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Abstract

In this study, we formulate a set of differential equations for a binary system to
describe the secular-tidal evolution of orbital elements, rotational dynamics, and
deformation (flattening), under the assumption that one body remains spherical
while the other is slightly aspherical throughout the analysis. By applying singular
perturbation theory, we analyze the dynamics of both the original and secular equa-
tions. Our findings indicate that the secular equations serve as a robust approxima-
tion for the entire system, often representing a slow-fast dynamical system. Addition-
ally, we explore the geometric aspects of spin—orbit resonance capture, interpreting
it as a manifestation of relaxation oscillations within singularly perturbed systems.
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1 Introduction

The foundations of differential equations trace back to Newton’s pioneering work
in mechanics and differential calculus. Newton grounded the law of gravitation
mathematically and solved the equations for the motion of two bodies. How-
ever, the Newtonian model primarily considers celestial bodies as point masses,
a simplification that has its limitations given that celestial entities have finite
dimensions.

Planets and substantial satellites exhibit a near-spherical shape. Despite being
relatively minuscule compared to their respective diameters, the deformations
induced by spin and tidal forces have a considerable impact, instigating signifi-
cant alterations in both rotation rates and orbits. It is worth noting that all the
major satellites within our solar system, including the Moon, operate in a 1:1
spin—orbit resonance (see, e.g., [36]), they complete a single rotation on their axis
for every orbit around the planet. Mercury, however, maintains a 3:2 spin—orbit
resonance, undergoing three rotations on its axis for every two revolutions around
the Sun. Furthermore, a majority of these celestial entities follows elliptical
orbits characterized by low eccentricity. Deciphering how this dynamic state was
attained, along with determining the associated time scales, holds substantial sig-
nificance in the scientific realm.

The goal of this study is to introduce equations to describe the perturbative
impact of deformations on the motion of two spherical bodies influenced by grav-
itational interaction. Subsequently, we demonstrate that in certain limiting sce-
narios, which bear physical relevance, these equations can be analyzed using the
mathematical apparatus of singular perturbations.

The earliest and most basic deformation model accounting for energy dissipa-
tion was put forth by George Darwin [8], son of the renowned biologist Charles
Darwin. Darwin built upon previous studies [44] concerning the deformation of
an elastic, homogeneous, incompressible sphere, extending the results to address
a body constituted of a homogeneous, incompressible, viscous fluid.

Subsequent to Darwin, a significant advancement came with the introduction
of Love numbers [31]. When the tidal force is decomposed in time via its Fou-
rier components and in space through spherical-harmonic components, the Love
number for a specific harmonic frequency and spherical-harmonic mode is a sca-
lar that correlates the amplitude of the tidal force to the deformation’s amplitude.
Essentially, Love numbers act as functions within the frequency space, offering
a phenomenological approach to elucidate force-deformation relationships. Esti-
mates of Love numbers can be derived from observational data.

Over the past 70 years, there has been a prolific output of scientific literature
focusing on the tidal effects on the motion of celestial bodies. While it is chal-
lenging to encompass the breadth of these studies, we will mention a few we are
particularly acquainted with.

Kaula [26] evaluated the rate of change of the orbital elements using Love
numbers for each harmonic mode (see [3] and [10] for further insights on the
work of Kaula). Numerous other scholars have investigated equations accounting
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for deformations averaged over orbital motion. Some important works in this area
are: [25, 43, 1], and [34] (low-viscosity scenarios); and [5, 15, 17, 32] and [2,
18-21] (low and high-viscosity scenarios).

In this paper, for simplicity while maintaining physical relevance, we make the
following assumptions:

(1) The first body is deformable, nearly spherical at all times;

(2) The second body, which is the tide-raising body, is a point mass;

(3) The spin (or rotation vector) of the deformable body remains perpendicular to
the orbital plane.

The foundational equations for the orbit and rotation of the extended body are stand-
ard. Various equations exist in the literature detailing the deformation of extended
bodies. We utilize the equations provided in Ragazzo and Ruiz [40], without the
term accounting for the inertia of deformations [6].

The reduced and averaged equations we introduce here are not novel. Excluding
centrifugal deformations, they match those in Correia and Valente [7]. Our analysis
parallels the approach in Correia et al. [5], Section 5. The primary contributions of
this paper include:

(1) Clearly stating mathematical assumptions used in deriving the averaged and
reduced equations;

(2) Framing the averaged equations as a slow-fast system;

(3) Beginning a geometric examination of the slow system using numerically gen-
erated figures to illustrate the “relaxation jumps”.

We adopt the geometric method set out by Fenichel [11], Fenichel [12], Fenichel
[13], Fenichel [14], and Krupa and Szmolyan [28] without fully verifying all the
assumptions. A comprehensive mathematical analysis of the equations presented
may necessitate extensive research.

The paper is structured as follows:

In Sect. 2, we outline the core equations of the system. We assess the magni-
tude of various terms and introduce a parameter representing the minor nature of the
deformations.

In Sect. 3, we examine the limit when deformations approach zero, averaging
them over orbital motion. This leads to equations with “passive deformations” that
do not influence the orbit.

In Sect. 4, we suggest that for minor deformations, the primary equations pos-
sess an attracting invariant manifold matching the deformations from Sect. 3. This
manifold’s existence depends on the body’s rheology. As the body becomes more
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viscous, the manifold becomes less attractive!. Given the enhanced spin—orbit cou-
pling at high viscosity, assessing the credibility of our calculations and assumptions
in this section presents a compelling mathematical challenge.

In Sect. 5, we average the orbital and spin equations based on the preceding sec-
tion’s invariant manifold.

Section 6 reveals that the averaged equations exhibit a slow-fast split. The fast
variable is the body’s spin, while the slower variables are orbital eccentricity and the
semi-major axis.

In Sect. 7, we delineate a condition for the folding of the slow manifold and pro-
vide a numerical illustration of its geometry. We also present a geometric interpre-
tation of the dynamics within this manifold, emphasizing rapid spin transitions as
instances of “relaxation jumps” [28, 35].

Section 8 concludes the paper, recapping the pivotal mathematical queries
regarding the simplification of the initial equations and the dynamics of the reduced
equations.

This paper was written concurrently with a companion paper [41], which has
a more physics-oriented content. The focus of Ragazzo and Ruiz [41] is on the
implications for dynamics of using rheological models more complex than the one
employed here.

2 The fundamental equations

Let m, and m represent the masses of two celestial bodies, which could be a planet
and a star, or a planet and a satellite, etc. The body with mass m, is treated as a
point mass, while the body with mass m is always a small deformation of a spherical
body with a moment of inertia I,. We assume that the deformations do not alter the
volume of the body, implying that I, remains constant, a result attributed to Darwin
[42]. Often, we will refer to the bodies simply as the point mass and the body.

For convenience, we write the deviatoric part of the moment of inertia matrix I in
non-dimensional form:

I=1,(1-b) @.1)

where 1 is the identity and b is a symmetric and traceless matrix. We denote matri-
ces and vectors in bold face. The matrix b is termed the deformation matrix.

Consider an orthonormal frame {e, e,, e;}. We assume that the vector x, from the
center of mass of the body to the point mass, lies in the plane spanned by {e;,e,}.
The angular velocity of the body, w, is perpendicular to the orbital plane, repre-
sented as @ = we;. The deformation matrix is given by:

! This counterintuitive claim is associated with the omission of deformation inertia. In the equation for
the damped harmonic oscillator mx = —x — nx, the solutions converge to zero more rapidly as the damp-
ing coefficient # increases. If the inertia coefficient is zero, the equation simplifies to #x = —x, leading to
the opposite effect: x(f) = e/"x(0).
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by by 0
b=|byy by 0 | with by =—=by —by. (2.2)
0 0 by

Under the given assumptions, Newton’s equation for the relative position is
expressed as:

x:GMm+m{— X-w5<—” lmxxn+3J—M>}, 2.3)

xP T m\ 2 x5

where it is assumed that in the region occupied by the body, the gravitational field of
the point mass is accurately represented by its quadrupolar approximation.

The spin angular momentum of the body is denoted by £, = £ e;, with the index
s representing spin, and is defined as:

£, =wl (1 —by). 2.4)

In the context of the quadrupolar approximation, Euler’s equation for the variation
of 7, is:

3G1,m,

s = W{xlxz(bzz —b11)+b12()6% —X%)}. (25)

For a rigid body, a specific frame exists, known as the body frame, in which the body
remains stationary and its angular momentum with respect to this frame is zero.
Similarly, for a deformable body, there is an equivalent frame, called the Tisserand
frame, where the body’s angular momentum is null. The orientation of the Tisserand
frame K := {e},,ep,, ey;} with respect to the inertial frame x := {e;,e,,e;} is
given by

cos¢p —sing 0
R(¢p) =| singg cos¢p 0|: K-« (2.6)
0 0 1

and by definition, the rate of change of the angle ¢ is given by:
b= . @7

To complete the set of Egs. (2.3) and (2.5), we require additional equations for the
deformation matrices. These equations were derived within the Lagrangian formal-
ism and utilizing what was termed the “Association Principle,” as detailed in Raga-
zzo and Ruiz [39], Ragazzo and Ruiz [40] (see, also [23] addressing the treatment of
Andrade rheology, [38] extending to bodies with permanent deformation, and [22]
and [24] exploring the relations with the rheology of layered bodies).

To maintain simplicity in mathematical expressions, we consider only the basic
rheology of “Kelvin-Voigt” combined with self-gravity here. The exploration of
more generalized rheologies, which might introduce new time scales to the problem,
is reserved for a companion paper [41].
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The Tisserand frame of the body is the natural frame to present the equations for
deformations. In this frame, the deformation matrix and the position vector are denoted
by capital letters as follows:

B=R(@bR(¢p) X=Rlpx. (2.8)
The governing equation for B is:
nB+ (y + «)B =F, (2.9)

where:

e 7, with dimensions of 1/time?, is a parameter representing the self-gravity rigid-
ity of the body; a larger y indicates a stronger gravitational force holding the body
together.

e a, also with dimensions of 1/time?, signifies the elastic rigidity of the body; for a
fluid body, a = 0.

e 7, dimensions of 1/time, is a viscosity parameter; a body with a larger # is harder to
deform at a given rate compared to a body with a smaller #.

o F, with dimensions 1/time?, is the force matrix in the Tisserand frame K:

F :=C+S Deformation force
. 10 0
C :=%|01 0 centrifugal force
2.1
oo -2 2.10)

__ 3Gm, _xP? .
= |X|50 (X®X 3 1> Tidal force

where X ® X is a matrix with entries (X ® X)y = XX,
To determine the Love number function associated with the deformation Eq. (2.9),

we consider a simple harmonic force term of the form
F(t) = Fe”!

where Fis a complex amplitude matrix, and o € R is the constant forcing frequency.
Assuming a solution of the form B(z) = Be®’, we derive the relationship between the
complex amplitudes as

JE R
y+a+ino y+a/l+ito y+a/)1+ 1202 (2.11)
——

C(o)

where C(o) is the complex compliance and

T .

= . represents the time constant. (2.12)
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The complex Love number k,(c), commonly defined differently (see, e.g., [40]), is
proportional to the complex compliance C(c) as outlined in Mathews et al. [33] (par-
agraph 21):

3G1,
ky(c) = cw)=< (2.13)

3GI, 1 l—itc _, 1—ito
RS

RS y+a)l+1262 "°1+1262

3G1
where the number &, := ===

value of k, (o) for static forces (o = 0).
In the case of a fluid body, the elastic modulus «a is zero, and
_3GL 1

ky =k 1= & ; fluid Love number. (2.14)

yﬁ denotes the secular Love number, representing the

The body is held together solely by self-gravity. For a homogeneous fluid body of
any density, k, = 3/2. As discussed in Ragazzo [37], this represents the maximum
possible value of k, when the density of the body increases towards the center. Given
that for any non-null elastic rigidity « > 0, k; > k,, we conclude that for any stably
stratified body,

_3G1, |
°T R y+a

3
< -
=5 (2.15)

Historical note. Darwin was the pioneer in deriving Eq. (2.13), while examining
tides on a homogeneous body composed of viscous fluid. In page 13 of Darwin [8],
Darwin stated: “Thus we see that the tides of the viscous sphere are the equilibrium
tides of a fluid sphere as cose : 1, and that there is a retardation time i”. In his

S . 19
paper, v denotes fluid viscosity, and tan e = 0 %6, where g represents surface grav-
8Rp

ity, and p is the mass per unit volume of the body.
Given that for a homogeneous fluid body k, = k; = 3/2, Darwin’s statement can
be reformulated as

3 e 3 1 e 3 1 e 3 1
ky=>cosee “*=r—r—e = ="2 __
2 2\/1+tan26 2\/1+1262 21+iro
where
tane =70 and 7= QL
2 gRp
(2.16)
Utilizing the relationships for a homogeneous spherical body, I, = %mRz, g= %,
and p = m/ %, where m is the mass and R is the radius of the fluid body, and from
the relations k, = k; = 32301 andr =1 = 2 ¥ e deduce
2 RS y y 2 gRp
1527 R
n= ?ZV’ (2.17)

which aligns with a relation in Correia et al. [6, Eq. (39)].
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The theory developed by Darwin [8], Darwin [9] has predominantly been applied
in the frequency domain. Influenced by Darwin’s work, Ferraz-Mello [15] formulated
an equation for the motion of the surface of the body under tidal forcing in the time
domain. When a = 0, the model in Correia et al. [5] with 7, = 0, the model in Ferraz-
Mello [15], and Eq. (2.9) are all equivalent (our = corresponds to the 7 in Correia et al.
[5], which is equal to the parameter “l /y” used in Ferraz-Mello [15]). See Correia et al.
[5], paragraph above Eq. (90), and Ferraz-Mello [16] for the equivalence between the
models in Ferraz-Mello [15] and Correia et al. [5].

3 Zero deformation limit

In numerous celestial mechanics problems, bodies maintain near-spherical shapes at all
times, which can be reformulated as

2 _ 1 2
Bl <1, where [IB]*= ZBU. (3.18)
y

Given that Eq. (2.9) for B is linear, ||B|| is small if, and only if, || F|| is small.

The relative motion between two nearly spherical bodies approximates Keplerian
motion. Let a, n, and e represent the semi-major axis, the mean motion (period/(2z
)), and the eccentricity of the Keplerian ellipses, respectively. The magnitude of the
force terms in the deformation Eq. (2.9) is proportional to the following characteristic
frequencies:

3G 2 G
_ ”510 <x < ﬂ1> ~ @ B force;
|X| 3 a m+ my,
(3.19)

_ AR ) .
C=—\0,Q0, - Tl ~ 2w” centrifugal force.

The forces on the right-hand side of Eq. (2.9) are counteracted by the body’s self-
gravity and possibly elastic rigidity &« > 0. The static deformations are then given by

C S RS
B= + =k C+S8),
y+a yv+a °3G1, ( )
where we used k, = 363" -
R y+a

The order of magnitudes in Eq. (3.19) and inequality (2.15) imply

RSCOZ mORS
Bl|<—+ .
Bl < G+ 21

(3.20)

This indicates that the region in phase space defined by the following inequalities:

R3w? m0R5
= <1 and =
GI, & 21,43

¢ <1 (3.21)
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adheres to the small deformation hypothesis.

3.1 The zero deformation limit

Define the compliance €,;, where d denotes deformation, as follows:

1 . . .9
€, = dimension of time~.
d S ta (3.22)

We then express
B=¢B (3.23)

and substitute into Egs. (2.3), (2.4), (2.5), and (2.9) to yield

I - .
% = G(m0+m){ - x +€d—°< - EL(bx-><)><+’5le»<>}

Ix|? m 2 |xf? x|
3GI,m, - - s o o
o {10y = b1+ B = 3) }

£, = ol (1 —ebyy)

Lﬂs=_€d

T§+§=F

(3.24)
where 7 is defined in (2.12) and b = R(¢)l~3R_1(d>).
The zero deformation limit is defined by:
€; = L — 0 while 7= remains constant 2
4T g . (3.25)
In the zero deformation limit, Eq. (3.24) simplifies to:
. X
X= —G(mo + m)m
£,=al, =0 (3.26)

T§+I~}=F

In this scenario, the body spin, @, remains constant and x follows a Keplerian
ellipse.

To describe the Keplerian orbits, we change from variables (x,X) to £ € R
(orbital angular momentum), A (the Laplace vector), and f (the true anomaly),
defined as:

fe; =¢ = puxXXx orbital angular momentum
A = ix X? — % Laplace vector (3.27)

where
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= Mo _ -
H= P reduced mass, ¢ = Gmmy,. (3.28)

The Laplace vector is normalized such that ||A|| = e is the orbital eccentricity and it
points towards the periapsis, where ||x|| is minimized.
The three vectors

e, .= m, €y i=€3X ey, €3 (329)

constitute an orthonormal basis, expressed in terms of the inertial frame basis vec-
tors as

e, .=coswe, +sinwe,, ey .= —sinwe,; + cos we,. (3.30)

Here, w denotes the longitude of the periapsis, the angle between e, and e,.
The orbit is represented by

x = rR(f + w)e; = r(cos(f + w)e, +sin(f + w)e,)

=r(cosfe, +sinfey), (3.31)

where R is the rotation matrix about the axis e;, as given in Eq. (2.6), and

(@) = x|
3.2 Passive deformations

The equations at the zero deformation limit (3.26) in the new variables become (see,
e.g., [36] for details):

A=0
£=0
. 1 —é? 2
f=£, where r=a(—e)={;; (3.32)
r2 l+ecosf pucl+ecosf
w=0
B+B=C+S
where C and S are given in Eq. (2.10).
In order to write S in a convenient way, we define the matrices
1 1 i O | 10 O | 1 —-i 0
Y, =—|i -10| Yy:=—|01 O Y, =—|-i -10],
v2lo 0 o V3loo -2 v2lo o o
(3.33)

withY_, = ?2, where the overline represents complex conjugation. These matrices
have a simple transformation rule with respect to rotations about the axis e;, namely
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ROYR'(0)=¢""Y, j=-2,02. (3.34)
Using
X =R (¢)x = rR(f + @ — p)e, 335
=r(cos(f + w — Pp) e, +sin(f + @ — P)e,), '
the tidal-force matrix in Eq. (2.10) can be written as
3G m 1 _
S = R(f + @ — ¢>)<e1 ®e - §1)R f + @ — ). (3.36)

In the basis {Y_,, Y, Y,}
1 1Y, Yy Y,
—=1=={ —=+—=+—=
e Qe 3 2{ \/5 \/3 \/5 (3.37)
that implies

3G
S = )

Ry(f + @ — ¢>){e1 Qe - %1}11— +w - )

_ 3Gmo {e—2i(f+w—¢) Y—2 + E + e2i(f+w—¢)ﬁ

27 NEARYE A

In Eq. (3.38), the Variable§ r, f, and ¢p = ot are dependent on .

(3.38)

To solve the equation B + B = C + S, we do a harmonic analysis of the tidal force
in Eq. (3.38) using:

(f) ol — Z Xz’,m(e)eikM’ (3.39)
k=—00

a

where M denotes the mean anomaly, M = n, and XZ/’m(e) is termed the Hansen
coefficient.
Equations (3.38) and (3.39) imply:

3Gm0 o)l
SR ) ST (3.40
[=—2 k=—oco

where U _; = U, ; = 0and

, U= ——, Upy=——. (3.41)

The symmetry property Xf/];_m = Xl’:/’m implies

Uy =U_j- (3.42)
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The centrifugal force in Eq. (2.10) can be represented as

[0))
C=—7Y,. (3.43)

V3
To obtain the almost periodic solution of the deformation equation
B+B=C+S, (3.44)

solving for each Fourier mode separately suffices. An alternative approach involves
using the variation of constants formula:

= e/TC+S(t+s C
B = B,(1) ;:/ t+5)
—o T vyt+a )/ +a
3Gm0 1
i{t(kn—lw)+lw}
© . YlUkl
2a° l—z—‘lz k;oo (r + o) (1 + itkn — lw))
2 )

5.2 Y R )
_ oR o Yo . m 3 2 ellitkn=loxtl@ljo (kn — lw)Y,U,,
Gl, 3\/5 2La I=—2 k=—c0
Y S <
_ koé’c—o + é, ei{t(kn—lm)+[m}k2(kn _ lw)YlUkl'
3\/5 Tz:z—:z k=z—:oo
(3.45)

Here, the definitions of the Love number &, and the secular Love number k&, from Eq.
(2.13) are used as well as the definitions of {. and {, from Eq. (3.21).

Given that
0 s/t
/ e ds =1,
oo T

this formula indicates that the almost periodic solution of the tide equation is a time-
averaged tidal force with an exponential weight decaying towards the past, charac-
terized by time 7. Note that when 7 > 0 is nearly zero, integration by parts of the
right-hand side of Eq. (3.45) yields

Yo  So S®) _St-7)
Bd(t)—kocc3\/§~y+a e e (3.46)

This represents the usual time delay approximation with corrections of the order of
72,
The limit case of 7 — oo also presents interest. Here, we can interpret the averaging

in Eq. (3.45) as approximately the ordinary averaging

. °°s
lim —
T—>00 T __L_]/-{-a

ds.
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Fig. 1 Tllustration of the
Deformation Invariant Manifold

%, = {(x, X0, ¢,) — 6B }
With the parameterization
defined by (x,X, 7, €,), the

vector field on X, follows from
(4.51)

4 Deformation manifold

The function t — B, provides a solution to the deformation Eq. (3.44) only when
€, = 0. To analyze the case where €; > 0, we introduce new deformation variables 6B:

B =B, + 5B, (4.47)

and using these variables we write Eq. (3.24)

.. X I, 151 ~ 1 =~

% = G(my + m){ e +ea <_7W(bx X)X + 3@‘”‘) }

. 3G1I,m - - -
£y = _edWP'O{xle(bZZ -b)+ blz(x% - x%)} (4.48)

= w1, (1 = €bs3)
78B + 6B = O(¢,).

For e; = 0, Eq. (3.26) possesses the invariant manifold:
%, :={6B =0} (4.49)

The variables 6B are transversal to X, and all associated eigenvalues equal
—1/7 < 0. Given this, a theorem by Fenichel [11, Theorem 3] suggests that for suf-
ficiently small ¢,, there is an invariant manifold represented as a graph:

r, = {06 - 8B}, (4.50)
Additionally, X, approximates X, to order ¢ , as visualized in Fig. 1. The vector field
on X , considering corrections of order ¢, is derived from Eq. (4.48) by ignoring

the variables 6B and setting B=B ¢ in the equations for x and #. Thus, the equation
onX, is:
€4
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1
i:G(m0+m){—i+€d—°< 15 1 (bdx-x)x+3Lbdx>}
m

Ix|? 2 X[}
o _ed%{xlxz(bdzz — b)) + bgp( —3)} @51
‘. =wl (1 —¢e;b453),
where, b, = R(¢)B,R™ ().

The Fenichel theorem requires a specific condition concerning the eigenval-
ues of the linear equation: they must be sufficiently distant from the imaginary
axis, depending on the flow on X, which is fulfilled in this case since they are
constant.

When n and w are neither small, to ensure the validity of the averaging, nor
excessively large, which would violate inequalities (3.21) and result in large
deformations, the approximation of X, by X, remains accurate. Under these con-
ditions, changes in the Keplerian elements and spin are gradual, allowing the
body ample time to adjust. The body maintains an average shape consistent with
its secular Love number; for @ = 0, it remains in hydrostatic equilibrium, counter-
ing centrifugal forces and slow tides.

An intriguing scenario arises when either zn > 1 or 7w > 1. Here, the body
lacks the time to relax amid orbital and spin modifications, causing the deforma-
tion to retain a memory of a past initial state. In such situations, Fenichel’s theo-
rem is not applicable. If z > 1 and the initial condition is B= }NBO, the solution to

the homogeneous equation B+B=0 decays slowly as
B(t) =B/~ (4.52)

In Ragazzo et al. [38], in a situation similar to this one, we added a permanent defor-
mation ]~3° to B, and continued. Adopting the same approach here is feasible, even
without a mathematical basis. However, we must separate the orbital motion’s aver-
aging into two components: one for terms with B, and another for terms with f}o.
The averaging of terms associated with l~30 would resemble the averaging in rigid
body problems. Here, we will not introduce the permanent deformation to keep the
following analysis as simple as possible.

Later in this paper, we’ll explore situations where zn is large, assuming that,
despite its size, Fenichel’s conditions remain met. This assumption warrants fur-
ther mathematical scrutiny, potentially through multi-timescale system theories.

5 Orbital averaging

We average Eq. (4.51) with respect to orbital motion. We set the scaling param-
eter €, to 1. Equations (4.51) and (3.45) then become:
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X Io 15 1
% = G(my +m){ ——— + = b +3—b
X = Gm m){ xP m( AT ||5 dx>}
3GI m
0 IIx ||5O{XIXZ(bdM_bdll)+bd12(x%_x§)}’
(5.53)
fs = C()Io(l - bd33)

b, = k(. —= +¢, 2 Z @) (kn — L)Y, U,,.
\/§ I==2 k=—o0

Using variables ¢, A, and f defined in Eq. (3.27) and (3.28), Eq. (5.53) transforms
to:

, I
fs = —3C_0E1,
m
L
=3c—E,,
m (5.54)
2y =wl,(1=(by33)),
A=321( 0g 4B ) xe, 435 R, 435 pA
T T um 272 s S ¢m fm U
The terms requiring averaging are:
E - X% (baay = bary) + b (] = x3)
‘ Ix[1°
E, = L(b X X)X
2 = |X|7 b ’
1
E; = Wbdx > (5.55)
E, = L((xxb X)-e >i
BRI NEANVA
€; - Yoes S
(bg33) = koQW +& Z ey (kn)Uyg(es - Yoes) ),
k=—o00
where (h) = i 02” h(M)dM represents the average over the mean anomaly.
The total angular momentum is conserved and given by:
C,i=C0+7,. (5.56)

The averaged result yields:
The term E|:
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IIxII°

2 il (XX kg (kn + 20) — X2 X kg (kn — 2) )

E - <x1x2(bd22 - bd]]) + hdlZ(x% - 'x%) >
1=

Pt 2a3
= % Y XX (ky(—kn + 20) — ky(kn — 20))
k=—o00
ol 2
_ % Y (%7%@) mkythkn - 20)

k=—o0

where we used, from Eq. (2.13), that k,(—c) is the complex conjugate of k,(c), rep-
resented as &, (o).
We write E,| as

©0 2
E, = 6% Ap A= Y (670) ke - 20). (5.57)

k=—o0

The terms <—§E2 + E3>: The calculation of these terms resembles that of E;. The

analysis was extended and performed using the software “Mathematica”. We will
skip the detailed steps. The outcomes are:

A== ) XM +5X )X Re ky(nk — 200) + 2X, Y X Re ky (nk)
k

(5.58)
Ay = DX = XX mkgkn = 20) + 27 X Imky(nk) (5 50
k

Ay =X (5.60)

and

<_§E2+E3>1 _{CT <.A1 —A2> koCcA}<cosw>
_5 T l4at\ A A T a7 sin w
( 2E2+E3>2 AT ¢ (5.61)

CT koé’c CT
= { Al - @A?’ }eA + ?AzeH,

4at 4

where we used Eq. (3.30).
The term E,: Detailed steps are omitted as before. The outcomes are:

Ay =Y XX+ X )Im by (kn — 20) (5.62)
k
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A = Z(Xk—3’3 — Xk_S’l )Xk_3’2Re ky (kn — 2w) (5.63)
k
and
E,-e ¢
E — 47 ) 2 2T (fe, + A .
4 <E4 e, > 2a3 ( 4€4 SeH) (5.64)
The term (b3 ):

e;-Yoe -
(bys3) = <koCc33—\/%3 +& Z "™k (kn) Uy (e -Y0e3)>
k=—o00

(5.65)
— _gko % + L
3 3 (1-e2)32
where we used that X53’0 = (1 — »)™3/2[30]%
For the Kepler problem, the following relations hold:
I/ﬂZ
= pca(l —®) = (1 —e?) = —. (5.67)
uca

Assuming Z > 0, we can use G(m,, + m) = n*a’ to write:

A nV1-—e2 (5.68)

ua*

Using the above relations, further calculations yield:

3c LG [1-¢2
Zﬁza—s{ 5 A2+A4+2€AO}CA

5.69
s Lif 122, Lk, 669
to BT Ty et 3€H-
Given that A = e ( cos we, + sinwe,) = ee, and &, = e, we deduce:
A=ce,+weey. (5.70)

Thus, the final averaged equations are:

2 The gravity field coefficient J, (dynamic form factor) is related to I (b,;) by means of
L (bgs3) = —2mR>J, that implies

L, ¢
si= o5+ = ) (5.66)
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1, ¢, — ¢
e_x_oi{l eA2+A4+ZeA0}

T 2md | 2
f=3c%j—;¢40
f‘y=—3c£%¢40

¢, =7+ ¢, = constant
Ci=0l,(1—(bss)

> 2
Ay = Z (Xk_3’2> Im ky(kn — 2w)

k=—00

A, = 2(5)‘24’3 =X *HX P Imky(kn — 20) + 2X, ' X0 Im ky(nk)
k

A= Y X2 + X7 DI ky(kn — 20)
k

A =- Z(Xk“Ll +5X. )X *Re ky(nk — 20) + 2X; ' X >"Re ky(nk)
k

Ay =X
As = Z(X;” — X "HX;**Re ky(kn — 20)
k

2. (& ¢
(byz3) = _5k0<§ + m)
R5w2
©7 GI,
myR>
L=
21.,a
_ mgm
o= my+m
¢ = Gmmy

n*a® = G(my + m)

(5.71)

5.1 Computation of Hansen coefficients

The Hansen coefficients depend solely on the eccentricity. Following [4], we
express, forn < 0and m > 0,
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S |n| . m
<£>neimf — <k;mxk—1,o(e)eikM> < Z Xl(),l(e)eilM> . (5.72)

[=—c0

n . g
Thus, to compute any series (ﬁ) e, one can employ series multiplication of the

fundamental series of a/r and e’. This multiplication can be efficiently executed
with an algebraic manipulator.

For the computation of the series for % and e, one can refer to Murray and Dermott
[36] Section 2.5:

a ecosf+1

r 1—e?
if 4 o—if —2 &
cosf= ST = 01212 5 keycostkmn)
2 e &~
if _ o-if hd 5.73
sinf=3"CS" =2v1-¢ > liJk(ke) sin(kM) (5.73)
2i — k de

(3)

_ L5y
Jk(x)‘k!(z) ;( VG D&+ &+D

where J,(x) denotes the Bessel function. The series for J,(x) converges absolutely for
all values of x.
Up to second order in eccentricity and with e’ = z the fundamental series are:

r 1 _ 1 1 _
;=1—e§(z+z 1)+62<§—Z(zz+zz)>+0(63)

24 -2
%:1+e%(z+z_1)+ezw+0(€3)
B 2 2 (5.74)
e”‘=z{1+e(z—z_])+ez<%—l—%>}+(9(€3)

These expressions and Eq. (5.72) imply X" = O(e!™*),

5.2 The equations in Correia and Valente [7]

Some relations between the Hansen coefficients presented in Correia and Valente [7],
Eq. (158) and (159), are:
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30 _ 3 41 41y _ 3 41 —41
VI-e2kX, " = Ze(X, " =X, ") = Ze(X" —X7),

2 2
1 —e2kxX 2 = %(5){;‘"3 - XM+ 22X, (5.75)

33 1 2\ =42 32 31
X7 =~ (20 =X - 2677 - eXp ).

One can use these equations to simplify Eq. (5.71). After such simplifications, the
equation governing the eccentricity is:

L 1-e?
_3cLéi-e Y {k\/l—eZ(X]:3’°)21mk2(nk)

3
22ma’ 3e A~ (5.76)
—3(2 — k1= ez)(Xk_3’2)21m ey (knt — Za))}.

For further simplification, one can apply £ = /4\/ G(m + my)a(l — €2), yielding:

6= n@R_j V1-e Z {k\/ — (XY Im ky(nk)
ma ko (5.77)
-3(2- V1= e2>(Xk_3’2)21m kythn = 20) }.

This result corresponds to Eq. (129) in Correia and Valente [7].

Our expression for the variation of the longitude of the periapsis, @, differs from Eq.
(130) in Correia and Valente [7] due to the neglect of centrifugal deformation in the
cited work.

6 Averaged equations: a geometrical approach

In the following two sections, we analyze Eq. (5.71) from a geometric perspective
using singular perturbation theory.

The longitude of the periapsis, @, is absent from the equation for ¢ in (5.71). There-
fore, the dynamics of the state variables e, £, and £ can be analyzed independently of
w. The conservation of total angular momentum, £, = ¢ + £, implies that it is suffi-
cient to observe the dynamics of e and 7.

While the dynamics unfolds within two-dimensional surfaces, on the level sets of
angular momentum, analyzing the equations within a three-dimensional phase space
proves more insightful. This approach facilitates a comprehensive understanding of the
global dynamics and the impact of varying angular momentum. After some investiga-

tion, we selected (w, e, a) as the phase-space Variables with n = \/M being a

derived quantity. The differential equation for a =

(1 = is obtained from the equa-

tions for 7 and é. Henceforth we use the approximatlon

Co=wl,(1 - (b)) #wl,.
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3¢ _ 3my impl
mn*a3 m-+my Py

Equation (5.71) and the identity

@ 3my
n? (m +mOCT>A0

é 3mq L 1 1-¢?

g 2

" <m+mocr>ya22 1_52{ 5 Ay + Ay + e.AO} (6.78)
a 3my I, a 1-¢?

- 2 .

n <m+mOCT>;4a2(l—e2)3/2{e( 2 A2+A4)+ AO}

Conservation of angular momentum £, = y/uca\/'1 — e + [, implies

¢
@ - T<1— %\/1-&). (6.79)
T

n I.n

o

This suggests the following nondimensionalization of a:

I/pZ

~ a T
a:=—, where a, = — (6.80)

a, uc

is defined as the radius of the circular orbit for two point masses, m,, and m, possess-
ing an orbital angular momentum of £ = .
Let

Z, _ctu
T

S
I
I

6.81)

be the angular frequency of the circular orbit of radius a,. Kepler’s third law implies,
n*a® = G(m + my) = na’ and so

n=n, —-. (6.82)
Conservation of angular momentum, as expressed in Eq. (6.79), implies

@ _ gz —arVi-e), (6.83)

where

(6.84)

For the Mercury-Sun system, where my is the mass of the Sun, € = 6.8 x 10710,
and for the Earth—-Moon system, where m, is the mass of the Moon, ¢ = 0.0036.
Although e appears to be very small for all problems of interest, in this section, we
will conduct a geometric analysis with an arbitrary value of € to elucidate the global
properties of the equations.

Using the above definitions Eq. (6.78) can be written in nondimensional form as
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10} 1
2 = Nt
e _ey—1 { C A+ A+ 20 A }
n, 2a13/24/1 — 2 2 77 0
a 1-
a=€Na“/2(1_62)3/2{ < A2+A4>+2A0}
N 3my ¢ b ¢ myR>
= ere =
m+my " v ©o2Ld
1/02
a=— where a,=—
a, uc
_ h _ fT
n=mn, ﬁ wnere n, = a2
1, I,n, I, pc?
€ = = =

where yu, ¢, Ay, A,, and A, are given in Eq. (5.71).

6.1 Estimate of the rate of spin variations

(6.85)

In a time scale where the unit of time corresponds to one radian of orbital motion,
the spin angular velocity is w/n, and, from Eq. (6.78), the rate of change of spin is

where

A=Y (X,:S’z(e)>2lmk2(kn —20).

k=—o0

From Eq. (2.13)

Tk, (kn — 20) = —k, — -1 = 2)

and we can express

n(k —22)

°1 + 22(kn — 20)?°

3m, -32 2 n
(m+m0) i mg e Z <X ()> L+ 22k — 22
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Fig.2 Vector field

n% = V(rn, %, e) with constant n
and e. V,, represents the maxi-
mum rate of variation of f and e

77! = tany denotes the time
constant of a stable equilibrium =/ = — = W
For a fixed pair (e, n), = = V(‘rn ) defines a differential equation for . We aim

to estimate two typlcal quantltles assomated with V: its maximum and the time con-

stant near a stable equilibrium, as depicted in Flg 2.

lo I
1+

> 2 r(kn - 2w) 1°° - 2
2 (570) S 52,2 (K@) e

k=—00

The maximum value of the function Hence

Applying Parseval’s identity, we get

b 2 1 27 Gi2f o-idf 1 27
X372 ) =— I _dM=— —am = X,°°.
k=2—00< @ 27[/0 r3 2z Jo r® (6.89)

+3 241
7 leading to

(=

< o 2 z(kn - 2w) 1
x32 ) T <2
k;@( Q) T R =20 <2

Based on Laskar and Boué [30], X, 60 =

X 438 +1

(1- e2)9/2 '

(6.90)

The right side of this inequality increases with e, with values: 1/2 for e = 0, approxi-
mately 1 6 for e =04, approximately 3.3 for e =0.5, and approximately 8 for
e =

2 <104k, when e<0.5. (6.91)

It is worth noting that ¢, defined in Eq. (3.21), is a small quantity.

For sufficiently large values of 7n, the stable equilibria of ‘f are close to semi-
integers IE‘, with k = 1,2, ..., and for these values, the dominant term in the sum of
V is the k”-term [5]. Thus, Eq. (6.87) yields the time constant

3m,
- m
ol

2
C R )CT (;3’2(e)> ™, (6.92)

for an equilibrium ° 9 ~ L
Note that V, 1s independent of the characteristic time of the rheology 7,

max
whereas the time constant 7, has a linear dependency. A maximum rate speed V,, .
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proportional to ¢, k, will be observed during spin jumps. The prefactor 10 in Eq.
(6.91) varies with the eccentricity e.

6.2 Equilibria, linearization and the invariant subspace of zero eccentricity

Using the expresions for the Hansen coefficients in Sect. 5.1 we can compute the
expansion of the right-hand side of Eq. (6.85) up to first order in eccentricity:

o _, N T(2n — 2w)
n2 °as 2(2n - 2w)? + 1
é __, €N 27(2n — 2w)
n, a2 222n-2w)? + 1
& _ —k N 1ern 6 + %) -
g °5a13/2 4 w41 41— 2)2 + 1 (6.93)
w w
N 2 . 49(3 —22)
2n2(1-222+1 223 -22)2 +1
n=n

° g3/2

These equations imply that the plane e = 0 is invariant.
The only equilibria of Eq. (6.85) are on the plane e = 0, as shown in the next
paragraph, and are given by the curve

=1

P - (6.94)
The equilibria of (6.85) satisfiy A, = 0 and %Az + A, = 0. Equation (5.76) shows
that these equations imply

n Z {0 Im ky(nk) + 3k(X; %) Im ky (kn — 2) }

k=—00

= i { X2 (mk)Im ky(nk) + 3(X, )2 (kn — 20)Im ky(kn — 2w) } = 0.
k=—o00

(6.95)

We notice, from (6.86), that for all x # 0, xImk,(x) < 0 and hence (6.95) holds if
and only if each term of the sum is zero. The Hansen coefficients have the following
properties: Vk # 0, Xk_3’0(e) = 0 if and only if e = 0 and Vk # 2, Xk_3’2(e) = 0 if and
only if e = 0. This implies that e = 0 is a necessary condition for the existence of an
equilibrium.

Conservation of angular momentum implies that the orbits of the vector field
(6.93) in the plane where e = 0 are parameterized by angular momentum. Equation
(6.83) shows that the representation of these orbits in the plane (&, %) is given by the
graphs
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----- - €=0.001
— ¢=0.04
—— €=0.06
€=0.08
— — €=27/256
€=0.2

—_— e=0.4

— ¢e=0.8

0.0 0.2 0.4 0.6 0.8 1.0 ao

Fig.3 Orbits of the Eq. (6.85) on the invariant plane e = 0. The orbits are labelled by the total angular

. . _ It I .
momentum Z, by means of the nondimensional parameter e~ = : }ATL‘E. The equilibria are on the horizon-

tal line %J = 1: the green dots represent stable equilibria and the red dots represent unstable equilibria.

The black dot at @ = 19—6, %’ = 1 represents the single equilibrium that occurs for the special value € = %.

Fore > % (small angular momentum) all the solutions lead to a collision (Color figure online)

- lai(l—a) =2, for ee(0,), (6.96)

as illustrated in Fig. 3.
In the significant case where e=x0, Eq. (6.83) suggests that

3 1
0~ ef =a2(1 —azy1—e€2). Up to first order in eccentricity, we have a = 1 and

n = n,. Using this approximation, the function E in Eq. (6.93) is expressed as

e f_6 =8
e nr2+ 1 Ar2n(1- 22 +1
22 49(3 - 22) 6.97)

+ +
221 =222+ 1 223 -22)2 +1

where n = n, = constant and ¢ is a positive, although small, constant. The graph
of i as a function of f for various values of zn is depicted in Fig. 4. This figure

illustrates that g changes sign near the plane e = 0. Consequently, a solution with an
initial eccentricity close to zero, yet sufficiently distant from the stable equilibrium
at < = 1, may experience an increase in eccentricity.

“The next step in understanding the dynamics of Eq. (6.85) involves linearization
about the equilibria. It is evident from Fig. 3 that the equilibria can be parameter-
ized by their & coordinate. Thus, an equilibrium is represented by (w, @) = (@,, d,),
where, according to Eq. (6.83), a, is the solution to
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e
et

Tn=10 oo £n=100 A
4
2 3 4 5 6 1005 1o 1

Fig.4 The graph ofé as a function Of% for values of zn equal 1, 10, and 100. For n = 10, i has a zero,
not easily seen in the Figure, at% =5.26

\
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i
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sle

w
°oon

|
-

e=a(l—a). (6.98)
The special equilibrium &, = 1—96, corresponding to the bifurcation value € = %,

marked by the black dot in Fig. 3, represents a threshold of stability: an equilib-
rium with a@, < 2 is unstable, while an equilibrium with a, > 2 is stable. Indeed a
saddle-node bifurcation occurs for this parameter value, since (6.85) can be reduced
to a two dimensional system in the form

e =f(e,a,e),

b= fle.ae), (6.99)

where the function (6.83) is used to eliminate the spin—orbit ratio from these equa-
tions. Equation (6.93), the properties of the Hansen coefficients, and a straightfor-
ward calculation show that

0 16 n’k Nte
ﬁ( ,2,2_7):_7@) — =}, <0,
de 16256 3 4\3 (6.100)
n%rz<§> +1
(a9 27\ _9h(y 9 27 oh(y 9 27
_O’_’_ === s T 9 N~ =_0,_,_ =0, .11
ae< 16 256) aa( 16 256> aa( 16 256) (6.10D)
Phin 9 27 16\°
Z2(0,2, =) == 4() kendeN =1 =p <0, 6.102
= (076 236 g ) ettt h< (6.102)
and hence system (6.99) can be expanded as
e=—Ae+ 0, (a—9/16)%),
(6.103)

—p(a—9/16)* + O(?, (a — 9/16)*),

a

which is the normal form of the saddle-node bifurcation [29].
Given that 0 < € < == ~ 0.1, a perturbative calculation reveals that the largest root
of this equation (stable equilibrium) satisfies

a,=1-2e-5¢"+0(e). (6.104)
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This approximation remains accurate up to € = 0.05.

At equilibrium, the orbit is circular. If £, = £, — I ,n, denotes the orbital angular
2

e 2 . ~ 2 .
momentum at equilibrium, then a, = -=. Since a, = d,a, and a, = L, we obtain
uc Hc

AN g Lo ’ 6.105
ae_ f’[ - LﬂT . ( . )

Thus, a, represents the square of the ratio of orbital angular momentum to total
angular momentum at equilibrium. For the Mercury-Sun system, where m, is the
mass of the Sun, € = 6.8 X 1071 and @, ~ 1. For the Earth—-Moon system, where
is the mass of the Moon, € = 0.0036 and @, = 0.993. It appears that in most prob-
lems of interest, @, ~ 1.

The linearization of Eq. (6.85) at (w,a, e) = (w,,a,,0) is derived easily from Eq.

(6.93):
. Ni’t i, kN, T\ _ i,

= —ko—— (26, +3=56, ) = ( == i, [ -26, —3=26, )
a3 a, a3 a,

. 2Nii e n k Nn 7]

L= ke (5, 4305, ) = (et ) 2€ (25, + 3226, ).
al a, al a, a,

Niitet 7 _ <koNﬁeT> i€ 7

e = _ko — e = —_— e,
~5 =22 ~2 =22
a L+t a: 1+t

>
Il

S
|

a3

e

(6.106)

where 71, = n, 3#/2 Each equilibrium has: one eigenvalue equal to zero, associated
ae

with the conservation of angular momentum; one negative -eigenvalue

A =— T, e k,Nii,©
e @@+ )\ @

), with an eigenvector tangent to the eccentricity axis; and

_ 20,@;-3e) ( k,Nii,

one eigenvalue A, = = ), with an eigenvector in the plane ¢ = 0 and

a3
tangent to the surface of constant angular momentum. As expected, 4, = 0 in the

.. _ 27 ~ _ 9 . 9 e 9
critical case where € = —-and @, = =, 49 > 0ifa, < ., and 4, <0ifa, > .

16°

Consider a solution to Eq. (6.93) that satisfies lim,_,, (e(),a(r)) = (0,4, ), and let
6,(t) = a(t) — a,. At a certain time 7, this solution is sufficiently close to (0, &,) for the
linear approximation to be valid. Since 6,(f) = e%“§_(7) and e(f) = e’ De(7), we
conclude that near the equilibrium,

N s 50(;) Ao/ Ae
S4(e) =ale) —a, = @ (6.107)
N~——

=constant

where
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2(-3+443,)
7(1-va.)
e0.0l
— g0l 1
— e * 22+l
—e 05
El 3
et 02 04 7 06 j de
— 100 !
R 4 Y
o 9/16 AofAe=1

Fig.5 LEFT: The figure shows possible orbits on the eccentricity-semi-major axis (6, = a — &,) plane,
8, = constant e%/% with constant = 1 for various 4o/4, values. RIGHT: A graphical method to find the
special value of @,, where 4,/4, = 1, as a function of 77,

Jo (208736 o) 2

> - (6.108)

e

Regardless of the value of the constant factor in Eq. (6.107), which in Fig. 5 we
assume to be one, the orbit’s geometry near the equilibrium is controlled by the ratio

%. In Fig. 5 LEFT, we illustrate how the orbit changes as % varies, with the ratio
% = 1 being a critical value. For % > 1, the orbit approaches the equilibrium along

the e-axis, and for 0 < bo< 1, the orbit approaches the equilibrium along the 6, axis.

In Fig. 5 RIGHT, we demonstrate how to determine the special value of d,, corre-
sponding to % =1, as a function of the parameter rii,. The maximal value of this

special a, is % ~ 0.75, achieved when 7 = 0.

It appears that in most problems of interest, e is very small, @, ~ 1, and
Ao/ 4, > 1, indicating that solutions approach the stable equilibrium along the
e-axis, namely the weak-stable manifold of the equilibrium.

6.3 Slow-fast systems and singular perturbation theory

For € =~ 0 Eq. (6.93) has the form of a slow-fast system:

X=fxy,e),

) 6.109
y=egx,y,¢), ( )

with x = w € R as the fast variable and y = (e, &) € R? as the slow variables [14].
Given an initial condition in the state space {a), e, Zz}, the value of w varies while
(e, @) stays nearly constant until the state reaches the slow manifold

2,0) := {o(w,e,a) =0} = {Ao(a), e,a) = 0} (s denotes slow), (6.110)

where A, is given in Eq. (5.71).
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Fig.6 The phase space close to the synchronous states w/n = 1, e = 0. The blue surface represents a
level set of the angular momentum and the red surface represents the slow manifold X (¢). Both surfaces
and the plane e = 0 intersect only at the equilibria. The stable separatrix of the saddle point delimits the
basin of attraction of the node and the region whose solutions tend to the collision a = 0 (Color figure
online)

When (x, y,) is not close to Z,(0), the fast dynamics is governed by the layer prob-
lem, & = f(x, y,, 0). Here, the fast dynamics corresponds to the fast spin variation with
fixed e and a. The spin decreases on points above X(0) and decreases on points under
2.(0), see Fig. 10. Close to the slow manifold X (0), the dynamics is approximated by
the reduced problem, where the fast variable is given by an implicit function, solution
of f(®(y),y,0) =0, and the slow variable solves the differential equation on X,(0),
v = g(®(y),y,0). The implicit function theorem ensures that @ is locally determined
at (xy,yo) € Z, if 9,f(xg,yy,0) # 0. In this case, Z(0) is called normally hyperbolic
at (xg,y)- The results from geometric singular perturbation theory [14] state that if
the system (6.109) has a normally hyperbolic slow manifold S, for each small € > 0
exists an invariant manifold S, diffeomorphic to S, which is stable (unstable) if d.f < 0
(0,f > 0) on S,. We will denote by X (e) the union of the hyperbolic components of
perturbed slow manifold in (6.110).

The dynamics across the entire phase space can be elucidated by exam-
ining the geometry of the slow manifold (6.110). Within the first octant
B, :={w>0,e>0,a>0}, £,(0) possesses a single connected component that
splits B, into two regions. The conservation of angular momentum reduces the
analysis to a two-dimensional problem. A diagram illustrating the local behavior of
orbits near the stable equilibrium is presented in Fig. 5 LEFT. A global illustration
of the flow on a level set of angular momentum is shown in Fig. 6.

7 Spin-orbit resonances

In this section, we assume that the ratio ‘f is at most on the order of tens, so that

(0]
c—

< 1. (7.111)

Under this condition, Eq. (6.83), i.e.. a? (1 —a: v/1 - ¢2) = €2, yields two solutions

2/3
for a. The first solution is & = <€%’> + O(e). This solution closely approximates
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SERS

Fig.7 Figure showing three views of the slow manifold X (0), which is the orange surface, and the fold
curves in blue (Color figure online)

the surface of constant angular momentum in a region that includes the unstable
equilibrium &, ~ 0. This approximation is depicted in Fig. 3 by the nearly vertical
red dot-dashed line near &, ~ 0. We will not focus on this region. The second solu-
tionis a = 1_162 + O(e), which is of primary interest. This solution approximates the
surface of constant angular momentum in a region containing the stable equilibrium
a, =~ 1. This approximation is depicted in Fig. 3 by the nearly vertical red dot-dashed
line near @, =~ 1. Disregarding the error of order e, we have a, = 1, a, = a,, and

1
1—e2

N

>a= aol; where a, = —. (7.112)

In the subsequent analysis we use these approximations.

The geometry of the slow manifold X (0) plays a crucial role in the capture into
spin—orbit resonance, particularly where X (0) is not normally hyperbolic. The slow
manifold becomes non-normally hyperbolic at points where the projection map from
2,(0) to the {a, e} plane is singular. These generic singular points of the projection
are known as folds and collectively form the “fold curves”. In Fig. 7, the fold curves
are depicted in blue on the slow manifold X (0), which is represented as an orange
surface. Although the fold curves themselves are smooth, their projection onto the
{a, e} plane includes singular points termed “cusps”, at which a moving point on the
projection reverses direction. A cusp point on a fold curve occurs where the tangent
to the curve becomes parallel to the w-axis. The flow dynamics near a fold are exten-
sively described in the literature [27].

We illustrate the so called phenomenon of capture into spin—orbit reso-
nance by a concrete example presented in Correia et al. [5] and Correia et al. [6].
We use the parameters of the exoplanet HD80606b and its hosting star, namely
my = 2008.9 - 10°%g, m = 7.746 - 10°%kg, I, = 8.1527-10*" kg m?. The initial
conditions are chosen as a = 0.455au, ¢ = 0.9330 and w = 4z rad/day and hence
€ = 1.35 - 1078, The parameters of the rheology are k, = 0.5 and = = 10~ 2year.

In Fig. 8 (top panels), the red curve represents a trajectory of the fundamental
equations, given in Sect. 2, which was obtained by means of numerical integration.
The numerically computed trajectory has consecutive transitions between stable
branches of the perturbed slow manifold X (e). This trajectory shows a slow decrease
of the eccentricity towards e = 0 while the spin—orbit ratio has fast transitions
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Fig. 8 Geometrical perspective of capture into spin—orbit resonances. The slow manifold X (0) loses nor-
mal hyperbolicity at fold curves (black), characterized by d;.4, = 0. The fold curves become parallel to

the f-axis at the cusp points. The blue surface represents a level set of angular momentum, as depicted in

Fig. 6. The red curve represents a solution of the complete system, which exhibits jumps when crossing
the fold curves. In the lower-right frame, the projection of the cusp-shaped curves onto the (a, ) plane
is displayed. Each curve is annotated with an integer or half-integer, symbolizing a resonance w/n = g,
for k=1, ...,13, as noted on the right side of the figure. The dashed lines correspond to projections of

o2 . .
the constant angular momentum surfaces a = M—Z i If the total angular momentum 7, is sufficiently

2 . L . .
large such that the curve a = M—: ﬁ does not intersect the projection of the fold curve associated with a
specific w/n = %‘ spin—orbit resonance, then the & : 2 resonance is precluded for that angular momentum

value (Color figure online)

between integers and half-integers with final value w/n = 1. The stable branches of
2(e) are quite flat (parallel to the (e, a)-plane) near the planes f = IEC’ k € Z. These
results are detailed in Figure 14 from Correia et al. [6]. We can observe in Fig. 8 the
full agreement between the solution of the fundamental equations and the fast-slow-
geometric analysis of the averaged equations.

The projection of the fold curves to the plane (a, e) are shown in Fig. § DOWN-
RIGHT. Each curve contains a cusp singularity and is labeled by an integer or half-
integer. A point initially over (a, ) can be attracted to a resonance % = %‘ only if it is
inside a dashed curve that intersects the curve labeled by ]5‘; see caption of Fig. 8 for
further information.
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7.1 Spin-orbit resonances require large relaxation times 7.
The approximation & = (1 — ¢*)~! and Eq. (6.82) imply n = n (1 — €?)3/2. The imagi-
nary part of the Love number (6.86) can then be written as

2tn(w/n —k/2)
1+ Q2tn)*(w/n—k/2)?

Imk,(kn — 20) = k

= Vek,(1 - &%) (@/n —k/2) (7.113)
o €+(1 _62)3(0)/71—](/2)2’
where
~ . 1 Au
€ .= m, nO:F. (7114)

For e = 0, the slow manifold lacks any fold points for any value of = > 0, as illus-
trated in Fig. 3. Consider a fixed value e¢; > 0 for e. Equations (6.87) and (7.113)
imply the existence of at least j — 1fold points in the region {0 < ¢ < ¢,,0 < = < C},
where C > 0 represents a positive constant, if and only if "

@ (x32 2 (w/n—1)
n <2 (61)> E+(1—e)(o/n—17

_ 2 (w/n—k/2)
X 3,2
+1;( ) &+ (1 — e (w/n—k/2)?

(7.115)

has j zeroes for“;’ € (0, 0).
Given that X, >?(0)=1 and X, ’(e;) = O(e,), function (7.115) can be

_©@/n=) 4 9e2). For 0 < 2 < C and a fixed é > 0, this function
é+(w/n—1)2 1 n

exhibits a single zero nearf = lif ¢, > 0 is sufficiently small. Furthermore, for a
k

fixed e; > 0 and € =0, function (7.115) presents poles for every f = keZ,

thereby ensuring at least one zero in each interval (k, k + %), where k is any half-
integer. A continuity argument suggests that if € is sufficiently close to zero
(implying 7 is sufficiently large), then for any fixed e, function (7.115) will have
zeroes near j/2, for j = 1,2, .... This analysis indicates that, particularly for small
e; > 0, the condition € < 1 (equivalently, = > 1) is a necessary condition for the
creation of folds in the slow manifold X(0).

For the Earth-Moon system, where mj, is the mass of the Moon, € = 0.0036
and no‘l = 7.6 days, a value 7 > 76 days gives € < 0.0025. For the Mercury-Sun
system, where m is the mass of the Sun, € = 6.8 x 107'* and nJ' = 13 days, a
value 7 > 130 days gives € < 0.0025. In the case of the parameters chosen for
HD80606b, € ~ 1.28 - 107>,

For € < 1 and close to a resonance w/n =j/2, je{2,3,...}, £,0) can be
approximately computed as a power series in €. If we substitute

expressed as
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w/n=j/2+®(j/2, e, =j/2+D,(j/2,e)é + Dy(j/2, ) + ...

into the equation

3 (%)’ (@G/2.6.) +G = h)/2)
k

E+(1- 2P @m/2,e.8) + (- /27 0, (7.116)

and solve the resulting equation for the coefficient of & and &> we obtain,

+co 2 —3,2\2

5 2P — (22
D,(j/2,e) = ; 11
1G/2,€) (1_62)3()(]._3,2)2 ;:1 3 (7.117)

®,(j/2. ) =®(j/2,e)’(1 - &)’
+oo -3,2\2 -3,2\2
4 X3 +(X )
i e2)3(XT3’2)2< 00729 Z

+00 X—32)2 (X;sz )

(1 _ 62)3 Z

We emphasize that the functions ®(j/2, e, €) represent the O(e”) approximations of
the slow invariant manifold X (¢). These functions determine the dynamics of the
reduced system, serving as the initial step in comprehending the flow on Z (¢). Fur-
ther exploration of this flow constitutes a subject for future work. Figure 9 illustrates
the approximation of Z_(0) on some resonances.

We end this section with a topological description of the slow-fast dynamics of
Eq. (6.85). In Fig. 10 we present a sketch of flow lines for ¢ = 0 (LEFT panel) and
€ > 0 small (RIGHT panel). Explanations are given in the Figure caption. The orien-
tation of the fast flow lines was previously examined in Sect. 6.1. The orientation of
the slow flow lines is determined by the monotonic decrease in eccentricity on X (0).
This is a consequence of the same argument employed to determine the equilibria,
as presented in Eq. (6.95).

(7.118)

8 Conclusion

In this paper, we presented a set of equations for the evolution of the orbital ele-
ments in the gravitational two-body problem under the influence of tides. These
equations, previously obtained by other authors, were derived here through a two-
step procedure. Initially, we used the fact that tidal deformations are very small
to demonstrate the existence of an invariant manifold, which we have termed the
deformation manifold. Although our arguments are mathematically sound, they lack
the appropriate quantifiers. The second step involves averaging the equations on the
deformation manifold. This step is contingent upon the first, leading to uncertainties
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w

n s

b @(5/2,e)é + Pa2(5/2, €)

bl e

0.0 0.2 0.4 0.6 0.8 1.0
P

Fig. 9 Approximation of the resonances w/n = j/2, for j = 2,3,4,5. The dashed lines correspond to the
approximation up to O(¢) and the continuous lines up to O(¢2). In this graph we use the parameters of
HD80606b, & ~ 1.28 - 10~

about whether the averaged equations are mathematically coherent with the large
values of zn used in Sect. 7. In the physics literature, employing large values of 7n in
the averaged equations has been common practice.

Analyzing the averaged equations mathematically presents a significant chal-
lenge due to the analytical complexity of the vector field, defined by infinite
sums of Hansen coefficients, which are themselves infinite series in powers of
eccentricity.

Given the scientific significance of this problem, it warrants investigation from
a mathematical perspective. The geometric theory of singular perturbation, poten-
tially incorporating multiple time scales as suggested in our companion paper
[41], appears to be a suitable mathematical framework to address this challenge.
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Fig. 10 The phase portrait of the averaged system (6.85). In the left, the lines in dark blue represent the
solutions of the layer problem, the light blue represent the solutions of the reduced problem on the unsta-
ble branches of X (0) and the red lines the solutions of the reduced problem on the stable branches. The
black points are those at which the manifold ceases to be normally hyperbolic, the generic fold points.
In the right, we depict the perturbed flow, i.e. for € > 0. The solutions close to the fold points, where the
jumps occur, are characterized in Krupa and Szmolyan [27], see for instance Fig. 2 on page 289. The
perturbed fast flow is also represented in dark blue, except for some especial solutions. We highlight, in
dark green, the solutions incident on the fold points, these solutions delimit the basin of attraction of the
various spin—orbit resonances for prograde motions (@ > n). In red and light blue are represented invari-
ant manifolds that persisted under the perturbation. The continuation of these manifolds, dashed red and
light blue, also delimit the portion of the resonances’ basin of attraction for retrograde motions (w < n).
We remark that, since the normally hyperbolic components of X, (0) are not compact, the persisting mani-
folds are not necessarily unique, however the qualitative behavior of the flow is the same, see [27] for
details. This geometric perspective also assists in the significant problem in tide theory concerning the
probability of capture into spin—orbit resonances, such probabilities are proportional to the area of the
basins of attraction (Color figure online)
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