 0.01-0.3 0.015 0.1
XGBoosting - gamma 0-1 0.05 0
colsample_bytree 0.4-1 0.6 0.6
min_child_weight 1-3 1 1
subsample 0.5-1 0.75 0.75
Linear C 0-2 0.1053 1.5789
Support . degree 1-3 3 3
Vector Polynomial scale 0.001-1 0.1 0.1
Machine C 0.25-2 0.5 0.25
o C 0.25-128 8 2
Radial sigma Maximized ~ 0.0563 0.0602

1 Significance of coefficients: <0.10% (***), <10% (**), <50% (*), and <10% (.). 2 Radial is the best method for the
SVM technique.

Considering multiple linear regression (MLR), Group 1, in addition to having a higher
yield, was shown to be more sensitive to management factors such as irrigation and
pruning, while for Group 2, some agrometeorological variables also need to be considered,
such as the temperature and precipitation. Rainfed conditions (IrrigationNI), pruning
(PrnY), and years of low yield (BienL) negatively impacted the yield in both groups, being
more pronounced in G1. Moreover, the planting density (Apl) and plant population (Pop)
have opposite impacts on the two groups. While XGBoosting (XGB) suggests that a more
complex model may be necessary for Group 1, with more rounds and greater depth, the
Random Forest (RF) and Support Vector Machine (SVM) reveal that the complexity and
fitting of the models vary between groups.

After the calibration and training of the models, it was possible to identify the impor-
tance of each predictor variable, with the top ten shown in Figure 2, for the four machine
learning techniques used in this study. For both groups, the bienniality (Bien) and pruning
(Prn) variables had high percentages compared to other predictor variables. For Group 1,
the third most important predictor variable differed among the techniques, being irrigation
for MLR, the mean age for RF, the plant population for XGB, and the mean temperature for
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SVM. For Group 2, except for XGB, which indicated the plant population as the third most
important variable, the other techniques pointed to the mean air temperature as the third
most important predictor variable. Moreover, for both groups, the RF technique showed a
greater balance in the importance percentage of the variables in comparison to the other

techniques, with values greater than 25% for the top ten variables.

(A)-MLR (B)- MLR
G1 G2
BienL - * BienL - °
PmY- = PmY- ®
IrigationNI- ———@ Tmean- ———@
Apl- —@ Apl —e
Pop- —@ Prec- —@
u2- —@ Tmax- —@
Tmean- @ RH- —@
Qg- @ Q- —@
WDac- @ Pop- —@
NDSt050- @ WDac- —@
0 25 50 75 100 0 25 50 75 100
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Age- - Tmean- —————————@
Apl- ——————® Q- —————8 8
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Figure 2. Classification of the top ten determinant variables of Arabica coffee yield for G1 (G1, ACA,
BNL, BRB, CTC, RUB, and TPZ) and G2 (CTI, ICT, and MNV), using the method of Multiple Linear
Regression (MLR, (A,B)), Random Forest (RFE, (C,D)), XGBoosting (XGB, (E,F)), and Support Vector
Machine (SVM, (G,H)). Variables include area per plant (Apl, m? pl), bienniality (high and low),
irrigation (irrigated and rainfed), pruning (yes or no), plant population (Pop, plants ha~!), mean age
(Age, years), accumulated water deficit (WDac, mm), number of days with STO < 50% (NDSto50,
days), precipitation (Prec, mm), wind speed (U2, m s~ 1), maximum air temperature (Tmax, °C), mean
air temperature (Tmean, °C), global solar radiation (Qg, M] m~2 10-day~!), and relative humidity
(RH, %).
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These results indicate that, for both groups, the “Bien” and “Prn” variables stand
out in terms of importance, suggesting that these management factors are critical for the
coffee yield, regardless of the group. Additionally, the variation in the third most important
predictor variable among the different techniques for Group 1 suggests that this group’s
sensitivity to different factors can vary depending on the model used. For Group 2, the
consistency in identifying the “mean air temperature” as an important variable (except in
the case of XGB) reinforces the idea that agrometeorological factors are especially relevant
for this group. These observations can be extremely useful for the development of more
effective and customized management strategies for each group of coffee cultivars.

The importance of agrometeorological variables in estimating coffee yields, such as the
temperature, water deficit, and precipitation, in addition to information about cultivation,
such as bienniality and management techniques, has also been mentioned in various studies
with different simulation models [11,12,18,21,24-26].

Valeriano et al. [18], in addition to climatic conditions, showed the importance of the
geographical location in estimating the coffee yield using the physiological-mathematical
model described by Santos and Camargo [17]. This study also suggested that gridded data
could be a viable alternative for yield estimation, which could be an interesting direction
for future research, in addition to the use of physiological or dynamic models.

In Figure 3, Venn diagrams are presented to graphically represent the agreement of
the top ten predictor variables for each of the four machine learning techniques. For Group
1 (Figure 3A), all techniques identified bienniality, pruning, the area per plant (Apl), the
plant population (Pop), and global solar radiation (Qg) as the main variables in estimating
the yield of these coffee cultivars, indicating once again the importance of management
for this group. On the other hand, for Group 2 (Figure 3B), in addition to bienniality and
pruning, the mean air temperature (Tmean), precipitation (Prec), global solar radiation
(Qg), and accumulated water deficit (WDac) were the main variables for all techniques.
An interesting factor is that for Group 1, except for Qg, the models indicated biennially
(Bien) and management techniques (pruning, spacing, and plant population) as the main
predictor variables, while for Group 2, environmental variables (mean temperature, rainfall,
radiation, and water deficit) were highlighted as more important, also including bienniality
and pruning, showing that, for Group 2, both management and environmental conditions
are critical factors in determining the yield.

Figure 3. Venn diagram to indicate the agreement among four machine learning techniques (Blue:
Multiple Linear Regression—MLR; Red: Support Vector Machine—SVM; Green: XGBoosting; Yellow:
Random Forest—RF) in identifying the main predictor variables of Arabica coffee yield for Group
1 ((A)—ACA, BNL, BRB, CTC, RUB, and TPZ) and Group 2 ((B)—CTI, ICT, and MNV). Variables
include area per plant (Apl, m? pl), bienniality (high and low), irrigation (irrigated and rainfed),
pruning (yes or no), plant population (Pop, plants ha~1), mean age (Age, years), accumulated water
deficit (WDac, mm), number of days with STO < 50% (NDSto50, days), precipitation (Prec, mm),
wind speed (U2, m s~ 1), maximum air temperature (Tmax, °C), mean air temperature (Tmean, °C),
global solar radiation (Qg, MJ m—2 10—day*1), and relative humidity (RH, %).
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3.3. Estimation of Arabica Coffee Yield

The performance of the models in estimating the coffee yield cultivars of Group 1 is
presented in Figure 4, for the four machine learning techniques. During the training phase,
1632 data points were used, representing about 80% of the total data, these being 2041,
while in the model-testing phase, 409 independent data points were used. In general, all

techniques underestimated the coffee yield values above 60.0 bags ha—! (1 bag = 60 kg),
resulting in negative PBIAS values.
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Figure 4. Observed and estimated Arabica coffee yield for the cultivar group G1 (ACA, BNL, BRB,
CTC, RUB, and TPZ) in the training phase (A,C,E,G) and testing phase (B,D,F,H) using the method of
Multiple Linear Regression (MLR, (A,B)), Random Forest (RF, (C,D)), XGBoosting (XGB, (E,F)), and
Support Vector Machine (SVM, (G,H)). Statistical indices include Root Mean Square Error (RMSE,
60 kg bags ha~1), Mean Absolute Error (MAE, 60 kg bags ha~1), Percent Bias (PBIAS, %), Nash-
Sutcliffe Efficiency Index (NSE), Coefficient of Determination (R?), Correlation Coefficient (r), Index
of Agreement (d), and Performance Index (c). The dashed blue line indicates the 1:1 line.

The MLR model during the training and testing phases was the least performing
model compared to the others, with an R? accuracy of 0.59 and RMSE of 15.68 60 kg bags
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ha~! in training, and R? of 0.64 and RMSE of 14.44 60 kg bags ha~! in the testing phase,
being classified as “good” according to the c index for both phases. Furthermore, the MLR
model showed stratification in the yield estimation, with the estimated values restricted to
the ranges 0-10, 20-40, and 40-60 bags ha~! (1 bag = 60 kg) (Figure 4A,B).

The RF (Figure 4C,D) and XGB (Figure 4E,F) techniques showed the best performances
in estimating the coffee yield for Group 1, with both classified as “excellent” (RF: ¢ = 0.87
and XGB: ¢ = 0.92) during the training phase and “very good” (RF: ¢ = 0.77 and XGB: ¢ =
0.76) during the testing phase. They also showed high accuracy (RF: R? = 0.84 and XGB: R?
=0.90) and low error values (RF: RMSE = 9.92 60 kg bags ha~! and XGB: RMSE = 7.94 60
kg bags ha™!), especially during the training phase, with a highlight for XGB. In the testing
phase, the RF model was slightly superior to XGB, with an RMSE of 12.55 60 kg bags ha~!
and an accuracy of 0.73, compared to XGB, which showed an R2 of 0.71 and RMSE of 12.88
60 kg bags ha~!.

Regarding the performance of the other models, the SVM technique was the second
lowest performing (Figure 4G,H), being classified as “very good” (c = 0.80) in the training
phase and “good” (c = 0.72) in the testing phase with an R? accuracy of 0.75 and 0.66, and
errors ranging between 12.28 60 kg bags ha~! and 13.92 60 kg bags ha~! during the training
and testing phases, respectively.

In Figure 5, the performances of the models in estimating the coffee yield cultivars
of Group 2 are presented for the four machine learning techniques. During the training
phase, 830 data points were used, representing about 80% of the total data, these being
1038, while in the model testing phase, 208 independent data points were used. Generally,
all techniques, as with Group 1, underestimated the yield values above 60 bags ha~! (1 bag
= 60 kg). Moreover, the yield estimation models for Group 2 were slightly inferior to those
calibrated for Group 1.

As with Group 1, for Group 2, the MLR model showed an inferior performance, also
stratifying yield estimates, both in the training phase (R? = 0.64 and RMSE = 13.33 60 kg
bags ha~!) and in the testing phase (R? = 0.61 and RMSE = 13.94 60 kg bags ha!) and
being classified according to the c index as “good” (Figure 5A,B).

The other techniques were, in the training phase, classified as “very good,” with the
accuracy varying between R? =0.77 and 0.81 for the SVM (Figure 5G) and RF (Figure 5C)
models, respectively, and errors between RMSE = 10.09 bags ha~! and 10.68 bags ha~! for
the XGB (Figure 5E) and SVM models, respectively. In the testing phase, all models were
classified as “good,” with the ¢ index being between 0.71 and 0.73, for the SVM (Figure 5H)
and XGB (Figure 5F) models, respectively, with accuracy between 0.65 (SVM) and 0.68 (RF,
Figure 5D) and errors between 12.72 bags ha~! (XGB) and 13.13 bags ha~! (SVM). Even
though the RF model (Figure 5C,D) was slightly more accurate in both phases, that is, with
less dispersion (higher R2), the XGB model was the most accurate, with the lowest errors in
both the training and testing phases (Figure 5E,F).

Regarding the coffee yield estimation using ML techniques, the MLR model demon-
strated the weakest performance compared to the others, both in the training and testing
phases for the two groups. This could be due to the model’s simplicity, which may not be ca-
pable of capturing the data’s complexity. Similarly, while SVM performed better than MLR,
it was still inferior by tree-based models, possibly due to its sensitivity to hyperparameters
and the need for fine-tuning.

In contrast, RF and XGB achieved the best performances, with XGB slightly outper-
forming RF in the training phase, but being slightly inferior in the testing phase. This
performance trend could be explained by the algorithmic concepts of RF and XGB, both of
which are tree-based methods [67]. These algorithms perform better when the dataset’s
features exhibit pronounced patterns, as in our study. Furthermore, such characteristics are
effectively captured by tree-based models, enabling RF and XGB to achieve comparable lev-
els of accuracy and corroborate the effectiveness of more sophisticated methods compared
to MLR [67].
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Figure 5. Observed and estimated Arabica coffee yield for the cultivar group G2 (CTI, ICT, and MNV)
in the training phase (A,C,E,G) and testing phase (B,D,F,H) using the method of Multiple Linear
Regression (MLR, (A,B)), Random Forest (RF, (C,D)), XGBoosting (XGB, (E,F)), and Support Vector
Machine (SVM, (G,H)). Statistical indices include Root Mean Square Error (RMSE, 60 kg bags ha—1),
Mean Absolute Error (MAE, 60 kg bags ha~1), Percent Bias (PBIAS, %), Nash—Sutcliffe Efficiency
Index (NSE), Coefficient of Determination (R?), Correlation Coefficient (r), Index of Agreement (d),
and Performance Index (c). The dashed blue line indicates the 1:1 line.

This finding is consistent with previous studies such as those by Aparecido et al. [12]
and Miranda et al. [24], which, although they obtained promising results with MLR, with
R? values over 0.80, also showed limitations, especially when the dataset is small or
the variables are complex. Furthermore, the study by Alves et al. [26], which employed
techniques such as Decision Trees (CART) and RF, also highlighted the efficacy of these more
advanced methods, especially when dealing with large datasets and multiple variables,
and revealed significant importance for variables related to coffee tree nutrients, mainly
Mg, Fe, and Ca.

The performance indices observed in this study are also comparable to those reported
in studies addressing agrometeorological models. For example, Victorino et al. [68] an-
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alyzed the influence of a water deficit and reported correlation indices (r) ranging from
0.58 to 0.96, while Rosa et al. [27] found R? values between 0.54 and 0.89 when evaluating
agrometeorological-spectral models. Similarly, Valeriano et al. [18] reported RMSE values
ranging from 7.75 bags ha~! to 7.97 bags ha~! depending on the meteorological data
sources, results that align closely with those observed here.

Notably, the ML models in this study performed comparably to those in Freitas
et al. [20], who utilized an agrometeorological model achieving an RMSE of 8.65 bags
ha~! and MAE of 6.77 bags ha~!, with an R? of 0.65. Furthermore, this study’s results
outperform more complex mechanistic models like DynACof (Dynamic Agroforestry
Coffee crop model) [15] and CAF2014 [69], which were applied to simulate the growth
and development of coffee plants under Central America’s conditions. Specifically, the
CAF2014 model showed R? ranging from 0.54 to 0.64 [69], whereas the DynACof model
exhibited a model efficiency coefficient (NSE) ranging from —1.14 to 0.14 [15].

Recent advancements, such as integrating satellite-derived data and remote sensing
indices with ML, have further improved yield forecasting [36]. Studies like Abreu Junior
et al. [28] demonstrated the use of Sentinel-2 imagery in combination with models such as
Neural Networks (NN), Linear Regression (LR), RF, and SVM. Their findings revealed that
NN and RF achieved lower RMSE% values (23% and 27%, respectively), indicating higher
accuracy compared to LR and SVM, which exhibited higher RMSE% values of 39% and
36%. Regarding R?, the NN model showed the strongest performance with an R? of 0.85,
while LR displayed the weakest performance with an R? of 0.67.

Despite their advantages, ML models also have limitations in relation to mechanistic
or biophysical models [14-16] and physiological-mathematical models [17,19,20]. The
dependency on specific datasets restricts their generalizability to regions with distinct
climatic conditions. However, many coffee-growing regions in Brazil share similar climates,
which could allow for the broader applicability of these models. Another limitation is that
ML models do not enable the direct calculation of yield gaps, which are important for
identifying areas where management practices could be optimized [20,70-72].

Another important factor was the consideration of the biennial cycle of the coffee
plant. Previous studies, such as that by Soares et al. [11] and Freitas et al. [20], also
highlighted the importance of the biennial cycle, in addition to the main flowering and
different agrometeorological variables according to phenology, in the variability of the
coffee yield. The inclusion of this variable may have contributed to the overall efficacy of the
more advanced models, such as RF and XGB, as well as to the good performance of MLR.
Furthermore, the studies by Aparecido et al. [21] and Aparecido and Rolim [22] emphasized
the importance of the air temperature and water deficit at different phenological stages of
coffee, especially during fruit formation, as a significant factor affecting the yield, as well
as the models for the G2 cultivar group.

3.4. Future Research Directions

Despite the promising results, this study faced significant challenges in the data
acquisition, particularly concerning detailed soil characteristics such as the Available Water
Capacity (AWC) and root depth, along with the amounts of irrigation applied. The scarcity
of accessible and high-quality data on these aspects imposes limitations on the prediction
models. The accurate modeling of the coffee yield relies heavily on the comprehensive
understanding of these soil and water variables, which are instrumental in reflecting the
true agronomic conditions.

Future research should focus on integrating comprehensive soil- and water-related
variables to enhance model precision and reliability. Detailed data on soil properties, in-
cluding the composition, texture, organic matter content, and water retention capacity,
combined with precise irrigation records, could significantly improve the model perfor-
mance under varying management and environmental conditions. Additionally, leveraging
geospatial data and remote-sensing technologies offers a promising avenue to address data
scarcity, enabling broader and more detailed datasets for analysis.
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Expanding the dataset to include additional agronomic factors, such as pest and dis-
ease pressures, nutrient availability, and plant physiology metrics, could further validate the
robustness of the present models. These improvements are particularly relevant given the
complexities that advanced platforms such as DSSAT [73], APSIM [74], or AquaCrop [75]
have not yet fully addressed. Although these platforms are powerful, they currently do not
account for coffee cultivation simulation, emphasizing the relevance and potential of the
models developed in this study and those proposed by Freitas et al. [20].

Moreover, adopting advanced machine learning techniques, such as Deep Neural Net-
works (DNNs), or hybrid approaches that integrate ML with process-based models could
offer significant opportunities for improving yield predictions. These strategies have the
potential to bridge the gap between empirical and mechanistic approaches, enabling more
precise and generalizable coffee yield estimations and addressing data and methodological
limitations.

4. Conclusions

The Factor Analysis of Mixed Data (FAMD) highlighted the complexity of the relation-
ships among climatic factors, management practices, and the Arabica coffee yield. Four
principal components were required to explain approximately 64.6% of the variance. Cli-
matic and management factors, such as the water balance and air temperature, dominated
the first two components, while the yield and specific management practices characterized
the third and fourth components. This analysis emphasized that the Arabica coffee yield is
shaped by both climatic and management factors.

The variables “Bien” (bienniality) and “Prn” (pruning) were identified as significant
contributors to the yield in both groups, indicating that the yield is influenced by a combi-
nation of management and genetic factors. This study also identified differences between
the coffee cultivar groups. Group 1 was more sensitive to management factors such as the
planting density and pruning, while Group 2, in addition to management, was also influ-
enced by climatic variables, mainly by the mean air temperature, indicating that different
cultivar groups may require distinct management strategies.

Regarding the performance of machine learning models, the Random Forest (RF) and
XGBoost (XGB) techniques proved to be more effective in estimating the yield for both
groups, while Multiple Linear Regression (MLR) and Support Vector Machines (SVM) had
inferior performances. Moreover, the yield estimation models for Group 2 were slightly
inferior to the models calibrated for Group 1, and for both groups of cultivars, all models
faced difficulties in estimating the yield values above 60 bags ha~! (1 bag = 60 kg).

This study underscores the value of machine learning in understanding the intricate
factors influencing the Arabica coffee yield and providing a basis for tailored management
strategies. Incorporating additional variables, such as soil properties, detailed irrigation
practices, and coffee plant conditions such as stem nutrient accumulation, hormonal levels,
and the number of fruitful branches could further enhance the model performance and
support the development of more robust predictive tools. Future research could also
investigate advanced machine learning techniques, such as Deep Neural Networks, to
improve the prediction accuracy and address the limitations identified in this study.

Author Contributions: Conceptualization, C.H.d.F. and P.C.S; data curation, C.H.d.F. and P.C.S;
methodology, C.H.d.F. and P.C.S.; formal analysis, C.H.d.F,; software, C.H.d.F,; validation, C.H.d.F,,
R.D.C,J.d.O.C. and P.C.S,; visualization, C.H.d.F,, RD.C. and P.C.S.; writing—original draft prepara-
tion, C.H.d.F.; writing—review and editing, C.H.d.F, R.D.C. and ].d.O.C,; supervision, R.D.C. and
P.C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Brazilian research agencies: the ‘Fundagao de Amparo a
Pesquisa do Estado de Sao Paulo (FAPESP)’, grant number 2020/11465-8, and the ‘Conselho Nacional
de Desenvolvimento Cientifico e Tecnolégico (CNPq)’, grant number 140143 /2019-0.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



AgriEngineering 2024, 6 4940

Acknowledgments: We extend our gratitude to ‘Ipanema Coffees’ for providing the data essential
for the realization of this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  INTERNATIONAL COFFEE ORGANIZATION Trade Statistics Tables—Total Production by All Exporting Countries. Available
online: https://ico.org/coffee-development-report-2/ (accessed on 6 July 2023).

2. Ubilava, D. El Nifio, La Nifia, and World Coffee Price Dynamics. Agric. Econ. 2012, 43, 17-26. [CrossRef]

3. CONAB—Companhia Nacional de Abastecimento Séries Historicas Das Safras—Café Arabica. Available online: https:/ /www.
conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/ category/894-cafe-arabica (accessed on 10 September 2023).

4. De Camargo, M.B.P. The Impact of Climatic Variability and Climate Change on Arabic Coffee Crop in Brazil. Bragantia 2010, 69,
239-247. [CrossRef]

5. da Mota, R.P; Ferraz-Almeida, R.; de Camargo, R.; Franco, M.H.R,; Delvaux, ]J.C.; Lana, RM.Q. Organomineral Fertilizer in
Coffee Plant (Coffea Arabica L.): Fertilizer Levels and Application Times. Coffee Sci. 2023, 18, €182098. [CrossRef]

6. DaMatta, EM.; Ramalho, ].D.C. Impacts of Drought and Temperature Stress on Coffee Physiology and Production: A Review.
Braz. ]. Plant Physiol. 2006, 18, 55-81. [CrossRef]

7. deSouza, T.L.; de Oliveira, D.P,; Santos, C.F.; Reis, T.H.P,; Cabral, ].P.C.; da Silva Resende, E.R.; Fernandes, TJ.; de Souza, T.R.;
Builes, V.R.; Guelfi, D. Nitrogen Fertilizer Technologies: Opportunities to Improve Nutrient Use Efficiency towards Sustainable
Coffee Production Systems. Agric. Ecosyst. Environ. 2023, 345, 108317. [CrossRef]

8. Verdin Filho, A.C.; Volpi, PS.; Ferrao, M.A.G; Ferrao, R.G.; Mauri, A.L.; da Fonseca, A.FA.; Tristao, F.A.; de Andrade Junior, S.
New Management Technology for Arabica Coffee: The Cyclic Pruning Program for Arabica Coffee. Coffee Sci. 2016, 4, 475-483.

9.  Bongase, E.D. Impacts of Climate Change on Global Coffee Production Industry: Review. Afr. J. Agric. Res. 2017, 12, 1607-1611.
[CrossRef]

10. Nunes, FL.; de Camargo, M.B.P,; Fazuoli, L.C.; Rolim, G.d.S.; Pezzopane, ].R.M. Modelos Agrometeorolégicos de Estimativa Da
Duragao Do Estddio Floragao-Maturacao Para Trés Cultivares de Café Arabica. Bragantia 2010, 69, 1011-1018. [CrossRef]

11.  Soares, L.d.S.; Rezende, T.T.; Beijo, L.A.; Franco Junior, K.S. Interaction between Climate, Flowering and Production of Dry Coffee
(Coffea Arabica L.) in Minas Gerais. Coffee Sci. 2021, 16, 1-10. [CrossRef]

12.  Aparecido, L.E.d.O.; Rolim, G.d.S.; Lamparelli, R A.C.; de Souza, P.S.; dos Santos, E.R.; de Souza Rolim, G.; Camargo Lamparelli,
R.A.; de Souza, PS.; dos Santos, E.R.; Rolim, G.d.S. Agrometeorological Models for Forecasting Coffee Yield. Agron. J. 2017, 109,
249-258. [CrossRef]

13. Rodriguez, D.; Cure, J.R.; Gutierrez, A.P.,; Cotes, ].M.; Cantor, F. A Coffee Agroecosystem Model: II. Dynamics of Coffee Berry
Borer. Ecol. Modell. 2013, 248, 203-214. [CrossRef]

14. van Oijen, M.; Dauzat, J.; Harmand, ].M.; Lawson, G.; Vaast, P. Coffee Agroforestry Systems in Central America: II. Development
of a Simple Process-Based Model and Preliminary Results. Agrofor. Syst. 2010, 80, 361-378. [CrossRef]

15.  Vezy, R.; le Maire, G.; Christina, M.; Georgiou, S.; Imbach, P.; Hidalgo, H.G.; Alfaro, E.J.; Blitz-Frayret, C.; Charbonnier, F,; Lehner,
P; et al. DynACof: A Process-Based Model to Study Growth, Yield and Ecosystem Services of Coffee Agroforestry Systems.
Environ. Model. Softw. 2020, 124, 104609. [CrossRef]

16. Kouadio, L.; Tixier, P.; Byrareddy, V.; Marcussen, T.; Mushtaq, S.; Rapidel, B.; Stone, R. Performance of a Process-Based Model for
Predicting Robusta Coffee Yield at the Regional Scale in Vietnam. Ecol. Model. 2021, 443, 109469. [CrossRef]

17.  Santos, M.A.; de Camargo, M.B.P. Parametrizagao de Modelo Agrometeoroldgico de Estimativa de Productividade Do Cafeeiro
Nas Condi¢oes Do Estado de Sao Paulo. Bragantia 2006, 65, 173-183. [CrossRef]

18. Valeriano, T.T.B.; Rolim, G.d.S.; Aparecido, L.E.d.O.; Moraes, ].R.d.S.C.d. Estimation of Coffee Yield from Gridded Weather Data.
Agron. ]. 2018, 110, 2462-2477. [CrossRef]

19. Verhage, FY.F; Anten, N.P.R.; Sentelhas, P.C. Carbon Dioxide Fertilization Offsets Negative Impacts of Climate Change on
Arabica Coffee Yield in Brazil. Clim. Change 2017, 144, 671-685. [CrossRef]

20. Freitas, C.H.d.; Coelho, R.D.; de Oliveira Costa, J.; Sentelhas, P.C. Equationing Arabica Coffee: Adaptation, Calibration, and
Application of an Agrometeorological Model for Yield Estimation. Agric. Syst. 2025, 223, 104181. [CrossRef]

21. de Oliveira Aparecido, L.E.; Lorengone, J.A.; Lorencone, P.A.; Torsoni, G.B.; Lima, R.F.; dade Silva CabralMoraes, ].R. Predicting
Coffee Yield Based on Agroclimatic Data and Machine Learning. Theor. Appl. Climatol. 2022, 148, 899-914. [CrossRef]

22.  Aparecido, L.E.d.O.; Rolim, G.d.S. Forecasting of the Annual Yield of Arabic Coffee Using Water Deficiency. Pesqui. Agropecudria
Bras. 2018, 53, 1299-1310. [CrossRef]

23. Kouadio, L.; Byrareddy, V.M.; Sawadogo, A.; Newlands, N.K. Probabilistic Yield Forecasting of Robusta Coffee at the Farm Scale
Using Agroclimatic and Remote Sensing Derived Indices. Agric. For. Meteorol. 2021, 306, 108449. [CrossRef]

24. Miranda, ].M.; Reinato, R.A.O.; Silva, A.B. Modelo Matematico Para Previsao Da Produtividade Do Cafeeiro. Rev. Bras. Eng.
Agricola e Ambient. 2014, 18, 353-361. [CrossRef]

25. Freitas, C.H.d. Adaptation, Calibration, and Application of Coffee Crop Simulation Models for Assessing the Impact of Climate

Change in Brazilian Conditions. Ph.D. Thesis, Universidade de Sao Paulo, Piracicaba, Brazil, 2024. [CrossRef]


https://ico.org/coffee-development-report-2/
https://doi.org/10.1111/j.1574-0862.2011.00562.x
https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/894-cafe-arabica
https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/894-cafe-arabica
https://doi.org/10.1590/S0006-87052010000100030
https://doi.org/10.25186/.v18i.2098
https://doi.org/10.1590/S1677-04202006000100006
https://doi.org/10.1016/j.agee.2022.108317
https://doi.org/10.5897/AJAR2017.12147
https://doi.org/10.1590/S0006-87052010000400029
https://doi.org/10.25186/.v16i.1786
https://doi.org/10.2134/agronj2016.03.0166
https://doi.org/10.1016/j.ecolmodel.2012.09.015
https://doi.org/10.1007/s10457-010-9291-1
https://doi.org/10.1016/j.envsoft.2019.104609
https://doi.org/10.1016/j.ecolmodel.2021.109469
https://doi.org/10.1590/S0006-87052006000100022
https://doi.org/10.2134/agronj2017.11.0649
https://doi.org/10.1007/s10584-017-2068-z
https://doi.org/10.1016/j.agsy.2024.104181
https://doi.org/10.1007/s00704-022-03983-z
https://doi.org/10.1590/s0100-204x2018001200002
https://doi.org/10.1016/j.agrformet.2021.108449
https://doi.org/10.1590/S1415-43662014000400001
https://doi.org/10.11606/T.11.2024.tde-09092024-160225

AgriEngineering 2024, 6 4941

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Alves, M.d.C.; Sanches, L.; Pozza, E.A ; Pozza, A.A.A.; da Silva, EM. The Role of Machine Learning on Arabica Coffee Crop Yield
Based on Remote Sensing and Mineral Nutrition Monitoring. Biosyst. Eng. 2022, 221, 81-104. [CrossRef]

Rosa, V.G.C.; Moreira, M.A.; Rudorff, B.ET.; Adami, M. Estimativa Da Produtividade de Café Com Base Em Um Modelo
Agrometeorologico-Espectral. Pesqui. Agropecu. Bras. 2010, 45, 1478-1488. [CrossRef]

Abreu Junior, C.A.M.d.; Martins, G.D.; Xavier, L.C.M.; Vieira, B.S.; Gallis, R.B.d.A.; Junior, E.EE; Martins, R.S.; Paes, A.P.B.;
Mendonga, R.C.P; Lima, ].V.D.N. Estimating Coffee Plant Yield Based on Multispectral Images and Machine Learning Models.
Agronomy 2022, 12, 3195. [CrossRef]

Zanella, M.A.; Nogueira Martins, R.; Moreira da Silva, F.; Carvalho, L.C.C.; de Carvalho Alves, M.; Fim Rosas, ].T. Coffee Yield
Prediction Using High-Resolution Satellite Imagery and Crop Nutritional Status in Southeast Brazil. Remote Sens. Appl. Soc.
Environ. 2024, 33, 101092. [CrossRef]

Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674.
[CrossRef] [PubMed]

Zanetti, W.A.L.; Marques, M.d.S.; do Amaral, A.M.S.; da Silva, A.B.; Barcelos, ].P.d.Q.; Goés, B.C.; Putti, EF. Analysis of the
Technological Evolution of Coffee Production in Brazil. J. Agric. Stud. 2021, 9, 352-362. [CrossRef]

Motta, I.V.C.; Vuillerme, N.; Pham, H.H.; de Figueiredo, F.A.P. Machine Learning Techniques for Coffee Classification: A
Comprehensive Review of Scientific Research. Artif. Intell. Rev. 2025, 58, 15. [CrossRef]

Bunn, C.; Laderach, P,; Ovalle Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and
Robusta Coffee. Clim. Chang. 2015, 129, 89-101. [CrossRef]

Johnston, D.B.; Pembleton, K.G.; Huth, N.I; Deo, R.C. Comparison of Machine Learning Methods Emulating Process Driven
Crop Models. Environ. Model. Softw. 2023, 162, 105634. [CrossRef]

Vidhya, K.; George, S.; Suresh, P.; Brindha, D.; Jebaseeli, T.J. Agricultural Farm Production Model for Smart Crop Yield
Recommendations Using Machine Learning Techniques. Eng. Proc. 2023, 59, 20. [CrossRef]

Sanya, R.; Nabiryo, A.L.; Tusubira, ].F.; Murindanyi, S.; Katumba, A.; Nakatumba-Nabende, J. Coffee and Cashew Nut Dataset:
A Dataset for Detection, Classification, and Yield Estimation for Machine Learning Applications. Data Br. 2024, 52, 109952.
[CrossRef] [PubMed]

Arwatchananukul, S.; Xu, D.; Charoenkwan, P.; Aung Moon, S.; Saengrayap, R. Implementing a Deep Learning Model for Defect
Classification in Thai Arabica Green Coffee Beans. Smart Agric. Technol. 2024, 9, 100680. [CrossRef]

Przybyl, K.; Gawrysiak-Witulska, M.; Bielska, P.; Rusinek, R.; Gancarz, M.; Dobrzariski, B.; Siger, A. Application of Machine
Learning to Assess the Quality of Food Products—Case Study: Coffee Bean. Appl. Sci. 2023, 13, 10786. [CrossRef]

Martinez, F.; Montiel, H.; Martinez, F. A Machine Learning Model for the Diagnosis of Coffee Diseases. Int. ]. Adv. Comput. Sci.
Appl. 2022, 13, 968-974. [CrossRef]

Parraga-Alava, J.; Cusme, K.; Loor, A.; Santander, E. RoCoLe: A Robusta Coffee Leaf Images Dataset for Evaluation of Machine
Learning Based Methods in Plant Diseases Recognition. Data Br. 2019, 25, 104414. [CrossRef] [PubMed]

de Oliveira Aparecido, L.E.; Lorencone, ].A.; Lorengone, P.A.; de Souza Rolim, G.; de Meneses, K.C.; da Silva Cabral de Moraes,
J.R.; Torsoni, G.B. Can Nonlinear Agrometeorological Models Estimate Coffee Foliation? J. Sci. Food Agric. 2022, 102, 584-596.
[CrossRef]

Alvares, C.A,; Stape, J.L.; Sentelhas, P.C.; De Moraes Gongalves, J.L.; Sparovek, G. Képpen'’s Climate Classification Map for Brazil.
Meteorol. Zeitschrift 2013, 22, 711-728. [CrossRef]

de Camargo, A.P.; de Camargo, M.B.P. Defini¢ao e Esquematizagao Das Fases Fenologicas Do Cafeeiro Arabica Nas Condigoes
Tropicais Do Brasil. Bragantia 2001, 60, 65-68. [CrossRef]

dos Santos, H.G.; Jacomine, PX.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, ].F.; Coelho, M.R.; de Almeida, ]J.A.; Aratjo de
Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificagio de Solos, 5th ed.; Embrapa Solos: Brasilia, DF, Brazil,
2018; ISBN 978-85-7035-800-4.

DaMatta, EM.; Ronchi, C.P.; Maestri, M.; Barros, R.S. Coffee: Environment and Crop Physiology. In Ecophysiology of Tropical Tree
Crops; DaMatta, F., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 181-216, ISBN 978-1-60876-392-4.

Xavier, A.C.; Scanlon, B.R; King, C.W.; Alves, A.I. New Improved Brazilian Daily Weather Gridded Data (1961-2020). Int. ].
Climatol. 2022, 42, 8390-8404. [CrossRef]

Dias, H.B.; Sentelhas, P.C. Assessing the Performance of Two Gridded Weather Data for Sugarcane Crop Simulations with a
Process-Based Model in Center-South Brazil. Int. |. Biometeorol. 2021, 65, 1881-1893. [CrossRef] [PubMed]

Monteiro, A.FM.; Martins, EB.; Torres, R.R.; de Almeida, V.H.M.; Abreu, M.C.; Mattos, E.V. Intercomparison and Uncertainty
Assessment of Methods for Estimating Evapotranspiration Using a High-Resolution Gridded Weather Dataset over Brazil. Theor.
Appl. Climatol. 2021, 146, 583-597. [CrossRef]

Duarte, Y.C.N,; Sentelhas, P.C. NASA /POWER and DailyGridded Weather Datasets-How Good They Are for Estimating Maize
Yields in Brazil? Int. ]. Biometeorol. 2020, 64, 319-329. [CrossRef] [PubMed]

Bender, E.D.; Sentelhas, P.C. Solar Radiation Models and Gridded Databases to Fill Gaps in Weather Series and to Project Climate
Change in Brazil. Adv. Meteorol. 2018, 2018, 1-15. [CrossRef]

Battisti, R.; Bender, ED.; Sentelhas, P.C. Assessment of Different Gridded Weather Data for Soybean Yield Simulations in Brazil.
Theor. Appl. Climatol. 2019, 135, 237-247. [CrossRef]

Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [CrossRef]


https://doi.org/10.1016/j.biosystemseng.2022.06.014
https://doi.org/10.1590/S0100-204X2010001200020
https://doi.org/10.3390/agronomy12123195
https://doi.org/10.1016/j.rsase.2023.101092
https://doi.org/10.3390/s18082674
https://www.ncbi.nlm.nih.gov/pubmed/30110960
https://doi.org/10.5296/jas.v9i3.18971
https://doi.org/10.1007/s10462-024-11004-w
https://doi.org/10.1007/s10584-014-1306-x
https://doi.org/10.1016/j.envsoft.2023.105634
https://doi.org/10.3390/engproc2023059020
https://doi.org/10.1016/j.dib.2023.109952
https://www.ncbi.nlm.nih.gov/pubmed/38226042
https://doi.org/10.1016/j.atech.2024.100680
https://doi.org/10.3390/app131910786
https://doi.org/10.14569/IJACSA.2022.01304110
https://doi.org/10.1016/j.dib.2019.104414
https://www.ncbi.nlm.nih.gov/pubmed/31516934
https://doi.org/10.1002/jsfa.11387
https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/10.1590/S0006-87052001000100008
https://doi.org/10.1002/joc.7731
https://doi.org/10.1007/s00484-021-02145-6
https://www.ncbi.nlm.nih.gov/pubmed/33973076
https://doi.org/10.1007/s00704-021-03747-1
https://doi.org/10.1007/s00484-019-01810-1
https://www.ncbi.nlm.nih.gov/pubmed/31646388
https://doi.org/10.1155/2018/6204382
https://doi.org/10.1007/s00704-018-2383-y
https://doi.org/10.2307/210739

AgriEngineering 2024, 6 4942

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Pereira, A.R. Symplifying the Thornthwaite-Mather Water Balance. Bragantia 2005, 64, 311-313. [CrossRef]

Thornthwaite, C.W.; Mather, J.R. (Eds.) The Water Balance, 1st ed.; Laboratory of Climatology: Centerton, AR, USA, 1955.
Zacharias, A.O.; de Camargo, M.B.P,; Fazuoli, L.C. Modelo Agrometeorolégico de Estimativa Do Inicio Da Florada Plena Do
Cafeeiro. Bragantia 2008, 67, 249-256. [CrossRef]

Pages, J. Multiple Factor Analysis by Example Using R; CRC Press: New York, NY, USA, 2014; ISBN 9781482205480.

Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1-18. [CrossRef]

Hu, Y; Yu, S; Qi, X.; Zheng, W.; Wang, Q.; Yao, H. An Overview of Multiple Linear Regression Model and Its Application. Chin. ].
Prev. Med. 2019, 53, 653—-656. [CrossRef]

Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, CA, USA, 13-17 August 2016; Association for
Computing Machinery: New York, NY, USA, 2016; Volume 13, pp. 785-794. [CrossRef]

Boser, B.E.; Guyon, LM.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27-29 July 1992; pp. 144-152. [CrossRef]

Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Int. Jt. Conf. Artif. Intell.
1995, 2, 1137-1143.

Carvalho, H.E; Galli, G.; Ventorim Ferrao, L.E.; Vieira Almeida Nonato, J.; Padilha, L.; Perez Maluf, M.; Ribeiro de Resende, M.E,;
Guerreiro Filho, O.; Fritsche-Neto, R. The Effect of Bienniality on Genomic Prediction of Yield in Arabica Coffee. Euphytica 2020,
216, 1-16. [CrossRef]

Willmott, C.J.; Robeson, S.M.; Matsuura, K. A Refined Index of Model Performance. Int. J. Climatol. 2012, 32, 2088-2094. [CrossRef]
Nash, ].E.; Sutcliffe, ].V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. . Hydrol. 1970, 10,
282-290. [CrossRef]

Pereira, S.P.; Bartholo, G.F,; Baliza, D.P.; Sobreira, FEM.; Guimaraes, R.J. Crescimento, Produtividade e Bienalidade Do Cafeeiro
Em Fungao Do Espagamento de Cultivo. Pesqui. Agropecudria Bras. 2011, 46, 152-160. [CrossRef]

Li, X,; Su, X,; Li, J.; Anwar, S.; Zhu, X.; Ma, Q.; Wang, W.; Liu, J. Coupling Image-Fusion Techniques with Machine Learning
to Enhance Dynamic Monitoring of Nitrogen Content in Winter Wheat from UAV Multi-Source. Agriculture 2024, 14, 1797.
[CrossRef]

Victorino, E.C.; Carvalho, L.G.; Ferreira, D.F. Modelagem Agrometeoroldgica Para a Previsao de Produtividade de Cafeeiros Na
Regiao Sul Do Estado de Minas Gerais. Coffee Sci. 2016, 11, 211-220.

Ovalle-Rivera, O.; Van Oijen, M.; Laderach, P.; Roupsard, O.; de Melo Virginio Filho, E.; Barrios, M.; Rapidel, B. Assessing the
Accuracy and Robustness of a Process-Based Model for Coffee Agroforestry Systems in Central America. Agrofor. Syst. 2020, 94,
2033-2051. [CrossRef]

Freitas, C.H.d.; Elli, E.F,; Sentelhas, P.C. On-Farm Assessment of Eucalypt Yield Gaps—A Case Study for the Producing Areas of
the State of Minas Gerais, Brazil. Int. |. Biometeorol. 2021, 65, 1659-1673. [CrossRef] [PubMed]

Sentelhas, P.C.; Battisti, R.; Monteiro, L.A.; Duarte, T.C.N.; Visses, F.A.V. Yield Gap: Concepts, Definitions and Examples (in
Portuguese). Int. Plant Nutr. Inst. 2016, 155, 9-12.

Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield Gap Analysis with Local to Global
Relevance-A Review. F. Crop. Res. 2013, 143, 4-17. [CrossRef]

Jones, ].W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, PW.,; Singh, U.; Gijsman, A.J; Ritchie,
J.T. The DSSAT Cropping System Model. Eur. ]. Agron. 2003, 18, 235-265. [CrossRef]

Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.;
Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014,
62, 327-350. [CrossRef]

Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop-The FAO Crop Model to Simulate Yield Response to Water: II. Main
Algorithms and Software Description. Agron. J. 2009, 101, 438—447. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1590/S0006-87052005000200019
https://doi.org/10.1590/S0006-87052008000100030
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.3760/cma.j.issn.0253-9624.2019.06.021
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/S10681-020-02641-7
https://doi.org/10.1002/joc.2419
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1590/S0100-204X2011000200006
https://doi.org/10.3390/agriculture14101797
https://doi.org/10.1007/s10457-020-00521-6
https://doi.org/10.1007/s00484-021-02120-1
https://www.ncbi.nlm.nih.gov/pubmed/33884447
https://doi.org/10.1016/j.fcr.2012.09.009
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.2134/agronj2008.0140s

	Introduction 
	Materials and Methods 
	Study Area and Arabica Coffee Data 
	Agrometeorological Variables 
	Exploratory Analysis of Arabica Coffee Yield 
	Agricultural Modeling of Arabica Coffee Yield 

	Results and Discussion 
	Exploratory Analysis Results 
	Model Calibration and Importance of Predictor Variables 
	Estimation of Arabica Coffee Yield 
	Future Research Directions 

	Conclusions 
	References

