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Abstract
In this study, we formulate a set of differential equations for a binary system to 
describe the secular-tidal evolution of orbital elements, rotational dynamics, and 
deformation (flattening), under the assumption that one body remains spherical 
while the other is slightly aspherical throughout the analysis. By applying singular 
perturbation theory, we analyze the dynamics of both the original and secular equa-
tions. Our findings indicate that the secular equations serve as a robust approxima-
tion for the entire system, often representing a slow-fast dynamical system. Addition-
ally, we explore the geometric aspects of spin–orbit resonance capture, interpreting 
it as a manifestation of relaxation oscillations within singularly perturbed systems.

Keywords  Deformable body · Tidal evolution · Averaging · Spin–orbit resonance · 
Singular perturbation
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1  Introduction

The foundations of differential equations trace back to Newton’s pioneering work 
in mechanics and differential calculus. Newton grounded the law of gravitation 
mathematically and solved the equations for the motion of two bodies. How-
ever, the Newtonian model primarily considers celestial bodies as point masses, 
a simplification that has its limitations given that celestial entities have finite 
dimensions.

Planets and substantial satellites exhibit a near-spherical shape. Despite being 
relatively minuscule compared to their respective diameters, the deformations 
induced by spin and tidal forces have a considerable impact, instigating signifi-
cant alterations in both rotation rates and orbits. It is worth noting that all the 
major satellites within our solar system, including the Moon, operate in a 1:1 
spin–orbit resonance (see, e.g., [36]), they complete a single rotation on their axis 
for every orbit around the planet. Mercury, however, maintains a 3:2 spin–orbit 
resonance, undergoing three rotations on its axis for every two revolutions around 
the Sun. Furthermore, a majority of these celestial entities follows elliptical 
orbits characterized by low eccentricity. Deciphering how this dynamic state was 
attained, along with determining the associated time scales, holds substantial sig-
nificance in the scientific realm.

The goal of this study is to introduce equations to describe the perturbative 
impact of deformations on the motion of two spherical bodies influenced by grav-
itational interaction. Subsequently, we demonstrate that in certain limiting sce-
narios, which bear physical relevance, these equations can be analyzed using the 
mathematical apparatus of singular perturbations.

The earliest and most basic deformation model accounting for energy dissipa-
tion was put forth by George Darwin [8], son of the renowned biologist Charles 
Darwin. Darwin built upon previous studies [44] concerning the deformation of 
an elastic, homogeneous, incompressible sphere, extending the results to address 
a body constituted of a homogeneous, incompressible, viscous fluid.

Subsequent to Darwin, a significant advancement came with the introduction 
of Love numbers [31]. When the tidal force is decomposed in time via its Fou-
rier components and in space through spherical-harmonic components, the Love 
number for a specific harmonic frequency and spherical-harmonic mode is a sca-
lar that correlates the amplitude of the tidal force to the deformation’s amplitude. 
Essentially, Love numbers act as functions within the frequency space, offering 
a phenomenological approach to elucidate force-deformation relationships. Esti-
mates of Love numbers can be derived from observational data.

Over the past 70 years, there has been a prolific output of scientific literature 
focusing on the tidal effects on the motion of celestial bodies. While it is chal-
lenging to encompass the breadth of these studies, we will mention a few we are 
particularly acquainted with.

Kaula [26] evaluated the rate of change of the orbital elements using Love 
numbers for each harmonic mode (see [3] and [10] for further insights on the 
work of Kaula). Numerous other scholars have investigated equations accounting 



1555São Paulo Journal of Mathematical Sciences (2024) 18:1553–1589	

for deformations averaged over orbital motion. Some important works in this area 
are: [25, 43, 1], and [34] (low-viscosity scenarios); and [5, 15, 17, 32] and [2, 
18–21] (low and high-viscosity scenarios).

In this paper, for simplicity while maintaining physical relevance, we make the 
following assumptions: 

(1)	� The first body is deformable, nearly spherical at all times;
(2)	� The second body, which is the tide-raising body, is a point mass;
(3)	� The spin (or rotation vector) of the deformable body remains perpendicular to 

the orbital plane.

 The foundational equations for the orbit and rotation of the extended body are stand-
ard. Various equations exist in the literature detailing the deformation of extended 
bodies. We utilize the equations provided in Ragazzo and Ruiz [40], without the 
term accounting for the inertia of deformations [6].

The reduced and averaged equations we introduce here are not novel. Excluding 
centrifugal deformations, they match those in Correia and Valente [7]. Our analysis 
parallels the approach in Correia et al. [5], Section 5. The primary contributions of 
this paper include: 

(1)	� Clearly stating mathematical assumptions used in deriving the averaged and 
reduced equations;

(2)	� Framing the averaged equations as a slow-fast system;
(3)	� Beginning a geometric examination of the slow system using numerically gen-

erated figures to illustrate the “relaxation jumps”.

 We adopt the geometric method set out by Fenichel [11], Fenichel [12], Fenichel 
[13], Fenichel [14], and Krupa and Szmolyan [28] without fully verifying all the 
assumptions. A comprehensive mathematical analysis of the equations presented 
may necessitate extensive research.

The paper is structured as follows:
In Sect.  2, we outline the core equations of the system. We assess the magni-

tude of various terms and introduce a parameter representing the minor nature of the 
deformations.

In Sect.  3, we examine the limit when deformations approach zero, averaging 
them over orbital motion. This leads to equations with “passive deformations” that 
do not influence the orbit.

In Sect. 4, we suggest that for minor deformations, the primary equations pos-
sess an attracting invariant manifold matching the deformations from Sect. 3. This 
manifold’s existence depends on the body’s rheology. As the body becomes more 
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viscous, the manifold becomes less attractive1. Given the enhanced spin–orbit cou-
pling at high viscosity, assessing the credibility of our calculations and assumptions 
in this section presents a compelling mathematical challenge.

In Sect. 5, we average the orbital and spin equations based on the preceding sec-
tion’s invariant manifold.

Section 6 reveals that the averaged equations exhibit a slow-fast split. The fast 
variable is the body’s spin, while the slower variables are orbital eccentricity and the 
semi-major axis.

In Sect. 7, we delineate a condition for the folding of the slow manifold and pro-
vide a numerical illustration of its geometry. We also present a geometric interpre-
tation of the dynamics within this manifold, emphasizing rapid spin transitions as 
instances of “relaxation jumps” [28, 35].

Section  8 concludes the paper, recapping the pivotal mathematical queries 
regarding the simplification of the initial equations and the dynamics of the reduced 
equations.

This paper was written concurrently with a companion paper [41], which has 
a more physics-oriented content. The focus of Ragazzo and Ruiz [41] is on the 
implications for dynamics of using rheological models more complex than the one 
employed here.

2 � The fundamental equations

Let m0 and m represent the masses of two celestial bodies, which could be a planet 
and a star, or a planet and a satellite, etc. The body with mass m0 is treated as a 
point mass, while the body with mass m is always a small deformation of a spherical 
body with a moment of inertia I

◦
 . We assume that the deformations do not alter the 

volume of the body, implying that I
◦
 remains constant, a result attributed to Darwin 

[42]. Often, we will refer to the bodies simply as the point mass and the body.
For convenience, we write the deviatoric part of the moment of inertia matrix I in 

non-dimensional form:

where 1 is the identity and b is a symmetric and traceless matrix. We denote matri-
ces and vectors in bold face. The matrix b is termed the deformation matrix.

Consider an orthonormal frame {e1, e2, e3} . We assume that the vector x , from the 
center of mass of the body to the point mass, lies in the plane spanned by {e1, e2} . 
The angular velocity of the body, � , is perpendicular to the orbital plane, repre-
sented as � = �e3 . The deformation matrix is given by:

(2.1)I = I
◦

(
1 − b

)

1  This counterintuitive claim is associated with the omission of deformation inertia. In the equation for 
the damped harmonic oscillator mẍ = −x − 𝜂ẋ , the solutions converge to zero more rapidly as the damp-
ing coefficient � increases. If the inertia coefficient is zero, the equation simplifies to 𝜂ẋ = −x , leading to 
the opposite effect: x(t) = e−t∕�x(0).
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Under the given assumptions, Newton’s equation for the relative position is 
expressed as:

where it is assumed that in the region occupied by the body, the gravitational field of 
the point mass is accurately represented by its quadrupolar approximation.

The spin angular momentum of the body is denoted by �s = �se3 , with the index 
s representing spin, and is defined as:

In the context of the quadrupolar approximation, Euler’s equation for the variation 
of �s is:

For a rigid body, a specific frame exists, known as the body frame, in which the body 
remains stationary and its angular momentum with respect to this frame is zero. 
Similarly, for a deformable body, there is an equivalent frame, called the Tisserand 
frame, where the body’s angular momentum is null. The orientation of the Tisserand 
frame K ∶= {eT1, eT2, eT3} with respect to the inertial frame � ∶= {e1, e2, e3} is 
given by

and by definition, the rate of change of the angle � is given by:

To complete the set of Eqs. (2.3) and (2.5), we require additional equations for the 
deformation matrices. These equations were derived within the Lagrangian formal-
ism and utilizing what was termed the “Association Principle,” as detailed in Raga-
zzo and Ruiz [39], Ragazzo and Ruiz [40] (see, also [23] addressing the treatment of 
Andrade rheology, [38] extending to bodies with permanent deformation, and [22] 
and [24] exploring the relations with the rheology of layered bodies).

To maintain simplicity in mathematical expressions, we consider only the basic 
rheology of “Kelvin-Voigt” combined with self-gravity here. The exploration of 
more generalized rheologies, which might introduce new time scales to the problem, 
is reserved for a companion paper [41].

(2.2)b =

⎛
⎜⎜⎝

b11 b12 0

b12 b22 0

0 0 b33

⎞
⎟⎟⎠
, with b33 = −b11 − b22.

(2.3)ẍ = G(m0 + m)

{
−

x

|x|3 +
I
◦

m

(
−

15

2

1

|x|7 (bx ⋅ x)x + 3
1

|x|5 bx
)}

,

(2.4)𝓁s = � I
◦
(1 − b33).

(2.5)𝓁̇s = −
3G I

◦
m0

‖x‖5
�
x1x2(b22 − b11) + b12

�
x2
1
− x2

2

��
.

(2.6)R(�) =
⎛⎜⎜⎝

cos� − sin� 0

sin� cos� 0

0 0 1

⎞⎟⎟⎠
∶ K → �

(2.7)𝜙̇ = 𝜔.
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The Tisserand frame of the body is the natural frame to present the equations for 
deformations. In this frame, the deformation matrix and the position vector are denoted 
by capital letters as follows:

The governing equation for B is:

where:

•	 � , with dimensions of 1/time2 , is a parameter representing the self-gravity rigid-
ity of the body; a larger � indicates a stronger gravitational force holding the body 
together.

•	 � , also with dimensions of 1/time2 , signifies the elastic rigidity of the body; for a 
fluid body, � = 0.

•	 � , dimensions of 1/time, is a viscosity parameter; a body with a larger � is harder to 
deform at a given rate compared to a body with a smaller �.

•	 F , with dimensions 1/time2 , is the force matrix in the Tisserand frame K : 

where X⊗ X is a matrix with entries 
(
X⊗ X

)
ij
= XiXj.

To determine the Love number function associated with the deformation Eq. (2.9), 
we consider a simple harmonic force term of the form

where �̂ is a complex amplitude matrix, and � ∈ ℝ is the constant forcing frequency. 
Assuming a solution of the form B(t) = �̂e�t , we derive the relationship between the 
complex amplitudes as

where C(�) is the complex compliance and

(2.8)B = R(�)bR−1(�) X = R
−1(�)x.

(2.9)𝜂Ḃ + (𝛾 + 𝛼)B = F,

(2.10)

F ∶= C + S Deformation force

C ∶=
𝜔2

3

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 − 2

⎞⎟⎟⎠
centrifugal force

S ∶=
3Gm0

�X�5
�
X⊗ X −

�X�2
3
1

�
Tidal force

F(t) = �̂e�t

(2.11)
�̂ =

1

� + � + i ��
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

C(�)

�̂ =

(
1

� + �

)
1

1 + i ��
�̂ =

(
1

� + �

)
1 − i ��

1 + �2�2
�̂

(2.12)� ∶=
�

� + �
represents the time constant.
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The complex Love number k2(�) , commonly defined differently (see, e.g., [40]), is 
proportional to the complex compliance C(�) as outlined in Mathews et al. [33] (par-
agraph 21):

where the number k
◦
∶=

3G I
◦

R5

1

�+�
 denotes the secular Love number, representing the 

value of k2(�) for static forces ( � = 0).
In the case of a fluid body, the elastic modulus � is zero, and

The body is held together solely by self-gravity. For a homogeneous fluid body of 
any density, kf = 3∕2 . As discussed in Ragazzo [37], this represents the maximum 
possible value of kf  when the density of the body increases towards the center. Given 
that for any non-null elastic rigidity 𝛼 > 0 , kf > k

◦
 , we conclude that for any stably 

stratified body,

Historical note. Darwin was the pioneer in deriving Eq. (2.13), while examining 
tides on a homogeneous body composed of viscous fluid. In page 13 of Darwin [8], 
Darwin stated: “Thus we see that the tides of the viscous sphere are the equilibrium 
tides of a fluid sphere as cos � ∶ 1 , and that there is a retardation time �

�
 ”. In his 

paper, � denotes fluid viscosity, and tan � = 19

2

�

gR�
� , where g represents surface grav-

ity, and � is the mass per unit volume of the body.
Given that for a homogeneous fluid body k

◦
= kf = 3∕2 , Darwin’s statement can 

be reformulated as

Utilizing the relationships for a homogeneous spherical body, I
◦
=

2

5
mR2 , g =

Gm

R2
 , 

and � = m∕
4�R3

3
 , where m is the mass and R is the radius of the fluid body, and from 

the relations k
◦
= kf =

3

2
=

3 I
◦
G

R5

1

�
 and � =

�

�
=

19

2

�

gR�
 , we deduce

which aligns with a relation in Correia et al. [6, Eq. (39)].

(2.13)k2(�) =
3G I

◦

R5
C(�) =

(
3G I

◦

R5

1

� + �

)
1 − i ��

1 + �2�2
= k

◦

1 − i ��

1 + �2�2
,

(2.14)k
◦
= kf ∶=

3G I
◦

R5

1

�
fluid Love number.

(2.15)k
◦
=

3G I
◦

R5

1

� + �
≤ 3

2
.

(2.16)

k2 =
3

2
cos � e−i� =

3

2

1√
1 + tan2 �

e−i� =
3

2

1√
1 + �2�2

e−i� =
3

2

1

1 + i��
,

where

tan � = �� and � =
19

2

�
gR�

.

(2.17)� =
152�
15

R

m
�,
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The theory developed by Darwin [8], Darwin [9] has predominantly been applied 
in the frequency domain. Influenced by Darwin’s work, Ferraz-Mello [15] formulated 
an equation for the motion of the surface of the body under tidal forcing in the time 
domain. When � = 0 , the model in Correia et al. [5] with �e = 0 , the model in Ferraz-
Mello [15], and Eq. (2.9) are all equivalent (our � corresponds to the � in Correia et al. 
[5], which is equal to the parameter “ 1∕� ” used in Ferraz-Mello [15]). See Correia et al. 
[5], paragraph above Eq. (90), and Ferraz-Mello [16] for the equivalence between the 
models in Ferraz-Mello [15] and Correia et al. [5].

3 � Zero deformation limit

In numerous celestial mechanics problems, bodies maintain near-spherical shapes at all 
times, which can be reformulated as

Given that Eq. (2.9) for B is linear, ‖B‖ is small if, and only if, ‖F‖ is small.
The relative motion between two nearly spherical bodies approximates Keplerian 

motion. Let a, n, and e represent the semi-major axis, the mean motion (period/(2�
)), and the eccentricity of the Keplerian ellipses, respectively. The magnitude of the 
force terms in the deformation Eq. (2.9) is proportional to the following characteristic 
frequencies:

The forces on the right-hand side of Eq. (2.9) are counteracted by the body’s self-
gravity and possibly elastic rigidity � ≥ 0 . The static deformations are then given by

where we used k
◦
∶=

3G I
◦

R5

1

�+�
.

The order of magnitudes in Eq. (3.19) and inequality (2.15) imply

This indicates that the region in phase space defined by the following inequalities:

(3.18)‖B‖ ≪ 1, where ‖B‖2 = 1

2

�
ij

B2
ij
.

(3.19)
S =

3Gm0

�x�5
�
x⊗ x −

�x�2
3

1

�
≈

Gm0

a3
=

m0

m + m0

n2 tidal force;

C = −

�
�𝛼 ⊗ �𝛼 −

‖�𝛼‖2
3

1

�
≈ 2𝜔2 centrifugal force.

B =
C

� + �
+

S

� + �
= k

◦

R5

3G I
◦

(
C + S

)
,

(3.20)‖B‖ ≤ R5�2

G I
◦

+
m0R

5

2a3 I
◦

.

(3.21)𝜁c ∶=
R5𝜔2

G I
◦

≪ 1 and 𝜁
T
∶=

m0R
5

2 I
◦
a3

≪ 1
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adheres to the small deformation hypothesis.

3.1 � The zero deformation limit

Define the compliance �d , where d denotes deformation, as follows:

We then express

and substitute into Eqs. (2.3), (2.4), (2.5), and (2.9) to yield

where � is defined in (2.12) and b̃ = R(𝜙)�BR−1(𝜙).
The zero deformation limit is defined by:

In the zero deformation limit, Eq. (3.24) simplifies to:

In this scenario, the body spin, � , remains constant and x follows a Keplerian 
ellipse.

To describe the Keplerian orbits, we change from variables (x, ẋ) to � ∈ ℝ 
(orbital angular momentum), A (the Laplace vector), and f (the true anomaly), 
defined as: 

where

(3.22)�d ∶=
1

� + �
dimension of time2.

(3.23)B = �dB̃

(3.24)

ẍ = G(m0 + m)

�
−

x

�x�3 + 𝜖d
I
◦

m

�
−

15

2

1

�x�7 (
�bx ⋅ x)x + 3

1

�x�5
�bx

��

𝓁̇s = −𝜖d
3G I

◦
m0

‖x‖5
�
x1x2(b̃22 − b̃11) + b̃12

�
x2
1
− x2

2

��

𝓁s = 𝜔 I
◦
(1 − 𝜖db̃33)

𝜏 �̇B + �B = F

(3.25)�d =
1

� + �
→ 0 while � =

�

� + �
remains constant.

(3.26)

ẍ = −G(m0 + m)
x

|x|3
𝓁̇s = 𝜔̇ I

◦
= 0

𝜏 �̇B + �B = F

(3.27)
�e3 = � = 𝜇x × ẋ orbital angular momentum

A =
1

c
ẋ × � −

x

|x| Laplace vector
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The Laplace vector is normalized such that ‖A‖ = e is the orbital eccentricity and it 
points towards the periapsis, where ‖x‖ is minimized.

The three vectors

constitute an orthonormal basis, expressed in terms of the inertial frame basis vec-
tors as

Here, � denotes the longitude of the periapsis, the angle between eA and e1.
The orbit is represented by

where R is the rotation matrix about the axis e3 , as given in Eq. (2.6), and 
r(t) = ‖x(t)‖.

3.2 � Passive deformations

The equations at the zero deformation limit (3.26) in the new variables become (see, 
e.g., [36] for details):

where C and S are given in Eq. (2.10).
In order to write S in a convenient way, we define the matrices

 with Y−2 = Y2 , where the overline represents complex conjugation. These matrices 
have a simple transformation rule with respect to rotations about the axis e3 , namely

(3.28)� =
m0m

m0 + m
= reduced mass, c = Gmm0.

(3.29)eA ∶=
A

|A| , eH ∶= e3 × eA, e3

(3.30)eA ∶= cos�e1 + sin�e2 , eH ∶= − sin�e1 + cos�e2.

(3.31)
x = rR(f +�)e1 = r(cos(f +�) e1 + sin(f +�) e2)

= r(cos f eA + sin f eH),

(3.32)

Ȧ = 0

�̇ = 0

ḟ =
𝜇�

r2
, where r =

a(1 − e2)

1 + e cos f
=

�
2

𝜇c
1

1 + e cos f

𝜔̇ = 0

𝜏 �̇B + �B = C + S

(3.33)

Y−2 ∶=
1√
2

⎛⎜⎜⎝

1 i 0

i − 1 0

0 0 0

⎞⎟⎟⎠
Y0 ∶=

1√
3

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 − 2

⎞⎟⎟⎠
Y2 ∶=

1√
2

⎛⎜⎜⎝

1 − i 0

−i − 1 0

0 0 0

⎞⎟⎟⎠
,
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Using

the tidal-force matrix in Eq. (2.10) can be written as

In the basis {Y−2,Y0,Y2}

that implies

In Eq. (3.38), the variables r, f, and � = �t are dependent on t.
To solve the equation 𝜏 �̇B + �B = C + S , we do a harmonic analysis of the tidal force 

in Eq. (3.38) using:

where M denotes the mean anomaly, Ṁ = n , and Xn�,m

k
(e) is termed the Hansen 

coefficient.
Equations (3.38) and (3.39) imply:

where Uk,−1 = Uk,1 = 0 and

The symmetry property Xn�,−m

−k
= X

n�,m

k
 implies

(3.34)R(�)YjR
−1(�) = ei j � Yj, j = −2, 0, 2.

(3.35)
X = R

−1(�)x = rR(f +� − �)e1
= r(cos(f +� − �) e1 + sin(f +� − �) e2) ,

(3.36)S =
3Gm0

r3
R(f +𝜛 − 𝜙)

(
e1 ⊗ �

�
−

1

3
1

)
R

−1(f +𝜛 − 𝜙).

(3.37)e1 ⊗ e1 −
1

3
1 =

1

2

�
Y−2√

2
+

Y0√
3
+

Y2√
2

�

(3.38)
S =

3Gm0

r3
R3(f +𝜛 − 𝜙)

�
e1 ⊗ e1 −

1

3
1

�
R

−1
3
(f +𝜛 − 𝜙)

=
3Gm0

2r3

�
e−2i(f+𝜛−𝜙)Y−2√

2
+

Y0√
3
+ e2i(f+𝜛−𝜙) Y2√

2

�
.

(3.39)
(
r

a

)n�

eimf =

∞∑
k=−∞

X
n�,m

k
(e)eikM ,

(3.40)S =
3Gm0

2a3

2∑
l=−2

∞∑
k=−∞

ei{t(kn−l�)+l�}
YlUkl

(3.41)Uk,−2 =
X
−3,−2

k√
2

, Uk0 =
X
−3,0

k√
3
, Uk2 =

X
−3,2

k√
2
.

(3.42)Ukj = U−k,−j.
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The centrifugal force in Eq. (2.10) can be represented as

To obtain the almost periodic solution of the deformation equation

solving for each Fourier mode separately suffices. An alternative approach involves 
using the variation of constants formula:

Here, the definitions of the Love number k2 and the secular Love number k
◦
 from Eq. 

(2.13) are used as well as the definitions of �c and �
T
 from Eq. (3.21).

Given that

this formula indicates that the almost periodic solution of the tide equation is a time-
averaged tidal force with an exponential weight decaying towards the past, charac-
terized by time � . Note that when 𝜏 > 0 is nearly zero, integration by parts of the 
right-hand side of Eq. (3.45) yields

This represents the usual time delay approximation with corrections of the order of 
�2.

The limit case of � → ∞ also presents interest. Here, we can interpret the averaging 
in Eq. (3.45) as approximately the ordinary averaging

(3.43)C =
�2

√
3
Y0.

(3.44)𝜏 �̇B + �B = C + S,

(3.45)

B̃(t) = Bd(t) ∶= ∫
0

−∞

es∕�

�

C + S(t + s)

� + �
ds =

C

� + �

+
3Gm0

2a3

2�
l=−2

∞�
k=−∞

ei{t(kn−l�)+l�} 1

(� + �)
�
1 + i(kn − l�)

�YlUkl

= k
◦

R5�2

G I
◦

Y0

3
√
3
+

m0R
5

2 I
◦
a3

2�
l=−2

∞�
k=−∞

ei{t(kn−l�)+l�}k2(kn − l�)YlUkl

= k
◦
�c

Y0

3
√
3
+ �

T

2�
l=−2

∞�
k=−∞

ei{t(kn−l�)+l�}k2(kn − l�)YlUkl.

∫
0

−∞

es∕�

�
ds = 1,

(3.46)Bd(t) − k
◦
𝜁c

Y0

3
√
3
≈

S(t)

𝛾 + 𝛼
− 𝜏

Ṡ(t)

𝛾 + 𝛼
≈

S(t − 𝜏)

𝛾 + 𝛼
.

lim
�→∞

1

� ∫
0

−�

S

� + �
ds.
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4 � Deformation manifold

The function t → Bd provides a solution to the deformation Eq. (3.44) only when 
�d = 0 . To analyze the case where 𝜖d > 0 , we introduce new deformation variables �B:

and using these variables we write Eq. (3.24)

For �d = 0 , Eq. (3.26) possesses the invariant manifold:

The variables �B are transversal to Σ0 , and all associated eigenvalues equal 
−1∕𝜏 < 0 . Given this, a theorem by Fenichel [11, Theorem 3] suggests that for suf-
ficiently small �d , there is an invariant manifold represented as a graph:

Additionally, Σ�d
 approximates Σ0 to order �d , as visualized in Fig. 1. The vector field 

on Σ�d
 , considering corrections of order �d , is derived from Eq. (4.48) by ignoring 

the variables �B and setting B̃ = Bd in the equations for ẋ and � . Thus, the equation 
on Σ�d

 is:

(4.47)B̃ = Bd + �B,

(4.48)

ẍ = G(m0 + m)

�
−

x

�x�3 + 𝜖d
I
◦

m

�
−
15

2

1

�x�7 (
�bx ⋅ x)x + 3

1

�x�5
�bx

��

𝓁̇s = −𝜖d
3G I

◦
m0

‖x‖5
�
x1x2(b̃22 − b̃11) + b̃12(x

2
1
− x2

2
)
�

𝓁s = 𝜔 I
◦
(1 − 𝜖db̃33)

𝜏 ̇�B + �B = O(𝜖d).

(4.49)Σ0 ∶= {�B = 0}.

(4.50)Σ𝜖d
∶=

{
(x, ẋ,�s, 𝜖d) → �B

}
.

Fig. 1   Illustration of the 
Deformation Invariant Manifold 
Σ𝜖d

∶=
{
(x, ẋ,�s, 𝜖d) → �B

}
 . 

With the parameterization 
defined by (x, ẋ,�s, 𝜖d) , the 
vector field on Σ�d

 follows from 
(4.51)
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where, bd = R(�)BdR
−1(�).

The Fenichel theorem requires a specific condition concerning the eigenval-
ues of the linear equation: they must be sufficiently distant from the imaginary 
axis, depending on the flow on Σ0 , which is fulfilled in this case since they are 
constant.

When n and � are neither small, to ensure the validity of the averaging, nor 
excessively large, which would violate inequalities (3.21) and result in large 
deformations, the approximation of Σ0 by Σ�d

 remains accurate. Under these con-
ditions, changes in the Keplerian elements and spin are gradual, allowing the 
body ample time to adjust. The body maintains an average shape consistent with 
its secular Love number; for � = 0 , it remains in hydrostatic equilibrium, counter-
ing centrifugal forces and slow tides.

An intriguing scenario arises when either 𝜏n ≫ 1 or 𝜏𝜔 ≫ 1 . Here, the body 
lacks the time to relax amid orbital and spin modifications, causing the deforma-
tion to retain a memory of a past initial state. In such situations, Fenichel’s theo-
rem is not applicable. If 𝜏 ≫ 1 and the initial condition is B̃ = B̃

◦
 , the solution to 

the homogeneous equation 𝜏 �̇B + �B = 0 decays slowly as

In Ragazzo et al. [38], in a situation similar to this one, we added a permanent defor-
mation B̃

◦
 to Bd and continued. Adopting the same approach here is feasible, even 

without a mathematical basis. However, we must separate the orbital motion’s aver-
aging into two components: one for terms with Bd and another for terms with B̃

◦
 . 

The averaging of terms associated with B̃
◦
 would resemble the averaging in rigid 

body problems. Here, we will not introduce the permanent deformation to keep the 
following analysis as simple as possible.

Later in this paper, we’ll explore situations where �n is large, assuming that, 
despite its size, Fenichel’s conditions remain met. This assumption warrants fur-
ther mathematical scrutiny, potentially through multi-timescale system theories.

5 � Orbital averaging

We average Eq. (4.51) with respect to orbital motion. We set the scaling param-
eter �d to 1. Equations (4.51) and (3.45) then become:

(4.51)

ẍ = G(m0 + m)

�
−

x

�x�3 + 𝜖d
I
◦

m

�
−
15

2

1

�x�7 (bdx ⋅ x)x + 3
1

�x�5 bdx
��

𝓁̇s = −𝜖d
3G I

◦
m0

‖x‖5
�
x1x2(bd22 − bd11) + bd12(x

2
1
− x2

2
)
�

𝓁s = 𝜔 I
◦
(1 − 𝜖dbd33),

(4.52)B̃(t) = B̃
◦
e−t∕� .
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Using variables � , A , and f defined in Eq. (3.27) and (3.28), Eq. (5.53) transforms 
to:

The terms requiring averaging are:

where ⟨h⟩ = 1

2�
∫ 2�

0
h(M)dM represents the average over the mean anomaly.

The total angular momentum is conserved and given by:

The averaged result yields:
The term E1:

(5.53)

ẍ = G(m0 + m)

�
−

x

�x�3 +
I
◦

m

�
−
15

2

1

�x�7 (bdx ⋅ x)x + 3
1

�x�5 bdx
��

,

𝓁̇s = −
3G I

◦
m0

‖x‖5
�
x1x2(bd22 − bd11) + bd12(x

2
1
− x2

2
)
�
,

𝓁s = 𝜔 I
◦
(1 − bd33),

bd = k
◦
𝜁c

Y0

3
√
3
+ 𝜁

T

2�
l=−2

∞�
k=−∞

ei{tkn+l𝜛}k2(kn − l𝜔)YlUkl.

(5.54)

𝓁̇s = −3c
I
◦

m
E1,

𝓁̇ = 3c
I
◦

m
E1,

𝓁s = 𝜔 I
◦
(1 − ⟨bd33⟩),

Ȧ = 3
𝓁

𝜇

I
◦

m

�
−

5

2
E2 + E3

�
× e3 + 3

c

𝓁

I
◦

m
E4 + 3

c

𝓁

I
◦

m
E1A.

(5.55)

E1 =

�
x1x2(bd22 − bd11) + bd12(x

2
1
− x2

2
)

‖x‖5
�
,

E2 =

�
1

�x�7
�
bbx ⋅ x

�
x

�
,

E3 =

�
1

�x�5 bdx
�
,

E4 =

�
1

�x�5
��

x × bd x
�
⋅ e3

�
x

�x�
�
,

⟨bd33⟩ =
�
k
◦
�c
e3 ⋅ Y0e3

3
√
3

+ �
T

∞�
k=−∞

eitknk2(kn)Uk0(e3 ⋅ Y0e3)

�
,

(5.56)�
T
∶= � + �s.
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where we used, from Eq. (2.13), that k2(−�) is the complex conjugate of k2(�) , rep-
resented as k2(�).

We write E1 as

The terms 
(
−

5

2
E2 + E3

)
 : The calculation of these terms resembles that of E1 . The 

analysis was extended and performed using the software “Mathematica”. We will 
skip the detailed steps. The outcomes are:

and

where we used Eq. (3.30).
The term E4 : Detailed steps are omitted as before. The outcomes are:

E1 =

�
x1x2(bd22 − bd11) + bd12(x

2
1
− x2

2
)

‖x‖5
�

=

∞�
k=−∞

i�
T

�
X
−3,−2

k
X
−3,2

−k
k2(kn + 2�) − X

−3,−2

−k
X
−3,2

k
k2(kn − 2�)

�
2a3

=
i�

T

2a3

∞�
k=−∞

X
−3,2

k
X
−3,2

k

�
k2(−kn + 2�) − k2(kn − 2�)

�

=
�
T

a3

∞�
k=−∞

�
X
−3,2

k
(e)

�2

Im k2(kn − 2�)

(5.57)E1 =
�
T

a3
A0, A0 =

∞∑
k=−∞

(
X
−3,2

k
(e)

)2

Im k2(kn − 2�).

(5.58)

A1 = −
∑
k

(X−4,1

k
+ 5X

−4,3

k
)X−3,2

k
Re k2(nk − 2�) + 2X

−4,1

k
X
−3,0

k
Re k2(nk)

(5.59)A2 =
∑
k

(5X−4,3

k
− X

−4,1

k
)X−3,2

k
Im k2(kn − 2�) + 2X

−4,1

k
X
−3,0

k
Im k2(nk)

(5.60)A3 =X
−4,1

0

(5.61)

⎛⎜⎜⎝

�
−

5

2
E2 + E3

�
1�

−
5

2
E2 + E3

�
2

⎞
⎟⎟⎠
=

�
�
T

4a4

�
A1 −A2

A2 A1

�
−

k
◦
�c

6a4
A3

��
cos�
sin�

�

=

�
�
T

4a4
A1 −

k
◦
�c

6a4
A3

�
eA +

�
T

4a4
A2eH ,

(5.62)A4 =
∑
k

X
−3,2

k
(X−3,1

k
+ X

−3,3

k
)Im k2(kn − 2�)
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and

The term ⟨bd33⟩:

where we used that X−3,0

0
= (1 − e2)−3∕2 [30]2.

For the Kepler problem, the following relations hold:

Assuming � > 0 , we can use G(m0 + m) = n2a3 to write:

Using the above relations, further calculations yield:

Given that A = e
(
cos�e1 + sin�e2

)
= e eA and ėA = 𝜛̇eH , we deduce:

Thus, the final averaged equations are:

(5.63)A5 =
∑
k

(X−3,3

k
− X

−3,1

k
)X−3,2

k
Re k2(kn − 2�)

(5.64)E4 =

(
E4 ⋅ e1

E4 ⋅ e2

)
=

�
T

2a3

(
A4eA +A5eH

)
.

(5.65)
⟨bd33⟩ =

�
k
◦
�c
e3 ⋅ Y0e3

3
√
3

+ �
T

∞�
k=−∞

eitknk2(kn)Uk0(e3 ⋅ Y0e3)

�

= −
2

3
k
◦

�
�c
3
+

�
T

(1 − e2)3∕2

�

(5.67)�
2 = �ca(1 − e2) ⇒ (1 − e2) =

�
2

�ca
.

(5.68)
�

�a2
= n

√
1 − e2.

(5.69)
Ȧ =

3c

2𝓁

I
◦

m

𝜁
T

a3

{
1 − e2

2
A2 +A4 + 2eA0

}
eA

+
3c

2𝓁

I
◦

m

𝜁
T

a3

{
A5 −

1 − e2

2
A1

}
eH +

I
◦

m

k
◦
𝜁c

6a4
A3eH .

(5.70)Ȧ = ė eA + 𝜛̇ e eH .

2  The gravity field coefficient J
2
 (dynamic form factor) is related to I

◦
⟨b

d33
⟩ by means of 

I
◦
⟨b

d33
⟩ = −

2

3
mR2J

2
 that implies 

(5.66)J
2
=

I
0

mR2
k
0

(
�
c

3
+

�
T

(1 − e2)3∕2

)
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5.1 � Computation of Hansen coefficients

The Hansen coefficients depend solely on the eccentricity. Following [4], we 
express, for n < 0 and m ≥ 0,

(5.71)

ė =
3c

2𝓁

I
◦

m

𝜁
T

a3

�
1 − e2

2
A2 +A4 + 2eA0

�

e𝜛̇ =
3c

2𝓁

I
◦

m

𝜁
T

a3

�
A5 −

1 − e2

2
A1

�
+

I
◦

m

k
◦
𝜁c

6a4
A3

𝓁̇ = 3c
I
◦

m

𝜁
T

a3
A0

𝓁̇s = −3c
I
◦

m

𝜁
T

a3
A0

𝓁
T
= 𝓁 + 𝓁s = constant

𝓁s = 𝜔 I
◦
(1 − ⟨bd33⟩)

A0 =

∞�
k=−∞

�
X
−3,2

k

�2

Im k2(kn − 2𝜔)

A2 =
�
k

(5X−4,3

k
− X

−4,1

k
)X−3,2

k
Im k2(kn − 2𝜔) + 2X

−4,1

k
X
−3,0

k
Im k2(nk)

A4 =
�
k

X
−3,2

k
(X−3,1

k
+ X

−3,3

k
)Im k2(kn − 2𝜔)

A1 = −
�
k

(X−4,1

k
+ 5X

−4,3

k
)X−3,2

k
Re k2(nk − 2𝜔) + 2X

−4,1

k
X
−3,0

k
Re k2(nk)

A3 = X
−4,1

0

A5 =
�
k

(X−3,3

k
− X

−3,1

k
)X−3,2

k
Re k2(kn − 2𝜔)

⟨bd33⟩ = −
2

3
k
◦

�
𝜁c
3
+

𝜁
T

(1 − e2)3∕2

�

𝜁c =
R5𝜔2

G I
◦

𝜁
T
=

m0R
5

2 I
◦
a3

𝜇 =
m0m

m0 + m

c = Gmm0

n2a3 = G(m0 + m)

𝓁

𝜇a2
= n

√
1 − e2.
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Thus, to compute any series 
(

r

a

)n

eimf  , one can employ series multiplication of the 
fundamental series of a∕r and eif  . This multiplication can be efficiently executed 
with an algebraic manipulator.

For the computation of the series for a
r
 and eif  , one can refer to Murray and Dermott 

[36] Section 2.5:

where Jk(x) denotes the Bessel function. The series for Jk(x) converges absolutely for 
all values of x.

Up to second order in eccentricity and with eiM = z the fundamental series are:

These expressions and Eq. (5.72) imply Xn,m

k
= O(e|m−k|).

5.2 � The equations in Correia and Valente [7]

Some relations between the Hansen coefficients presented in Correia and Valente [7], 
Eq. (158) and (159), are:

(5.72)
(
r

a

)n

eimf =

(
∞∑

k=−∞

X
−1,0

k
(e)eikM

)|n| ( ∞∑
l=−∞

X
0,1

l
(e)eilM

)m

.

(5.73)

a

r
=

e cos f + 1

1 − e2

cos f =
eif + e−if

2
= −e + 2

1 − e2

e

∞�
k=1

Jk(ke) cos(kM)

sin f =
eif − e−if

2i
= 2

√
1 − e2

∞�
k=1

1

k

d

de
Jk(ke) sin(kM)

Jk(x) =
1

k!

�
x

2

�k
∞�
l=0

(−1)l

�
x

2

�2l

l!(k + 1)(k + 2)… (k + l)
,

(5.74)

r

a
= 1 − e

1

2

(
z + z−1

)
+ e2

(
1

2
−

1

4

(
z2 + z−2

))
+O(e3)

a

r
= 1 + e

1

2

(
z + z−1

)
+ e2

(
z2 + z−2

)
2

+O(e3)

eif = z

{
1 + e

(
z − z−1

)
+ e2

(
9z2

8
− 1 −

z−2

8

)}
+O(e3)

e−if = z−1
{
1 + e

(
z−1 − z

)
+ e2

(
9z−2

8
− 1 −

z2

8

)}
+O(e3)
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One can use these equations to simplify Eq. (5.71). After such simplifications, the 
equation governing the eccentricity is:

For further simplification, one can apply � = �
√
G(m + m0)a(1 − e2) , yielding:

This result corresponds to Eq. (129) in Correia and Valente [7].
Our expression for the variation of the longitude of the periapsis, 𝜛̇ , differs from Eq. 

(130) in Correia and Valente [7] due to the neglect of centrifugal deformation in the 
cited work.

6 � Averaged equations: a geometrical approach

In the following two sections, we analyze Eq. (5.71) from a geometric perspective 
using singular perturbation theory.

The longitude of the periapsis, � , is absent from the equation for ė in (5.71). There-
fore, the dynamics of the state variables e,�, and �s can be analyzed independently of 
� . The conservation of total angular momentum, �

T
= � + �s , implies that it is suffi-

cient to observe the dynamics of e and �s.
While the dynamics unfolds within two-dimensional surfaces, on the level sets of 

angular momentum, analyzing the equations within a three-dimensional phase space 
proves more insightful. This approach facilitates a comprehensive understanding of the 
global dynamics and the impact of varying angular momentum. After some investiga-
tion, we selected (�, e, a) as the phase-space variables, with n =

√
G(m+m0)

a3
 being a 

derived quantity. The differential equation for a =
�
2

�c(1−e2)
 is obtained from the equa-

tions for �̇ and ė . Henceforth we use the approximation

(5.75)

√
1 − e2kX

−3,0

k
=

3

2
e(X−4,1

k
− X

−4,−1

k
) =

3

2
e(X−4,1

k
− X

−4,1

−k
),

√
1 − e2kX

−3,2

k
=

e

2
(5X−4,3

k
− X

−4,1

k
) + 2X

−4,2

k
,

X
−3,3

k
=

1

e

�
2(1 − e2)X−4,2

k
− 2X

−3,2

k
− eX

−3,1

k

�
.

(5.76)
ė =

3c

2𝓁

I
◦

m

𝜁
T

a3
1 − e2

3e

∞�
k=−∞

�
k
√
1 − e2(X−3,0

k
)2Im k2(nk)

−3
�
2 − k

√
1 − e2

�
(X−3,2

k
)2Im k2(kn − 2𝜔)

�
.

(5.77)
ė = n

m0

m

R5

a5

√
1 − e2

4e

∞�
k=−∞

�
k
√
1 − e2(X−3,0

k
)2Im k2(nk)

−3
�
2 − k

√
1 − e2

�
(X−3,2

k
)2Im k2(kn − 2𝜔)

�
.

𝓁s = � I
◦
(1 − ⟨bd33⟩) ≈ � I

◦
.
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Equation (5.71) and the identity 3c

mn2a3
=

3m0

m+m0

 imply

Conservation of angular momentum 𝓁
T
=
√
�ca

√
1 − e2 + I

◦
� implies

This suggests the following nondimensionalization of a:

is defined as the radius of the circular orbit for two point masses, m0 and m, possess-
ing an orbital angular momentum of � = �T.

Let

be the angular frequency of the circular orbit of radius a
◦
 . Kepler’s third law implies, 

n2a3 = G(m + m0) = n2
◦
a3
◦
 and so

Conservation of angular momentum, as expressed in Eq. (6.79), implies

where

For the Mercury-Sun system, where m0 is the mass of the Sun, � = 6.8 × 10−10 , 
and for the Earth–Moon system, where m0 is the mass of the Moon, � = 0.0036 . 
Although � appears to be very small for all problems of interest, in this section, we 
will conduct a geometric analysis with an arbitrary value of � to elucidate the global 
properties of the equations.

Using the above definitions Eq. (6.78) can be written in nondimensional form as

(6.78)

𝜔̇

n2
= −

�
3m0

m + m0

𝜁
T

�
A0

ė

n
=

�
3m0

m + m0

𝜁
T

�
I
◦

𝜇a2
1

2
√
1 − e2

�
1 − e2

2
A2 +A4 + 2eA0

�

ȧ

n
=

�
3m0

m + m0

𝜁
T

�
I
◦

𝜇a2
a

(1 − e2)3∕2

�
e

�
1 − e2

2
A2 +A4

�
+ 2A0

�
.

(6.79)
�
n
=

𝓁
T

I
◦
n

�
1 −

�
a�c

𝓁2
T

√
1 − e2

�
.

(6.80)ã ∶=
a

a
◦

, where a
◦
∶=

𝓁
2
T

𝜇c

(6.81)n
◦
=

𝓁
T

�a2
◦

=
c2�

𝓁3
T

(6.82)n = n
◦

1

ã3∕2
.

(6.83)
𝜔
n
= 𝜖−1ã

3

2 (1 − ã
1

2

√
1 − e2),

(6.84)� ∶=
I
◦

�a2
◦

=
I
◦
n
◦

𝓁
T

=
I
◦
�c2

𝓁4
T

.
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where � , c, A0 , A2 , and A4 are given in Eq. (5.71).

6.1 � Estimate of the rate of spin variations

In a time scale where the unit of time corresponds to one radian of orbital motion, 
the spin angular velocity is �∕n , and, from Eq. (6.78), the rate of change of spin is

where

From Eq. (2.13)

and we can express

(6.85)

𝜔̇

n2
◦

= −N
1

ã6
A0

ė

n
◦

= 𝜖 N
1

2ã13∕2
√
1 − e2

�
1 − e2

2
A2 +A4 + 2eA0

�

̇̃a
n
◦

= 𝜖 N
1

ã11∕2(1 − e2)3∕2

�
e

�
1 − e2

2
A2 +A4

�
+ 2A0

�

N =
3m0

m + m0

𝜁
T◦

where 𝜁
T◦
=

m0R
5

2 I
◦
a3
◦

ã =
a

a
◦

where a
◦
=

𝓁
2
T

𝜇c

n = n
◦

1

ã3∕2
where n

◦
=

𝓁
T

𝜇a2
◦

𝜖 =
I
◦

𝜇a2
0

=
I
◦
n
◦

𝓁
T

=
I
◦
𝜇c2

𝓁4
T

,

𝜔̇

n2
= −

(
3m0

m + m0

𝜁
T

)
A0,

A0 =

∞∑
k=−∞

(
X
−3,2

k
(e)

)2

Imk2(kn − 2�).

(6.86)Imk2(kn − 2�) = −k
◦

�(kn − 2�)

1 + �2(kn − 2�)2
,

(6.87)

𝜔̇

n2
= V

(
𝜏n,

𝜔
n
, e
)

∶=
3m0

(m + m0)
𝜁
T
k
◦

∞∑
k=−∞

(
X
−3,2

k
(e)

)2 𝜏n(k − 2
𝜔

n
)

1 + 𝜏2n2(k − 2
𝜔

n
)2
.
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For a fixed pair (e, n), 𝜔̇
n2

= V
(
𝜏n, 𝜔

n
, e
)
 defines a differential equation for �

n
 . We aim 

to estimate two typical quantities associated with V: its maximum and the time con-
stant near a stable equilibrium, as depicted in Fig. 2.

The maximum value of the function � →
|�|
1+�2

 is 1
2
 . Hence,

Applying Parseval’s identity, we get

Based on Laskar and Boué [30], X−6,0

0
=

3e4

8
+3e2+1

(1−e2)
9∕2  leading to

The right side of this inequality increases with e, with values: 1/2 for e = 0 , approxi-
mately 1.6 for e = 0.4 , approximately 3.3 for e = 0.5 , and approximately 8 for 
e = 0.6 . Since m0

m+m0

≤ 1 , we deduce

It is worth noting that �
T
 , defined in Eq. (3.21), is a small quantity.

For sufficiently large values of �n , the stable equilibria of �
n
 are close to semi-

integers k
2
 , with k = 1, 2,… , and for these values, the dominant term in the sum of 

V is the kth-term [5]. Thus, Eq. (6.87) yields the time constant

for an equilibrium �
n
≈

k

2
.

Note that Vmax is independent of the characteristic time of the rheology � , 
whereas the time constant �k has a linear dependency. A maximum rate speed Vmax 

(6.88)
∞∑

k=−∞

(
X
−3,2

k
(e)

)2 �(kn − 2�)

1 + �2(kn − 2�)2
≤ 1

2

∞∑
k=−∞

(
X
−3,2

k
(e)

)2

.

(6.89)
∞∑

k=−∞

(
X
−3,2

k
(e)

)2

=
1

2� ∫
2�

0

ei2f

r3
e−i2f

r3
dM =

1

2� ∫
2�

0

1

r6
dM = X

−6,0

0
.

(6.90)
∞∑

k=−∞

(
X
−3,2

k
(e)

)2 �(kn − 2�)

1 + �2(kn − 2�)2
≤ 1

2

3e4

8
+ 3e2 + 1

(
1 − e2

)9∕2 .

(6.91)
𝜔̇

n2
≤ 10 𝜁

T
k
◦

when e < 0.5.

(6.92)�−1
k

≈
3m0

(m + m0)
�
T
k
◦

(
X
−3,2

k
(e)

)2

�n,

Fig. 2   Vector field 
𝜔̇

n2
= V

(
𝜏n, 𝜔

n
, e
)
 with constant n 

and e. Vmax represents the maxi-
mum rate of variation of �

n
 and 

�−1
s

= tan� denotes the time 
constant of a stable equilibrium
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proportional to �
T
k
◦
 will be observed during spin jumps. The prefactor 10 in Eq. 

(6.91) varies with the eccentricity e.

6.2 � Equilibria, linearization and the invariant subspace of zero eccentricity

Using the expresions for the Hansen coefficients in Sect.  5.1 we can compute the 
expansion of the right-hand side of Eq. (6.85) up to first order in eccentricity:

These equations imply that the plane e = 0 is invariant.
The only equilibria of Eq. (6.85) are on the plane e = 0 , as shown in the next 

paragraph, and are given by the curve

The equilibria of (6.85) satisfiy A0 = 0 and 1−e
2

2
A2 +A4 = 0 . Equation (5.76) shows 

that these equations imply

We notice, from (6.86), that for all x ≠ 0 , xIm k2(x) < 0 and hence (6.95) holds if 
and only if each term of the sum is zero. The Hansen coefficients have the following 
properties: ∀k ≠ 0 , X−3,0

k
(e) = 0 if and only if e = 0 and ∀k ≠ 2 , X−3,2

k
(e) = 0 if and 

only if e = 0 . This implies that e = 0 is a necessary condition for the existence of an 
equilibrium.

Conservation of angular momentum implies that the orbits of the vector field 
(6.93) in the plane where e = 0 are parameterized by angular momentum. Equation 
(6.83) shows that the representation of these orbits in the plane (ã, 𝜔

n
) is given by the 

graphs

(6.93)

𝜔̇

n2
◦

= k
◦

N

ã6

𝜏(2n − 2𝜔)

𝜏2(2n − 2𝜔)2 + 1

̇̃a
n
◦

= −k
◦

𝜖 N

ã11∕2

2𝜏(2n − 2𝜔)

𝜏2(2n − 2𝜔)2 + 1

ė

n
◦

= −k
◦

𝜖 N

2ã13∕2
1

4
e𝜏n

(
6

n2𝜏2 + 1
+

8
𝜔

n
− 8

4𝜏2n2(1 − 𝜔

n
)2 + 1

+
2
𝜔

n
− 1

𝜏2n2(1 − 2
𝜔

n
)2 + 1

+
49(3 − 2

𝜔

n
)

𝜏2n2(3 − 2
𝜔

n
)2 + 1

)

n = n
◦

1

ã3∕2

(6.94)
�
n
= 1.

(6.95)

n

∞∑
k=−∞

{
k(X−3,0

k
)2Im k2(nk) + 3k(X−3,2

k
)2Im k2(kn − 2�)

}

=

∞∑
k=−∞

{
(X−3,0

k
)2(nk)Im k2(nk) + 3(X−3,2

k
)2(kn − 2�)Im k2(kn − 2�)

}
= 0.
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as illustrated in Fig. 3.
In the significant case where � ≈ 0 , Eq. (6.83) suggests that 

0 ≈ 𝜖 𝜔

n
= ã

3

2 (1 − ã
1

2

√
1 − e2) . Up to first order in eccentricity, we have ã = 1 and 

n = n
◦
 . Using this approximation, the function ė

e
 in Eq. (6.93) is expressed as

where n = n
◦
= constant and c̃ is a positive, although small, constant. The graph 

of ė

ec̃
 as a function of �

n
 for various values of �n is depicted in Fig.  4. This figure 

illustrates that ė
e
 changes sign near the plane e = 0 . Consequently, a solution with an 

initial eccentricity close to zero, yet sufficiently distant from the stable equilibrium 
at �

n
= 1 , may experience an increase in eccentricity.

The next step in understanding the dynamics of Eq. (6.85) involves linearization 
about the equilibria. It is evident from Fig. 3 that the equilibria can be parameter-
ized by their ã coordinate. Thus, an equilibrium is represented by (𝜔, ã) = (𝜔e, ãe) , 
where, according to Eq. (6.83), ãe is the solution to

(6.96)ã ↦ 𝜖−1ã
3

2 (1 − ã
1

2 ) =
𝜔
n
, for 𝜖 ∈ (0,∞),

(6.97)

ė

e
= −c̃

(
6

n2𝜏2 + 1
+

8
𝜔

n
− 8

4𝜏2n2(1 − 𝜔

n
)2 + 1

+
2
𝜔

n
− 1

𝜏2n2(1 − 2
𝜔

n
)2 + 1

+
49(3 − 2

𝜔

n
)

𝜏2n2(3 − 2
𝜔

n
)2 + 1

)
,

Fig. 3   Orbits of the Eq. (6.85) on the invariant plane e = 0 . The orbits are labelled by the total angular 
momentum �

T
 by means of the nondimensional parameter �−1 = 𝓁

4

T

I
◦
�c2

 . The equilibria are on the horizon-

tal line �
n
= 1 : the green dots represent stable equilibria and the red dots represent unstable equilibria. 

The black dot at ã =
9

16
 , �
n
= 1 represents the single equilibrium that occurs for the special value � = 27

256
 . 

For 𝜖 > 27

256
 (small angular momentum) all the solutions lead to a collision (Color figure online)
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The special equilibrium ãe =
9

16
 , corresponding to the bifurcation value � = 27

256
 , 

marked by the black dot in Fig.  3, represents a threshold of stability: an equilib-
rium with ãe <

9

16
 is unstable, while an equilibrium with ãe >

9

16
 is stable. Indeed a 

saddle-node bifurcation occurs for this parameter value, since (6.85) can be reduced 
to a two dimensional system in the form

where the function (6.83) is used to eliminate the spin–orbit ratio from these equa-
tions. Equation (6.93), the properties of the Hansen coefficients, and a straightfor-
ward calculation show that

and hence system (6.99) can be expanded as

which is the normal form of the saddle-node bifurcation [29].
Given that 0 < 𝜖 < 27

256
≈ 0.1 , a perturbative calculation reveals that the largest root 

of this equation (stable equilibrium) satisfies

(6.98)𝜖 = ã
3

2 (1 − ã
1

2 ).

(6.99)
ė = f1(e, ã, 𝜖),

̇̃a = f2(e, ã, 𝜖),

(6.100)
𝜕f1
𝜕e

(
0,

9

16
,
27

256

)
= − 7

(
4

3

)16 n2
◦
k
◦
N𝜏𝜖

n2
◦
𝜏2
(

4

3

)3

+ 1

=∶ −𝜆1 < 0,

(6.101)
𝜕f2
𝜕e

(
0,

9

16
,
27

256

)
=
𝜕f1
𝜕ã

(
0,

9

16
,
27

256

)
=

𝜕f2
𝜕ã

(
0,

9

16
,
27

256

)
= 0,

(6.102)
𝜕2f2
𝜕ã2

(
0,

9

16
,
27

256

)
= − 4

(
16

9

)8

k
◦
n2
◦
𝜏N =∶ −𝛽 < 0,

(6.103)
ė = −𝜆1e +O(e2, (a − 9∕16)2),

̇̃a = −𝛽(a − 9∕16)2 +O(e2, (a − 9∕16)3),

(6.104)ãe = 1 − 2𝜖 − 5𝜖2 +O
(
𝜖3
)
.

Fig. 4   The graph of ė
ec̃

 as a function of �
n
 for values of �n equal 1, 10, and 100. For n = 10 , ė

ec̃
 has a zero, 

not easily seen in the Figure, at �
n
= 5.26
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This approximation remains accurate up to � = 0.05.
At equilibrium, the orbit is circular. If 𝓁e = 𝓁T − I

◦
ne denotes the orbital angular 

momentum at equilibrium, then ae =
�
2
e

�c
 . Since ae = ãea◦ and a

◦
=

𝓁
2
T

�c
 , we obtain

Thus, ãe represents the square of the ratio of orbital angular momentum to total 
angular momentum at equilibrium. For the Mercury-Sun system, where m0 is the 
mass of the Sun, � = 6.8 × 10−10 and ãe ≈ 1 . For the Earth–Moon system, where m0 
is the mass of the Moon, � = 0.0036 and ãe = 0.993 . It appears that in most prob-
lems of interest, ãe ≈ 1.

The linearization of Eq. (6.85) at (𝜔, ã, e) = (𝜔e, ãe, 0) is derived easily from Eq. 
(6.93):

where ñe = n0
1

ã
3∕2
e

 . Each equilibrium has: one eigenvalue equal to zero, associated 
with the conservation of angular momentum; one negative eigenvalue 
𝜆e = −

7ñe𝜖

ã2
e
(ñ2

e
𝜏2+1)

(
k
◦
Nñe𝜏

ã3
e

)
 , with an eigenvector tangent to the eccentricity axis; and 

one eigenvalue 𝜆0 = −
2ñe(ã

2
e
−3𝜖)

ã2
e

(
k
◦
Nñe𝜏

ã3
e

)
 , with an eigenvector in the plane e = 0 and 

tangent to the surface of constant angular momentum. As expected, �0 = 0 in the 
critical case where � = 27

256
 and ãe =

9

16
 , 𝜆0 > 0 if ãe <

9

16
 , and 𝜆0 < 0 if ãe >

9

16
.

Consider a solution to Eq. (6.93) that satisfies limt→∞

(
e(t), ã(t)

)
=
(
0, ãe

)
 , and let 

𝛿a(t) = ã(t) − ãe . At a certain time t̃ , this solution is sufficiently close to (0, ãe) for the 
linear approximation to be valid. Since 𝛿a(t) = e𝜆0(t−t̃)𝛿a(t̃) and e(t) = e𝜆e(t−t̃)e(t̃) , we 
conclude that near the equilibrium,

where

(6.105)ãe =

(
𝓁e

𝓁
T

)2

=

(
1 −

I
◦
ne

𝓁
T

)2

.

(6.106)

𝛿̇𝜔 = −k
◦

Nñ2
e
𝜏

ã3
e

(
2𝛿𝜔 + 3

ñe

ãe
𝛿a

)
=

(
k
◦
Nñe𝜏

ã3
e

)
ñe

(
−2𝛿𝜔 − 3

ñe

ãe
𝛿a

)
,

𝛿̇a = k
◦

2Nñe𝜖𝜏

ã4
e

(
2𝛿𝜔 + 3

ñe

ãe
𝛿a

)
=

(
k
◦
Nñe𝜏

ã3
e

)
2𝜖
ãe

(
2𝛿𝜔 + 3

ñe

ãe
𝛿a

)
,

ė = −k
◦

Nñ2
e
𝜖 𝜏

ã5
e

7

1 + ñ2
e
𝜏2

e = −

(
k
◦
Nñe𝜏

ã3
e

)
ñe𝜖

ã2
e

7

1 + ñ2
e
𝜏2

e,

(6.107)
𝛿a(e) = ã(e) − ãe =

𝛿a(t̃)

e𝜆0∕𝜆e(t̃)
�����
=constant

e𝜆0∕𝜆e ,
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Regardless of the value of the constant factor in Eq. (6.107), which in Fig.  5 we 
assume to be one, the orbit’s geometry near the equilibrium is controlled by the ratio 
�0
�e

 . In Fig. 5 LEFT, we illustrate how the orbit changes as �0
�e

 varies, with the ratio 
�0
�e

= 1 being a critical value. For 𝜆0
𝜆e

> 1 , the orbit approaches the equilibrium along 

the e-axis, and for 0 <
𝜆0
𝜆e

< 1 , the orbit approaches the equilibrium along the �a axis. 
In Fig. 5 RIGHT, we demonstrate how to determine the special value of ãe , corre-
sponding to �0

�e
= 1 , as a function of the parameter 𝜏ñe . The maximal value of this 

special ãe is 169
225

≈ 0.75 , achieved when � = 0.
It appears that in most problems of interest, � is very small, ãe ≈ 1 , and 

𝜆0∕𝜆e ≫ 1 , indicating that solutions approach the stable equilibrium along the 
e-axis, namely the weak-stable manifold of the equilibrium.

6.3 � Slow‑fast systems and singular perturbation theory

For � ≈ 0 Eq. (6.93) has the form of a slow-fast system:

with x = � ∈ ℝ as the fast variable and y = (e, ã) ∈ ℝ
2 as the slow variables [14].

Given an initial condition in the state space 
{
𝜔, e, ã

}
 , the value of � varies while 

(e, ã) stays nearly constant until the state reaches the slow manifold

where A0 is given in Eq. (5.71).

(6.108)
𝜆0
𝜆e

=
2
�
ã2
e
− 3𝜖

�
7𝜖

�
ñ2
e
𝜏2 + 1

�
=

8
�√

ãe −
3

4

�

7
�
1 −

√
ãe

� �
ñ2
e
𝜏2 + 1

�
.

(6.109)
ẋ = f (x, y, 𝜖),

ẏ = 𝜖g(x, y, 𝜖),

(6.110)Σs(0) ∶= {𝜔̇(𝜔, e, ã) = 0} =
{
A0(𝜔, e, ã) = 0

}
(s denotes slow),

Fig. 5   LEFT: The figure shows possible orbits on the eccentricity-semi-major axis ( 𝛿a = ã − ãe ) plane, 
�a = constant e�0∕�e with constant = 1 for various �0∕�e values. RIGHT: A graphical method to find the 
special value of ãe , where �0∕�e = 1 , as a function of 𝜏ñe
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When (x, y0) is not close to Σs(0) , the fast dynamics is governed by the layer prob-
lem, ẋ = f (x, y0, 0) . Here, the fast dynamics corresponds to the fast spin variation with 
fixed e and ã . The spin decreases on points above Σs(0) and decreases on points under 
Σs(0) , see Fig. 10. Close to the slow manifold Σs(0) , the dynamics is approximated by 
the reduced problem, where the fast variable is given by an implicit function, solution 
of f (Φ(y), y, 0) = 0 , and the slow variable solves the differential equation on Σs(0) , 
ẏ = g(Φ(y), y, 0) . The implicit function theorem ensures that Φ is locally determined 
at (x0, y0) ∈ Σs if �xf (x0, y0, 0) ≠ 0 . In this case, Σs(0) is called normally hyperbolic 
at (x0, y0) . The results from geometric singular perturbation theory [14] state that if 
the system (6.109) has a normally hyperbolic slow manifold S0 , for each small 𝜖 > 0 
exists an invariant manifold S� diffeomorphic to S0 which is stable (unstable) if 𝜕xf < 0 
( 𝜕xf > 0 ) on S0 . We will denote by Σs(�) the union of the hyperbolic components of 
perturbed slow manifold in (6.110).

The dynamics across the entire phase space can be elucidated by exam-
ining the geometry of the slow manifold (6.110). Within the first octant 
B1 ∶= {𝜔 > 0, e > 0, a > 0} , Σs(0) possesses a single connected component that 
splits B1 into two regions. The conservation of angular momentum reduces the 
analysis to a two-dimensional problem. A diagram illustrating the local behavior of 
orbits near the stable equilibrium is presented in Fig. 5 LEFT. A global illustration 
of the flow on a level set of angular momentum is shown in Fig. 6.

7 � Spin–orbit resonances

In this section, we assume that the ratio �
n
 is at most on the order of tens, so that

Under this condition, Eq. (6.83), i.e., ã
3

2 (1 − ã
1

2

√
1 − e2) = 𝜖 𝜔

n
 , yields two solutions 

for ã . The first solution is ã =
(
𝜖 𝜔

n

)2∕3

+O(𝜖) . This solution closely approximates 

(7.111)
||||𝜖
𝜔
n

|||| ≪ 1.

Fig. 6   The phase space close to the synchronous states �∕n = 1 , e = 0 . The blue surface represents a 
level set of the angular momentum and the red surface represents the slow manifold Σs(�) . Both surfaces 
and the plane e = 0 intersect only at the equilibria. The stable separatrix of the saddle point delimits the 
basin of attraction of the node and the region whose solutions tend to the collision a = 0 (Color figure 
online)
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the surface of constant angular momentum in a region that includes the unstable 
equilibrium ãe ≈ 0 . This approximation is depicted in Fig. 3 by the nearly vertical 
red dot-dashed line near ãe ≈ 0 . We will not focus on this region. The second solu-
tion is ã =

1

1−e2
+O(𝜖) , which is of primary interest. This solution approximates the 

surface of constant angular momentum in a region containing the stable equilibrium 
ãe ≈ 1 . This approximation is depicted in Fig. 3 by the nearly vertical red dot-dashed 
line near ãe ≈ 1 . Disregarding the error of order � , we have ãe = 1 , ae = a

◦
 , and

In the subsequent analysis we use these approximations.
The geometry of the slow manifold Σs(0) plays a crucial role in the capture into 

spin–orbit resonance, particularly where Σs(0) is not normally hyperbolic. The slow 
manifold becomes non-normally hyperbolic at points where the projection map from 
Σs(0) to the {a, e} plane is singular. These generic singular points of the projection 
are known as folds and collectively form the “fold curves”. In Fig. 7, the fold curves 
are depicted in blue on the slow manifold Σs(0) , which is represented as an orange 
surface. Although the fold curves themselves are smooth, their projection onto the 
{a, e} plane includes singular points termed “cusps”, at which a moving point on the 
projection reverses direction. A cusp point on a fold curve occurs where the tangent 
to the curve becomes parallel to the �-axis. The flow dynamics near a fold are exten-
sively described in the literature [27].

We illustrate the so called phenomenon of capture into spin–orbit reso-
nance by a concrete example presented in Correia et al. [5] and Correia et al. [6]. 
We use the parameters of the exoplanet HD80606b and its hosting star, namely 
m0 = 2008.9 ⋅ 1030kg, m = 7.746 ⋅ 1028kg, I

◦
= 8.1527 ⋅ 1040 kg m2 . The initial 

conditions are chosen as a = 0.455au, e = 0.9330 and � = 4� rad∕day and hence 
� = 1.35 ⋅ 10−8 . The parameters of the rheology are k

◦
= 0.5 and � = 10−2year.

In Fig.  8 (top panels), the red curve represents a trajectory of the fundamental 
equations, given in Sect. 2, which was obtained by means of numerical integration. 
The numerically computed trajectory has consecutive transitions between stable 
branches of the perturbed slow manifold Σs(�) . This trajectory shows a slow decrease 
of the eccentricity towards e = 0 while the spin–orbit ratio has fast transitions 

(7.112)ã =
1

1 − e2
⇒ a = a

◦

1

1 − e2
, where a

◦
=

𝓁
2
T

𝜇c
.

Fig. 7   Figure showing three views of the slow manifold Σs(0) , which is the orange surface, and the fold 
curves in blue (Color figure online)



1583São Paulo Journal of Mathematical Sciences (2024) 18:1553–1589	

between integers and half-integers with final value �∕n = 1 . The stable branches of 
Σs(�) are quite flat (parallel to the (e, a)-plane) near the planes �

n
=

k

2
 , k ∈ ℤ . These 

results are detailed in Figure 14 from Correia et al. [6]. We can observe in Fig. 8 the 
full agreement between the solution of the fundamental equations and the fast-slow-
geometric analysis of the averaged equations.

The projection of the fold curves to the plane (a, e) are shown in Fig. 8 DOWN-
RIGHT. Each curve contains a cusp singularity and is labeled by an integer or half-
integer. A point initially over (a, e) can be attracted to a resonance �

n
=

k

2
 only if it is 

inside a dashed curve that intersects the curve labeled by k
2
 ; see caption of Fig. 8 for 

further information.

Fig. 8   Geometrical perspective of capture into spin–orbit resonances. The slow manifold Σs(0) loses nor-
mal hyperbolicity at fold curves (black), characterized by 𝜕𝜔̃A0 = 0 . The fold curves become parallel to 
the �

n
-axis at the cusp points. The blue surface represents a level set of angular momentum, as depicted in 

Fig. 6. The red curve represents a solution of the complete system, which exhibits jumps when crossing 
the fold curves. In the lower-right frame, the projection of the cusp-shaped curves onto the (a, e) plane 
is displayed. Each curve is annotated with an integer or half-integer, symbolizing a resonance �∕n =

k

2
 , 

for k = 1,… , 13 , as noted on the right side of the figure. The dashed lines correspond to projections of 
the constant angular momentum surfaces a =

�
2

T

�c

1

1−e2
 . If the total angular momentum �

T
 is sufficiently 

large such that the curve a =
�
2

T

�c

1

1−e2
 does not intersect the projection of the fold curve associated with a 

specific �∕n =
k

2
 spin–orbit resonance, then the k : 2 resonance is precluded for that angular momentum 

value (Color figure online)
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7.1 � Spin–orbit resonances require large relaxation times �.

The approximation ã = (1 − e2)−1 and Eq. (6.82) imply n = n
◦
(1 − e2)3∕2 . The imagi-

nary part of the Love number (6.86) can then be written as

where

For e = 0 , the slow manifold lacks any fold points for any value of 𝜏 > 0 , as illus-
trated in Fig. 3. Consider a fixed value e1 > 0 for e. Equations (6.87) and (7.113) 
imply the existence of at least j − 1 fold points in the region {0 < e < e1, 0 < 𝜔

n
< C} , 

where C > 0 represents a positive constant, if and only if

has j zeroes for �
n
∈ (0,C).

Given that X
−3,2

k
(0) = 1 and X

−3,2

k
(e1) = O(e1) , function (7.115) can be 

expressed as (𝜔∕n−1)

𝜖+(𝜔∕n−1)2
+O(e2

1
) . For 0 < 𝜔

n
< C and a fixed 𝜖 > 0 , this function 

exhibits a single zero near �
n
= 1 if e1 > 0 is sufficiently small. Furthermore, for a 

fixed e1 > 0 and 𝜖 = 0 , function (7.115) presents poles for every �
n
=

k

2
 , k ∈ ℤ , 

thereby ensuring at least one zero in each interval (k, k + 1

2
) , where k is any half-

integer. A continuity argument suggests that if 𝜖 is sufficiently close to zero 
(implying � is sufficiently large), then for any fixed e1 , function (7.115) will have 
zeroes near j/2, for j = 1, 2,… . This analysis indicates that, particularly for small 
e1 > 0 , the condition 𝜖 ≪ 1 (equivalently, 𝜏 ≫ 1 ) is a necessary condition for the 
creation of folds in the slow manifold Σs(0).

For the Earth–Moon system, where m0 is the mass of the Moon, � = 0.0036 
and n−1

◦
= 7.6 days, a value 𝜏 > 76 days gives 𝜖 < 0.0025 . For the Mercury-Sun 

system, where m0 is the mass of the Sun, � = 6.8 × 10−10 and n−1
◦

= 13 days, a 
value 𝜏 > 130 days gives 𝜖 < 0.0025 . In the case of the parameters chosen for 
HD80606b, 𝜖 ≈ 1.28 ⋅ 10−5.

For 𝜖 ≪ 1 and close to a resonance �∕n = j∕2 , j ∈ {2, 3,…} , Σs(0) can be 
approximately computed as a power series in 𝜖 . If we substitute

(7.113)
Imk2(kn − 2𝜔) = k

◦

2𝜏n(𝜔∕n − k∕2)

1 + (2𝜏n)2(𝜔∕n − k∕2)2

=
√
𝜖k

◦
(1 − e2)

3

2

(𝜔∕n − k∕2)

𝜖 + (1 − e2)3(𝜔∕n − k∕2)2
,

(7.114)𝜖 ∶=
1

(2𝜏n
◦
)2
, n

◦
=

c2𝜇

𝓁3
T

.

(7.115)

𝜔
n
↦

(
X
−3,2

2
(e1)

)2 (𝜔∕n − 1)

𝜖 + (1 − e2
1
)3(𝜔∕n − 1)2

+
∑
k≠2

(
X
−3,2

k
(e1)

)2 (𝜔∕n − k∕2)

𝜖 + (1 − e2
1
)3(𝜔∕n − k∕2)2
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into the equation

and solve the resulting equation for the coefficient of 𝜖 and 𝜖2 we obtain,

We emphasize that the functions Φ(j∕2, e, 𝜖) represent the O(�0) approximations of 
the slow invariant manifold Σs(�) . These functions determine the dynamics of the 
reduced system, serving as the initial step in comprehending the flow on Σs(�) . Fur-
ther exploration of this flow constitutes a subject for future work. Figure 9 illustrates 
the approximation of Σs(0) on some resonances.

We end this section with a topological description of the slow-fast dynamics of 
Eq. (6.85). In Fig. 10 we present a sketch of flow lines for � = 0 (LEFT panel) and 
𝜖 > 0 small (RIGHT panel). Explanations are given in the Figure caption. The orien-
tation of the fast flow lines was previously examined in Sect. 6.1. The orientation of 
the slow flow lines is determined by the monotonic decrease in eccentricity on Σs(0) . 
This is a consequence of the same argument employed to determine the equilibria, 
as presented in Eq. (6.95).

8 � Conclusion

In this paper, we presented a set of equations for the evolution of the orbital ele-
ments in the gravitational two-body problem under the influence of tides. These 
equations, previously obtained by other authors, were derived here through a two-
step procedure. Initially, we used the fact that tidal deformations are very small 
to demonstrate the existence of an invariant manifold, which we have termed the 
deformation manifold. Although our arguments are mathematically sound, they lack 
the appropriate quantifiers. The second step involves averaging the equations on the 
deformation manifold. This step is contingent upon the first, leading to uncertainties 

𝜔∕n = j∕2 + Φ(j∕2, e, 𝜖) = j∕2 + Φ1(j∕2, e)𝜖 + Φ2(j∕2, e)𝜖
2 +…

(7.116)
∞∑

k=−∞

(
X
−3,2

k
(e)

)2 (Φ(j∕2, e, 𝜖) + (j − k)∕2)

𝜖 + (1 − e2)3(Φ(m∕2, e, 𝜖) + (j − k)∕2)2
= 0,

(7.117)Φ1(j∕2, e) =
2

(1 − e2)3(X−3,2

j
)2

+∞∑
k=1

(X−3,2

j+k
)2 − (X−3,2

j−k
)2

k
,

(7.118)

Φ2(j∕2, e) =Φ0(j∕2, e)
3(1 − e2)3

+
4

(1 − e2)3(X−3,2

j
)2

(
Φ0(j∕2, e)

+∞∑
k=1

(X−3,2

j+k
)2 + (X−3,2

j−k
)2

k2

+
2

(1 − e2)3

+∞∑
k=1

(X−3,2

j−k
)2 − (X−3,2

j+k
)2

k3

)
.
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about whether the averaged equations are mathematically coherent with the large 
values of �n used in Sect. 7. In the physics literature, employing large values of �n in 
the averaged equations has been common practice.

Analyzing the averaged equations mathematically presents a significant chal-
lenge due to the analytical complexity of the vector field, defined by infinite 
sums of Hansen coefficients, which are themselves infinite series in powers of 
eccentricity.

Given the scientific significance of this problem, it warrants investigation from 
a mathematical perspective. The geometric theory of singular perturbation, poten-
tially incorporating multiple time scales as suggested in our companion paper 
[41], appears to be a suitable mathematical framework to address this challenge.

Fig. 9   Approximation of the resonances �∕n ≈ j∕2 , for j = 2, 3, 4, 5 . The dashed lines correspond to the 
approximation up to O(𝜖) and the continuous lines up to O(𝜖2) . In this graph we use the parameters of 
HD80606b, 𝜖 ≈ 1.28 ⋅ 10−5
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