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A B S T R A C T

We explore the ground states of strongly interacting bosons in the vanishingly small and weak
lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB)
which calculate numerically exact many-body wave function. Two new many-body phases:
fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator
(QMI) are emerged due to the strong interplay between short-range contact interaction and
lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new
phases. We utilize the eigenvalues of the reduced one-body density matrix and define an
order parameter that characterizes the pathway from a very weak lattice to a deep lattice.
We provide a detailed investigation through the measures of one- and two-body correlations
and information entropy. We find that the structures in one- and two-body coherence are good
markers to understand the gradual built-up of intra-well correlation and decay of inter-well
correlation with increase in lattice depth. For the dipolar interaction, the many-body features
become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for
incommensurate fraction of particles, incomplete localization happens that exhibits distinct
features in the measure of two-body coherence.

. Introduction

Ultracold atomic gases provide unprecedented experimental control to study complex many-body systems in lattice [1–3].
xperimentally it is quite straightforward to tune the lattice depth of the periodic optical potential and subsequent study of different
hases of ultracold atoms [4–7] The interplay between the lattice depth and interatomic interaction triggers the superfluid-to-
nsulator transition commonly known as Mott transition [6,8,9]. The Mott transition takes place in deep lattice which is characterized
y a high localization of the atoms and theoretically the Bose-Hubbard (BH) model essentially captures the underlying process [10].
ater, many different extensions of the standard BH model have been introduced, specially when interatomic interactions are strong
nough which leads to interesting phenomenon [11]. Nevertheless, there are open questions on the validity of BH model for ultracold
ases in shallow lattice. In many aspects, the experiments with ultracold atoms in shallow lattice are easily realized. In Refs. [12,13],
mplitude of the periodic optical potential is varied from zero to large value and the Mott transition in the shallow lattice has been
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observed by modulation spectroscopy and transport measurements. The pinning transition in the vanishing lattice is described by
(1+1) quantum sine–Gordon model [14]. Later, complete phase diagram of the continuous model is mapped out [15–18] and it is
demonstrated that the sine–Gordon model used for shallow lattice is insufficient.

In the present work, we address the system implemented in the experiment [12], one dimensional strongly interacting bosons
n optical lattice of variable strength. The main purpose of the work is to understand the correlation of the strongly interacting
ew bosons system in vanishing lattice utilizing numerically exact solution of Schrödinger equation. The study of strong quantum
orrelation in a smaller system with a very finite number of interacting particles are receiving special interest in the recent
xperiments [19,20]. We use the multiconfigurational time-dependent Hartree method for bosons (MCTDHB) [21–27], implemented
n the MCTDH-X software [28,29].

We observe strong competition between the dimensional confinement and quantum correlation. We find the emergent phases
or strongly interacting bosons in extremely weak lattice are neither the ideal superfluid (SF) nor the ideal Mott (MI) phases. In the
imit of shallow potential, when the lattice effect is subrelevent, many-body phases are organized and controlled by the quantum
orrelation originated from strong interatomic interaction. The many-body physics of such strongly correlated system lies beyond
he scope of BH model [9,30]. We utilize ‘fragmentation’ as the key measure to distinguish the emergent phases. We quantify
‘excited fragmentation’’ as the fraction of atoms contributed by the other natural orbitals except the one with the largest occupation.
ragmentation is the hallmark of MCTDHB which utilizes multiorbitals ansatz and the strongly interacting bosons may be fragmented
ven in a very weak or vanishingly small lattice.

The present work provides a complete path for varying lattice depth 𝑉0 = 0.1𝐸𝑟 to 8.0𝐸𝑟, for fixed inter-atomic interaction which
orresponds to strongly interacting repulsive bosons. We follow the zero temperature phase diagram of the continuous model of
ef. [17]. The critical value of Lieb Liniger parameter at the vanishing lattice is 𝛾𝑐 = 3.65. The effective coupling constant of Lieb

Liniger model (𝛾) is related to the two-body interaction strength (𝜆0) by 𝛾 = 𝑚𝜆0
ℏ2𝑛

, where 𝑛 = 𝑁
𝐿 is the density of the gas and 𝐿

s the length of the system. We obtain 𝜆0 = 1.05 which corresponds to critical value of Lieb Liniger parameter in the vanishing
attice. To observe how the competition between the lattice depth and interatomic interaction affect the inter-well correlation in
hallow lattice, we keep 𝜆0 fixed in the entire calculation. We extract one-body and two-body correlations utilizing numerically
xact many-body wave function. The system consists of 𝑁 = 3 strongly interacting bosons in 𝑆 = 3 three lattice sites. This elemental

building block is able to capture all essential many-body physics in the larger lattice. In our small ensemble, the term ’quantum
phase’ is not rigorously applicable. However, the calculated many-body states can be taken as few-body precursor of thermodynamic
phases. For clarity we term the few-body states as ‘phase’. The two key measures : fragmentation and Glauber correlation functions
are utilized to describe the highly correlated phases in varying lattice depth. For almost vanishing lattice (𝑉0 ≃ 0.5𝐸𝑟); several
natural orbitals have significant population; thus the many-body phase is fragmented. It also exhibits strong diagonal correlation
and weak off-diagonal correlation in one-body and clear signature of anti-bunching effect in two-body correlations. It is not a SF
phase which is designated by macroscopic occupation in one single orbital and uniform global correlation across the lattice. It is
also not a Mott phase as it does not exhibit complete localization in each well. Quantitative measures as discussed in the result
section establish that the many-body phase is best diagnosed as fragmented superfluid or quasi SF (QSF) phase. For weak lattice
(𝑉0 ≃ 2.0𝐸𝑟); the system becomes more fragmented but does not exhibit 𝑆-fold fragmentation. The diagonal correlation in one-body
becomes stronger at the cost of weaker off-diagonal correlation. So the many-body phase is close to Mott but not a perfect Mott. The
quantitative estimates establish that the many-body phase can be designated as incomplete fragmented Mott or quasi-Mott (QMI)
phase. For larger lattice depth (𝑉0 ≃ 8.0𝐸𝑟), completely fragmented Mott phase is achieved.

We repeat the calculation with long-range dipolar interaction, Eq. (3) with 𝑔𝑑 = 1.05. The long-range tail of the dipolar interaction
nhances the fragmentation and the strongly interacting dipolar superfluid is more fragmented and correlated compared to the
ontact interaction. The dipolar interaction does not lead to any new phases, the quasi superfluid and quasi Mott phases exhibit
trong intra-well correlation. The transition from quasi SF to quasi Mott and fully fragmented Mott in deep lattice happens very
ast.

We also study the phases for shallow incommensurate lattice which is more susceptible to the case of commensurate lattice
aving exact number of particles compared to the number of wells. For filling factor 𝜈 = 𝑁

𝑆 < 1, there will always be a delocalized
raction of particles and on-site interaction effect is not manifested due to low population. For 𝜈 > 1, the extra delocalized particles sit
n the commensurate background of localized particles. Both cases of incommensurate lattice features rich many-body correlation.

The quasi-many-body phases and correlations are studied by the key quantities: (a) occupation in natural orbital, (b) excited
ragmentation, (c) order parameter (d) delocalization in Fock space (e) one-body and two-body correlations and (f) information
ntropy measures. All these measures are synchronized and clearly define the many-body phases in vanishing to weak to deep
attices. We observe that in the shallow lattice, the quasi many-body phases are always fragmented which is beyond the scope
f mean-field theory and Bose-Hubbard model. The inter-well and intra-well correlation are the possible measures which can be
xperimentally determined in the set up of very weak lattice.

The paper is organized as follows. In Section 2, we introduce the theoretical framework. Section 3 introduces the quantities of
nterest. In Section 4, we present the results. Section 5 concludes our observations.

. System and method

For 𝑁 bosons in a quasi-one-dimensional optical lattice, the Hamiltonian is

𝐻̂ =
𝑁
∑

ℎ̂(𝑥𝑖) +
𝑁
∑

𝑊 (𝑥𝑖 − 𝑥𝑗 ) (1)

𝑖=1 𝑖<𝑗=1

2 
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ℎ̂(𝑥) = 𝑇̂ (𝑥)+𝑉𝑡𝑟𝑎𝑝(𝑥) is the one-body Hamiltonian. 𝑇̂ (𝑥) is the kinetic energy operator; 𝑇̂ (𝑥) = − 1
2
∑𝑁
𝑖=1

𝜕2

𝜕𝑥2
and 𝑉𝑡𝑟𝑎𝑝(𝑥) is the external

trapping potential. 𝑉𝑡𝑟𝑎𝑝(𝑥) = 𝑉0 sin
2(𝑘𝑥). 𝑉0 is the depth of the potential and 𝑘 is the wave vector. 𝑊 (𝑥𝑖 − 𝑥𝑗 ) is the two-body

interaction potential. For contact interaction

𝑊 (𝑥𝑖 − 𝑥𝑗 ) = 𝜆0𝛿(𝑥𝑖 − 𝑥𝑗 ) (2)

where 𝜆0 is the interaction strength determined by the scattering length and the transverse confinement frequency. For the
long-ranged dipolar interaction

𝑊 (𝑥𝑖 − 𝑥𝑗 ) =
𝑔𝑑

|𝑥𝑖 − 𝑥𝑗 |
3 + 𝛼0

(3)

𝑑 is the pure dipolar interaction strength; 𝑔𝑑 = 𝑑2𝑚
4𝜋𝜖0

for electric dipoles and 𝑔𝑑 = 𝑑2𝑚𝜇0
4𝜋 for magnetic dipoles, 𝑑𝑚 being the dipole

oment, 𝜖0 is the vacuum permittivity, and 𝜇0 is the vacuum permeability. 𝛼0 is the short-range cutoff to avoid singularity at 𝑥𝑖 = 𝑥𝑗 .
We choose the cut-off parameter such that the effective interaction 𝑉eff = ∫

𝑔𝑑
𝑥3+𝛼0

d𝑥 = ∫ 𝛿(𝑥)d𝑥 = 1, where the  = [−4.71, 4.71]
encompasses the entire simulation domain. We consider three lattice sites with periodic boundary conditions, the strong transverse
confinement ensures a quasi-1D trap. We choose strong repulsive interaction of strength 𝜆0 = 𝑔𝑑 = 1.05 for the entire simulation. We
rescaled the Hamiltonian by the lattice recoil energy 𝐸𝑟 =

ℏ2𝑘2

2𝑚 to achieve the convenient dimensionless units; ℏ = 𝑚 = 𝑘 = 1. The
scaled triple well potential is given by 𝑉𝑡𝑟𝑎𝑝(𝑥) = 𝑉0 sin

2 𝑥. The length and time units are given in terms of 𝑘−1 and ℏ
𝐸𝑟

respectively.
All quantities are in dimensionless units throughout.

The MCTDHB method represents a bosonic variant within the broader family of MCTDH methodologies [31–40] in which,
the many-body wavefunction is constructed as a linear combinations of the time dependent permanents and time-dependent
complex-valued coefficients,

|𝜓(𝑡)⟩ =
∑

𝑛

𝐶𝑛(𝑡)|𝑛; 𝑡⟩, (4)

where

|𝑛; 𝑡⟩ = |𝑛1, 𝑛2,… , 𝑛𝑀 ; 𝑡⟩ =
𝑀
∏

𝑖=1

[

(𝑏†𝑖 (𝑡))
𝑛𝑖

√

𝑛𝑖!

]

|vac⟩. (5)

Each operator 𝑏†𝑘(𝑡) creates a boson occupying the time-dependent single-particle state (orbital) 𝜙𝑘(𝑥, 𝑡). Note that the expansion
coefficients

{

𝐶𝑛(𝑡)
}

as well as orbitals
{

𝜙𝑖(𝑥, 𝑡)
}𝑀
𝑖=1 that build up the permanents |𝑛; 𝑡⟩ are explicitly time dependent and fully

variationally optimized quantities [22,24]. For 𝑁 bosons distributed over 𝑀 orbitals, the number of permanents become 𝑁𝑐𝑜𝑛𝑓 =
(

𝑁 +𝑀 − 1
𝑁

)

. Thus, in the limit of 𝑀 → ∞, the wave function becomes exact, and the set |𝑛1, 𝑛2,… , 𝑛𝑀 ⟩ spans the complete

𝑁-particle Hilbert space. For practical calculation, we restrict the number of orbitals to the desired value requiring the proper
convergence in the measured quantities. Compared to a time-independent basis, as the permanents are time-dependent, a given
degree of accuracy is reached with much shorter expansion [41,42]. We also emphasize that MCTDHB is more accurate than exact
diagonalization which uses the finite basis and is not optimized. Whereas in MCTDHB, as we use a time adaptive many-body basis
set, it can dynamically follow the building correlation due to inter-particle interaction [23,24,43,44] and it has been widely used
in different theoretical calculations [45–51]. To get the ground state, we propagate the MCTDHB equations in imaginary time. As
in the shallow lattice, the many-body wavefunction shows strong fragmentation—we discuss the issue of convergence of simulation
with MCTDHB. The convergence is ascertained in the following ways. We systematically increase the number of orbitals until the
basic measures like occupation in natural orbitals and degree of fragmentation converge. Additionally, the convergence is further
confirmed when the occupation in the highest orbital is negligible.

3. Quantity of Interest

3.1. Natural occupation and excited fragmentation

Natural occupation and the excited fragmentation are the two key measures to understand the transition from QSF to QMI to
MI with increase in lattice depth. Excited fragmentation is defined as the fraction of atoms that do not occupy the lowest eigenstate
of the reduced one-body density matrix or the contribution coming from other orbitals except the one that is maximally populated.
The reduced one-body density matrix is

𝜌(1)(𝑥, 𝑥′) =
∑

𝑘
𝜌(𝑁𝑂)𝑘 𝜙∗(𝑁𝑂)

𝑘 (𝑥)𝜙(𝑁𝑂)
𝑘 (𝑥′). (6)

𝜙(𝑁𝑂)
𝑘 (𝑥) are the eigenfunctions of 𝜌(1) and known as natural orbitals. 𝜌(𝑁𝑂)𝑘 are the eigenvalues of 𝜌(1) and known as natural

occupations. In the mean-field perspective, when one single natural orbital is occupied, 𝜌(1) has only a single macroscopic eigenvalue,
and the many-body state is non-fragmented. The excited fragmentation (𝐹 ) becomes zero. However multi-orbital ansatz facilitates
to study of the beyond mean field picture-several natural orbitals may exhibit significant population and 𝐹 may become non-zero.

The corresponding state is fragmented.

3 
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3.2. Order parameter

We define an order parameter

△ =
∑

𝑖

( 𝑛𝑖
𝑁

)2
(7)

where 𝑛𝑖 is the natural occupation in 𝑖th orbital. For the SF phase, △ = 1 and only one eigenvalue is nonzero. For the Mott phase,
the number of significantly contributing orbitals becomes equal to the number of sites in the lattice, and △ = 1

𝑆 , 𝑆 is the number
f lattice sites. Thus △ = 1 and △ = 1

𝑆 are the two extreme values for the two known phases. We find △ is a good marker to
identify the QSF and QMI phases in the shallow lattice.

3.3. Glauber correlation function

Understanding a quantum many-body phase implies understanding the role of correlations. For a strongly interacting system,
correlation functions of higher orders are necessary to understand the complex phases. The 𝑝th order Glauber correlation function
𝑔(𝑝)(𝑥′1,… , 𝑥′𝑝, 𝑥1,… , 𝑥𝑝; 𝑡) measures degree of spatial coherence and correlations within the system. It is defined as:

𝑔(𝑝)(𝑥′1,… , 𝑥′𝑝, 𝑥1,… , 𝑥𝑝) =
𝜌(𝑝)(𝑥1,… , 𝑥𝑝|𝑥′1,… , 𝑥′𝑝)

√

∏𝑝
𝑖=1 𝜌

(1)(𝑥𝑖|𝑥𝑖)𝜌(1)(𝑥′𝑖|𝑥
′
𝑖)
. (8)

where 𝜌(𝑝)(𝑥′1,… , 𝑥′𝑝|𝑥1,… , 𝑥𝑝) is the 𝑝th order reduced density matrix and describes the joint probability distribution of finding 𝑝
particles at specific positions and defined as

𝜌(𝑝)(𝑥′1,… , 𝑥′𝑝|𝑥1,… , 𝑥𝑝) =
𝑁!

(𝑁 − 𝑝)! ∫
𝑑𝑥𝑝+1,… , 𝑑𝑥𝑁𝜓

∗(𝑥′1,… , 𝑥′𝑝, 𝑥𝑝+1,… , 𝑥𝑁 )𝜓(𝑥1,… , 𝑥𝑝, 𝑥𝑝+1 … , 𝑥𝑁 ). (9)

he diagonal elements of 𝑔(𝑝)(𝑥′1,… , 𝑥′𝑝, 𝑥1,… , 𝑥𝑝), denoted as 𝑔(𝑝)(𝑥1,… , 𝑥𝑝), provide a measure of 𝑝th order coherence. If
|𝑔(𝑝)(𝑥1,… , 𝑥𝑝)| = 1, the system is fully coherent, while deviations from unity indicate partial coherence. Specifically, 𝑔(𝑝)(𝑥1,… , 𝑥𝑝) >
1 implies correlated detection probabilities at positions 𝑥1,… , 𝑥𝑝, while 𝑔(𝑝)(𝑥1,… , 𝑥𝑝) < 1 indicates anti-correlations. These measures
collectively provide valuable insights into the evolving density profile, coherence and are especially useful to understand the
interplay between inter-well and intra-well correlations.

3.4. Many-body entropy

We employ the measures of information entropy as another marker to understand the pathway from QSF to QMI and finally
to the MI phase. In general, the Shannon information entropy calculated from one-body density is chosen as the ideal quantity
to establish a universal relation between entropy and the number of interacting particles for diverse systems like atoms, nuclei
and clusters [52–54]. However for strongly correlated bosons, measures of Shannon information entropy are insufficient as they are
insensitive to interatomic correlation that is present in the many-body state. In the shallow lattice, as several natural orbitals exhibit
significant population, we define an equivalent measure of information entropy called occupation entropy or number entropy.

𝑆𝑛 = −
∑

𝑖
𝑛𝑖[ln 𝑛𝑖]. (10)

𝑆𝑛 is an entropy obtained from the natural occupation. For the Gross Pitaevskii mean-field theory, 𝑆𝑛 = 0 always as there is only one
natural occupation 𝑛1 = 𝑛1

𝑁 = 1. For multi-orbital theories, several occupation numbers can be different from 0, and the magnitude
f 𝑆𝑛 indicates how well the state could be described by a mean-field approach. In the SF phase, a single orbital is sufficient to
escribe the state, resulting 𝑆𝑛 equals to zero. Conversely, in the Mott insulator phase, the system becomes 𝑆-fold fragmented, 𝑆𝑛
ill exhibit non-zero values. We utilize the Gaussian Orthogonal Ensemble (GOE) theory for comparative analysis [44,55,56]. Thus,
uring the transition from the SF to MI phase, 𝑆𝑛 makes a transition from nonzero minimum value to the GOE value, facilitating the
etection of intermediate phases such as quasi-superfluid (QSF) and quasi-Mott insulator (QMI). For long range dipolar interaction,
he system is already in a maximally fragmented state, initially 𝑆𝑛 is larger than GOE prediction and with increase in lattice depth
𝑛 gradually decreases to reach to GOE prediction.

. Results

.1. Fragmentation and order parameter

Our set up consists of 𝑁 = 3 bosons in triple well set up 𝑆 = 3 with periodic boundary condition. Interaction strength is fixed
o 𝜆0 = 1.05 for contact interaction and 𝑔𝑑 = 1.05 for dipolar interaction. We run simulations with 512 grid points in an interval
𝜖{− 3𝜋

2 ,+
3𝜋
2 }. We fix the number of orbitals to 𝑀 = 9 both for contact interaction and dipolar interaction, when the occupation in

he last orbital becomes insignificant. We have also validated the convergence of our calculations by repeating the computations with
= 12 orbitals, consistently yielding identical results for the measured quantities. A detail calculation for convergence is provided in

ppendix. We demonstrate how the natural populations in different orbitals are used to construct the mesoscopic ‘‘order parameter’’.
4 
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Fig. 1. (a) Natural occupations for contact interaction with 𝑀 = 9 orbitals. (b) Natural occupations for dipolar interaction with 𝑀 = 9 orbitals. (c) Fraction
f atoms outside the natural orbital having maximum occupation. (d) Order parameter, all as a function of lattice depth 𝑉0 and for fixed interaction strength
0 = 𝑔𝑑 = 1.05, three interacting bosons in three wells. The emergence of fragmentation and subsequent growth in fragmentation, signify that the system enters
strongly correlated phase with increase in lattice depth. All quantities are dimensionless, see text for additional details.

Fig. 2. Delocalization in Fock space in the fragmented SF (QSF) and incomplete fragmented MI (QMI) states. The distribution of the magnitude of the coefficients
is shown as a function of the index for the choice of 𝑉0(in the unit of 𝐸𝑟) = 0.3, 0.5, 1.0, 2.0. The left column corresponds to the contact interaction and the right
olumn corresponds to dipolar interaction. The transition from QSF to QMI is exhibited by the transition from partial delocalization to complete delocalization
n Fock space. All quantities are dimensionless.

he concept of order parameter is generally used in the thermodynamic limit. However, for our choice of a small ensemble, the
round state properties that are presented here are analogous to the macroscopic phases. The few-body physics remains the same
ith five bosons in five wells. Thus ‘‘order parameter’’ can be taken as a finite-sized precursor of the quantum phases.

Figs. 1(a), 1(b) show the plots of the eigenvalues 𝜌(𝑁𝑂)𝑘 for contact and dipolar interaction respectively. In both cases, orbital
ccupations are plotted for 𝑀 = 9 orbitals. We need to mention here that 𝑀 = 9 orbitals are sufficient to demonstrate well converged
esults for contact interaction as well as for dipolar interaction. For contact interaction (Fig. 1(a)), only the first three orbitals
5 
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Fig. 3. First-order coherence of the fragmented SF (QSF), incomplete fragmented MI (QMI) states. The normalized first-order correlation function |𝑔(1)(𝑥, 𝑥′)|2 is
plotted for various lattice depth. The left column corresponds to contact interaction and the right column corresponds to dipolar interaction. For the fragmented
SF phase with contact interaction, in the vanishingly small lattice, structureless diagonal correlation, as well as off-diagonal correlation, are exhibited. Whereas
for dipolar interaction, strong diagonal correlation and lattice structure are seen, the vanishing off-diagonal correlation demonstrates localization even in such
weak lattice. With the increase in the lattice depth, the lattice effect and interatomic interaction compete and result in incomplete fragmented Mott (QMI). The
structure in the diagonal line develops, but the off-diagonal correlation is not completely lost for contact interaction. For dipolar interaction the correlation
function is characterized by three distinct Mott lobes with |𝑔(1)|2 ≃ 1 along the diagonal and |𝑔(1)|2 ≃ 0 on the off-diagonal. Thus, the first-order coherence is
maintained within wells and completely lost between the wells. All quantities are dimensionless.

(

𝜌(𝑁𝑂)1 , 𝜌(𝑁𝑂)2 , 𝜌(𝑁𝑂)3

)

exhibit significant contribution for the entire simulation. Initially for almost vanishing lattice (𝑉0 = 0.1𝐸𝑟),
the lowest orbital has close to 90% population, and the other two orbitals contribute close to 5% (each). So the state is not a
superfluid with configuration. However, as the population in the first natural orbital is significantly high compared to the two other
orbitals, we call it fragmented SF or QSF. With an increase in lattice depth, 𝑉0, the occupation of the first natural orbital gradually
decreases, and that in the second and third natural orbitals increases which leads to complete three-fold fragmentation for deep
lattice (𝑉0 = 8.0𝐸𝑟). In weak lattice, the many-body state is not exactly three-fold fragmented, but the population imbalance in the
lowest three orbitals is minimum, we call it the incomplete fragmented Mott phase (QMI). At deep lattice three-fold fragmentation
is described by 33.3% population of each three lowest orbitals, it is the unique feature of the MI phase. Thus strongly interacting
bosons in shallow lattices exhibit two new many-body phases, termed QSF and QMI. They are the hallmark states of MCTDHB and
beyond the scope of any other existing model calculations. These QSF and QMI states can be distinguished from SF and MI states by
the measures of one-body and two-body Glauber correlation functions. For dipolar interaction, (Fig. 1(b)), the dipolar bosons are
strongly fragmented with close to 60% population in the first orbital and 15% population in the second and third orbitals. We also
find small contribution from the fourth and fifth orbital. The many-body state is strongly fragmented superfluid. With increase in
lattice depth, population in the second and third orbitals increase at the cost of reduction in population in the first orbital. Compared
to the contact interaction, three-fold fragmented Mott state is achieved close to 𝑉0 = 6.0𝐸𝑟.

We quantify the degree of fragmentation by introducing excited fragmentation (𝐹 ). 𝐹 determines the fraction of atoms that are
outside the natural orbital of the highest population. In Fig. 1(c), we plot 𝐹 as a function of varied lattice depth. As 𝐹 > 0 for the
entire range of lattice depth, the system is always fragmented. With the increase in 𝑉0, fragmentation increases, and at the deep
lattice, it saturates to 0.66 which refers to a three-fold fragmented Mott localization and can be configured as a number state |1, 1, 1⟩.
For dipolar interaction fragmentation is always higher than that for contact interaction and quickly saturates to 0.66. To get more
insight into the fragmented SF and non-fragmented Mott phase, we introduce an order parameter (Eq. (7)). In Fig. 1(d), we plot △
for various lattice depth potentials. The two extreme limits are 1.0 for SF and 1

𝑆 =0.33 for true MI states. The order parameter does
not coincide with the SF or MI phases for vanishingly small and weak lattices. Fig. 1(d) clearly exhibits that the order parameter
scales QSF to QMI to MI phases. For strongly fragmented dipolar superfluid the order parameter smoothly translated from QSF in
the vanishing lattice to MI in deep lattice.

We conclude that the SF phase is always fragmented in the shallow lattice, introducing long-range dipolar interaction,
fragmentation is enhanced. The effect of long-range tail is observed only when the lattice is very weak and the interaction dominates.
6 
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For deep lattice, the physics is determined by the lattice depth and all many-body measures become identical for the fragmented Mott
phase irrespective of the range of interaction. We are unable to distinguish the full blown three-fold fragmented states of contact
interaction from those with dipolar interaction. It needs further investigation of one-body and two-body correlation functions. We
also perform calculations with various 𝜆0, but do not observe any new phases. With increase in 𝜆0, fragmentation is enhanced and
transition to Mott localization in deep lattice happens faster. For very strong dipolar interaction, true Mott localization happens
even in vanishing lattice.

4.2. Delocalization in Fock space

The pathway from fragmented SF to incomplete fragmented Mott state to one-third fragmented Mott state can be well understood
by the ‘‘partial delocalization to complete delocalization’’ in the many boson Fock space. In Fig. 2, we plot the expansion coefficients
|𝐶𝑛|

2 as a function of the index of the basis states for various choices of lattice depth, 𝑉0(in units of 𝐸𝑟) = 0.3, 0.5, 1.0,2.0. We
consider only weak lattice where the effect of dipolar interaction is manifested and can be distinguished from the contact interaction.
The left panel corresponds to contact interaction and the right panel corresponds to dipolar interaction. The index is determined
based on the vector 𝑛 through the mapping outlined in Ref. [57] and basically determines the dimension of the Hilbert space.

For 𝑉0 = 0.3𝐸𝑟, with contact interaction, only one nonzero element of
{

𝐶𝑛
}

occupy a very small portion of Hilbert space, we
refer it to a localized many-body state. Localized states closely resemble a mean-field description, where only a single coefficient
would play the significant role. When the coefficient is distributed over significant number of indices, the corresponding many-body
state is referred to a delocalized state. With increase in lattice depth, several significant

{

𝐶𝑛
}

contributes and the initial localized
state exhibits delocalization. In contrary, for the dipolar interaction, many significant

{

𝐶𝑛
}

contribute and the many-body state is
already delocalized for 𝑉0 = 0.3𝐸𝑟 and becomes completely delocalized with increase in lattice depth. Thus the fragmented SF (QSF)
and incomplete fragmented Mott (QMI) exhibit partial to complete delocalization in the Fock space.

4.3. One- and two-body correlation function

The one-body and two-body Glauber’s correlation functions are evaluated accordingly Eqs. (8) and (9)—they provide spatially
resolved information about the coherence of atoms. The structure of |𝑔(1)|2 with varying lattice depth gives an intuitive picture of
he mechanism behind the excited fragmentation and also the underlying correlation in the complex many-body phases as observed
n the vanishing and weak lattices. It also measures the proximity of the many-body state to a product of uncorrelated mean-field
tates for a fixed coordinate (𝑥, 𝑥′). Fig. 3 shows a plot of |𝑔(1)(𝑥, 𝑥′)|2 for various shallow lattice. The left column corresponds to
ontact interaction and the right column corresponds to dipolar interaction. For 𝑉0 = 0.3𝐸𝑟, for contact interaction, the uniform
right diagonal exhibits strong diagonal correlation only. It has no structure, and the isolated confinement of atoms in three distinct
ells is not observed. Thus it is not a Mott phase although diagonal correlation is exhibited. The one-body correlation function also
uantifies the off-diagonal correlation (𝑥 ≠ 𝑥′). In the scale of diagonal correlation (≃ 100%), the off-diagonal correlation measures
40% all throughout the lattice. It signifies that this is a very complex many-body phase intermediate to superfluid and Mott

hase. The complexity is due to interplay between strong interaction and correlation, the effect of lattice is negligible. For dipolar
nteraction, due to long-range repulsion, we observe strong diagonal correlation and close to vanishing off-diagonal correlation even
n such shallow lattice. With gradual increase in lattice depth, for contact interaction, Mott localization starts to be seen at the cost
f off-diagonal correlation. For dipolar interaction, the three distinct lobes across the diagonal exhibits a clear signature of loss of
nter-well correlation while maintaining intra-well correlation which characterizes the three-fold fragmented Mott phase.

Next, we analyze the two-body correlation function 𝑔(2)(𝑥′, 𝑥, 𝑥′, 𝑥) = 𝑔(2)(𝑥, 𝑥′) for the same set of lattice depth potential as chosen
arlier for the study of one-body correlation and plot it in Fig. 4. The left column corresponds to contact interaction and the right
olumn is for the dipolar interaction. For a perfect superfluid phase (when bosons are weakly interacting), 𝑔(2)(𝑥, 𝑥′) ≃ 1 for all 𝑥
nd 𝑥′–it infers that both the intra-well as well as inter-well coherence are maintained. For a Mott phase (deep lattice), 𝑔(2) ≃ 1 at
he off-diagonal part and 𝑔(2) ≃ 0 along the diagonal clearly exhibits Mott localization. However, strongly interacting bosons in very
eak lattices exhibit interesting structures both along the diagonal and off-diagonal. For vanishingly small lattice depth when the
hase is fragmented superfluid, 𝑔(2) is extinguished along the diagonal, but localization effect is absent; off-diagonal correlation is
aintained across the lattice. Now we gradually increase the lattice depth; the diagonal part develops a structure called ‘‘correlation
ole’’ or ‘‘antibunching effect’’. Two particles can never be simultaneously found in the same well due to strong repulsion — this is
ermed as antibunching effect. The state is the incomplete fragmented Mott phase (QMI). Thus the fragmented superfluid and the
ncomplete fragmented MI both exhibit extinction of diagonal two-body correlation due to the antibunching effect, but the diagonal
f the QSF phase is structureless whereas the QMI phase has the clear signature of correlation hole. For dipolar interaction, the
orrelation hole becomes distinct and the three brown lobes clearly distinguish three correlation holes (see Fig. 4).

Fig. 5 shows the local two-body density-density correlation 𝑔(2)(0, 0) as a function of lattice depth only in the regime of vanishing
mall and weak lattices. In the case of significant repulsive interactions, the bosons exhibit a tendency to repel each other, leading to
near-zero value for the second-order correlation function at 𝑥 = 0 and 𝑥′ = 0. A similar outcome is observed in the Mott Insulator
hase, where each boson occupies a distinct well, resulting in an ideal Mott-Insulator state with 𝑔(2)(0, 0) precisely equals to zero.
or contact interaction, in the vanishing lattice (𝑉0 = 0.3𝐸𝑟), we observe 𝑔(2)(0, 0) ≃ 0.25, thus the system exhibits a nonvanishing
wo-body local correlation. As we increase the lattice depth, 𝑔(2)(0, 0) gradually decreases but does not reach to 𝑔(2)(0, 0) ≃ 0. It
uantifies that the phase is indeed a quasi Mott phase, for contact interaction true Mott phases are not observed in shallow lattice.

(2)
s we move to larger lattice depths, the system enters the Mott insulator (MI) phase, where 𝑔 (0, 0) becomes exactly zero (not

7 
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Fig. 4. Second-order coherence of fragmented SF (QSF), incomplete fragmented MI (QMI). The normalized second-order correlation function 𝑔(2)(𝑥, 𝑥′) is plotted
for various lattice depth. Left column corresponds to contact interaction and the right column corresponds to dipolar interaction. A strong interplay between
correlation and lattice effect is observed. A strong antibunching effect is demonstrated even for very weak lattices when the lattice effect is subrelevent. With
the increase in lattice depth, gradually the structure of the correlation hole is built up. For dipolar interaction, three distinct correlation holes with 𝑔(2) = 0 along
the diagonal exhibits complete Mott localization. For contact interaction the correlation holes are visible with 𝑔(2) ≃ 0. All quantities are dimensionless. See text
for further discussion.

Fig. 5. Variation of the local two-body correlation function, 𝑔(2)(0, 0), with lattice depth in the shallow optical depth regime. For contact interaction, as the
lattice depth increases, 𝑔(2)(0, 0) exhibits a smooth decrease, however true Mott phase is not reached. Whereas for long-range dipolar interaction, 𝑔(2)(0, 0) is
consistently zero showing a true Mott phase in shallow lattice. Further details are provided in the text. The quantity is dimensionless.

depicted in the figure). Whereas for long-range dipolar interaction, 𝑔(2)(0, 0) is zero consistently due to long-range repulsion. It
signifies that true Mott phase is reached in shallow lattice due to the long-range repulsion in the dipolar interaction.

The nonlocal density-density correlation 𝑔(2)(0, 𝑥) is plotted in Fig. 6. Due to a special symmetry in position space on either
side of 𝑥 = 0, we opt to plot only one half (𝑥 > 0) for various lattice depths. For contact interaction, at 𝑥 = 𝑥′ = 0, the local
correlation remains consistently low, approaching zero due to strong repulsive interaction; the value is smaller for larger lattice
depth as expected. The second-order non local correlation function 𝑔(2)(0, 𝑥) consistently increases and peaks around 𝑥 ≈ 3.14. This
is significant because in a lattice with periodicity 𝜋, the minimum of the next lattice site aligns with 𝑥 ≈ 3.14. Considering three
8 
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Fig. 6. Nonlocal density-density correlation at various lattice depths in the shallow lattice depth regime. For contact interaction, initially, 𝑔(2)(0, 0) exhibits a
low value near zero, gradually increases, and peaks around 𝑥 ∼ 3.14. This figure illustrates the persistence of two-body correlation with the neighboring lattice
site and loss of two-body correlation within the lattice. For long-range dipolar interaction, 𝑔(2)(0, 𝑥) ≃ 0 till 𝑥 = 1.0 which exhibits the effect of long repulsive
ail. Then it steeply increases and reaches to uncorrelated value. The quantity is dimensionless. Additional details can be found in the text.

attice sites, 𝑔(2)(0, 𝑥) exhibits a high value around 𝑥 ≈ 3.14, indicating strong second-order correlations between adjacent sites.
oreover, the values of 𝑔(2)(0, 𝑥 ≈ 3.14) are higher for larger 𝑉0. This highlights the combined influence of repulsive interaction and

attice depth in weak optical lattice. Thus, 𝑔(2)(0, 𝑥) serves as a valuable metric for studying the transition from quasi-superfluid (QSF)
o quasi-Mott insulator (QMI) phase. For long-range dipolar interaction 𝑔(2)(0, 𝑥) ≃ 0 for vanishing lattice, then steeply increases and
ttains a maximum at 𝑥 ≃ 3.14, before it reaches the uncorrelated value 𝑔(2)(0, 𝑥) ≃ 1.

.4. Measures of information entropy

Many-body information entropy is another useful quantity for further characterization of complex many-body phases. We
xemplify the entropy measure with the fragmentation. We calculate the occupation entropy 𝑆𝑛 by the eigenvalues of the reduced
ne-body density matrix (Eq. (10)). We plot 𝑆𝑛 as a function of lattice depth in Fig. 7 both for contact and dipolar interaction.
s occupation entropy is obtained from the natural occupation, it is always zero for the mean-field picture, when there is only
ne natural occupation. We find, for a very weak lattice, when the many-body state is already fragmented, several natural orbitals
ontribute, and 𝑆𝑛 has a significant value. With the increase in lattice depth, the many-body state gradually approaches one-third
ragmentation–𝑆𝑛 saturates. We make a comparison between the saturation values of entropy and the prediction of the Gaussian
rthogonal ensemble of random matrices (GOE) [55]. For the occupation entropy, the GOE analog is obtained by setting 𝑛𝑖 =

𝑁
𝑀 and

𝐺𝑂𝐸
𝑛 = ln(𝑀). For a three-fold fragmented state, the lowest three natural orbitals contribute, thus 𝑀 = 3 and 𝑆𝐺𝑂𝐸𝑛 = 1.09 which

s the saturation value as shown in Fig. 7. For contact interaction, the initial value of 𝑆𝑛 is nonzero which signifies a fragmented
hase. With increase in lattice depth, 𝑆𝑛 increases as other orbitals contribute. Finally at large lattice depth when the system enters
true Mott phase, it exhibits three-fold fragmentation and 𝑆𝑛 saturates to GOE prediction. For dipolar interaction, the superfluid

n shallow lattice is strongly fragmented and the initial value of 𝑆𝑛 is 1.23, which is higher than GOE prediction. In Fig. 1(b), it
s already shown that although three natural orbitals significantly contribute, there is also small contribution from fourth and fifth
rbitals, which has made 𝑆𝑛 greater than GOE estimate. With gradual increase in lattice depth, 𝑆𝑛 slowly decreases as the system
eads to three-fold fragmented Mott state, 𝑆𝑛 saturates to GOE prediction.

.5. Coherence in incommensurate lattice

In this section, we present the results for two-body correlation for incommensurate filling, the incommensurate fraction of

articles induces incomplete localization and a true Mott-insulator state is absent. We present results only for contact interaction.
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Fig. 7. Plot of occupation entropy as a function of lattice depth 𝑉0, both for contact and dipolar interaction. For contact interaction, the system has significant
entropy as the many-body state is fragmented and with increase in large lattice depth when the system makes a transition to a three-fold fragmented Mott
phase, 𝑆𝑛 saturates to GOE prediction. For dipolar interaction, in the vanishing lattice, the system is strongly fragmented SF, 𝑆𝑛 is significantly higher than GOE
prediction. With increase in lattice depth as 3-fold fragmentation happens, 𝑆𝑛 decreases and reach to GOE estimate. All quantities are dimensionless. See the
text for additional discussion.

Fig. 8. Second-order coherence for four wells and three particles with 𝜆0 = 1.05, in shallow lattice of varying lattice depth. Distinct correlation holes become
evident when 𝑉0 = 2.0𝐸𝑟. However the loss of off-diagonal correlation exhibits the effect of delocalization. All quantities are dimensionless.

We consider two cases of 𝜈 noninteger. For 𝜈 < 1, we consider 𝑁 = 3 bosons are in 𝑆 = 4 lattice sites. The interatomic interaction is
kept same as 𝜆0 = 1.05 and results for two-body coherence is presented in Fig. 8 for specific cases of lattice depth. In this case, as one
extra site is always available, the one-particle density does not pull to have an equal site occupation. Due to repulsive interaction,
the particles spread away from the center lattice. In Fig. 8, for 𝑉0 = 0.1𝐸𝑟, the diagonal part exhibits some extinction of correlation
although structure of correlation hole is not seen, whereas the off-diagonal part exhibits two-body correlation as expected. With
increase in lattice depth, the diagonal of two-body correlation exhibits correlation hole and at the same time, the off-diagonal
correlation is reduced.

In Fig. 9, we plot the two-body coherence for 𝜈 > 1, 𝑁 = 6 particles are in 𝑆 = 4 lattice sites, thus a repulsive pair of particles
exists on a localized background. Due to repulsive interaction of the two extra particle, one-body density is pushed to the outer
wells. This extra pair of particles feels the intra-pair repulsive force and additionally feels the repulsive interaction with the localized
background. On increase in lattice depth the intra-well structure of two spatially separated bosons becomes clear.
10 



S. Roy et al. Annals of Physics 470 (2024) 169807 
Fig. 9. Second-order coherence for four wells and six particles with 𝜆0 = 1.05, in shallow lattice of varying lattice depth. The localization of two extra particles
happen in the outer wells. For 𝑉0 = 2.0, intra-well repulsion exhibits spatially separated bosons in the doubly occupied wells. All quantities are dimensionless.

5. Conclusion

In conclusion, we have applied a numerically exact many-body approach, MCTDHB, to solve the many-body Schrödinger equation
to study the ground states of strongly interacting bosons in vanishingly small and weak lattices. We explore the emergent phases:
fragmented superfluid and incomplete fragmented Mott phases which are termed quasi superfluid (QSF) and quasi Mott (QMI)
phases. In the usual notion of the Bose Hubbard picture: the superfluid is characterized by a single orbital occupation that exhibits
correlation across the lattice; whereas the Mott phase is characterized by complete localization in each site and thus extinction of
inter-well correlation. However, in the many-body perspective, we find some intermediate phases that cannot be explored by mean-
field theory or the Bose-Hubbard model. To differentiate between these recently discovered phases, we have utilized fragmentation as
a key metric. Additionally, we have introduced an order parameter based on the eigenvalues of the reduced one-body density matrix,
providing another effective tool for investigating these distinct phases. Our analysis has been further bolstered by comprehensive
study of one- and two-body correlations, as well as information entropy. Fragmentation is the figure of merit to distinguish the
fragmented superfluid phase from the traditional superfluid phase as well as the incomplete fragmented Mott phase from the
traditional Mott phase. We study the complete pathway of transition to the Mott phase for deep lattices. The measures of several
information entropy clearly distinguish the limitation of mean-field physics. The order parameter and the structure of one and two-
body coherence are utilized as the key markers to study the new phases. The structures evident in one- and two-body coherence
serve as robust indicators, facilitating an understanding different intermediate phases in optical lattice. The fragmented many-body
phases in shallow lattice are also studied for the long-range dipolar interaction. We observe that all the many-body features for
quasi phases with contact interaction become distinct due to long-range repulsive tail in the dipolar interaction. In comparison with
contact interaction, we conclude the possibility of true Mott phase for dipolar bosons even in extremely weak lattice. We also study
the two-body coherence for contact interaction with incommensurate filing. We observe very rich structure in the coherence in
absence of a true Mott insulator phase as there is always a superfluid fraction at the background of Mott phase.

We work with a finite ensemble of few bosons but this provides an experimental bottom-up access to the many-body physics.
The dynamic evolution from the superfluid (SF) phase to the Mott insulator (MI) phase has already been explored [30,45,47]. An
immediate and open question in this line is to investigate how the system evolves when subjected to a quench from the QSF to the
QMI phase in the strong interaction regime. It would also be a challenging many-body calculation to study the stability of these
intermediate phases in the presence of disorder.

CRediT authorship contribution statement

Subhrajyoti Roy: Writing – original draft, Visualization, Software, Data curation. Rhombik Roy: Writing – original draft,
Visualization, Validation, Supervision, Methodology, Formal analysis, Conceptualization. Arnaldo Gammal: Writing – review &
editing, Supervision, Investigation, Formal analysis, Conceptualization. Barnali Chakrabarti: Writing – review & editing, Writing
– original draft, Visualization, Supervision, Software, Project administration, Methodology, Investigation, Formal analysis, Data
11 



S. Roy et al.

T
t

Annals of Physics 470 (2024) 169807 
Fig. A.10. Orbital convergence analysis for unit filling scenarios. (a) Contact interaction case: Comparison of natural occupation of first three natural orbitals
using varying numbers of time-dependent orbitals. (b) Dipolar interaction case: Comparison of natural occupation of first four natural orbitals for varying numbers
of time-dependent orbitals. Calculations are done using 𝑀 = 9 and 𝑀 = 12 orbitals. Analysis indicates that 𝑀 = 9 orbitals are sufficient for converge result.
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Appendix. Numerical convergences

In this appendix, we examine the convergence of our results with respect to the number of time-adaptive orbitals. While the main
text presents findings using 𝑀 = 9 orbitals, we have conducted additional calculations using 𝑀 = 12 orbitals to verify convergence.

hese calculations were performed for both contact and dipolar interactions, focusing on unit filling factor cases (three bosons in
hree wells). We have also checked convergence for incommensurate cases, but those results are not presented here.

Fig. A.10 illustrates the first three natural orbital occupations computed with 𝑀 = 9, and 𝑀 = 12 orbitals. For the contact
interaction case, we observe that the occupations for 𝑀 = 9 and 𝑀 = 12 orbitals are overlapped for first six contributing occupations.
From these observations, we conclude that 𝑀 = 9 orbitals are sufficient to achieve converged results. In the case of dipolar
interactions, we notice a more pronounced difference for calculations using 𝑀 = 6 orbitals, indicates 𝑀 = 6 is inadequate to
describe the dipolar case (not shown). However, the results for 𝑀 = 9 and 𝑀 = 12 orbitals overlapped, confirming that 𝑀 = 9
orbitals are sufficient for convergence in dipolar interaction scenarios as well. It is worth noting that despite larger depletion in
this case, 𝑀 = 9 orbitals still provide converged results. We have not presented results for other lower orbitals due to their very
low occupation levels. Nevertheless, we have verified that these results are also converged. This comprehensive analysis ensures the
reliability of our findings across different measured quantity for different lattice depth.
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