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Effects of dehydration on thermoregulatory behavior and thermal tolerance 
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A B S T R A C T   

Predicting the effects of high environmental temperatures and drought on populations requires understanding 
how these conditions will influence the thermoregulatory behavior and thermal tolerance of organisms. Ecto
therms show proportional (fine-tuned) and all-or-none (abrupt) responses to avoid overheating. Scattered evi
dence suggests that dehydration alters these behavioral responses and thermal tolerance, but these effects have 
not been evaluated in an integrative manner. We examined the effects of hydration level on the behavioral 
thermoregulation and behavioral and physiological thermal limits of the “bullfrog” (Rana catesbeiana), a well- 
studied and important invasive species. To examine the effects of dehydration on proportional responses, we 
compared the Preferred Body Temperatures (PBT) of frogs with restricted and unrestricted access to water. To 
assess the effect of dehydration on all-or-none responses, we measured and compared the Voluntary Thermal 
Maximum (VTMax) at different hydration levels (100%, 90%, 80% of body weight at complete hydration). 
Finally, to understand the effect of dehydration on physiological thermal tolerance, we measured the Critical 
Thermal Maximum (CTMax) of frogs at matched hydration levels. PBT, VTMax, and CTMax all decreased in 
response to higher dehydration levels. However, bullfrogs changed their PBT more than their VTMax or CTMax 
in response to dehydration. Moreover, some severely dehydrated individuals did not exhibit a VTMax response. 
We discuss the implications of our results in the context of plasticity of thermoregulatory responses and thermal 
limits, and its potential application to mechanistic modeling.   

1. Introduction 

Global warming is causing increased temperatures and droughts 
across many regions of the world (Barnett et al., 2005; Bates et al., 
2008). These variable and stressful climatic conditions may have 
important consequences on the geographical distribution, behavior, and 
physiological functions of animals, resulting in pervasive consequences 
on their life history (Malcolm et al., 2006; Post et al., 2008; Tewksbury 
et al., 2008; Ceballos et al., 2015). Most ectothermic animals exhibit 
relatively low thermal insulation and small body size, making them 
intrinsically less protected against changes in environmental tempera
tures. Also, wet skinned ectotherms such as anurans are particularly 
susceptible to dehydration since they exhibit high rates of evaporative 
water loss (Wygoda, 1984; Lillywhite, 2006). Nonetheless, amphibians 
exploit suitable microhabitats so as to maintain adequate thermal and 
water balance even at very hot and arid environments (Wygoda, 1984; 
Buttemer and Thomas, 2003; Tracy and Christian, 2005; Young et al., 

2005; Cartledge et al., 2006; Tracy et al., 2014). 
Research on how animals’ thermoregulatory behavior and thermal 

limits respond to stressful climatic conditions (e.g. high environmental 
temperatures, low water availability) may help us better understand 
how species will adapt to changing environments (Williams et al., 2008). 
Ectotherms can fine-tune their body temperature using thermoregula
tory behaviors by changing their body posture, basking positions, and 
microhabitats they inhabit (Heath, 1970; Lillywhite, 1970, 1971; 
Brattstrom, 1979; Nelson et al., 1984). These precise adjustments allow 
amphibians and other taxa to keep their body temperatures within a 
range of preferred body temperatures (i.e. PBT) that optimizes multiple 
physiological functions (Licht, 1965; Heath, 1970; Hertz et al., 1993; 
Angilletta et al., 2002; Tracy et al., 2010), including locomotor perfor
mance (Navas et al., 1999; Deere and Chown, 2006; Köhler et al., 2011; 
Mitchell and Bergmann, 2016), feeding rates and digestive efficiency 
(Wang et al., 2002; McConnachie and Alexander, 2004; Fontaine et al., 
2018), rates of development and growth (Berger et al., 2011), and 
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reproduction (Navas and Bevier, 2001; Symes et al., 2017). However, if 
environmental temperatures increase and elevate body temperatures 
above the animals’ preferred body temperatures, they will often move 
away abruptly to seek shelter from the heat source or pant (e.g. Cowles 
and Bogert, 1944; Heath, 1970). Thus, experimentally, this Voluntary 
Thermal Maximum (VTMax) can be measured as the body temperature 
that induces an individual to move away from a heating device (e.g. 
Camacho et al., 2018, see methods). However, this variable has rarely, if 
ever, been evaluated in anurans. If behavioral thermoregulation re
sponses (i.e. moving to maintain body temperature around PBT or below 
VTMax) are not effective, individuals may reach their physiological 
thermal tolerance, typically represented by their Critical Thermal 
Maximum (CTMax, Cowles and Bogert, 1944). At this temperature, lo
comotor function is disrupted, and animals die from heat shock (Cowles 
and Bogert, 1944; Rezende et al., 2014). 

Higher environmental temperatures also lead to higher rates of 
evaporative water loss, which together dehydrate and impair the per
formance of many organisms, including anurans (Moore and Gatten, 
1989; Preest and Pough, 1989; Plummer et al., 2003). Anurans show 
dynamic changes in their hydration level, swiftly losing body water and 
rehydrating, or rapidly cooling down through bodily water evaporation 
(Wolcott and Wolcott, 2001; Prates and Navas, 2009; Tracy et al., 2010; 
Anderson et al., 2017). However, if access to water is limited, dehy
dration is inevitable (Tracy et al., 2014). Dehydration may lead to lower 
rates of bodily water loss (Anderson et al., 2017), decrease in cutaneous 
gas exchange (Burggren and Vitalis, 2005), drying and stiffening of the 
integument, and a reduced efficiency of cooling by evaporation (Lilly
white, 1971). Thus, both thermoregulatory traits (e.g. PBT, VTMax) and 
thermal tolerance (CTMax) may be altered by dehydration (Mitchell and 
Bergmann, 2016; Anderson and Andrade, 2017). In addition, other as
pects of experimental measurements may affect these traits, and thus 
need to be accounted for during studies of thermal tolerance. For 
example, the PBT and CTMax of different ectotherms are sensitive to 
heating rate, initial body temperature (Lutterschmidt and Hutchison, 
1997; Terblanche and Chown, 2007), and body mass (Ribeiro et al., 
2012). Since the PBT, VTMax, and CTMax are key parameters of 
mechanistic models of species distribution (NicheMapper, Nowakowski 
et al., 2017), understanding the principles governing these parameters 
should provide the basis for more realistic models of climatic restrictions 
for anurans. Thus, there is a need for comprehensive studies assessing 
how behavioral thermoregulation (i.e. fine-tuned and all-or-none re
sponses) and physiological thermal limits interact with dehydration, 
while accounting for methodological factors. 

To conduct such a study, we examined the American bullfrog, Rana 
catesbeiana, which is an easily obtained and locally abundant species. 
Bullfrogs are generally found in deep, permanent bodies of water 
(Wright and Wright, 1949; Fuller et al., 2011), but juveniles may occupy 
temporary ponds and are seasonally affected by hot temperatures and 
drought. This species is widely distributed across North America (Both 
et al., 2011; Quiroga et al., 2015) and has been widely introduced 
around the world (Jennings and Hayes, 1985). Here, we test if dehy
dration lowers the PBT, VTMax, and CTMax of R. catesbeiana while 
controlling for other factors (such as, heating rate, start body tempera
ture, body mass). 

2. Materials and methods 

2.1. Collection and maintenance of individuals 

Between June and November 2017, we commercially obtained 128 
juvenile individuals of Rana catesbeiana from the Santa Clara Frog Pond 
(Santa Isabel municipality, São Paulo, Brazil). Frogs were kept in the 
vivarium of the Physiology Department of the Institute of Biosciences, 
University of São Paulo, Brazil. Individuals were kept in plastic con
tainers that was 19 cm high by 33 cm long for 2–3 days before taking 
their measurements. All frogs had access to water, shelter, and were 

exposed to a photoperiod of 13 h of light and 11 h of darkness (13L: 
11D). The temperature of the vivarium ranged between 21 and 24 ◦C, 
similar to temperatures at the pond where animals were obtained. For all 
experiments, body temperature was registered every 10 s by attaching a 
thin T-type thermocouple (model 5SRTC/1 mm in diameter, omega ®) 
to the groin of each individual with surgical tape. We initially placed 
thermocouples in the frogs’ cloaca. However, the instruments were 
easily displaced, so we compared temperatures taken from the cloaca 
and groin and found that they both varied in the same way as a function 
of time (See Supplementary S1). Thus, we report the values taken from 
the groin in our analyses. The thermocouples were factory calibrated 
and connected through a FieldLogger PicoLog TC–08 to a computer. All 
the experiments were conducted in an acclimatized room under 
controlled temperature and relative humidity conditions (mean: 18.5 ◦C, 
67.1%, N = 34). Since American bullfrog juveniles exhibit extensive 
diurnal/crepuscular activity (Stebbins, 2003), we made all thermal 
measurements during the day, when behavioral thermoregulation was 
easier to measure due to the existence of stronger thermal gradients in 
nature (Geiger, 1965). Each individual was measured using different 
thermal indices in order to avoid residual effects of previous experi
ments and cross contamination. Animals were fed cockroaches imme
diately after the experiments and were euthanized two days after 
measurements were taken by decapitation following sedation of in
dividuals with a solution of Benzocaine, 0.1g/L. Individuals who died 
24 h after the experiments were not included in the analyses. The ethics 
committee of the Biosciences Institute at the University of São Paulo 
approved all procedures for animal handling and euthanasia (CEUA N◦

289/2017). 

2.2. Hydration levels of individuals 

To hydrate bullfrogs, we placed them in a small container with water 
ad libitum for 1 h, right before the start of the experiment. Then, we 
emptied the bladder of each individual by slightly pressing its pelvic 
waist to expel the urine. We then weighed them to obtain their 100% 
hydrated body mass. All individuals were 100% hydrated before 
measuring PBT. However, before the measurement of VTMax and 
CTMax, we separated frogs into three groups of 15 individuals, corre
sponding to different hydration levels (100%, 90%, and 80% of their 
fully hydrated weight). To obtain frogs at 90% and 80% hydration 
levels, we placed fully hydrated, previously weighed frogs inside mesh 
bags in front of a fan, and weighed them every 5–10 min until obtaining 
the desired hydration level (e.g. Titon and Gomes, 2017). 

2.3. PBT measurements 

Four artificial gradients were constructed with rectangular plastic 
containers (19 cm width by 60 cm long). The gradients had an acrylic lid 
with a thin opening in the middle 1 cm in diameter. This opening was 
not wide enough to cause thermal variation across the gradient but it 
prevented condensation of water in the gradients. The thin opening of 
the acrylic lid allowed for the passage of the thermocouple wire and for 
the displacement of the individuals without affecting the recording of 
measurements. A 1 mm thick aluminum sheet 14 cm wide by 56 cm long 
was placed on the lower part of each container. Foam paper on top of the 
aluminum sheet helped absorb circulating moisture. This aluminum 
sheet was heated from below at one end with a 60 W incandescent bulb 
and cooled with frozen gel bags at the other end. To corroborate that the 
gradients offered a sufficient range of temperatures for individuals, we 
estimated those temperatures by placing eight gypsum models imitating 
the shape and size of the frogs within each thermal gradient. The models 
were separated from one another by a distance of 6–7 cm and were 
distributed along the gradient. Each model had a T-type thermocouple 
attached to it to record the temperatures along the gradients. The tem
perature of each model within each gradient was recorded every 10 s for 
90 min between 10:30–12:00 h, rendering an average temperature of 
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20 ◦C (sd: 10, range: 10.38–42.32 ◦C; 4320 records) (See Supplementary 
S2). 

To assess the effect of dehydration, time, and access to water on the 
PBT of bullfrogs, we created two experimental groups: The control group 
(CG) had unrestricted access to water while the water-restricted group 
(WRG) did not have access to water inside the gradient during mea
surements. For the CG, 14 petri dishes 6 cm in diameter were filled with 
water at room temperature ensuring constant access to water (Fig. 1A). 
Every day for two weeks in November 2017, we measured the PBT in 
groups of four individuals per day (two in CG, two in WRG), totaling in 
32 individuals altogether (16 in the CG and 16 in the WRG). All ex
periments began between 10:00–11:00 h. After the lamps of the four 
gradients were switched-on and the frozen bags were located, we placed 
each individual on each gradient and started the recording of their body 
temperatures. At that time, individuals began to explore the gradient 
before choosing a location. Since thermal gradients took 20 min to 
stabilize, we did not include the body temperature data recorded within 
the first 20 min of the experiment. Once the recording of body tem
peratures began, the body mass of each individual was also recorded 
every 30 min. To do this, the recording of body temperatures was 
stopped, and each individual was weighed (without removing the 
thermocouple) on a previously calibrated balance that was located next 
to the gradients. Once each individual was weighed, it was placed back 
in the middle of its respective gradient. Again, individuals began to 
explore the gradient before choosing a location. We waited 5 min before 
resuming the recording of their body temperatures to avoid data affected 
by handling. Whenever one of the WRG individuals reached 80% of their 
initial hydration level, all of the individuals from both experimental 
groups had their body masses recorded for the last time and the exper
iment ended. Fully hydrated CG and WRG individuals had similar initial 
body masses (CG: mean: 14.28 g, sd: 3.89, range: 7.99–22.79 g, N = 16; 
WRG: mean: 13.56 g, sd: 3.54, range: 8.58–23.51 g, N = 16). 

Later, for each body mass measurement, we calculated the average of 
body temperatures recorded 5 min before each body mass measurement. 
Thus, for each individual, we could associate a value of hydration level 

with the respective body temperature. That procedure rendered several 
(3–4) repeated measures per individual that we used to test the effect of 
hydration on the preferred body temperature. 

2.4. CTMax measurements 

The effect of dehydration on CTMax was assessed in July 2017. The 
mean initial standard body mass of all individuals before applying hy
dration conditions was 21.36 g (sd: 5.21, range: 12.06–29.11 g, N = 15) 
for the 100% hydrated group; 19.10 g (sd: 2.75, range: 12.06–29.11 g, N 
= 15) for the 90% hydrated group, and 37.64 g (sd: 10.49, range: 
15.99–54.49 g, N = 15) for the 80% hydrated group. 

For this experiment, frogs were heated inside an aluminum container 
covered with an acrylic lid within a thermal bath. A T-type thermo
couple was placed inside the aluminum container to register surface 
temperature and sample the heating rate of individuals (0.41 ◦C/min, 
Fig. 1B). The heating rate was controlled with a dimmer connected to 
the power source. The average initial body temperature of individuals 
was 20 ◦C (sd: 1.87, range: 17.21–23.80 ◦C, N = 45) and the aluminum 
container was 19.39 ◦C (sd: 2.17, range: 14.38–22.50 ◦C, N = 45). All 
experiments began between 10:00–16:00 h. Each individual was heated 
in the thermal bath until it attempted to escape. Thereafter, the frog was 
turned belly up using forceps to check for its righting response. This 
procedure was repeated every 30 s until the individual lost the righting 
response by showing tremor in their legs, panting, exhaustion, red legs, 
or a combination of any of these responses. At that time, the individual’s 
body temperature was recorded and considered its CTMax, and it was 
immediately weighed and cooled off in water at room temperature. 

2.5. VTMax measurements 

We measured the VTMax in another 15 individuals per hydration 
level in August 2017. The mean initial standard body mass of frogs was 
21.31 g (sd: 6.10, range: 13.67–33.56 g, N = 15) for the 100% hydrated 
group; 8.61 g (sd: 1.28, range: 6.62–11.77 g, N = 15) for the 90% hy
drated group; and 13.00 g (sd: 1.72, range: 10.08–15.42 g, N = 15) for 
the 80% hydrated group. All experiments began between 10:00–16:00 h. 
All individuals were independently heated within a metallic cylindrical 
container, wrapped in a thermal resistance for homogeneous heating 
(Fig. 1C). A T-type thermocouple was placed inside the container and 
adhered to the surface to register temperature and sample the heating 
rate of individuals (0.30 ◦C/min, Fig. 1C). The heating rate was again 
controlled with a dimmer connected to the power source. The container 
had a half-opened, easily movable plastic lid so that the individual could 
exit the box at will (Fig. 1C). The average initial body temperature of 
individuals was 20.03 ◦C (sd: 1.38, range: 17.31–23.47 ◦C, N = 37) and 
the metallic cylindrical container was at 21.19 ◦C (sd: 1.16, range: 
19.50–24.42 ◦C, N = 37). When each frog left the box, its body tem
perature was recorded and this was considered its VTMax. We also 
measured its final body mass and took it to a container with water at 
room temperature to recover. The interior of the heating container 
provided a refuge for frogs during measurements. Thus, it is safe to as
sume that for the typical duration of the experiments, frogs remained in 
their containers, until they were forced to leave (e.g. increasing the 
temperature inside the container). 

During the measurements of CTMax and VTMax, we calculated the 
rates of bodily water loss as the difference between initial weight (in 
each hydration level) and final weight divided by the duration of the test 
for each individual to see if initial hydration level affected their body 
water loss rates. 

2.6. Statistical analysis 

We fitted linear mixed-effects models in R (Vr. 3.5.0 R Core Team, 
2018; lme4 package, “lmer” function; Bates et al., 2015) to test whether 
hydration level (measured every 30 min), group (CG, WRG), and time 

Fig. 1. Scheme of the machinery used for thermoregulatory behavior 
measurements and thermal limits in Rana catesbeiana. 
(A) Thermal gradients used for measuring the PBT. (B) A thermal bath for 
CTMax measurement method. (C) A can-system for measuring the VTMax. The 
range of temperatures offered by the thermal gradients was between 10.38 and 
42.32 ◦C (mean = 20 ◦C; sd: 10; 4320 records). 
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(fixed factors) affected the PBT of bullfrogs. We included the identity of 
individuals as the only random effect in the model and compared Akaike 
information criterions (AIC) of five models including and excluding 
fixed effects and their interactions. Differences in AIC over three units 
were considered statistically significant (Wang and Qun, 2006). Because 
we did not find significant differences between the body masses of the 
individuals of the CG and WRG (p = 0.589, df = 30, t–test = 0.546), our 
models did not include body mass. 

During the analyses of CTMax and VTMax, we compared generalized 
least squares models including initial body mass, heating rate, and initial 
body temperature with models not including them (i.e. hydration level 
only). In some instances, AIC scores did not allow for clear distinction 
among competing models, so we applied a model averaging procedure 
(Symonds and Moussalli, 2010) using the MuMIn package in R (Barton, 
2016) to estimate the effects of hydration state accounting for these 
factors. This approach allows a formal estimation of dependent variable 
values, integrating the effects of the factors included in the most plau
sible models. Finally, the effect of hydration level on water loss rates 
during CTMax and VTMax assays was tested using a one-way ANOVA 
test. The resulting plots were made in SigmaPlot Vr. 11.0. 

3. Results 

3.1. Effects of dehydration on PBT 

The average PBT for the CG was 28.51 ◦C (sd: 0.42, range: 
17.59–36.47 ◦C, N = 16), whereas the average PBT of the WRG was 
22.69 ◦C (sd: 0.42, range: 14.83–33.66 ◦C, N = 16) (Fig. 2A). For each 
frog, the PBT measurement period lasted for approximately 1 h and 40 

min. All individuals survived 24 h after experiments. 
The five constructed models showed that model V had the lowest AIC 

value with a minimum of 133 units of difference with the other models, 
and reflects an interaction between time in the gradient, hydration level 
and experimental group (CG and WRG) in the thermoregulatory 
behavior of R. catesbeiana (Table 1, Supplementary S3). CG animals 
maintained higher temperatures and hydration levels for longer periods 
than water restricted animals (Fig. 2A and B). 

3.2. Effects of dehydration on CTMax 

The average CTMax was 36.82 ◦C for 100% hydrated individuals (sd: 
0.77, range: 35.60–38.95 ◦C, N = 15), 35.50 ◦C for 90% hydrated in
dividuals (sd: 0.80, range: 34.11–37.14 ◦C, N = 15), and 34.63 ◦C for 
80% hydrated individuals (sd: 0.41, range: 34.01–35.46 ◦C, N = 15). 
Our model selection approach showed models including different com
binations of the factors (hydration level, heating rate, start body tem
perature and initial body mass) predicted CTMax better than the 
intercept (See Supplementary S4). Because the best three models (with 
the lowest AIC) had differences below three AIC units among them, we 
applied model averaging to these three models to estimate the effects of 
hydration levels and the other factors. The average of the three best 
models (See Supplementary S4) showed that CTMax was affected by 
hydration level and the heating rate of individuals, but not by the start 
body temperature and body mass (Fig. 3A and B; Table 2). These models 
show an average increase of 0.07◦ in CTMax per every 1% in hydration 
level. Heating rate had a much larger effect (1.3◦ per 1% increase). We 
also found significant effects of hydration level on rates of water loss 
during CTMax experiments. Hydrated individuals lost water faster than 

Fig. 2. Body temperatures of Rana catesbeiana kept in thermal gradients under water restricted (WRG, 16 individuals) and control (CG, 16 individuals) 
conditions. 
(A) Dots represent the average body temperature every 5 min 
for all individuals within experimental groups, and bars indicate standard error of data. Blue dots are for control group and brown dots are for water restricted group. 
Both experimental groups started with similar body temperatures but, as the time passes, WRG individuals started exhibiting lower body temperatures. The data 
shown before the dotted line correspond to temperatures selected by the individuals before the thermal gradients had already stabilized and that were not used in the 
analyses. (B) shows an averaged hydration level per individual (i.e. a single dot for each one), resulting from each body mass recorded every 30 min 
(i.e. around 3–4 body mass recording per individual) during the measurements of PBT. Blue box and dots are for control group and brown box and dots are for water 
restricted group. Whiskers represent standard deviation of data. 
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dehydrated ones (F (2,42) = 20.91, p < 0.001). The mean duration of 
each assay was 35 min (sd: 8.76, range: 26–63 min, N = 45), and all 
individuals survived 24 h after experiments. 

3.3. Effects of dehydration on VTMax 

Average VTMax was higher in fully hydrated frogs (35.89 ◦C, sd: 
0.16, range: 34.56–36.77 ◦C, N = 15) than in 90% hydrated (33.60 ◦C, 
sd: 0.34, range: 30.21–35.06 ◦C, N = 15) and 80% hydrated ones 
(31.29 ◦C, sd: 0.43, range: 30.05–33.11 ◦C, N = 7). Three models pre
dicted VTMax better than the intercept but showed nonsignificant dif
ferences in AIC among them (See Supplementary S5). They included 
different combinations of factors (hydration level, heating rate and start 
body temperature). The averaged model found strong effects of dehy
dration on the VTMax but not of the heating rate or the start body 
temperature (Fig. 3C; Table 3). These models show an average incre
ment of 0.21◦ in VTMax per every 1% increase in hydration level. In 
addition, hydrated individuals also showed higher water loss rates than 

Table 1 
Effect of time, hydration level and group (WRG, CG) on the preferred body temperatures of Rana catesbeiana. 
Model V was chosen as the best explanatory model for having the lowest AIC value = 1077.889 and 10 degrees of freedom. More detailed results are shown in 
Supplementary S3.  

Model Variable Value Std.Error t-value p-value df AIC-value 

I Intercept 25.176 0.561 44.88 <0.001 3 1268.539 

II Intercept 19.82771 5.30915 3.735 0.0002 4 1269.768 
Hydration level 0.05632 0.0556 1.013 0.3121 

III Intercept 28.0924 0.3184 88.24 <0.001 4 1210.192 
Group -5.9433 0.4605 -12.9 <0.001 

IV Intercept 2.3 0.6292 36.547 <0.001 4 1223.714 
Time 2.275 0.003271 7.262 <0.001 

V Intercept 2.278 3.378 6.744 0.0754 10 1077.889 
Hydration level -2.054 0.399 -6.042 0.6818 
Group -1.992 3.736 -5.331 <0.001 
Time -1.11 0.1936 -5.734 0.0774 
Hydration level * Group 1.987 0.3761 5.284 <0.001 
Hydration level * Time 1.16 0.00195 5.947 0.0956 
Group * Time 0.9857 0.2059 4.788 <0.001 
Hydration level * Group *Time -0.01023 0.002115 -4.838 <0.001  

Fig. 3. Factors influencing the CTMax and VTMax of Rana catesbeiana at three different hydration levels (N ¼ 15 individual per hydration level except for 
VTMax at hydration level 80%, N ¼ 7). 
(A) Shows the relationship between the three hydration levels with the CTMax. (B) Shows the relationship between the heating rate and CTMax of individuals at 
different hydration levels. While CTMax changed associated to hydration level (Panel A), it was also susceptible to variations in heating rate (Panel B). (C) Shows the 
relationship between the three hydration levels with the VTMax. Lines within each box represent the median, whiskers represent standard deviation of data and dots 
represent each individual. Colors represent hydration state (blue: 100%, orange: 90%, and purple 80%). 

Table 2 
Results of model averaging for best models explaining the CTMax of Rana 
catesbeiana. 
Heating rate has the strongest effect on CTMax followed by hydration level. Start 
temperature and body mass did not show discernible effects. More detailed re
sults are shown in Supplementary S4.  

Variable Value Std. 
Error 

Adjusted 
SE 

z- 
value 

p-value 

Intercept 30.4768 2.0203 2.0563 14.821 <0.0000 
Hydration level 

90% 
0.7486 0.2911 0.2986 2.506 0.0122 

Hydration level 
100% 

1.454 0.4231 0.4314 3.37 0.00075 

Heating rate 4.6252 1.197 1.2302 3.76 0.00017 
Start body 

temperature 
0.126 0.0934 0.0949 1.327 0.18463 

Initial body mass -0.0042 0.0099 0.0101 0.423 0.67198  
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dehydrated ones (F (2,34) = 16.13, p < 0.001). The mean duration of 
assays was 41 min (sd: 10.14, range: 18–68 min, N = 37). Eight in
dividuals in the 80% hydration group failed to exit the container and 
died. All the other individuals survived the 24 h observation period after 
the experiments. 

4. Discussion 

Our study aimed to understand how anurans integrate behavioral 
responses and thermal limits during dehydration. Bullfrogs adjusted 
their position in the gradient in order to maintain their body tempera
ture within the range of their PBT. Further, they proportionally adjusted 
their position in the gradient in response to their hydration level, 
lowering their PBT as they dehydrated. For a fully hydrated wet-skinned 
ectotherm, maintaining high body temperature below the VTMax ben
efits several processes such as growth in molluscs (Díaz et al., 1996, 
2000, 2011) and locomotion in anurans (Moore and Gatten, 1989; 
Anderson and Andrade, 2017). In turn, dehydration impairs thermal 
tolerance (Anderson and Andrade, 2017; this study), survival (Beuchat 
et al., 1984), locomotor performance (Moore and Gatten, 1989; Tingley 
et al., 2012; Mitchell and Bergmann, 2016), and lowers the optimal 
temperature for locomotion (Beuchat et al., 1984; Preest and Pough, 
1989; Titon et al., 2010; Titon and Gomes, 2015, 2017). In this way, 
choosing lower temperatures may bring dehydrated animals closer to 
their lowered thermal optima. Moreover, selection of lower tempera
tures reduces rates of evaporative water loss (Mitchell and Bergmann, 
2016; Anderson and Andrade, 2017) and thus increases the available 
time to find a water source before severe dehydration risks occur. 

We discovered that frogs may respond to dehydration by decreasing 
their VTMax and that severely dehydrated individuals may still lose this 
response, despite being able to escape heating sources. These observa
tions highlight the dangers of experiencing a combination of high tem
peratures and low hydration levels for anurans. Many wild anuran 
populations maintain hydration levels above 90% even in the dry season 
(Tracy et al., 2014). However, severely dehydrated anurans in the field 
may be underreported, particularly in less abundant populations, close 
to their climatic limits in distribution (Jessop et al., 2013). High tem
peratures and low water availability have been hypothesized to explain 
the absence of dehydration prone species in isolated forest fragments (e. 
g. Watling and Braga, 2015) and might impose limits to species distri
bution (Schwarzkopf and Alford, 2002; Brown et al., 2011; Florance 
et al., 2011; Tingley and Shine, 2011; Letnic et al., 2015; Titon and 
Gomes, 2017). Interestingly, the change of heating rates we found 
(0.17–0.87 ◦C/min) did not affect the VTMax in our study, suggesting 
that slow heating rates do not impair behavioral thermoregulation, as 
widely believed (Goldstein, 2000; Gibbons, 2002). VTMax values were 
consistent across heating rates and always below CTMax values. This 
suggests that frogs were exiting the container due to a thermal level 
perceived as stressful and that the CTMax was induced by temperature, 

rather than a response to handling. On the other hand, the heating of 
frogs at different hydration states may have changed relative humidity 
across treatments. The lid was half open on the upper side during the 
VTMax trials, allowing for continuous gas exchange between the room 
and the container, which likely minimized potential differences in hu
midity among treatments. However, since we did not monitor relative 
humidity during warming, we encourage further studies addressing the 
effects of relative humidity on the VTMax of frogs and other animals to 
investigate this more closely. 

Our study highlights the importance of studying the effects of 
dehydration on both behavioral responses and thermal limits. In 
American bullfrogs, dehydration lowered the PBT more than the VTMax, 
and the latter more than the CTMax. Interestingly, the magnitude of PBT 
decrease almost doubled the response of VTMax (0.44 ◦C decrease in 
PBT per 1% of standard body mass lost, vs. 0.23 for VTMax), and both 
were between 3 and 6 times larger than the decrease in CTMax (and 0.07 
per 1% of standard body mass lost, after correcting for heating rate). 
These different magnitudes make sense in the light of previous literature 
and our observations. When dehydrated, risks for frogs at high tem
peratures may multiply. Dehydration impairs locomotor performance 
and lowers thermal optima for locomotion, potentially decreasing their 
abilities to find a refuge, capture prey, or avoid predators at high tem
peratures (e.g. Beuchat et al., 1984; Preest and Pough, 1989; Titon et al., 
2010; Titon and Gomes, 2015, 2017). Frogs might also lose the 
perception of thermal risk. Our study demonstrates for the first time that 
severely dehydrated frogs may not exhibit a VTMax, despite being able 
to move at such reduced hydration levels. While not leaving the 
container may well be interpreted as failure to thermoregulate, it makes 
sense for the survival of an individual sheltered within a hydrothermal 
refuge (i.e. under a stone in a dry pond), whose chances of survival may 
decrease with any increment in activity. By adjusting their PBT and 
VTMax more intensely than their CTMax, bullfrogs may increase their 
thermal safety margin when dehydrated. 

These integrative and adaptive responses might also be relevant in 
other ectotherms that face the double jeopardy of low water availability 
and high environmental temperatures. While this might not often be the 
case for adult R. catesbeiana, since they inhabit permanent bodies of 
water, it may be for juveniles that experience water shortages when 
using temporary ponds (Bury and Whelan, 1984). Severe dehydration in 
this species (i.e. hydration levels ≤80%) makes the integument drier and 
stiffer, obstructing both cutaneous respiration and the evaporation of 
water in response to short increases in body temperature (Lillywhite, 
1971; Tracy, 1976; Beuchat et al., 1984; this study). Dehydration also 
affects thermoregulatory behavior and thermal tolerance of more 
terrestrial anurans. Interestingly, toads (Rhinella diptycha) also lowered 
their PBT more than their CTMax in response to dehydration, but with 
less difference among them (0.13 ◦C/1% and 0.06 ◦C/1% of standard 
body mass lost, respectively; Anderson and Andrade, 2017). Unfortu
nately, the effects of hydration on thermoregulation behavior and 
tolerance are poorly studied and not well understood. Previous studies 
have made use of different methodologies and focused on the effects of 
other factors on thermal tolerance (e.g. acclimation, heating rate, initial 
temperature of individuals; Shoemaker et al., 1989; Dupré and Craw
ford, 1985; Crowley, 1985; Ladyman and Bradshaw, 2003; Plummer 
et al., 2003; Mitchell and Bergmann, 2016). Thus, we recommend 
further comparative and integrative studies on the interactive effects of 
thermoregulation, thermal tolerance, and hydration level. A better un
derstanding of the neural bases that integrate thermoregulatory 
behavior and hydration levels in anurans may also help in better un
derstanding how anurans will respond to changing climates. For 
example, parapineal organs in frogs respond to dehydration (Steyn, 
1966). In order to understand how the integration of dehydration and 
body temperatures occurs, future studies might apply our protocols to 
measure thermoregulation under different hydration levels and hor
monal or electric manipulation of these neural centers. 

Our observations of different thermoregulatory responses to 

Table 3 
Results of model averaging, showing the effects of factors affecting the 
VTMax of Rana catesbeiana. 
Hydration level is the single most important factor. Heating rate and start body 
temperature did not show discernible effects. More detailed results can be 
consulted in Supplementary S5.  

Variable Value Std. 
Error 

Adjusted 
SE 

z- 
value 

p-value 

Intercept 31.5551 1.7814 1.8272 17.27 <0.0000 
Hydration level 

90% 
2.2653 0.5187 0.5372 4.216 <0.0000 

Hydration level 
100% 

4.5984 0.4971 0.5155 8.92 <0.0000 

Heating rate 0.1372 0.7454 0.7711 0.178 0.859 
Start body 

temperature 
-0.014 0.0802 0.0822 0.171 0.854  
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dehydration are also relevant for mechanistic modeling techniques, like 
the NicheMapper (e.g. Kearney et al., 2008; Kearney and Porter, 2009; 
Bartelt et al., 2010; Nowakowski et al., 2017; Oyamaguchi et al., 2018). 
These models use the PBT, VTMax, and CTMax of organisms to estimate 
water loss. However, they assume that these parameters remain constant 
and are independent of hydration level or heating rates. As shown 
before, these different responses seem to be displayed by anurans from 
very different habitats (semiaquatic frog and terrestrial toad). Thus, we 
highlight the need to couple thermoregulation, thermal tolerance, 
dehydration, and heating rates in mechanistic models of activity and 
physiological performance. Nonetheless, we acknowledge that for the 
specific case of American bullfrogs, dehydration might only be relevant 
for juveniles, which more often use shallow waters and temporary ponds 
(Wright and Wright, 1949). 

In conclusion, we showed that the PBT, VTMax, and CTMax of 
American bullfrogs may change across different hydration levels. These 
dynamic responses should be applied to mechanistic models of activity 
and physiological performance to provide more realistic predictions of 
climatic restrictions on activity and distribution of anuran species. The 
macroevolutionary patterns and neurological processes that trigger and 
regulate these plastic responses remain unknown and warrant further 
investigation. 
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