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Abstract: This paper considers the design of a “soft sensor” (software sensor) for the on-line estimation
of the biological activities of a colony of aerobic microorganisms acting on activated sludge processes,
where the carbonaceous waste degradation and nitrification processes are taken into account. These
bioactivities are intimately related to the Dissolved Oxygen (DO) concentration. Two factors that affect
the dynamics of the dissolved oxygen are the respiration rate or the Oxygen Uptake Rate (OUR) and the
oxygen transfer function (Ka). These items are challenging topics for the application of recursive
identification due the nonlinear characteristic of the oxygen transfer function and to the time-varying
feature of the respiration rate. In this work, OUR and the oxygen transfer function are estimated through
a “soft sensor”, which is based on a modified version of the discrete extended Kalman filter (EKF).
Numerical simulations have been carried out in a pre-denitrifying activated sludge process benchmark
and the obtained results demonstrate the applicability and efficiency of the proposed methodology.

which should provide a valuable tool to supervise and control activated sludge processes.

Keywords: Biosensing, Soft sensors., Bioactivities, Activated sludge process, Dissolved oxygen
dynamics, Recursive identification, Extended Kalman filter, Nonlinear systems, Wastewater treatment

plants,
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1. Introduction

The lack of reliable sensors and the high cost of advanced instrumentation are significant
problems in the monitoring and control of wastewater treatment plants (WWTP). Despite the intensive
research in recent years to develop new sensors for biological applications, the state of available sensors
nowadays is not much different than a decade ago. In order to overcome these inconveniences,
estimation techniques issued from control and systems theory have been applied in the development of
“soft sensors” for on-line estimation of bioprocess variables. A “soft sensor” can be described as the
association between a sensor (hardware) and an estimator (software). The estimator is the part that

infers the on-line estimation of the variable from measurements made by the sensor.

Wastewater processing by means of activated sludge (AS) is the most widespread sewage
biological treatment process and its efficiency depends, besides other factors, on the capacity of a
sensitive community of microorganisms. Thus, the availability of on-line information about the
microbiological activity is of crucial importance for the monitoring and control of the process.
Bioactivities in the activated sludge process are intimately related to the dissolved oxygen (DO)
concentration. The heterotrophic bacteria degrade the carbonaceous organic matter employing oxygen
to oxidize and mineralize organic matter to produce carbon dioxide. Nitrification (ammonium removal)
is made by a special group of autotrophic bacteria. called nitrifiers. In this process, the Nitrosomonas
oxidize ammonium into nitrite (nitritification) and the Nitrobacters oxidize nitrite into nitrate
(nitratification). In comparison with heterotrophic microorganisms, nitrifiers need more oxygen for their
growth. so the nitrification process is often responsible for approximately 40 percent of the total oxygen
demand [1]. The dynamics of the nitrification process is slower than the one relative to the process
performed by the heterotrophic bacteria. In addition to the heterotrophic and nitrifying bacteria there are
other aerobic microorganisms species that also influence the oxygen consumption rate. The autotrophic
sulphur bacteria are able to oxidize hydrogen sulphide (or other reduced sulphur compounds) to
sulphuric acid. Autotrophic iron bacteria oxidize inorganic ferrous iron to the ferric form to obtain

energy [2].



Two factors that affect the dynamics of the dissolved oxygen concentration are the bacterial
respiration rate or oxygen uptake rate (OUR) and the oxygen transfer function (K ,a). OUR is a

meaningful biological indicator [3], that measures the rate at which the microorganisms utilize oxygen
in carrying out their metabolic activities. It is directly linked to two important biochemical processes
that must be controlled in a wastewater treatment plant: biomass growth and substrate consumption.
OUR also provides information about influent waste concentration and composition, and concentration
of biodegradable matter in the effluent. Further, a rapid decrease in the respiration rate implies that
some forms of toxic elements may have entered the plant, so knowledge of the respiration rate can be
used to detect the existence of such toxins and prevent microorganisms from dying. The oxygen transfer
function describes the rate at which oxygen is transferred to the wastewater by the aeration equipment,
so knowledge of the oxygen transfer function determines the air blowing flow. The oxygen uptake rate
may vary significantly in a matter of minutes, whereas oxygen transfer function variations, depending

on the state of the aeration equipment and sludge inventory, can occur over a daily time scale [4].

In this paper, OUR and the oxygen transfer function are on-line estimated using a “soft sensor”,
from measurements of the DO concentration and the air injection flow rate, in a continuous-flow
activated sludge process. The model-based “soft sensor” is designed using a modified version of the
discrete extended Kalman filter for the simultaneous estimation of the OUR and the oxygen transfer
function, assuming that the OUR can be described by a filtered random walk process, while the oxygen
transfer function can be modeled by an exponential function. Other papers have used these models to

estimate OUR and the K,a function. Nevertheless, they have only been tested in a simulator with a

single equation that describes the dissolved oxygen concentration dynamics, as in [5] or in off-line
estimations with data from small pilot plants, as in [6] or [7]. In this paper the “soft sensor” is tested by
simulation in the ASWWTP-USP benchmark [8], a dynamic model that simulates all the biological.
physical and biochemical interactions that occur in a complete activated sludge plant. In this way the

results here obtained are more useful for applications in real systems.




2. Soft sensors

A “soft sensor” is the association of a sensor (hardware), that measures on-line some process
variable. with a state estimation algorithm (software) that infers on-line some hidden meaningful
information from the data provided by the sensor. A critical element in the synthesis of a “soft sensor”
is the available knowledge of the process. An accurate process model generally expresses this
knowledge. However. it is normally impossible to obtain an exact process model, so that the estimation
algorithm must be robust enough to deal with model errors. As regards modeling errors, it is assumed
that [9]: (1) the uncertainty arises from imprecision in a set of model parameters, as determined from
the physical knowledge of the process; (2) the erroneous model of the process consists of the nominal
model with a first-order Taylor series expansion about the nominal parameters; and (3) the parameter
errors are white noises with zero mean. normal distribution with a constant covariance matrix that can
be determined. and possibly updated, from on-line data. A schematic diagram of a “soft sensor” is

shown in Fig. 1.
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Fig. 1 - Principle of a “soft sensor™ [10].

2.1 The software: extended Kalman filter

Several estimation techniques have been proposed in the literature. Among these techniques,
three of them have been recognized to have strong potential in the on-line estimation of bioprocesses,
namely. (1) estimation through elemental balances; (2) adaptive non-linear observers; and (3) artificial
neural networks (ANN). An overview of each technique as well as the most significant applications are

presented in [11].



There are four main approaches to the design of nonlinear observers [12]: (1) the extended
Kalman filter (EKF); (2) the geometric observer (GO) design; (3) the high-gain (HG) approach; and (4)
the sliding-mode (SM) approach. These estimation techniques are restricted to nonlinear plants that are
completely open-loop observable, and their extensions to partially observable (i.e. detectable) plants do
not seem straightforward, as it can be seen in [13]. A non-exhaustive evaluation of these nonlinear

observers and other methods of approach are summarized in Wang et al. [14].

The EKF is by far the most widely used state estimation technique, while the application of the
GO. HG. SM and other approaches is a recent and less widespread development [15]. The EKF is
stmply an ad hoc state estimator that only approximates the optimality of Bayes® rule by linearization.
This means that the EKF computes a state estimate at each sampling time by the use of Kalman filter
[16.17] on a linearized model of the nonlinear system. This technique is applicable if there is a
sufficiently large neighborhood in which the linearized model is a good representation of the nonlinear
system. If. in addition. the disturbances are well represented by zero mean Gaussian measurement
noise, the optimal estimate of the linearized system should be a reasonable approximation of the

optimal estimate for the nonlinear system

Although the EKF is conceptually simple, it has, in practice, three well-known drawbacks [18]:

v Linearization can produce highly unstable filter performance (no convergence, biased or divergent
estimates) if the timestep intervals are not sufficiently small.
v" The derivation of the Jacobian matrices is nontrivial in most applications and often lead to significant

implementation difficulties.
V' Sufficiently small timestep intervals usually imply high computational overhead, as the number of

calculations demanded for the generation of the Jacobian and the predictions of state estimate and

covariance are large.




Despite these problems, the EKF has been successfully used in the development of “soft sensors™
in a number of chemical engineering applications, mainly in biotechnology and polymerization. A
critical review of experimental applications of EKF in the chemical process industry can be found in

Wilson et al. [19].

A number of variants concerning the EKF formulation is possible by modifying the model or the
approximation of the probability density function, such as [20]: (1) the first order EKF; (2) the
linearized EKF or constant gain EKF; (3) the iterative EKF; (4) the second order EKF; and finally (5)
the statistical linearization or quasilinearization method. These options may be presented in the
continuous, discrete or continuous-discrete forms. Useful discussions about EKF are available in [21]

and [22].

The basic first order EKF is given by the following equation set [23]:

e(r) = v(t)— ¥(1) (1)

FP(t —D)o(1)

K(r)= F— (2)
rn+@ ()P —=1)e(1)

P(t)= [F—K(‘r}goT(z)JP(r—l)FT + R, (3)

O(1)= FO(1 —1)+ K(De(t) (4)

where e(t) is the prediction error, y(t) is the output system, V(#) is the estimated output system.
K (1) is the Kalman gain matrix. P(r) is the prediction error covariance matrix. €(t) is the estimated
parameter/state vector, F is the process state matrix gain, ¢(t) is the regressor vector. R, is the

observed noise covariance matrix and r, is the measurement noise variance.



2.2 A modified EKF

Recursive least-square estimation (RLS) is the most popular technique for estimating constant or
slowly changing parameters. To allow the estimator to maintain its sensitivity to process parameter
variations, RLS is often used with an exponential weighting factor (or forgetting factor). Sayed and
Kailath [24] showed the exact and complete relationship that exists between the field of Kalman
filtering and the field of RLS adaptive filtering, which have been highlighted in [25] and [26] for the
EKF case. This close relationship motivates us to adapt the exponential weighting factor to the EKF
prediction error covariance matrix. Hence, equations (2) and (3) are replaced by the following

expressions:

FP(t—De(t)

5
A+@" ()Pt =1)o(r) )

Ki)=

P(r)=%{F~K(r)¢’“(r)]P(r—I)FT +R,} (6)

where A is the exponential weighting factor.

3. The activated sludge plant

The ASWWTP-USP benchmark is a dynamic simulator developed for the evaluation of control
strategies in biological wastewater treatment plants. The simulator represents an activated sludge
process in a configuration with pre-denitrification for the removal of organic matter and nitrogen from
domestic effluent. The process configuration, shown in Fig. 3, is formed by a bioreactor, composed of
an anoxic zone (for the denitrification process) and two aerobic zones (for the organic matter
degradation and the nitrification process), and a secondary settler (for the clarification/thickening
process). The compartments of the bioreactor are considered to have constant volume (13 mﬁ, 18 m" and
20 m’. respectively) and 1o be ideally mixed whereas the secondary settler (20 m’) is modeled
employing a series of 10 layers (one-dimensional model, where it is assumed that no biological reaction

occurs). The influent flow Q, is 4.17 m'/h, with a proportion of biodegradable matter of 224 me




COD/I and a hydraulic retention time of 17.0 hours. The internal recycle flow rate Q,, =20, , the

external recycle flow rate @, =0.50,,, the wastage flow rate O, =0.0258 m’/h and the external

in?

carbon source flow rate O, =0 m’/h. The airflow rates are: Q. =0.044 m’h and Q, =0.033

airs airy

m’/h. for the first and second aerobic zones, respectively. In the anoxic zone, no airflow rate is

considered.
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Fig. 2 — Layout of the ASWWTP-USP benchmark [8].

For the objectives of this work, it is important to use a model that realistically simulates a true
plant. Here, each bioreactor zone is modeled by IAWQ Activated Sludge Model N°1, abbreviated
ASMI. presented by Henze et al. [27] and the secondary settler is modeled by the double exponential
settling velocity model presented by Takdcs et al. [28]. The complete plant model includes
approximately 52 coupled, complex and nonlinear differential equations, which were implemented in
Simulink/Matlab platform v.5.3 [29]. The values of the process parameters are shown in Table 1 and
Table 2. and the wastewater composition (average values) is shown in Table 3. A major explanation

concerning the simulator can be found in [8].

In this paper. it is emphasized the dissolved oxygen concentration in the zone 3 of the bioreactor.



Table 1

Parameter values of the ASMI1 for a temperature of 15°C [30]

Description

b, 0.0125 b
K 10 g COD/m’
0.2 g Os/m*

K, 0.5 g NO3-N/m’

iy 0.02083 h!

b, 0.002083 h"
Koo | 0420y/m’
Ky 1.0 g NH;-N/m*

n, 0.8 (dimensionless)
0.0033 m*/(g COD.h)

B 0.1 g biod. COD/(g COD)

| Symbol Value

Y, 0.67 g cell COD formed/(g COD
oxidized)

Y, 0.24 g cell COD formed/(g N oxidized)

f;r 0.08 (dimensionless)

Ligg 0.08 g N/(g COD) in biomass

fyp 0.06 g N/(g COD) in endogenous mass

W 0.1667 h''

k, 0.002083 g biod. COD/(g COD.h)

Yield for heterotrophic biomass

Yield for autotrophic biomass
Fraction of biomass yielding particulate products
Mass of nitrogen per mass of COD in biomass

Mass of nitrogen per mass of COD in products from
biomass in endogenous mass
Maximum specific growth rate for heterotrophic biomass

Decay rate coefficient for heterotrophic biomass
Half saturation coefficient for heterotrophic biomass
Oxygen half saturation coefficient for heterotrophic biomass

Nitrate half saturation coefficient for denitrifying
heterotrophic biomass
Maximum specific growth rate for autotrophic biomass

Decay rate coefficient for autotrophic biomass
Oxygen half saturation coefficient for autotrophic biomass

Ammonium half saturation coeficient for autotrophic
biomass
Correction factor for #,, under anoxic conditions

Ammonification rate
Maximum specific hydrolysis rate

Half saturation coefficient for hydrolysis of slowly
biodegradable substrate

", 0.8 (dimensionless) Correction factor for hydrolysis under anoxic conditions
Table 2
Operational and design parameters for the Takdcs settler [8]
Symbol | Value l Description
iy 19.75 m/h Maximum theoretical settling velocity
v, 10.42 m/h Maximum practical settling velocity
T 5.76 x 10™ I/mg Settling parameter associated with the hindered settling component of
settling velocity equation
£ 2.86 x 107 l/mg Settling parameter associated with the low concentration and slowly

settling component of the suspension
Non-settleable fraction of the influent suspended solids

o 2.28 x 107 (dimensionless)
X wun foo X5, mg/ Min. attainable suspended solids concentration in the effluent
X, 3000 mg/l Threshold suspended solids concentration
A 20m* Surface area of clarifier
h 0.1 m Height of the each layer
i 10 (dimensionless) Number of layers
n 7 (dimensionless) Number of the feedlayer
f 0.75 (dimensionless) Conversion factor of solids suspended (SS) to COD
| f 0.75 (dimensionless) Conversion factor of SS to COD




Table 3

Inflow wastewater concentration (average values) [8]

Variable Value Description

Mo 20.0 mg COD/ Active heterotrophic biomass

X 0.0 mg COD/ Active autotrophic biomass

X, 160.0 mg COD/L Slowly biodegradable substrate

X 18.28 mg N/ Particulate biodegradable organic nitrogen
X, 40.0 mg COD/A Particulate inert matter & products

8 0.0 mg (-CODM/ Dissolved oxygen concentration
S v 12.5 mg N/ Soluble ammonium (and ammonia) nitrogen
s 10.1 mg N/I Soluble biodegradable organic nitrogen
S 1.0 mg N/ Soluble nitrate (and nitrite) nitrogen

8 64.0 mg N/I Readily biodegradable substrate

S 7.0 m mol/l Total alkalinity

4. The dissolved oxygen (DO) dynamics

The dynamics of the dissolved oxygen is such that its concentration can change in a matter of
minutes. To illustrate some of the problems in the dynamics of the dissolved oxygen concentration. its
differential equation extracted from the IAWQ model is analyzed. The rigorous ASM1 equation that

describes the dissolved oxygen concentration is given by the following expression [31]:

s, _ (1=%, Y_ S, S, B
dt oy, | K+ SS Kt 8y |
457-7, s
—H, pa (7)
KNH +S KOA +SO
K.fa 0 sar _SU)+ D SO o rmrSG

As can be observed in Eq. (7) the gain of the process depends on the substrate concentrations

S.,; and S.. and on the biomass concentration X g, and X, . It also depends on time-varying

parameters such as &, . . Yy. Y. Ky Kpuo Koy and K

, the saturated oxygen concentration

S

0. (that depends on pressure, temperature. certain characteristics of the wastewater. etc). the input

oxygen concentration S, . the dilution rates (flow/volume) D, and D, and the oxygen transfer

10



function K,a . The oxygen transfer function in a real plant depends on several factors, for example,
airflow rate, type of diffusers, wastewater composition, temperature, pressure, design of aeration tark,
tank depth, spatial distribution and efficiency of aeration devices, etc. Other factors that affect the DO
concentration dynamics are: oxygen concentration in the different flows inside the plant, flow and
composition of the influent, inclusion of unaerated zones for nutrient removal, recycle of activated

sludge and mixed liquor and operating sludge age.

4.1 A suitable continuous model

In an activated sludge process, the biodegradable substrate is consumed by the microorganisms,
which utilize oxygen to carry out their bioactivities. Due to the many uncertainties in Eq. (7), here it
will be adopted the following reduced order model proposed by Bastin and Dochain [32], that describes

the DO concentration of a completely mixed tank:

ds,
dt

= *OUR + Kfa 3 (SO..\ur - SO )+ Dr'n' SO.in - DmuSO {8)

This model can be regarded as bilinear and includes, besides mass balance and addition of
oxygen caused by aeration system, the term OUR (oxygen uptake rate or respiration rate), as described

by the conceptual model structure shown in Fig. 3.

1




Substrate
concentration

(Ss ’ S.\'H jass)
Biological
activity g
OUR
K,ra ) Dissolved een (DO
Airflow rate ———n— ! Dissolved oxygen 1ssniyec oxysen (DO)
dynamics concentration

Fig. 3. Conceptual relation between biological activity and DO concentration.

The importance of OUR as an indicator of bioactivities was first suggested by Olsson and

Andrews [33] and Stenstrom and Andrews [34] and several results became available soon after,
regarding the estimation of OUR and also K,a . The respiration rate is time varying, normally diurnal

(and cannot be assumed to be slowly time varying or constant). Typically, it has a daily variation
around a nonzero mean value, but it may change abruptly, in a matter of minutes, due to disturbances.
The oxygen transfer function depends on several factors, as mentioned before, but the main time-

varying dependence is with the airflow rate [7].

4.2 The discrete model

A discrete-time model corresponding to continuous-time DO model is obtained using a zero-
order-hold sampler [35]. This technique assumes that all signals except S,(z) are constant during the

sampling interval. what is reasonable for sufficiently fast sampling.
Zero-order-hold sampling of the DO concentration dynamics has been previously presented in
earlier works [5, 7. 36, 37]. The application is completely derived here. Thus, from Eq. (8). assuming

constant volume. we have:



dS, (1)

=—OURMN) + K,a()- S, ,,, (1) —
dr '

K,a()-S,()+ D(r)- Son@)=D(1)-S,(1)

Now considering that:

M(t)=—(K,a() + D))
and

N(t)=~OUR(t)+ D(1)- Sy, (1) + K,a()- S,

then Eq. (9) can be written in the following way:

dS, (1)

=N +M(@1)-5,(t
i 1) (£)-5,(1)

(9)

(10)

(11)

Assuming that M (1) and N(t) are constant within each sampling interval and applying the

Laplace transform to Eq. (12):

o
N__ . S50

S, (5)=
o(s) ss=M) (s—M)

Given the state in the sampling time 'z, ", the state in some future time “¢” has the following

form:

N N M= M-(r=1,
So(f}—_—“g*‘"ﬂ?e s F“'i‘.S‘o(f"_.)‘ew“ x)

therefore. the state in the next sampling time “r, " is:

(14)

13




N N Mt =ty Atp =t -
Solli Y= r by p® P B ) 2 (15)

Considering At =r,,, —t, the sampling period and simplifying the notation replacing “r,”" by

“r". Eq. (15) results:

Miyar N(1) (em:)-m _])

Sot+1)=8;5()-e M) (16)
Making:

T, =E'“—)(e’*””'*’ 1) a7
Eq. (16) may be rewritten as:

Sy(t+1)=8,(0)+T, - |- OURM) + K,a() - (Sp o0 — S0 (1)) + -

D) (8., (1) = So ()} + €po (1)
where the term e,,,(r) has been added to describe measurement noise. sampling and model errors. Here
it is possible to prove, employing Taylor series, that if Ar is small then it is possible to consider
T, = Ar. Taking Ar instead of T, corresponds to a finite difference approximation of the derivative. The
advantage of using 7, as time-varying, is that the sampling period can be made larger. This gives a
more appropriate model since higher order dynamics can be neglected [38].

In this work the continuous measurements are digitized using a sampling period Ar. and Eq. (18)
with time-varying sampling period T, ., defined in Eq. (17). is used in the implementation of the “soft

sensor’.

14



5. Estimation of the DO concentration dynamics

The estimation of K,a and OUR is not easy. Different approaches have been suggested to
estimate these parameters. However, if K,a is known a priori, the OUR value can be determined quite

reliably from the DO mass balance presented in Eq. (8). On the other hand, if OUR is accurately known,
the K,a can be obtained from an input/output gas mass balance, since any input airflow variation

produces a variation in the DO concentration, that resembles a first-order dynamics [3], as can be
clearly seen in Fig. 4. For the second approach, OUR can be measured by a respirometer [39] or it can

be also inferred from na on/off DO control approach [40]. In that case, both K ,a and OUR are

simultaneously estimated.

5.1 Definition of the mathematical model

In order to complete the model of Eq. (18) to make it useful for the purposes of this paper. it is

necessary that the models of K,a and OUR be defined.

The oxygen transfer function has been approximated in different ways. as discussed in Bennett

[41]. Usually the following assumptions are made. regarding the K ,a function [42]:

. K,a can be sufficiently well described as a function of the airflow rate.

|88

The parameters of K,a change slowly in comparison with the respiration rate.

[F5]

In most cases it is assumed that K,a is null for zero airflow rates.

A variety of physical models to represent K,a with a brief summary of applications in the

wastewater treatment process is presented in Table 4.

15




Table 4
Different models for the oxygen transfer function

Model Equation References
Step K,a=[0.k,] [43], [44]
Linear A Ka=k, -u [38], [45], [46] '
Linear B Ka=k -u+k, [47], (48], [49]. [50], [51]
Arctan Ka=k, -tan” (k, -u) BB1L 7]
Square root Ka=k, - J; (Suggested in [38])
Power Ka=k -u® [52]
Exponential K,a=k, -(1—exp(—k, -u)) [51. [6]. [7], [53], [54]
Polynomial Ka=k -u+k,- J;+ ks [53]. [55], [36]
Piecewise linear Ka=(k +k,1)-u [3], [4]. [53], [57], [58]
Cubic spline K,a=f(u) [71., [53]

In table 4. « is the airflow rate and k,, k, and k, are parameters. Here an exponential K,a

model is used, therefore:

Kl'a(Quir:; (f}J_—' k] 3 (] —exp{—kl E Qur'r_; (I}JJ (]9}

Regarding OUR, some papers have considered it as being constant [45]. Other authors have
modeled OUR as a time-varying parameter (QUR(t) = R(r) ) [38]. what 1s a very crude approach that

may derive biased estimates. A more robust approach considers that OUR can be represented by a time-

series approximation. as in [4] and [46]:

OUR(r)=by, +b, -1

where the coetficients {bo.b,} are constant. Due to the time-varying nature of the respiration rate. a

“default™ description is to model it as a random walk model. which is reasonable, when no specific

information is available, thus [57. 58]:

OUR(t)=OUR(t = 1)+ ey (1)

16



where e, (1) is white noise with zero mean. Random walk models have been widely used in several

areas of economy, statistics, physics, chemistry and biology, including modeling of migration of
microorganisms [59]. Some modifications of random walks, as the integrated and filtered random walk

models, have been suggested and have occasionally set profoundly difficult mathematical problems.

In general applications, a filtered random walk model gives a better tracking than a random walk
model or an integrated random walk model [60]. Since a bad tracking of OUR also influences in the

K,a parameters estimation, here it will is used the following filtered random walk model for the

respiration rate [3, 6]:

1
OUR(t)= €oun () (20)
Q-pz -z %

where p is a filter parameter. (z~' represents the backward shift operator, defined as

z'"OUR(t)=OUR(t - 1)).

In the following discussions, the dynamics of the DO sensors and the airflow valve characteristic
were neglected. Nevertheless. the DO sensors can be modeled as a first-order system [39, 61]. and the

actuator dynamic can easily be incorporated in the K,a model [62].

5.2 Design of the “soft sensor”

Having defined the mathematical model for the dynamics of the dissolved oxygen concentration,
it is possible now to design the “soft sensor™ for the simultaneous estimation of the respiration rate and
of the oxygen transfer function in zone 3 of the bioreactor. Taking into account the exponential model

of the oxygen transfer function, defined in Eg. (19), the unknown parameter vector has the form:

8&,:;(-’]:{'{'1 kI (21)
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Supposing that K,a is time varying. then it is possible to write this variation by a random walk

model, in the following manner:
Ok (1) =Fy, Ok (1 =D+ Gy, ey, () (22.1)

where ey , () 1s zero mean white noise. Eq. (22.1) can be explicitly written as:

km] [1 0] [ke-D] 1 _
= . e 2
L:m} {0 J L'ztf—nHJ e :

On the other hand, considering the filtered random walk model of the respiration rate, defined in

(o]
(3% ]

Eq. (20). OUR can be written as:

OUR(1)=(1+ p)- OUR(t=1)= p- OUR(t —2) + ey (1) (23)

Rewriting Eq. (23) in a state space form, which is useful for the Kalman filter, results in:

BOUR{.:):FOUR IHOUR f_f—])'!-GOUR '{?OUR (f‘] (24])
ar
OURIr) 1+ = OUR(r—1) 1
= P 7, _ + “eourll) (24.2)
OUR(r—1) 1 0 OUR(t-2) 0

Now, putting Egs. (22) and (24) together, it is obtained an expression with the structure of Eq.
(4) of the EKF. where the new parameter vector # and the new process state matrix gain F become

implicitly defined in the following equation:
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k, (£) 10 0 0 k,(t=1) 10

k, () 01 0 0| k=1 | 1 0] eg® a5
OUR(t) 0 0 1+p —p||OURG-1)| [0 1|]|epue(®
OURt-1| |0 0 1 0 ||ouret-2)| [0 0

As the system is non-linear, the regressor is derived from the gradient of the prediction error as:

de(t.6(1 —1)) :
-

t.e(t-1))=—-) —————= 26
where the prediction error is defined as:

e(t) =S4 (1) =S4 (1) (27)

with S, (#) being the real value and 50 (r) the estimated value of the dissolved oxygen concentration in

zone 3 of the bioreactor. Using Eq. (18) for the predicted DO concentration in time "’ and inserting it

in Eq. (27) results:

e(t) =S, (1) - {SO (t=1)+T, - [— OUR(t = 1)+ K,a(Q,, (1 —1)) (S —So(t—1) +

. (28)
Dt~ 1) (S =D —Sst—1)]}
Therefore, the regressor vector is obtained according to:
dK,a(Q,,, (t1=1)  dOUR(t-1)
T ! airy
(.0t =1=T -|{Sp.u —Spt=1)) : - (29)
# | o =Sote-1) dé(t—1) dé(r—1)
(So,.mr = Sn(f_”)' (1 —exp(—a(2)))
S —Sot=1)): B(t) - exp(—
4.8 =1)) =T, - (S = S (1 =1))- B) - exp(—a(r)) (30)

-1
0
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with:

o) =k, - Q. (r=1) (31)

Bt)=k, “Quin -1 (32)

Eqgs. (25), (28). (30). (31) and (32) form the “soft sensor”.

5.3 Selection of probing input signals

The importance of the specific probing signal is now considered. It is well know that reliable
parameter estimates can be obtained only if the input is persistently exciting, otherwise the lack of an

adequately updated input may produce an ill-conditioned covariance matrix ( P(z) ) and consequently an

estimator failure [63].

Dissolved oxygen (DO) concentration in aerated tanks is typically controlled by manipulation of
the airflow rate, which is implicitly represented in Fig. 3. Fig. 4 shows how the DO concentration, in
zone 3 of the bioreactor. reacts to airflow rate changes. The non-linear effect of the airflow rate in the

DO concentration is clearly seen.

0.11 T y T T T —

0.08F

0.07F

.05

0.03r 18

Qy iy {m¥ h)
(o 6w og

. . ik " 1
0 1 2 3 4 5 B ¥ 8
Time (h)

Fig. 4. Upper part: Airflow rate variation. Lower part: DO response
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From an engineering point of view, it would be unjustifiable to alter the airflow rate just to
guarantee persistent excitation, because this quantity is normally adjusted in order to meet the operation
requirements of the process and cannot be varied at will. From a practical point of view, it would be
desirable to perform the estimation by simply varying the airflow rate from a minimum to a maximum
value at prescribed time intervals, with open or closed loop. In closed loop it is necessary to include an

additional signal to the airflow rate or an on/off control.

The limits of variation in the airflow rate are very important and they are related to the oxygen
demand of the process. The DO concentration has to be sufficiently high so that the growth of
heterotrophic and autotrophic bacteria is not limited due to lack of oxygen. Usually the autotrophic
microorganisms are more sensitive to low concentrations than the heterotrophic microorganisms.
Excessively high DO concentrations increase energy consumption and deteriorate the process
performance since they reduce the sludge quality and make the denitrification (in a nutrient removal
process) less efficient, due to the internal recycle. Likewise, low DO concentrations lead to bad quality

sludge and less efficient pollutant removal.

Biological degradation of carbonaceous organic matter occurs when the DO concentration is
above a threshold limit of about 1 mg O,/ (equivalent to 1 mg (-COD)/I using the units of the model).
On the other hand, nitrification requires higher oxygen concentrations. Nitritification needs oxygen
concentrations higher than 3 mg O/l while the nitratification requires more than 5.5 mg O/I for
optimal results. The right DO concentration is always a balance between economic and biological
needs. however practical experience shows that 2 mg O/l is usually a good choice for satisfactory

performance.

Here, in order to generate rapid changes in the DO concentration to obtain good estimates.
without strongly influencing the process performance, the signal input corresponds to open-loop

random disturbances in the airflow rate Q,,,. . between 0.01 and 0.09 m*/h which cause variations in the

DO concentration in the zone 3 between 0.5 and 5 mg O,/1. These disturbances have a negligible effect
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in the DO concentration in zone 2 of the bioreactor, which is kept almost constant in its nominal value
of 2 mg O4/1. The airflow rate was changed each 8.3 min, corresponding to the time constant of the
) for a 100% variation in the nominal value of Q

process in open loop (7 . In a typical large scale

open airy

plant the nominal dissolved oxygen concentration time constant is about 20-30 minutes [42]. In this

paper all the signals were sampled with a sampling period Ar=0.1-7 . =498sec. The DO

apen
measurements are considered uniform in the zones (in a real plant it depends on the location of the

sensor) and it is assumed that the saturated oxygen concentration is S, ., =8.65 mg O,/1.

The large variations in the airflow rate used for the estimation and the corresponding dissolved
oxygen concentration are shown in Fig. 5. To test the estimator with more realistic conditions,
simulations with noise measurements were performed. A Gaussian process (white noise with zero mean
and standard deviation 0.05) was generated and added to the dissolved oxygen concentration produced

by the benchmark. A time horizon of 8 hours was considered sufficient for this study based on

simulation.
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Fig. 5. Data input for estimation. Upper part: Airflow rate variation in zone 3.
Lower part: Dissolved oxygen concentration in zone 3.
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5.4 Choice setup conditions

Before starting to test the “soft sensor” it is necessary to determine the initial conditions and the
value of some parameters in the estimation algorithm. Some criteria were used to choose these initial

conditions and these parameters are next presented.
1. Choosing é(O) and P(0)

The initial estimated vector 8(0) is usually adjusted to zero, unless some a priori information is

available. The initial covariance matrix P(0) is normally specified as a diagonal matrix P(0)=c/ ,
where ¢ is a large positive number, such as 10* or 10°, which indicates the diffidence of the user in

choosing 6(0), besides providing a fast convergence of the estimated parameters. Small values of ¢

make é(’r) to change slowly.
2. Choosing R,

The matrix R, represents the covariance matrix of the observed noise ey (1) and reflects the
variations of the time-varying parameters in 6(z) and has, in general, to be tried out. Setting R =0
implies no tracking capability, since K(r) goes to zero when t — e . Hence to be able to track time-

varying parameters it is necessary to set R, >0.

From equation (25):

€. (1)
eg(r]zG‘lt Ku }
€our (1)

Then, the covariance matrix R, is defined as:
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Eei,, (1) 0

R, =Eey(t)e) (1) = N
S 0  GGTEel, (1)

As Eei.f“ (t) and Eejy, () are usually unknown, normally R, is taken as a constant diagonal

matrix of the form:

a 0 0 0
0 a, O
R = N (34)
0 0 a,
0 0 0 a,

The diagonal elements of R, are determined by trial and error, considering the compromise
between sensibility to time variations and rejection to noise effects. These diagonal elements influence,
in different forms, the estimates of the parameters of K,a (assumed as constant or very slowly
changing) and the time-varying respiration rate. @, and a, are related to the rate of change of the
parameters of the oxygen transfer function. Assigning large values for these parameters causes a bias in
tracking the respiration rate. Here they are set to zero. a, reflects the rapid variation of the respiration
rate. A large value provides a faster tracking but generates more noise effects. On the other hand a small
value provides a slower tracking but derives less noise effects. a, also depends on the filter pole in the
filtered random walk model. If p is close to 1. a smaller a, should be selected. a, is always set to

zero, due to the model adopted for OUR.

(F%]

Choosing p

The filter pole p is used to adjust the phase of the time variation of the respiration rate. It is

chosen to be between 0.9 and 1. When p is close to 1, the estimated respiration rate is greatly affected
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by noise. As mentioned before, the choice of p is strongly related to the choice of the element a; in

matrix R, both of them related to the estimation of QOUR.

4. Choosing A

In the basic EKF algorithm, T, represents the variance of the measurement noise €pp (1), and it is

defined as:

ry=Eepg (ep, (1) = Eey (1) o=

Generally Eefm (1) is unknown, which makes difficult its implementation. This inconvenient is
resolved by the use of the factor A in the modified EKEF, since the practical considerations of how using

A are better knowns.

As can be seen in Eq. 6, the effect of exponential weighting factor (0< A <1) is to prevent the
elements of P(t) from becoming too small. This makes the filter more sensitive to deviations between
the actual and estimated outputs, improving the adjustment of é(r) - On the other hand, when the output
¥ and the input « are close to zero (no excitation), then P(r—1)g(t) — 0 and K(t) = 0. Hence P(t)
grows exponentially until ¢(z) changes. When A =1. all data are weighted equally. generating a

slower convergence but providing a better robustness against noise effects. When 0< A<1. more
weight is placed on recent measurements than on older ones, deriving a rapid convergence but with

more noise influence.

Selecting A =1, the robustness against noise is provided through the choice of the parameter

a; in R.If A<1, the matrix R, is affected and, therefore, a bad tracking of OUR and biased K,a-

parameters are obtained.
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All those criteria must be carefully taken into account to obtain an adequate performance, since
the value selected for a parameter will influence the choice of the others. After a series of simulations,

the following setup conditions were chosen, as shown in Table 5.

Table 5
Setup conditions used in the simulations

Description Value
Initial parameter vector 6(0) = [I 0 10 10 IO]T
Initial covariance matrix factor c=10°

Observed noise covariance matrix element | g. =0.013
OUR filter pole p=0.93

Forgetting factor | A=1

5.5 Performance evaluation of simulation results

As mentioned previously, the “soft sensor”™ was tested in the ASWWTP-USP benchmark, which
simulates all the biological and biochemical phenomena that occur in a real activated sludge plant. The
estimation procedure is implemented according to the block diagram shown in Fig. 6, which is a good
approach because the model is kept in the traditional continuous form while the measurements are
conveniently digitized using a zero-order hold network, reflecting what might be the implementation of

a real case.
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Fig. 6. Software implementation of the estimation procedure.

The performance of the “soft sensor” to estimate the respiration rate and the oxygen transfer
function is discussed next. As can be seen in Fig. 7, the estimation of OUR and the K,a -parameters are
unbiased. The upper part shows how the estimator, after a short period, tracks very well the changes of
the respiration rate. The middle part presents the good fitting of the nonlinear oxygen transfer function.
In this case, the estimated oxygen transfer function is obtained with the last estimated valye of the
K,a -parameters, i.e. k, =12.0759 h' and k, =10.0343 h/m’, and compared with the K,a function
implemented in the benchmark (k, =125 h' and k, =10.08 h/m’). Although using a much higher
airflow rate than in the estimation, the curves were quite similar. The lower part shows the excellent
fitting between the measured and estimated DO concentration. The time variation of the amplitude of

the sampling period T, is shown in Fig. 8.
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Fig. 7. Responses of the DO estimation. Upper part: Real and estimated respiration rate. Middle part: estimated
K ;a -parameters and real and estimated oxygen transfer function. Lower part: Real and estimated DO

concentration
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Fig. 8. Time-varying sampling period.

The results obtained with time-varying sampling period are compared with the results obtained

using 7, = At, as shown in Table 6, where a discrete version of the integral square error (ISE) is used as
performance index (J ). The use of T, =At generated a biased estimation of OUR, what affected
mainly the estimation of the parameter k,. This fact deteriorated the estimation of the system

dynamics, increasing the value of the performance indexes.

Table 6
Comparison of performance using a time-varying sampling period (T,) according Eg. (17) and a

constant sampling time 7, = At

K, a -parameters and performance Estimated with Estimated with —‘
index time-varying 7, T =4t
ki=125n" 12.0759 12.0730
k, =10.08 h/m’ 10.0343 9.4592
Jka =AY (K,a(i) - K,a(i) 0.5563 1.2947
1=l
Jour =T,(0)- Y (OUR(i) - OUR(i))* 251.0387 352.6668
=l
Jpo =T, (1) X (S () =S, (i))> 0.2475 0.2624
=1 |

results obtained with a time varying

Despite a small variation rate in T, (around 2 seconds), the simulations have shown that the

T, were much better than the ones using a constant T,.




Applying the estimated values of the parameters k; e k, in Eq. (19) that describes the oxygen

transfer function and using Eq. (18) that describes the mass balance of the DO concentration, it is
possible to monitor on-line the oxygen transfer function and the respiration rate. Those two variables

may be utilized to implement advanced control strategies, as respirometry based-control.

As an application example, it is shown in Fig. 9 the values of OUR and the K;a function
calculated from the estimated parameters k, =12.0759 h"' and k, =10.0343 h/m’. for airflow

variations according to Fig. 5. The calculated OUR signal is filtered using a first-order exponential

digital filter of the form:

OUR, (N=a-OUR. (1) +(1-a) -OUR,(1—1) (36)
with & =0.15.

35 T T T T T T T
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2
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6. Conclusions

In this paper, the biological activity of a colony of aerobic microorganisms present in a pre-
denitrifying activated sludge process, is inferentially estimated through a “soft sensor” developed for

the simultaneous estimation of the bacterial respiration rate and the oxygen transfer function.

The only need of previous knowledge about the complex dynamics of the dissolved oxygen
concentration in the activated sludge process corresponds to a mass balance mathematical model, where
the respiration rate is modeled using a filtered random walk model and the oxygen transfer function is
modeled by an exponential model. As the estimation algorithm it was employed a modified version of a
discrete EKF with time-varying sampling period. The data were acquired from an activated sludge
process benchmark, that simulates a real plant. The obtained results have shown that the used

methodology was successful in estimating both OUR and the K,a function.

In a real application the estimation procedure has to be executed in two steps. First. an
estimation, as the one developed in this paper, where the simultaneous estimation of OUR and K,a is
performed aiming to obtain a model of the oxygen transfer function. Second, the obtained model of
K,a is used to calculate OUR employing Eq. (8), that describes the mass balance of the dissolved
oxygen. In this way it would be possible to get an on-line estimate of the microbial activity in the
biological system related to effluent treatment. So, the “soft sensor” here presented constitutes a

valuable tool to monitor and control the activated sludge process.
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and On-line Optimization Applied to Activated Sludge Treatment Systems.

31




References

(1]

(3]

[4]

[8]

[10]

H. Spanjers, P.A. Vanrolleghem, G. Olsson, P. Dold, Respirometry in control of the activated
sludge process, Water Science and Technology 34 (3-4) (1996) 117-126.

H. Spanjers. P.A. Vanrolleghem, G. Olsson, P. Dold, Respirometry in control of the activated
sludge process: principles. Scientific and Technical Report No. 7, IAWQ, London, 1998.

S. Marsili-Libelli, A. Vaggi, Estimation of respirometric activities in bioprocesses, Journal of

Biotechnology 52 (3) (1997) 181-192.

S. Marsili-Libelli. Adaptive estimation of bioactivities in the activated sludge process. IEE Proc.

Control Theory and Applications 137 (6) (1990) 349-356.

S. Nakajima, C.-F. Lindberg, B. Carlsson. On-line estimation of the respiration rate and the
oxygen transfer function using an extended Kalman filter. Technical Report IR-S3-REG-9613,

Royal Institute of Technology, Sweden. 1996.

C.-F. Lindberg. B. Carlsson, Estimation of the respiration rate and oxygen transfer function

utilizing a slow DO sensor. Water Science and Technology 33 (1) (1996) 325-333.

C.-F. Lindberg, Control and estimation strategies applied to the activated sludge process. PhD.

Thesis. Uppsala Unversity, Sweden. 1997.

O.A.Z. Sotomayor, S.W. Park, C. Garcia, A general benchmark for simulation of innovating
control strategies in biological wastewater treatment plants, Brazilian Journal of Chemical

Engineering (2000). (Submitted).

G. Leu. R. Baratti. An extended Kalman filtering approach with a criterion to set its tuning
parameters; application to a catalytic reactor, Computers and Chemical Engineering 24 (2-7)

(2000) 1839-1849.

A.J. de Assis. R.M. Filho. Soft sensors development for on-line bioreactor state estimation,

Computers and Chemical Engineering 24 (2-7) (2000) 1099-1103.

32



[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22

M. Farza, H. Hammouri, S. Othman, K. Busawon, Nonlinear observers for parameter estimation

in bioprocesses. Chemical Engineering Science 52 (23) (1997) 4251-4267.

. Alvarez, Nonlinear state estimation with robust convergence, Journal of Process Control 10 (1)

(2000) 59-71.

J. Tsinias, Futher results on the observer design problem, Systems & Control Letters 14 (5)

(1990) 411-418.

G.-B. Wang, S.-S. Peng, H.-P. Huang, A sliding observer for nonlinear process control, Chemical

Engineering Science 52 (5) (1997) 787-805.

J. Alvarez, T. Lépez, Robust dynamic state estimation of nonlinear plants, AIChE Journal 45 (1)

(1999) 107-123.

R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME J. Basic

Engng.. Ser. D, 82 (1960) 35-45.

R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, Trans. ASME J.

Basic Engng.. Ser. D., 83 (1961) 95-107.

S.J. Julier, J.K. Uhlmann, H.F. Durrant-Whyte. A new approach for filtering nonlinear systems,

American Control Conference, Seattle, Washington (1995) 1628-1632.

D.I. Wilson, M. Agarwal, D.W.T. Rippin. Experiences implementing the extended Kalman filter

on an industrial bath reactor, Computer & Chemical Engineering 22 (11) (1998) 1653-1672.

F.J. Doyle, Nonlinear inferential control for process applications, Journal of Process Control 8 (5-

6) (1998) 339-353.
A.H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, New York. 1970.

A. Gelb, I.F. Kasper Jr., RANash Jr, CF. Price, A.A. Sutherland Jr., Applied Optimal

Estimation. MIT Press, Cambridge, Mass., 1974.

L. Ljung. T. Soderstrom, Theory and Practice of Recursive Identification. MIT Press, Cambridge,

Mass., 1983.

33




(28]

(29]

[32]

[34]

A.H. Sayed, T. Kailath, A state-space approach to adaptive RLS filtering, IEEE Signal

Processing Magazine 11 (3) (1994) 18-60.

G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control. Prentice-Hall, Englewood

Cliffs, NI, 1984,

L. Ljung, System Identification — Theory for the User. 2. Ed., Prentice Hall PTR, Upper Saddle

River, NJ, 1999,

M. Henze, C.P.L. Grady, W. Gujer, G.v.r. Marais, T. Matsuo, Activated sludge model No. 1.

Scientific and Technical Report No. 1, IAWPRC, London, 1987.

I. Takdcs, G.G. Patry, D. Nolasco, A dynamic model of clarification-thickening process, Water

Research 25 (10) (1991) 1263-1271.

Matlab v.5.3 and Simulink v.3.0 — A Program for Simulating Dynamic Systems, The MathWorks

Inc., Natick, USA, 1999.

Cost Action 624, Optimal management of wastewater systems. The European Co-operation in the
Field of  Scientific  and  Technical Research. = Website  (http://www.ensic.u-

nancy fr/COSTWWTP/).

U. Jeppsson, Modelling aspects of wastewater treatment processes. PhD. Thesis, Lund Institute

of Technology. Sweden. 1996.

G. Bastin. D. Dochain, On-line Estimation and Adaptive Control of Bioreactors. Elsevier.

Amsterdam, 1990.

G. Olsson. 1.F. Andrews, Dissolved-oxygen profile — valuable tool for control of activated-sludge

process, Water Research 12 (11) (1978) 983-1004.

ML.K. Stenstrom, J.F. Andrews, Real-time control of activated-sludge process, Journal of the

Environmental Engineering Division — ASCE 105 (2) (1979) 245-260.

K.J. Astrom, B. Wittenmark, Computer-Controller Systems — Theory and Design. 3. Ed.,

Prentice Hall, Upper Saddle River, NJ. 1997.

34



[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[46]

S.C. Cook, P.W. Jowitt, Investigation of dissolved oxygen dynamics in the activated sludge

process, IFAC Identification and System Parameter Estimation, York, UK, 1985.

U. Holmberg, On the identifiability of dissolved oxygen concentration dynamics, IAWPRC’s 25"

Anniversary Conference and Exhibition, Kyoto, Japan, 1990.

U. Holmberg, G. Olsson, B. Andersson, Simultaneous DO control and respiration estimation,

Water Science and Technology 21 (10-11) (1989) 1185-1195.

H. Spanjers, Respirometry in activated sludge. PhD. Thesis, Wageningen Agricultural University,

The Netherlands, 1993,

I. Suescun, L Irizar, X. Ostolaza, E. Ayesa, Dissolved oxygen control and simultaneous
estimation of oxygen uptake rate in activated-sludge plants, Water Environment Research 70 (3)
(1998) 316-322.

G.F. Bennett, Oxygen-transfer rates, mechanisms and applications in biological wastewater-

treatment, CRC Critical Reviews in Environmental Contro] 9 (4) (1980) 301-392.

G. Olsson, B. Newell, Wastewater Treatment Processes: Modelling, Diagnosis and Control. WA

Publishing. London, 1999.

S.Y.C. Catunda, G.S. Deep, A.C. van Haandel, R.C.S. Freire. Método de medicdo continua da
taxa de respiragdo em sistemas de lodo ativado, XI Brazilian Automatic Control Conference, Sao

Paulo. 1 (1996) 269-273.

S.Y.C. Catunda, G.S. Deep. A.C. van Haandel, R.C.S. Freire, Métodos Alternativos para medicao
da taxa de consumo de oxigénio em sistemas de lodo ativado, SBA Controle & Automacio 9 (2)

(1998) 57-64.

K.Y.-J. Ko, B.C. McInnis, G.C. Goodwin, Adaptive control and identification of the dissolved

oxygen process, Automatica 18 (6) (1982) 727-730.

S. Marsili-Libelli. Modelling. identification and control of the activated sludge process.

Advances in Biochemical Engineering and Biotechnology, 38 (1989) §9-148.

35




[47]

(48]

[49]

(50]

[52]

[54]

[55]

[57]

A. Holmberg, Microprocessor-based estimation of oxygen utilization in the activated-sludge

wastewater-treatment process, Int. Journal of Systems Science 12 (6) (1981) 703-718.

A. Holmberg, Modeling of the activated-sludge process for microprocessor-based state

estimation and control, Water Research 16 (7) (1982) 1233-1246.

A. Holmberg, J. Ranta, Procedures for parameter and state estimation of microbial growth

process models. Automatica 18 (2) (1982) 181-193.

G.J. Haarsma, Robust predictive oxygen control — The development of a robust model predictive
dissolved oxygen controller for an activated sludge process. MSc Thesis. Wageningen

Agricultural University, The Netherlands. 1995.

G.J. Haarsma. K. Keesman, Robust model predictive dissolved oxygen control, 9" Forum for

Applied Biotechnology, Belgium, (1995) 2415-2425.

C.Y. Chen. J.A. Roth, W.W. Eckenfelder, Response of dissolved-oxygen to changes in influent

organic loading to activated-sludge systems, Water Research 14 (10) (1980) 1449-1457.

C.-F. Lindberg, B. Carlsson, Evaluation of some methods for identifying the oxygen transfer rate
and the respiration rate in an activated sludge process. Technical Report UPTEC 93032R.

Uppsala University, Sweden, 1993,

G. Olsson, U. Jeppsson, C. Rosén, Control of biological wastewater treatment. Lecture notes.

Lund Institute of Technology, Sweden, 1999. Available from http://www.iea.lth.se/sbr/sbre.html.

L.J.S. Lukasse, K.J. Keesman, G. van Straten, Grey-box identification of dissolved oxygen

dynamics in activated sludge processes. 13" IFAC World Congress, USA. N (1996) 485-490.

L.J.S. Lukasse, Control and identification in activated sludge processes. PhD. Thesis.

Wageningen Agricultural University. The Netherlands, 1999.

B. Carlsson. T. Wigren. On-line identification of the dissolved oxygen dynamics in an activated

sludge process, 12" IFAC World Congress. Australia, 7 (1993) 421-426.

36



[58]

[59]

[60]

[61]

[63]

B. Carlsson, C.-F. Lindberg, S. Hasselblad, S. Xu, On-line estimation of the respiration rate and
the oxygen transfer rate at Kungsingen wastewater treatment plant in Uppsala, Water Science

and Technology 30 (4) (1 994) 255-263.
G.H. Weiss, Random walks and their applications, American Scientist 71 (1983) 65-71.

L. Ljung, S. Gunnarsson, Adaptation and tracking in system identification — a survey, Automatica
26 (1) (1990) 7-21.

H. Spanjers, G. Olsson, Modeling of the dissolved-oxygen probe response in the improvement of
the performance of a continuous respiration meter, Water Research 26 (7)(1992) 945-954.

C.-F. Lindberg, B. Carlsson, Nonlinear and set-point control of the dissolved oxygen
concentration in an activated sludge process. Water Science and Technology 34 (3-4) (1996) 135-
142,

T. Soderstrom, P. Stoica, System Identification. Prentice-Hall International, Hemel Hempstead,

UK. 1989.

37







BOLETINS TECNICOS - TEXTOS PUBLICADOS
BT/PTC/9901 - Avaliaggo de Ergoespirémetros Sequndo a Norma NBR IEC 601-1- MARIA RUTH C. R. LEITE, JOSE
CARLOS TEIXEIRA DE B. MORAES

BT/PTC/9902 - Sistemas de Criptofonia de Voz com Mapas Caéticos e Redes Neurais Artificiais — MIGUEL ANTONIO
FERNANDES SOLER, EUVALDO FERREIRA CABRAL JR.

BT/PTC/9903 — Regulagio Sincronizada de Distarbios Senodais — VAIDYA INES CARRILLO SEGURA, PAULO SERGIO
PEREIRA DA SILVA

BT/PTC/9904 - Desenvolvimento e Implementag3o de Algoritmo Computacional para Garantir um Determinado Nivel de
Letalidade Acumulada para Microorganismos Presentes em Alimentos Industrializados — RUBENS

GEDRAITE, CLAUDIO GARCIA

BT/PTC/9905 - Modelo Operacional de Gestao de Qualidade em Laboratdrios de Ensaio e Calibragao de Equipamentos
Eletromédicos — MANUEL ANTONIO TAPIA LOPEZ, JOSE CARLOS TEIXEIRA DE BARROS MORAES

BT/PTC/9906 — Extracdo de Componentes Principais de Sinais Cerebrais Usando Karhunen - Loéve Neural Network —
EDUARDO AKIRA KINTO, EUVALDO F. CABRAL JR.

BT/PTC/9907 - Observador Pseudo-Derivativo de Kalman Numa Coluna de Destilagdo Binaria — JOSE HERNANDEZ LOPEZ,
JOSE JAIME DA CRUZ, CLAUDIO GARCIA

BT/PTC/9908 ~ Reconhecimento Automatico do Locutor com Coeficientes Mel-Cepstrais e Redes Neurais Artificiais — ANDRE
BORDIN MAGNI, EUVALDO F. CABRAL JUNIOR

BT/PTC/9909 ~ Andlise de Estabilidade e Sintese de Sistemas Hibridos — DIEGO COLON, FELIPE MIGUEL PAIT
BT/PTC/0001 — Alguns Aspectos de Visdo Multiescalas € Multiresolugdo — JOAO E. KOGLER JR., MARCIO RILLO

BT/PTC/0002 - Placa de Sinalizagao E1: Sinalizagio de Linha R2 Digital SinalizagZo entre Registradores MFC- PHILLIP
MARK SEYMOUR BURT, FERNANDA CARDOSO DA SILVA ;

BT/PTC/0003 — Estudo da Técnica de Comunicagio FO-CDMA em Redes de Fibra Optica de Alta Velocidade — TULIPA
PERSO, JOSE ROBERTO DE A. AMAZONAS

BT/PTC/0004 — Avaliagio de Modelos Matematicos para Motoneurénios — DANIEL GUSTAVO GOROSO, ANDRE FABIO
KOHN

BT/PTC/0005 — Extracdo e AvaliagZo de Atributos do Eletrocardiograma para Classificagio de Batimentos Cardiacos — ELDER
VIEIRA COSTA, JOSE CARLOS T. DE BARROS MORAES

BT/PTC/0006 — Uma Técnica de Imposicdo de Zeros para Auxilio em Projeto de Sistemas de Controle — PAULO SERGIO
PIERRI, ROBERTO MOURA SALES

BT/PTC/0007 — A Connected Multireticulated Diagram Viewer — PAULO EDUARDO PILON, EUVALDO F. CABRAL JUNIOR
BT/PTC/0008 — Some Geometric Properties of the Dynamic Extension Algorithm — PAULO SERGIO PEREIRA DA SILVA

BT/PTC/0009 — Comparison of Alternatives for Capacity Increase in Multiple-Rate Dual-Class DS/CDMA Systems —~ CYRO
SACARANO HESI, PAUL ETIENNE JESZENSKY

BT/PTC/0010 — Reconhecimento Automatico de Agdes Faciais usando FACS e Redes Neurais Artificiais — ALEXANDRE
TORNICE, EUVALDO F. CABRAL JUNIOR

BT/PTC/0011 — Estudo de Caso: Tornando um Projeto Testavel Utilizando Ferramentas Synopsys — REINALDO SILVEIRA,
JOSE ROBERTO A. AMAZONAS

BT/PTC/0012 — Modelos Probabilisticos para Rastreamento em Carteiras de Investimento — HUGO G. V. DE ASSUNGAOQ,
OSWALDO L. V. COSTA

BT/PTC/0013 — Influéncia de um Controle Imperfeito de Poténcia e Monitoramento da Atividade Vocal na Capacidade de
Sistemas DS/CDMA ~ MARCIO WAGNER DUARTE ROLIM, PAUL JEAN ETIENNE JESZENSKY

BT/PTC/0014 - Canceladores de Interferéncia Sucessivo e Paralelo para DS/CDMA — TAUFIK ABRAO, PAUL JEAN E.
JESZENSKY

BT/PTC/0015 — Transmissdo de Servicos de Multimidia num Sistema Mével Celular CDMA de Banda Larga ~ EDUARDO
MEIRELLES MASSAUD, PAUL JEAN ETIENNE JESZENSKY

BT/PTC/0016 - Disseminacio do HIV em uma Populagdo Homossexual Heterogénea — MARCOS CASADO CASTNO, JOSE
ROBERTO CASTILHO PIQUEIRA

BT/PTC/0017 - Implementagao e Avaliacio em Laboratério de um Monitor Cardiaco Portatil para Trés Derivagbes — RAISA
FERNANDEZ NUNEZ, JOSE CARLOS TEIXEIRA DE BAROS MORAES

BT/PTC/0018 - Projeto de Filtros Recursivos de N-ésima Banda — IRINEU ANTUNES JUNIOR, MAX GERKEN

BT/PTC/0019 — Relative Flatness and Flatness of Implicit Systems — PAULO SERGIO PEREIRA DA SILVA, CARLOS
CORREA FILHO

BT/PTC/0020 — Estimativa de Fluxo Sangiiineo nas Artérias Coronarias Usando Imagens de Cineangiocardiografia — ANA
CRISTINA DOS SANTOS, SERGIO SHIGUEMI FURUIE

BT/PTC/0021 — Meodelos Populacionais para AIDS e Analise do Equilibrio sem Epidemia — ELIZABETH FERREIRA SANTOS,
JOSE ROBERTO CASTILHO PIQUEIRA













