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Abstract: This paper considers the design of a “soft sensor“ (software sensor) for the on-line estimation

of the biological activities of a colony of aerobic microorganisms acting on activated sludge processes,

where the carbonaceous waste degradation and nitrification processes are taken into account. These

bioactivities are intimately related to the Dissolved Oxygen (DO) concentration. Two factors that affect

the dynamics of the dissolved oxygen are the respiration rate or the Oxygen Uptake Rate (OUR) and the

oxygen transfer function (Kra). These items are challenging topics for the application of recursive

identification due the nonlinear characteristic of the oxygen transfer function and to the time-varying

feature of the respiration rate. In this work, OUR and the oxygen transfer function are estimated through

a ''soft sensor”, which is based on a modified version of the discrete extended Kalman filter (EKF).

Numerical simulations have been carried out in a pre-denitrifying activated sludge process benchmark

and the obtained results demonstrate the applicability and efficiency of the proposed methodology.

which should provide a valuable tool to supervise and control activated sludge processes.

Keywords: Biosensing, Soft sensors, Bioactivities, Activated sludge process, Dissolved oxygen

dynamics. Recursive identification, Extended Kalman filter, Nonlinear systems, Wastewater treatment

plants
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1. Introduction

The lack of reliable sensors and the high cost of advanced instrumentation are significant

problems in the monitoring and control of wastewater treatment plants (wwrp). Despite the intensive

research in recent years to develop new sensors for biological applications, the state of available sensors

nowadays is not much different than a decade ago. In order to overcome these inconveniences,

estimation techniques issued from control and systems theory have been applied in the development of

“soft sensors“ for on-line estimation of bioprocess variables. A “soft sensor” can be described as the

association between a sensor (hardware) and an estimator (software). The estimator is the part that

infers the on–line estimation of the variable from measurements made by the sensor.

Wastewater processing by means of activated sludge (AS) is the most widespread sewage

biological treatment process and its efficiency depends, besides other factors, on the capacity of a

sensitive community of microorganisms. Thus, the availability of on-line information about the

microbiological activity is of crucial importance for the monitoring and control of the process.

Bioactivities in the activated sludge process are intimately related to the dissolved oxygen (DO)

concentration. The heterotrophic bacteria degrade the carbonaceous organic matter employing oxygen

to oxidize and mineralize organic matter to produce carbon dioxide. Nitrification (ammonium rernoval)

s made by a special group of autotrophic bacteria, called nitrifiers. In this process. the Nitrosomonas

oxidize ammonium into nitrite (nitritification) and the Nitrobacters oxidize nitrite into nitrate

(nitratification). In comparison with heterotrophic microorganisms, nitrifiers need more oxygen for their

growth. so the nitrification process is often responsible for approximately 40 percent of the total oxygen

demand [1]. The dynamics of the nitrification process is slower than the one relative to the process

performed by the heterotrophic bacteria. In addition to the heterotrophic and nitrifying bacteria there are

other aerobic microorganisms species that also influence the oxygen consumption rate. The autotrophic

sulphur ba('teria are able to oxidize hydrogen sulphide (or other reduced sulphur compounds) to

sulphuric acid. Autotrophic iron bacteria oxidize inorganic ferrous iron to the ferric form to obtain

energy [21.
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Two factors that affect the dynamics of the dissolved oxygen concentration are the bacterial

respiration rate or oxygen uptake rate kC)UR) and the oxygen transfer function ( K/a ). OUR is a

meaningful biological indicator [3], that measures the rate at which the microorganisms utilize oxygen

in carrying out their metabolic activities. It is directly linked to two important biochemical processes

that must be controlled in a wastewater treatment plant: biomass growth and substrate consumption.

OUR also provides information about influent waste concentration and composition, and concentration

of biodegradable matter in the effluent. Further, a rapid decrease in the respiration rate implies that

some forms of toxic elements may have entered the plant, so knowledge of the respiration rate can be

used to detect the existence of such toxins and prevent microorganisms from dying. The oxygen transfer

function describes the rate at which oxygen is transferred to the wastewater by the aeration equipment.

so knowledge of the oxygen transfer function determines the air blowing flow. The oxygen uptake rate

may vary significantly in a matter of minutes, whereas oxygen transfer function variations, depending

on the state of the aeration equipment and sludge inventory, can occur over a daily time scale [4].

In this paper, OUR and the oxygen transfer function are on-line estimated using a -'soft sensor'’,

from measurements of the DO concentration and the air injection flow rate, in a continuous-now

activated sludge process. The model-based “soft sensor“ is designed using a modified version of the

discrete extended Kalman filter for the simultaneous estimation of the OUR and the oxygen transfer

function, assuming that the OUR can be described by a filtered random walk process, while the oxygen

transfer function can be modeled by an exponential function. Other papers have used these models to

estimate OUR and the K 1a function. Nevertheless, they have only been tested in a simulator with a

single equation that describes the dissolved oxygen concentration dynamics, as in [5] or in off-line

estimations with data from small pilot plants, as in [6] or [7]. In this paper the “soft sensor“ is tested by

simulation in the ASWWTP-USP benchmark [8], a dynamic model that simulates all the biological,

physical and biochemical interactions that occur in a complete activated sludge plant. In this way the

results here obtained are more useful for applications in real systems
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2. Soft sensors

A ''soft sensor“ is the association of a sensor (hardware), that measures on-line some process

variable. with a state estimation algorithm (software) that infers on-line some hidden meaningful

information from the data provided by the sensor. A critical element in the synthesis of a ''soft sensor'

is the available knowledge of the process. An accurate process model generally expresses this

knowledge. However. it is normally impossible to obtain an exact process model, so that the estimation

algorithm must be robust enough to deal with model errors. As regards modeling errors. it is assumed

that [9]: ( 1 ) the uncertainty arises from imprecision in a set of model parameters, as determined from

the physical knowledge of the process; (2) the erroneous model of the process consists of the nominal

model with a first-order Taylor series expansion about the nominal parameters; and (3) the parameter

errors are white noises with zero mean. normal distribution with a constant covariance matrix that can

be determined. and possibly updated, from on-line data. A schematic diagram of a “soft sensor’' is

shown in Fjg. 1.
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Fig. 1 – Principle of a ''soft sensor" [10]

2.1 The software: extended Katman fIlter

Several estimation techniques have been proposed in the literature. Among these techniques.

three of them have been recognized to have strong potential in the on-line estimation of bioprocesses.

namelv. ( 1 ) estimation through elemental balances; (2) adaptive non-linear observers; and (3) artificial

neural networks ( ANN). An overview of each technique as well as the most significant applications are

presented in [1 1 ]
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There are four main approaches to the design of nonlinear observers [12]: (1) the extended

Kalman filter (EKF); (2) the geometric observer (GO) design; (3) the high-gain (HG) approach; and (4)

the sliding-mode (SM) approach. These estimation techniques are restricted to nonlinear plants that are

completely open-loop observable, and their extensions to partially observable (i.e. detectable) plants do

not seem straightforward, as it can be seen in [13]. A non-exhaustive evaluation of these nonlinear

observers and other methods of approach are summarized in Wang et aI. [14] .

The EKF is by far the most widely used state estimation technique, while the application of the

GO, HG, SM and other approaches is a recent and less widespread development [15]. The EKF is

simply an ad hoc state estimator that only approximates the optimality of Bayes’ rule by linearization.

This means that the EKF computes a state estimate at each sampling time by the use of Kalman filter

[16,17] on a linearized model of the nonlinear system. This technique is applicable if there is a

sufficient ly large neighborhood in which the linearized model is a good representation of the nonlinear

system. If, in addition. the disturbances are well represented by zero mean Gaussian measurement

noise, the optimal estimate of the linearized system should be a reasonable approximation of the

optimal estimate for the nonlinear system

Although the EKF is conceptually simple, it has, in practice, three well-known drawbacks [18]

7 Linearization can produce highly unstable filter performance (no convergence, biased or divergent

estimates) if the timestep intervals are not sufficiently small

,/ The derivation of the Jacobian matrices is nontrivial in most ap

implementation difficulties.

plications and often lead to significant

V Sufficiently small timestep intervals usually imply high computational overhead, as the number of

calculations demanded for the generation of the Jacobian and the predictions of state estimate and

covariance are large.
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Despite these problems, the EKF has been successfully used in the development of “soft sensors

in a number of chemical engineering applications, mainly in biotechnology and polymerization. A

critical review of experimental applications of EKF in the chemical process industry can be found in

Wilson et aI. [19]

A number of variants concerning the EKF formulation is possible by modifying the model or the

approximation of the probability density function, such as [20]: (1) the first order EKF; (2) the

linearized EKF or constant gain EKF; (3) the iterative EKF; (4) the second order EKF; and finally (5)

the statistical linearization or quasilinearization method. These options may be presented in the

continuous, discrete or continuous-discrete forms. Useful discussions about EKF are available in [21]

and [22]

The basic first order EKF is given by the following equation set [23]:

'(r) = y(r) – j(r)

Ktt ) =

PCr) = [r – Ktt)(pT (r)IP(/ – 1)F’ + R,

O(r) = Fact – 1) + K (r)e(7)

(1)

(2)

(3)

(4)

where ed ) is the prediction error. y(t ) is the output system, $(1) is the estimated output system.

K(r ) is the Kalman gain matrix, PCr) is the prediction error covariance matrix, O(r) is the estimated

parameter/state vector, f is the process state matrix gain. @(r) is the regressor vector. /?! is the

observed noise covariance matrix and 1', is the measurement noise variance.



2.2 A modified EKF

Recursive least-square estimation (RLS) is the most popular technique for estimating constant or

slowly changing parameters. To allow the estimator to maintain its sensitivity to process parameter

variations, RLS is often used with an exponential weighting factor (or forgetting factor). Sayed and

Kailath [24] showed the exact and complete relationship that exists between the field of Kalman

filtering and the field of RLS adaptive filtering, which have been highlighted in [25] and [26] for the

EKF case. This close relationship motivates us to adapt the exponential weighting factor to the EKF

prediction error covariance matrix. Hence, equations (2) and (3) are replaced by the following

expresslons:

Ktt) = (
(5)

(6)PCr) = +{r – K(r)pr (r)]P(r – V Fr + Rl }

where 2 is the exponential weighting factor.

3. The activated sludge plant

The ASWWTP-USP benchmark is a dynamic simulator developed for the evaluation of control

strategies in biological wastewater treatment plants. The simulator represents an activated sludge

process in a configuration with pre-denitrification for the removal of organic matter and nitrogen from

domestic eff]uent. The process configuration, shown in Fig. 3, is formed by a bioreactor, composed of

an anoxic zone (for the denitrification process) and two aerobic zones (for the organic matter

degradation and the nitrification process), and a secondary settler (for the clarification/thickening

process). The compartments of the bioreactor are considered to have constant volume (13 m3, 18 m-' and

20 m-=. respectively) and to be ideally mixed whereas the secondary settler (20 m3) is modeled

employing a series of IO layers (one-dimensional model, where it is assumed that no biological reaction

occurs), The influent now eM is 4.17 ma/h, with a proportion of biodegradable matter of 224 mg
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lte ei„ = 2ef/l , theCOD/1 and a hydraulic retention time of 17.0 hours The internal recvcle flow r

external recycle flow rate Q*! = o.5e„, , the wastage flow rate e 11. = 0.0258 m3/h and the external

carbon source flow rate e'„ = 0 m3/h. The airflow rates are: adn = 0.044 m3/h and Qulr. =0.033

m3/h, for the first and second aerobic zones, respectively. In the anoxic zone, no airflow rate is

c'onsidered

e

-,„ 1 *„ ' Zone 2

31

Zone 3 [ p1 –J
+e,

Jo

e

===-=Henn=

i1ÇL ih / i r

[ Q.\ /
Fe
“

Br

Fig. 2 – Layout of the ASWW:FP-USP benchmark [8] .

For the objectives of this work, it is important to use a model that realistically simulates a true

plant. Here, each bioreactor zone is modeled by IAWQ Activated S]udge Model N'1. abbreviated

ASMI. presented by Henze et aI. [27] and the secondary settler is modeled by the double exponential

settling velocity model presented by Takács et aI. [28]. The complete plant model includes

approximately 52 coupled, complex and nonlinear differential equations, which were implemented in

Simulink/Matlab platform v.5.3 [29]. The values of the process parameters are shown in Table 1 and

Table 2. and the wastewater composition (average values) is shown in Table 3. A major explanation

concerning the simulator can be found in [8].

In this paper, it is emphasized the dissolved oxygen concentration in the zone 3 of the bioreactor.
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Table 1
Parameter values of the ASM 1 for a temperature of 15'’C [30]

Symbol
rH

Value
0.67 g cell COD formed/(g COD
oxidized)
0.24 g cell COD formed/(g N oxidized)
0.08 (dimensionless)

0.08 g N/(g COD) in biomass

0.06 g N/(g COD) in endogenous mass

Description
)

yA

.f,,

1 XB

1 XP

Yield for autotrophic biomass

Fraction of biomass yielding particulate products

Mass of nitrogen per mass of COD in biomass

Mass of nitrogen per mass of COD in products from
biomass in endogenous mass
Maximum specific growth rate for heterotrophic biomass

Decay rate coefficient for heterotrophic biomass

Half saturation coefficient for heterotrophic biomass

Oxygen half saturation coefficient for heterotrophic biomass

Nitrate half saturation coefficient for denitrifying
heterotrophic biomass
Maximum specific growth rate for autotrophic biomass

Decay rate coefficient for autotrophic biomass

Oxygen half saturation coefficient for autotrophic biomass

Ammonium half saturation coeficient for autotrophic
biomass
Collection factor for px under anoxic conditions
Ammonification rate

Maximum specific hydrolysis rate
Half saturation coefficient for hydrolysis of slowly
biodeqradable substrate
Correction factor for hydrolysis under anoxic conditions

P"
b "

Ks
K OH

K ,„o

0.1667 h-1
0.01 25 h-1

10 g COD/m"
0.2 g O,/m-

0.5 g NO3-N/m-’

PÁ

b,
K OA
K NH

0.02083 h-1
0.002083 h-1

0.4 g O2/m-’

1 .O g NH3-N/rn
3

/7

k

k ,1

K,

/7 //

0.8 (dimensionless)

0.0033 mV(g COD.h)
0.002083 g biod. COD/(g COD.h)

0.1 g biod. COD/(g COD)

0.8 (dimensionIess)

Table 2
Opcrational and design parameters for the Takács settler [8]

Value
19.75 m/h

Description
Maximum theoretical settling velocity

Maximum practical settling velocity

Settling parameter associated with the hindered settling component of
settling velocity equation
Settling parameter associated with the low concentration and sID\\'ly
settling component of the suspension
Non-settleable fraction of the influent suspended solids

Min. attainable suspended solids concentration in the effluent

Threshold suspended solids concentration
Surface area of clarifier
Height of the each layer
Number of layers
Number of the feedlayer
Conversion factor of solids suspended (SS) to COD
Conversion factor of SS to COD

10.42 m/h

5.76 x 104 1/mg

2.86 x 10--’ 1/mg

2.28 x 10-3 (dimensionless)

/11.\ }( ss .1 mg/l

3000 mg/l
20 m2
0.1 m
10 (dimensionless)
7 (dimcnsionless)
0,75 (dimensionless)

0.75 (dimensionless)
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Table 3
Intlow wastewater concentration (average values) [8]

Value
20.0 mg COD//

0.0 mg COD/1

60.0 mg COD/l

18.28 mg N/1

40'0 mg COD/l

0.0 mg (-COD)/1

12.5 mg N/1

10.1 mg N/1

1.0 mg N/1

64.0 mg N/1

l .O m mol/l

Description
)

Active autotrophic biomass

Slowly biodegradable substrate

Particulate biodegradable organic nitrogen

Particulate inert matter & products

Dissolved oxygen concentration

Soluble ammonium (and ammonia) nitrogen

Soluble biodegradable organic nitrogen

Soluble nitrate (and nitrite) nitrogen

Readily biodegradable substrate

Total alkalinit>

4. The dissolved oxygen (DO) dynamics

The dynamics of the dissolved oxygen is such that its concentration can change in a matter of

minutes. To i11ustrate some of the problems in the dynamics of the dissolved oxygen concentration, its

differential equation extracted from the IAWQ model is analyzed. The rigorous ASM 1 equation that

describes the dissolved oxygen concentration is given by the following expression [31 ]

9=::: 1}„*
K,a ~(S,,., .>„ – So')~+ D111S o .111 – b,I„ So

(7)

As can be observed in Eq. (7) the gain of the process depends on the substrate concentrations

S NH and Ss , and on the biomass concentration xBH and Xg.4 . It also depends on time-varying

parameters such as FH , bIA . 71/ . YA . K NH , Ko\ , K OH and Ks . the saturated oxygen concentration

So..„„ (that depends on pressure. temperature. certain characteristics of the wastewater. etc). the input

ox)’gen concentration So.i„ , the dilution rates (flow/volume) D 111 and Df mr , and the oxygen transfer
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function Kla . The oxygen transfer function in a real plant depends on several factors, for example,

airflow rate, type of diffusers, wastewater composition, temperature, pressure, design of aeration tank,

tank depth, spatial distribution and efficiency of aeration devices, etc. Other factors that affect the DO

concentration dynamics are: oxygen concentration in the different flows inside the plant, flow and

composition of the influent, inclusion of unaerated zones for nutrient removal, recycle of activated

sludge and mixed liquor and operating sludge age.

4.1 A SLtitabte continuous model

In an activated sludge process, the biodegradable substrate is consumed by the microorganisms,

which utilize oxygen to carry out their bioactivities. Due to the many uncertainties in Eq. (7), here it

will be adopted the following reduced order model proposed by Bastin and Dochain [32], that describes

the DO concentration of a completely mixed tank:

dS o = –OUR+ K,a .Ls , \„ – S à+ D„S , „ – D.„,S „
t

(8)

This model can be regarded as bilinear and includes, besides mass balance and addition of

oxygen caused by aeration system, the term OUR (oxygen uptake rate or respiration rate). as described

by the conceptual model structure shown in Fig. 3.
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Substrate
concentration

(s. , s„„ ,...)

Biological
activity

Airflow rate Dissolved oxygen
dynamics

Dissolved oxygen (DO)
1> concentrat ion

Fig. 3. Conceptual relation between biological activity and DO concentration.

The importance of OUR as an indicator of bioactivities was first suggested by Olsson and

Andrews [33] and Stenstrom and Andrews [34] and several results became available soon after,

regarding the estimation of OUR and also Kla . The respiration rate is time varying, normally diurnal

(and cannot be assurned to be slowly time varying or constant). Typically, it has a daily variation

around a nonzero mean value, but it may change abruptly, in a matter of minutes, due to disturbances.

The oxygen transfer function depends on several factors, as mentioned before, but the main time-

varying dependence is with the airflow rate [7].

4.2 The discrete model

A discrete-time model corresponding to continuous-time DO model is obtained using a zero-

order-hold sampler [35]. This technique assumes that all signals except S, (r) are constant during the

sampling interval, what is reasonable for sufficiently fast sampling.

Zero-order-hold sampling of the DO concentration dynamics has been previously presented in

earlier works [5. 7. 36, 37]. The application is completely derived here. Thus, from Eq. (8). assuming

constant volume. we have:
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+ = 1C) 1|J 1R( (t ) lr ]K 1 a (+) n S O 9 s a 1 (t )
Kra() ' S o (r) + D(1) ' So f„ (r) – D(r) ' So (r)

Now considering that:

M (r) = –ÇK / a(.) + D(/))

and

N (r) = –OURO) + DCt) ' S o r/l (r) + K / a(') ' S o su,

then Eq. (9) can be written in the following way:

%= NO) + M 0) . S, (/)

Assuming that M(r) and N (r) are constant within each sampling interval

Laplace transform to Eq. (12):

so (') =a) +#)

Given the state in the sampling time '' t, ”, the state in some future time

form :

So (r) =–:+:eM (’-’' ) + So0 k ) -eM -(’–’' )

therefore, the state in the next sampling time “ t ,+,

(9)

( 10)

( 11)

(12)

and applying the

(13)

has the following

(14)
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So (rk,1 ) = –;+;eM ('**'-’* ) + So (rt ) . eM (r**:-'* ) (15)

Considering Ar = r „, –1, the sampling period and simplifying the notation replacing “ t, “ by

“ r -’, Eq. (15) results:

S o ( r =F 1 ) = S o ( r ) e e M ( r ) & + Ú (e M ( 1 ) • A / 1 )

(16)

Making:

"* =hk"''»~ –") (17)

Eq. (16) may be rewritten as:

So (r + 1) = So (1) + Tv . l– OUR(t) + K 1a t-) - (So '„ – So (1)) +

O(r) . (So in (r) – So (r))] + e DO (r)
(18)

where the term e„, (r ) has been added to describe measurement noise, sampling and model errors. Here

it is possible to prove, employing Taylor series, that if Ar is small then it is possible to consider

T~ = Ar . Taking 1\t instead of Tv corresponds to a finite difference approximation of the derivative. The

advantage of using 71 as time-varying, is that the sampling period can be made larger. This gives a

more appropriate model since higher order dynamics can be neglected [38] .

In this work the continuous measurements are digitized using a sampling period Ar , and Eq. (1 8)

with time-varying sampling period 7\ , defined in Eq. (17). is used in the implementation of the ''soft

sensor' ' .
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5. Estimation of the DO concentration dynamics

The estimation of Kla and OUR is not easy. Different approaches have been suggested to

estimate these parameters. However, if Kla is known a priori, the OUR value can be determined quite

reliably from the DO mass balance presented in Eq. (8). On the other hand, if OUR is accurately known,

the Kla can be obtained from an input/output gas mass balance, since any input airflow variation

produces a variation in the DO concentration, that resembles a first-order dynamics [3], as can be

clearly seen in Fig. 4. For the second approach, OUR can be measured by a respirometer [39] or it can

be also inferred from na on/off DO control approach [40]. In that case, both Kla and OUR are

5.1 DefInition of the mathematical model

In order to complete the model of Eq. (18) to make it useful for the purposes of this paper. it is

necessary that the models of K,a and OUR be defined.

The oxygen transfer function has been approximated in different ways, as discussed in Bennett

[41 ]. Usually the following assumptions are made, regarding the K 1a function [42]:

1. K 1a can be sufficiently well described as a function of the airflow rate.

2. The parameters of Kla change slowly in comparison with the respiration rate.

3. In most cases it is assumed that Kla is null for zero airflow rates.

A variety of physical models to represent Kla with a brief summary of applications in the

wastewater treatment process is presented in Table 4_
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Table 4
Different models for the oxygen transfer function

Model
Step
Linear A

Linear B

Arctan

Square root

Power

Exponential

Polynomial

Piecewise linear

Cubic spline

ltion

K 1a = [0. k1 ]

K la= k\ . a
K ,a=k, . u + k

K la= k\ tan-1 (k, - a)

K/a=kl .6
kn

K ,a =k, . u
k 11

6 + k3KIa= k\ - u + k
KIa = ac\ + k,_ . t) - u

KIa= /(u)

References
[43], [44]

[38], [45], [46]

[47], [48], [49], [50], [51]

[5], [7]

(Suggested in [38])

[52]

[5], [6], [7], [53], [54]
[53], [55], [56]

[3], [4], [53], [57], [58]
[7], [53]

In table 4, 11 is the airflow rate and k1 , k, and kl are parameters. Here an exponential KIa

model is used, therefore:

K /a(ea1.' (/))= kI - (1 – exp(–k2 . Q „,\ (r))) ( 19)

Regarding OUR, some papers have considered it as being constant [45]. Other authors have

modeled OUR as a time-varying parameter ( OURO) = R(r) ) [38], what is a very crude approach that

may derive biased estimates. A more robust approach considers that OUR can be represented by a time-

series dpproximation. as in [4] and [46] :

OUR(t-) = bQ + b\ - !

where the coefficients {bo.171 } are constant. Due to the time-varying nature of the respiration rate. a

''default" description is to model it as a random walk model, which is reasonable, when no specific

information is available, thus [57. 58]:

OUR(t)=OURÇ.t – 1) + e OUR (r )
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where eC>UR (1 ) is white noise with zero mean. Random walk models have been widely used in several

areas of economy, statistics, physics, chemistry and biology, including modeling of migration of

microorganisms [59]. Some modifications of random walks, as the integrated and filtered random walk

models, have been suggested and have occasionally set profoundly difficult mathematical problems.

In general applications, a filtered random walk model gives a better tracking than a random walk

model or an integrated random walk model [60]. Since a bad tracking of OUR also influences in the

Kla parameters estimation, here it will is used the following filtered random walk model for the

respiration rate [5, 6] :

OUR(t) = (1 – pZ- )(1 – Z-' )e OUR (r)
(20)

where p is a filter parameter.

z-' OURO) = OURO – 1) )

represents the backward shift operator, defined as

In the following discussions, the dynamics of the DO sensors and the airflow valve characteristic

were neglected. Nevertheless, the DO sensors can be modeled as a first-order system [39, 61], and the

actuator dynamic can easily be incorporated in the K 1a model [62].

5.2 Design of the “soft sensor

Having defined the mathematical model for the dynamics of the dissolved oxygen concentration,

it is possible now to design the “soft sensor“ for the simultaneous estimation of the respiration rate and

of the oxygen transfer function in zone 3 of the bioreactor. Taking into account the exponential model

of the oxygen transfer function, defined in Eq. (19). the unknown parameter vector has the form:

O„.,„(,)=[A, A,]’ (21 )
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Supposing that Kla is time varying, then it is possible to write this variation by a random walk

model, in the following manner:

0 X/a (r) = F KIt1 ' 0 K:aCt –l) + G KIa - e KIu (1 ) (22.1 )

where e KIa (r) is zero mean white noise. Eq. (22.1) can be explicitly written as:

:: 11=[á TI'[;:::111*[: 1''„„„,[ (22.2)

On the other hand, considering the filtered random walk model of the respiration rate, defined in

Eq. (20), OUR can be written as:

OURO) = (1 + p) - C)URb –1) – p ' OURO – 2) + e.„, (r) (23)

Rewriting Eq. (23) in a state space form, which is useful for the Kalman filter, results in:

O OURO) = FOUR ' OOUR(} –V + GOUR - eOURÇt)

or

(24.1 )

o : : : (1 ) 1 ) | = [ 1 : P / | • [ : :; : : : : )) | + [ A | • e o u R ( r )[
(24.2)

Now. putting Eqs. (22) and (24) together, it is obtained an expression with the structure of Eq.

(4) of the EKF. where the new parameter vector O and the new process state matrix gain F become

implicitly defined in the following equation:
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1=[11111
OUR(a ii,{,-} 1-[;}}Fi:]*[iil-';:::,OURO – 1)[

(25)

As the system is non-linear, the regressor is derived from the gradient of the prediction error as:

P r (a q o (a 1 ) ) = [ = 1
(26)

where the prediction error is defined as:

e(r) = So (r) – So (1) (27)

with So (/) being the real value and So (/) the estimated value of the dissolved oxygen concentration in

zone 3 of the bioreactor. Using Eq. (18) for the predicted DO concentration in time "f’ and insening it

in Eq. (27) results:

e(r) = So (/) – {So (r – 1) + C . [– O(JR(t – 1) + R laÇQa,r.. (r – 1)) - CS o..,.„ – So (/ – 1)) +

DCt – 1) . (So..111 (/ – 1) – So (r – 1))}

Therefore, the regressor vector is obtained according to:

(28)

„’„."',–'„='*-[“...*«,–'.',–','.–= 1

(29)

(So .b„ – So (/ – 1))- (1 – exp(–a(r)))

pCr. o(/ _ 1)) = T, . bo..,.„ – So (r – ]))- #(r) - exp(–a(/))

0

(30)
1
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with:

aCr) = k, ' O.,. (/ – 1)

PCr) = A, - O„„, (f – 1)

(31 )

(32)

Eqs. (25), (28), (30), (31) and (32) form the “soft sensor“.

5.3 Selection of probing input signals

The importance of the specific probing signal is now considered. It is well know that reliable

parameter estimates can be obtained only if the input is persistently exciting, otherwise the lack of an

adequately updated input may produce an ill-conditioned covariance matrix ( PCr) ) and consequently an

estimator failure [63].

Dissolved oxvgen (DO) concentration in aerated tanks is typically controlled by manipulation of

the airnow rate, which is implicitly represented in Fig. 3. Fig. 4 shows how the DO concentration, in

zone 3 of the bioreactor. reacts to airflow rate changes. The non-linear effect of the airflow rate in the

DO concentration is clearly seen

8
6

5 No
=

4

3

2

3 7 82 4 65
Dme (h)

Airflow rate variation. Lower part: DO responseFig. 4. Upper part
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From an engineering point of view, it would be unjustifiable to alter the airflow rate just to

guarantee persistent excitation, because this quantity is normally adjusted in order to meet the operation

requirements of the process and cannot be varied at will. From a practical point of view, it would be

desirable to perform the estimation by simply varying the airflow rate from a minimum to a maximum

value at prescribed time intervals, with open or closed loop. In closed loop it is necessary to include an

additional signal to the airflow rate or an on/off control.

The lirnits of variation in the airflow rate are very important and they are related to the oxygen

demand of the process. The DO concentration has to be sufficiently high so that the growth of

heterotrophic and autotrophic bacteria is not limited due to lack of oxygen. Usually the autotrophic

microorganisms are more sensitive to low concentrations than the heterotrophic microorganisms.

Excessively high DO concentrations increase energy consumption and deteriorate the process

performance since they reduce the sludge quality and make the denitdfication (in a nutrient removal

process) less efficient, due to the internal recycle. Likewise, low DO concentrations lead to bad quality

sludge and less efficient pollutant removal.

Biological degradation of carbonaceous organic matter occurs when the DO concentration is

above a threshold limit of about 1 mg 02/1 (equivalent to 1 mg (-COD)/1 using the units of the model)

On the other hand, nitrification requires higher oxygen concentrations. Nitritification needs oxygen

concentrations higher than 3 mg 02/1, while the nitratification requires more than 5.5 mg O2/1 for

optimal results. The right DO concentration is always a balance between economic and biological

needs, however practical experience shows that 2 mg O2/1 is usually a good choice for satisfactory

performance.

Here. in order to generate rapid changes in the DO concentration to obtain good estimates,

without strongly innuencing the process performance. the signal input corresponds to open-loop

random disturbances in the airflow rate Qulr., , between 0.01 and 0.09 m3/h which cause variations in the

DO concentration in the zone 3 between 0.5 and 5 mg Oz/l. These disturbances have a negligible effect
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in the DO concentration in zone 2 of the bioreactor, which is kept almost constant in its nominal value

of 2 mg O2/1. The airflow rate was changed each 8.3 min, corresponding to the time constant of the

process in open loop ( 71,p„, ) for a 100% variation in the nominal value of Q„R . In a typical large scale

plant the nominal dissolved oxygen concentration time constant is about 20-30 minutes [42]. In this

paper all the signals were sampled with a sampling period Ar =0.1' T ítpcn = 49.8sec. The DO

measurements are considered uniform in the zones (in a real plant it depends on the location of the

sensor) and it is assumed that the saturated oxygen concentration is So Na, = 8.65 mg O2/1.

The large variations in the airflow rate used for the estimation and the corresponding dissolved

oxygen concentration are shown in Fig. 5. To test the estimator with more realistic conditions,

simulations with noise measurements were performed. A Gaussian process (white noise with zero mean

and standard deviation 0.05) was generated and added to the dissolved oxygen concentration produced

by the benchmark. A time horizon of 8 hours was considered sufficient for this study based on

simulati on.

Time ( h)

Data input for estimation. Upper part: Airflow rate variation in zone 3
Lower part: Dissolved oxygcn concentration in zone 3.
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5.4 Choice setup conditions

Before starting to test the “soft sensor” it is necessary to determine the initial conditions and the

value of some parameters in the estimation algorithm. Some criteria were used to choose these initial

conditions and these parameters are next presented.

1. Choosing 0(0) and P(0)

The initial estimated vector O(0) is usually adjusted to zero, unless some a priori information is

available. The initial covariance matrix P(O) is normally specified as a diagonal matrix P(0) = cl ,

where c is a large positive number, such as 104 or 106 , which indicates the diffidence of the user in

choosing O(0) , besides providing a fast convergence of the estimated parameters. Small values of c

make O(/) to change slowly.

2. Choosing R,

The matrix Rl represents the covariance matrix of the observed noise eo (r) and reflects the

variations of the time-varying parameters in O(r) and has, in general, to be tried out. Setting R\ =0

implies no tracking capability, since K(r) goes to zero when t 4 '' . Hence to be able to track time-

varying parameters it is necessary to set Rl > 0 .

From equation (25):

„„,='-[:;1',',’,]

Then, the covariance matrix R, is defined as:
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R ] = E e o ( / ) e á ( / ) = [ Ee ? ( / )

0

GGT Ee}uR (r)_
(33)

As Eej1, (/) and Ee%uR (/) are usually unknown, norma11y R1 is taken as a constant diagonal

matrix of the form:

a1 0 0 0

,,=: “.= = :
0 0 0 a4

(34)

The diagonal elements of /?1 are determined by trial and error, considering the compromise

between sensibility to time variations and rejection to noise effects. These diagonal elements influence,

in different forms, the estimates of the parameters of K 1a (assumed as constant or very slowly

changing) and the time-varying respiration rate. a1 and a, are related to the rate of change of the

parameters of the oxygen transfer function. Assigning large values for these parameters causes a bias in

tracking the respiration rate. Here they are set to zero. a3 reflects the rapid variation of the respiration

rate. A large value provides a faster tracking but generates more noise effects. On the other hand a small

value provides a slower tracking but derives less noise effects. a3 also depends on the filter pole in the

filtered random walk model. If p is close to 1, a smaller a3 should be selected. a4 is always set to

zero, due to the model adopted for OUR

3. Choosing p

The filter pole p is used to adjust the phase of the time variation of the respiration rate. It is

chosen to be between 0.9 and 1. When p is close to 1, the estimated respiration rate is greatly affected
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by noise. As mentioned before, the choice of p is strongly related to the choice of the element a, in

matrix R, , both of them related to the estimation of OUR.

4. Choosing 2

In the basic EKF algorithm, rz represents the variance of the measurement noise e DO (/) , and it is

defined as:

rz = Ee DO (1)eLo (r) = Ee}>o (r) (35)

Generally Ee}o (r) is unknown, which makes difficult its implementation. This inconvenient is

resolved by the use of the factor 2 in the modified EKF, since the practical considerations of how using

2 are better knowns.

As can be seen in Eq. 6, the effect of exponential weighting factor (0 < 251 ) is to prevent the

elements of P(/) from becoming too small. This makes the filter more sensitive to deviations between

the actual and estimated outputs, improving the adjustment of O(r ) . On the other hand, when the output

y and the input u are close to zero (no excitation), then PQ – 1)9(/) –> 0 and K(r) –> 0. Hence PCr)

grows exponentially until 9(r) changes. When 2 = 1, all data are weighted equally, generating a

slower convergence but providing a better robustness against noise effects. When 0 < 2 < 1, more

weight is placed on recent measurements than on older ones, deriving a rapid convergence but with

more noise influence.

SeIecting 2 = 1 , the robustness against noise is provided through the choice of the parameter

a, in R, . If /1 < 1 , the matrix Rl is affected and, therefore, a bad tracking of OUR and biased K 1a -

parameters are obtained.

25



All those criteria must be carefully taken into account to obtain an adequate performance, since

the value selected for a parameter will influence the choice of the others. After a series of simulations,

the following setup conditions were chosen, as shown in Table 5.

Table 5
Setup conditions used in the simulations

Description
Initial parameter vector

Initial covariance matrix factor

Observed noise covariance matrix element

OUR filter pole

Forgetting factor

o(o) = [10
c = 106

a3 = 0.013
P = 0.93
2=1

Value
10 10

5.5 Pel{ormance evaluation of simulation results

As mentioned previously, the “soft sensor“ was tested in the ASWWFP-USP benchmark, which

simulates all the biological and biochemical phenomena that occur in a real activated sludge plant. The

estimation procedure is implemented according to the block diagram shown in Fig. 6, which is a good

approach because the model is kept in the traditional continuous form while the measurements are

conveniently digitized using a zero-order hold network, reflecting what might be the implementation of

a real case.
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Fig. 6. Software implementation of the estimation procedure.

The performance of the “soft sensor” to estimate the respiration rate and the oxygen transfer

function is discussed next. As can be seen in Fig. 7, the estimation of OUR and the Kla -parameters are

unbiased. The upper part shows how the estimator, after a short period, tracks very well the changes of

the respiration rate. The middle part presents the good fitting of the nonlinear oxygen transfer function.

In this case, the estimated oxygen transfer function is obtained with the last estimated value of the

K 1a -parameters, i.e. k1 = 12.0759 h-1 and k, =10.0343 h/m3, and compared with the K 1a function

implemented in the benchmark (k1 =12.5 h-1 and k, =10.08 h/m3). Although using a much higher

airtlow rate than in the estimation, the curves were quite similar. The lower part shows the excellent

fitting between the measured and estimated DO concentration, The time variation of the amplitude of

the sampling period 7\ is shown in Fig. 8.
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im h

Fig. 8. Time-varying sampling period

The results obtained with time-varying sampling period are compared with the results obtained

using T, = Ar , as shown in Table 6, where a discrete version of the integral square error (ISE) is used as

performance index ( J ). The use of 7, = Ar generated a biased estimation of OUR. what affected

mainly the estimation of the parameter k, . This fact deteriorated the estimation of the system

dynamics. increasing the value of the performance indexes.

Table 6

Comparison of performance using a time-varying sampling period ( 7\. ) according Eq. (17) and a
constant sampling time 7„ = Ar

/ a -parameters and performance
index

12.5 h'k

Ar . E (KIa(i) – R /a(i))J
K lu

1=

J OUR = 7, (/) .1(OURO – OÜ(1))
1=

T, 0 . E (s,, ('') – j. (''))21 DO
1=

Estimated with
time-varying Tl

12.0759

10.0343

0.5563

Estimated with

Tv =A/
12.0730

9.4592

1.2947

25 1 .0387

0.2475

352.6668

0,2624

Despite a small variation rate in 7, (around 2 seconds), the simulations have shown that the

results obtained with a time varying Tb were much better than the ones using a constant T* .
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Applying the estimated values of the parameters k1 e k, in Eq. (19) that describes the oxygen

transfer function and using Eq. (18) that describes the mass balance of the DO concentration, it is

possible to monitor on-line the oxygen transfer function and the respiration rate. Those two variables

may be utilized to implement advanced control strategies, as respirometry based-control.

As an application example, it is shown in Fig. 9 the values of OUR and the K 1a function

calculated from the estimated parameters k1 = 12.0759 h-1 and k, =10.0343 h/m3. for airnow

variations according to Fig. 5. The calculated OUR signal is filtered using a first-order exponential

digital filter of the form:

OUR 1 (r) = a ' OUR, (r) + (1 – a) ' OUR1 (1 – 1) (36)

with a =0.15 .
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6. Conclusions

In this paper, the biological activity of a colony of aerobic microorganisms present in a pre-

denitrifying activated sludge process, is inferentially estimated through a “soft sensor” developed for

the simultaneous estimation of the bacterial respiration rate and the oxygen transfer function.

The only need of previous knowledge about the complex dynamics of the dissolved oxygen

concentration in the activated sludge process corresponds to a mass balance mathematical model, where

the respiration rate is modeled using a filtered random walk model and the oxygen transfer function is

modeled by an exponential model. As the estimation algorithm it was employed a modified version of a

discrete EKF with time-varying sampling period. The data were acquired from an activated sludge

process benchmark, that simulates a real plant. The obtained results have shown that the used

methodology was successful in estimating both OUR and the K ia function.

In a real application the estimation procedure has to be executed in two steps. First. an

estimation, as the one developed in this paper, where the simultaneous estimation of OUR and Kla is

performed aiming to obtain a model of the oxygen transfer function. Second, the obtained model of

Kla is used to calculate OUR employing Eq, (8), that describes the mass balance of the dissolved

oxygen. In this way it would be possible to get an on-line estimate of the microbial activity in the

biological system related to effluent treatment. So, the “soft sensor” here presented constitutes a

valuable tool to monitor and control the activated sludge process.
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