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ABSTRACT

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is the most destructive foliar disease of soybean, with yield losses
up to 90%. With climate change intensifying drought and expanding disease incidence, it is critical to understand how combined
abiotic and biotic stresses influence plant defense. We investigated the transcriptomic response of a susceptible soybean cultivar
to ASR infection under normal and water-limited conditions at four infection stages (12, 24, 72, and 192 h after inoculation). We
observed a biphasic expression of defense-related genes, particularly resistance gene analogs (RGAs), with an early peak at 12h
and a late resurgence at 192h. Combined stress induced a greater number of differentially expressed genes (DEGs) than rust
alone, especially at early infection. Among the differentially expressed RGAs (RGADES), over 64% belonged to the TM-LRR
class, and NBS-LRR genes were the most enriched at known ASR resistance loci, particularly Rpp2. Water limitation strongly
modulated gene expression at late stages, revealing stress-specific transcriptional reprogramming. These findings were con-
sistent with the activation of potential cross-tolerance mechanisms in soybean, highlighted the temporal dynamics of RGADEs
under dual stress, and provided potential targets for developing cultivars with improved resilience to both rust and water scarcity.

1 | Introduction characterizing the ASR pathogen among the 12 most damaging

Soybean (Glycine max (L.) Merr.) is considered one of the most
important crops globally due to its high protein and oil con-
tents, making it a versatile nutritional resource for food, animal
feed, and biofuel production (Rahman et al. 2023). The most
destructive disease affecting soybeans and the source of severe
epidemics is Asian soybean rust (ASR), caused by the fungus
Phakopsora pachyrhizi. Without chemical control, soybean
producers can face productivity losses between 20% and 90%,

plant pathogens globally based on its scientific and economic
importance (Dean et al. 2012).

Projections of the incidence of P. pachyrhizi, considering both
the selection pressure on soybeans and climatic changes, point
to an increase in disease occurrence in cultivated areas (Alves
et al. 2011; Ghini et al. 2007). Soil moisture stress, a significant
factor in soybean production losses, is expected to worsen due
to climate change (Leng and Hall 2019). Changes in historical
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precipitation patterns will likely lead to more severe drought
stress in key soybean-growing regions (Thornton et al. 2014).
Climate change can further drive the expansion of pathogens
and hosts, accelerating the spread of plant diseases to previously
unaffected regions (Burdon and Zhan 2020; Delgado-Baquerizo
et al. 2020). Moreover, it can indirectly influence plant-pathogen
interactions by altering the biochemical, physiological, ecologi-
cal, and evolutionary processes of both the host and the patho-
gen (Cheng et al. 2019; Trivedi et al. 2022; Velasquez et al. 2018).
Consequently, the combined effects of biotic and abiotic stresses,
such as reduced water availability and pathogen infection, on
plant development are being studied more extensively (Camejo
et al. 2005; Engelbrecht and Kursar 2003; Geros et al. 2016;
Mittler 2006; Palliotti et al. 2009). Additionally, understanding
the genetic basis for resistance to these stresses and their inter-
actions remains a critical area of interest (Kakumanu et al. 2012;
Le et al. 2012; Xue et al. 2013).

The presence of ASR drastically reduces the photosynthetic
capacity of the contaminated leaves. It causes severe defoli-
ation of the plants, effectively reducing the number of pods
per plant and the quality and number of seeds (Echeveste Da
Rosa 2015). Fungicides are regularly used to control the fun-
gus. However, in addition to the potentially harmful effects on
the environment and the fungicide's high costs, the low sen-
sitivity of P. pachyrhizi to some active ingredients is reducing
the availability of effective chemical compounds. Thus, to con-
trol ASR, there is a need for more efficient and lasting forms of
control (Godoy et al. 2016; Ivancovich et al. 2007; Langenbach
et al. 2016).

Among these alternatives, superior soybean varieties with
high productivity and resistance to ASR appear to be the most
effective way to control the disease (Vuong et al. 2016). To
date, soybean cultivars resistant to ASR have been mapped
mainly to seven loci, named Rpp 1 to 7, which are specific
genomic regions associated with varying degrees of resis-
tance to P. pachyrhizi (Childs et al. 2018; Goellner et al. 2010;
Kelly et al. 2015; King et al. 2016; Pedley et al. 2019). The loci
Rppl (Hyten et al. 2007), Rpp4 (Silva et al. 2008), and Rpp6
(Li et al. 2012) are all located on chromosome 18 but at dif-
ferent positions. Additionally, other Rpp loci are found on dis-
tinct chromosomes: Rpp2 (Silva et al. 2008) on chromosome
16, Rpp3 (Hyten et al. 2009) on chromosome 6, Rpp5 (Garcia
et al. 2008) on chromosome 3, and Rpp7 (Childs et al. 2018) on
chromosome 19.

From a functional perspective, immunity has been organized
into two layers depending on the cellular response, either by
activating extracellular receptors (TM-LRR), also known as pat-
tern recognition receptors (PRR), and usually related to pattern-
triggered immunity (PTT), or activating intracellular receptors
(NBS-LRR), encoded by disease resistance (R) genes and re-
lated to effector-triggered immunity (ETI) (Dodds et al. 2024).
These receptors with potential plant resistance activity are
collectively termed resistance gene analogs (RGAs) (Sekhwal
et al. 2015). Independent of the RGA class, after apoplastic or
intracellular perception, the immune response converges to a
similar set of downstream events that will potentially prevent
infection. These include processes such as reactive oxygen spe-
cies (ROS) production, calcium influx, signaling transduction

by mitogen-activated protein kinases (MAPK), defense gene
expression, and defense hormone production (DeFalco and
Zipfel 2021).

Next-generation sequencing (NGS) technologies opened oppor-
tunities to identify genome-wide, based on sequence similar-
ity, RGAs that encode proteins with structural similarities to R
genes and their transcription profile when pathogens challenge
plants (Rody et al. 2019; Sekhwal et al. 2015). Notably, RGAs
often form clusters in plant genomes, which may include func-
tionally related genes that are not necessarily similar in se-
quence (Chang et al. 2002). This clustering, driven by ancient
whole-genome duplications and segmental duplications fol-
lowed by gene deletions and genomic reorganizations, has ex-
panded RGA families (Michelmore and Meyers 1998; Perazzolli
et al. 2014). Identifying these potential resistance-associated
genes and mapping their genomic organization is highly bene-
ficial for plant breeding. This information supports the devel-
opment of selection strategies that facilitate the early selection
of resistant cultivars, reducing costs through approaches such
as marker-assisted selection (MAS) (AliFakheri 2014; Echeveste
Da Rosa 2015).

In a previous report (Castro-Moretti et al. 2024), we observed
that water limitation enhanced disease severity caused by P.
pachyrhizi in soybean, significantly changing the leaf metabolic
profile. Complementing this previous report, our study aimed
to reveal the comparative expression pattern of a susceptible
genotype under the influence of reduced water availability in
the severity of ASR. Furthermore, we identified RGAs that were
differentially expressed across infection stages under these con-
ditions. Our results provide a better understanding of key mech-
anisms involved in disease progression for targeted strategies to
develop ASR-resistant soybean cultivars addressing yield stabil-
ity and global food security.

2 | Materials and Methods

2.1 | Experimental Design, Plant Material
and Inoculation

As an obligatory phytopathogen, the P. pachyrhizi inoculum was
maintained in a greenhouse by regularly inoculating soybean
plants. To achieve this, 8 to 10 soybean seeds were sown weekly
until they reached the V4 stage. These plants were watered daily
until the soil was fully saturated and inoculated with a rust
spore solution (10° urediniospores.ml™) in a humid chamber at
23°C in the dark for 24 h.

The experiment was developed using a fully randomized fac-
torial design, with three biological replicates per treatment
of the susceptible soybean commercial cultivar BMX Langa
IPRO. These treatments included plants with and without the
presence of biotic and abiotic stresses independently, and leaf
samples collected at four time points, resulting in the gener-
ation of 16 treatments. Soybean plants were kept under two
water availability levels: a moderate water deficit, defined
as 65% of the plant-available soil water capacity, and a con-
trol group of plants cultivated with 80% soil water capacity.
The humidity estimation of the soil mixture, prepared in a
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2:2:1 (v/v/v) ratio of soil, sand, and manure, at the permanent
wilting point was conducted using the procedure detailed by
Ferreira (2010). To verify the water status of the treatments,
three fresh V2 trifoliate leaves were collected just prior to the
inoculation (performed at 7:00 p.m.), and analyzed for relative
water content, following the method described by Barrs and
Weatherley (1962).

The plants were grown under controlled temperature condi-
tions in a greenhouse until the development stage V4 for the
experimental treatments with controlled water availability.
Water control for these plants began 48h before inocula-
tion, ensuring that the treatments were well established. The
plants were weighted daily and watered according to their
respective water capacity—80% (control treatment) or 65%
(water limited). The plants were then inoculated with the
fungus suspension at the same maintenance concentration
at 7:00p.m. Inoculated and mock plants were covered with
plastic bags and incubated in the dark in a humid chamber
at 23°C (£2°C) for 24 h. Fungal inoculated and mock plants
were maintained separately to avoid cross-contamination of
the control plants. After this incubation period, the plants
were returned to the greenhouse, where the controlled water
conditions were maintained throughout the experiment. One
V3 trifoliolate leaf per plant was collected at times 12, 24, 72,
and 192h after inoculation (HAI) and immediately frozen
with liquid nitrogen and stored at —80°C until the extraction
of total RNA.

2.2 | Total RNA Extraction and Sequencing

Total RNA extraction was performed sequentially: first using
the Trizol method (Sigma-Aldrich, St. Louis-MO, USA), fol-
lowed by RNA purification with the Purelink RNA mini kit
(Invitrogen, Carlsbad-CA, USA), according to the manufactur-
er's instructions. After extraction, total RNA was treated with
DNAse 1 (Sigma-Aldrich, St. Louis-MO, USA), and RNA qual-
ity was verified with electrophoresis on a 1.5% agarose gel and
further observation under UV light (2100 Bioanalyzer, Agilent
Technologies, Santa Clara, USA). Quantification and purity
were verified in a NanoDrop 2000 UV Visible Spectrophotometer
(Thermo Scientific, USA).

The RNA library construction by poly-A enrichment was
performed using the Illumina TruSeq Stranded mRNA kit
(Ilumina Inc., USA), followed by paired-end sequencing using
an Illumina NextSeq 2000 with read lengths of 100bp and an
average of 10 million clusters or 20 million paired-end reads
per sample. In total, 48 independent libraries were sequenced,
corresponding to four collection times, two fungal conditions
(with and without the presence of the fungus), two water avail-
ability regimes (with and without water limitation), and three
replicates.

2.3 | Data Processing
The quality of the reads generated in the sequencing was

verified through the software SeqKit (version 0.16.1) (Shen
et al. 2016). After quality verification, reads were mapped

against the Soybean reference genome Glycine max (Schmutz
et al. 2010) version 4 using the program HISAT2 (version
2.1.0) (Kim et al. 2015). Then, the aligned reads were assem-
bled in their possible transcripts and the gene abundance was
estimated using StringTie (version 2.2.1) (Pertea et al. 2015).
Subsequently, the prepDE script provided by StringTie was
used to generate a count matrix, with genes represented in
rows and samples in columns. For each time point, genes with
aread count exceeding 10 in at least one sample were retained,
amild and commonly applied prefiltering step that minimizes
the influence of low-abundance transcripts and reduces ran-
dom noise in downstream analyses. Expression levels of the
remaining genes were normalized using the DESeq2 method
(Love et al. 2014).

2.4 | Gene Expression and Functional Annotation

Principal Component Analysis (PCA) was conducted to ex-
plore gene expression patterns using data that was normal-
ized and variance-stabilized transformed (VST) for all genes
with the statistical R package DESeq2 (Love et al. 2014). This
approach allowed for examining the overall variation in the
dataset and visualizing the separation of samples based on the
influences of time, biotic stress, and abiotic stress on gene ex-
pression. The identification of differentially expressed genes
(DEGs) was also performed using DESeq2, considering genes
with a False Discovery Rate (FDR)<0.05 as differentially
expressed.

The over-representation analysis (ORA) of the Gene
Ontology (GO) biological process terms enriched in the
DEGs was performed using the package topGO (Alexa
and Rahnenfuhrer 2024) from the Bioconductor project
(BiocManager v3.18) implementing the Kolmogorov-Smirnov
test and the “classic” algorithm. This approach was selected
because it incorporates gene ranking based on expression
changes, allowing the detection of subtle, coordinated tran-
scriptional responses not captured by binary enrichment
methods such as Fisher's exact test.

2.5 | Resistance Gene Analogs (RGAs)

The RGAs (resistance gene analogs) were analyzed using the
encoded proteome of the Soybean reference genome for all
different possible gene's isoforms, based on the characteris-
tics conserved among the resistance genes (R) (Hammond-
Kosack and Jones 1997). To this end, six different tools were
used to predict resistance gene domains and motifs: (1) Coils
v2 (Lupas et al. 1991); (2) TMHMM v2 (Krogh et al. 2001); (3)
InterProScan v5.33-72.0 (Zdobnov and Apweiler 2001); (4)
PfamScan with Pfam v32.0 (Bateman et al. 2004); (5) Phobius
(Kdll et al. 2004); and (6) TargetP 2.0 (Almagro Armenteros
et al. 2019).

Each predictor can identify conserved features among the R genes
by structural analysis. Following the classification framework
proposed by Rody et al. (2019), only sequences containing at least
one of the three conserved domains of the RGAs—LRR, NB-ARC,
or NB-LRR—were kept to form the set of candidate RGAs for the
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Soybean reference genome. These candidates were then mapped
to their chromosomal locations and grouped into clusters using the
same criteria: clusters consisted of at least three putative RGAs of
any class if there were no more than nine other genes between two
RGAs or if the distance between them was less than 250kb.

While RGA classification was performed at the isoform level due
to the potential variability in domain architecture introduced by
alternative splicing, downstream expression analyses were con-
ducted at the gene level. In this case, the first annotated isoform
for each RGA gene was used as a representative to summarize
expression values, including for heatmap visualization.

3 | Results
3.1 | Transcriptome Data Analysis

A total of 48 RNA-Seq libraries were generated from leaf tis-
sues of Glycine max cv. BMX Lanca IPRO, sampled under eight
combinations of biotic (Asian soybean rust) and abiotic (water
limitation) stress treatments, each applied with and without
the respective stress factor, across four time points (12, 24, 72,
and 192h after inoculation), with three biological replicates per
condition. High-quality sequencing reads were obtained from
all libraries (Table S1). Subsequent quality control and mapping
against the Glycine max Wm82.a4.v1 reference genome resulted
in an average overall read alignment rate of 93.6%. This pro-
cess identified 86,256 transcripts associated with 52,872 unique
genes. After filtering out low-expression genes, 40,012 genes re-
mained, encoding 75.7% of the predicted soybean proteome.

3.2 | Differential Gene Expression Profiling

Visualization of the first two components of a Principal
Component Analysis (PCA) of the samples revealed a predom-
inant clustering effect attributed to the time factor (Figure 1).
These two components explained 87% of the total variance.
Given the predominant clustering by time points, we focused on
the specific impact of the other two factors on gene expression.
For each time point and per water limitation condition, we com-
pared samples treated with the pathogen against those without
the pathogen, resulting in eight pairwise comparisons.

As a result of this analysis, 9680, 3229, 932, and 1004 differ-
entially expressed genes (DEGs) were obtained for plants in
normal water conditions at times 12, 24, 72, and 192h after
inoculation (HAI), respectively. For water-limited plants, the
numbers were 12,666, 1554, 1170, and 4352 DEGs at the same
time points (Figure 2, Table S2). Notably, the most significant
number of DEGs occurred at 12 HAI in both water regimes,
accounting for nearly 65% of all DEGs detected. This peak sug-
gests that 12 HAT represents a critical window for transcrip-
tional reprogramming related to pathogen perception and
the early activation of defense responses. Additionally, the
number of DEGs at 12 HAI was approximately 33% higher in
water-limited plants, indicating that water deficit may inten-
sify or accelerate the plant's early response to infection.

We also analyzed the overlap between DEGs from different time
points and treatments (Figure 2) with the objective of identify-
ing shared stress-response genes that may contribute to cross-
tolerance mechanisms. The highest number of total DEGs and
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FIGURE 1 | First two components of a Principal component analysis (PCA) of gene expression profiles across time points (12, 24, 72, and 192
HAI) and experimental conditions. Each point represents a biological replicate, colored according to the time point, shaped according to the inoc-
ulation treatment (asterisks for inoculated and triangles for non-inoculated samples), and sized according to water availability (smaller symbols for
normal water conditions and larger symbols for water-limited conditions).
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FIGURE 2 | Intersection and number of DEGs across all time points (12, 24, 72 and 192 HAI) and water condition (L: Water-limited/C: Control).
DEGs were identified by comparing pathogen-inoculated samples against non-inoculated samples within each condition and time point, resulting
in eight pairwise comparisons. The horizontal bars on the left represent the total number of DEGs identified per condition, while the vertical bars
indicate the size of DEG intersections between different conditions. Black dots connected by lines specify the comparisons contributing to each in-

tersection. The numbers above the bars represent the exact intersection sizes.

shared DEGs was observed at the earliest time point (12 HAI),
indicating extensive transcriptional changes at this stage across
conditions.

3.3 | Gene Ontology (GO) Enrichment Analysis
of DEGs

To identify functional categories potentially enriched in DEGs,
we conducted an overrepresentation analysis (ORA) to detect
Gene Ontology (GO) terms associated with biological pro-
cesses in which genes statistically showed differential expres-
sion greater than expected by chance. GO enrichment analysis
(Table S3, Figures S1 and S2) of DEGs across all time points
identified a cumulative total of 2503 significant GO terms in
control plants and 2351 in water-limited plants. At 12 HAI,
terms related to photosynthesis were prominently enriched
in both conditions. In addition, control plants showed spe-
cific enrichment for response to oxidative stress. At 24 HAI,
water-limited plants displayed enriched terms associated with
phenylpropanoid biosynthesis, response to stimulus, and de-
fense response. In contrast, control plants showed a broader
spectrum of enriched GO terms at this time point, including

response to stress, defense response, response to chitin, and
response to hypoxia. These differences reflect condition-
specific transcriptional reprogramming in response to infec-
tion. At 72 HAI, water-limited plants displayed enrichment for
protein phosphorylation, signaling, response to stress, and de-
fense response, whereas control plants showed enrichment for
defense response and response to fungus. Finally, at 192 HAI,
water-limited plants highlighted processes such as response
to stress, defense response, response to biotic and abiotic stim-
ulus, and photosynthesis, while control plants enriched GO
terms primarily associated with photosynthesis.

3.4 | Plant Defense-Related GO Terms

Next, for the plant defense-related GO terms, we calculated
the median log, fold change (LFC) of the DEGs (Inoculated
vs. Non-Inoculated) per GO term, which represents a quan-
tification of the variation between the expression of genes in
plants with the presence of the pathogen compared to plants
without the presence of the pathogen. These values were
used to demonstrate the variation that the presence of abiotic
stress caused in the average expression of genes grouped into
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biological processes associated with the plant defense response
(Figure 3). The statistical significance of the differences be-
tween the expression levels of control and water-stressed
plants is provided in Table S4.

At the beginning of the infection process (12 HAI), upregulated
genes were associated with response to oxidative stress, phen-
ylpropanoid biosynthetic process, and flavonoid biosynthetic
process, with more pronounced expression changes under
water-limited conditions. Concurrently, defense response and
response to biotic stimulus were exclusively observed under
these conditions. By 24 HAI, the expression levels of these
defense-related genes were significantly decreased. In plants
under water limitation, defense gene expression returned to
basal levels, whereas in control plants, the genes were negatively
regulated, showing expression levels below the basal threshold.
At 72 HAI, there was a renewed increase in the expression of
defense-related genes, particularly notable in plants not sub-
jected to water stress, including genes specifically associated
with fungal response, which were positively regulated. This
upward trend persisted and intensified until 192 HAI, when
defense gene expression remained elevated, especially in plants
without water limitation.

3.5 | Water Deprivation Effect
To identify the effect of water deprivation on gene expression

during infection, DEGs were analyzed between water-limited
and control plants, both inoculated with the pathogen. The top

192-

Time (HAI)

-

Go term

10 most enriched GO terms for each time point are shown in
Figure 4. At the beginning of the infection process (12 HAI),
enrichment is primarily focused on processes related to gen-
eral metabolic pathways, such as the phenylpropanoid biosyn-
thetic process and secondary metabolite biosynthetic process,
alongside stress-related categories such as response to oxidative
stress. By 24 HAI, broader stress responses dominate, includ-
ing terms such as response to organic substance and response
to abiotic stimulus. At 72 HAI, terms associated with defense
response and response to chemical stimulus remain enriched,
reflecting a continuation of general stress responses. However,
at 192 HAI, following an extended period of water limitation,
a notable shift occurs, with the emergence of genes specifically
associated with water-related stress responses, such as response
to water deprivation.

3.6 | Prediction of Resistance Gene Analogs
(RGAs)

Using domain prediction tools and a custom Python3 script,
the predicted Soybean proteome was scanned for candidate
RGA identification, which was subsequently classified based
on their combinations of predicted domains (see Material and
methods). A total of 4076 gene isoforms were predicted to en-
code RGAs classified according to their domain configuration
(Figure 5A; Table 1). Clustering of the predicted RGAs showed
that these genes are distributed throughout the genome, with
an accumulation of RGAs toward the chromosome ends
(Figure 5A).
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FIGURE 3 | Median log, fold change (LFC) of genes annotated with GO terms related to plant defense response. Non-water-limited plants are
represented at the upper part of the graph and the water-limited ones at the bottom. Each row represents a time of collection, while each column

represents a GO term associated with plant defense response.
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FIGURE 4 | Top 10 enriched Gene Ontology (GO) terms across time points (12, 24, 72, and 192 HAI) for DEGs identified from the comparison
between water-limited and control plants inoculated with the pathogen. GO enrichment analysis was performed to identify biological processes (BP)
significantly associated with DEGs at each time point. The x-axis represents the enrichment score, while the y-axis lists the enriched GO terms. The
color gradient represents the statistical significance (—log,, (p-value)), with darker shades indicating higher enrichment significance. The vertical

dashed line corresponds to a p-value threshold of 0.01.

Five classes of RGAs were predicted most frequently: CNL:
coiled coil (CC) associated with NB-ARC and leucine-rich
repeats (LRR); TNL: TIR domain associated with NB-ARC
and LRR; RLK: receptor-like kinase; RLP: receptor-like pro-
tein; and TM-CC: transmembrane domain associated with a
coiled-coil domain (Table 1). Differentially expressed RGA
(RGADE) isoforms were detected on all chromosomes; how-
ever, chromosomes 2, 6, 8, 13, 16, and 18 harbored the highest
numbers, together representing nearly 50% of all identified
RGADESs (Figure 5B; Table 1). The most frequently predicted
RGA classes were those containing a transmembrane domain,
including RLK and RLP (TM-LRR encoding class), as well as
the TM-CC subclass. Considering the total number of RGAs
predicted in the genome, they correspond to 53%, and among
DEGs, they represent 64% of all expressed RGAs combining
both water conditions. This tendency further intensified when
DEGs were separated based on water limitation, reaching 68%
for plants under normal water conditions. On the other hand,
in conditions with only biotic stress, the proportion of these
RGAs aligned more closely with the overall set of RGADEs,
maintaining around 64%.

When assessing the effect of water limitation, we observed no-
table variations in RGADE expression between plants exposed
to water limitation and those maintained under controlled con-
ditions, when compared to the reference genome. For instance,
the TNL subclass exhibited expression exclusively under water
limitation; isoforms from the RLK subclass were expressed in

both conditions but at a higher level in control plants, and the
RLP subclass showed a more moderate expression profile.

The presence of the pathogen affected the proportion of RGAs
relative to the total number of gene isoforms. In the reference
genome, 4076 out of 66,210 gene isoforms (6.15%) were clas-
sified as RGAs. This proportion was higher among DEGs ob-
tained by comparing inoculated versus non-inoculated plants,
with 1827 out of 19,165 DEGs isoforms (9.53%) identified as
RGAs. Under water-limited conditions, 1451 out of 15,452 iso-
forms (9.39%) were classified as RGAs, compared to 1184 out of
12,653 isoforms (9.36%) under control conditions. These results
demonstrated an enrichment of RGAs among DEGs driven by
pathogen inoculation, with no substantial impact from water
stress on the proportion of RGAs among expressed genes.

The timing of RGADE expression largely coincides with early
pathogen invasion, particularly at 12 HAI, when tissue pen-
etration is critical. Under water limitation, 1074 (56.76%) of
RGADEs were expressed at 12 HAI, followed by a sharp drop to
112 (5.91%) at 24 HAI, 136 (7.18%) at 72 HAI, and 570 (30.12%) at
192 HAL In contrast, under non-limiting water conditions, 788
(55.85%) of RGADESs were expressed at 12 HAI, 313 (22.18%) at
24 HAI, 203 (14.38%) at 72 HAI, and only 107 (7.58%) at 192 HAI
(Figure S3; Table S5). These results suggest that water availabil-
ity modulates the temporal distribution of RGADE expression,
particularly at later infection stages, although further studies
are needed to confirm the underlying mechanisms.
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3.7 | Expression Profile of Resistance Gene pattern between plants exposed to limited water and control
Analogs Differentially Expressed plants. Under water-limited conditions, 54.85% of RGADEs were

identified at 12 HAI, followed by 6.77% at 24 HAI, 8.48% at 72
After exploring RGA isoform-specific expression, we collectively HALI and 29.9% at 192 HAI. In contrast, control plants exhibited
examined the expression profiles of the 932 RGADEs at the gene a markedly different distribution, with 50.71% of RGADEs ex-
level (Figure S4). We observed a distinct temporal expression pressed at 12 HAI, 24.15% at 24 HAI, 15.96% at 72 HAI, and only
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TABLE1 | Number of putative RGAs by domain family and their classes in the reference genome and DEGs (up and down regulated combined).

RGA class Whole genome Overall DEGs Water limited DEGs Control DEGs
NBS-LRR encoding
CNL 264 (6.48%) 106 (5.80%) 58 (4.00%) 86 (7.26%)
TNL 225(5.52%) 130 (7.11%) 115 (7.92%) 43 (3.63%)
TN 26 (0.64%) 10 (0.55%) 10 (0.69%) 7 (0.59%)
CN 9(0.22%) 3(0.16%) 3(0.20%) 3(0.25%)
TM-LRR encoding
RLK 916 (22.47%) 464 (25.40%) 372 (25.64%) 345 (29.14%)
RLP 340 (8.34%) 189 (10.35%) 149 (10.27%) 126 (10.64%)
Other variants
TM-CC 1158 (22.41%) 518 (28.35%) 416 (28.67%) 337 (28.46%)
TL 1(0.02%) 1(0.05%) 0(0%) 1 (0.08%)
TIR 50 (1.23%) 14 (0.76%) 14 (0.96%) 8(0.68%)
Other 1087 (26.67%) 392 (21.45%) 314 (21.64%) 228 (19.25%)
Total number of RGAs 4076 (100%) 1827 (100%) 1451 (100%) 1184 (100%)

9.18% at 192 HAI. These results highlighted a pronounced en-
richment of RGADE expression at 192 HAI under water-limited
conditions, while control plants showed a more uniform distri-
bution of RGADESs across earlier time points, particularly at 24
and 72 HAL

Of the RGAs identified within the Rpp loci (55 genes), 28 were
differentially expressed (RGADEs). These RGADEs were dis-
tributed across most loci and treatments, except for Rpp7
(Figure 6). At 12 HAI, the water limitation resulted in the in-
duction of RGADE:s of classes TNLs (6), RLK (1), and Other (3),
whereas control plants downregulated RGADEs of classes TM-
CC (1) and TNLs (4). At 24 HAI, RGADEs were nearly absent
in water-limited plants, while control plants displayed a diverse
expression pattern, including both upregulated (e.g., 2 Other
and 5 TNLs) and downregulated (e.g., 3 Other, 1 TN, and 1 CNL)
RGADEs. At 72 HAI, both conditions resulted in upregulated
genes in low numbers. By 192 HAI, plants exposed to water
stress showed exclusively upregulated RGADEs of most classes:
TNLs (4), RLP (1), Other (3), TM-CC (1), and TN (1), while con-
trol plants had only one upregulated TM-CC.

The highest numbers of differentially expressed RGAs were
found at the Rpp2 (12 RGADEs, 43%) and Rpp3 (10 RGADEs,
35.7%) loci, followed by Rppl (4 RGADESs, 14.3%) and Rpp5 (2
RGADEs, 7.1%) (Figure 6). Across all loci and treatments, the
TIR-NBS-LRR (TNL) class was the most represented, account-
ing for 52% of the differentially expressed RGAs.

4 | Discussion

The interaction between climate-induced changes in global
water availability and the susceptibility for plant diseases
such as Asian Soybean Rust (ASR) remains unpredictable
and critically important for the future of crop breeding (Jorge

et al. 2015; Konapala et al. 2020). For some time, various au-
thors have been exploring the crosstalk between biotic and
abiotic stresses, considering their effect as either positive or
negative in different pathosystems (Choudhary and Senthil-
Kumar 2024; Singh et al. 2023; Sunarti et al. 2022). Also,
we cannot assume that individual responses to different
stresses can predict the effects of combined stresses (Pandey
et al. 2015). As already demonstrated in diverse pathosys-
tems (Paoletti et al. 2001; Ragazzi et al. 1995; van Niekerk
et al. 2011), water deficit imposes a significant drought-stress
penalty on plants, which has been widely associated with the
aggravation of fungal diseases (Swett 2020) and negative im-
pacts on crop development (Ghosh and Roychoudhury 2024).
The effects of drought facilitate pathogen colonization, in-
crease disease incidence, and exacerbate symptom sever-
ity due to the suppression of the plant defense mechanisms
(Boyer 1995; Swett 2020). These findings support the notion
that water availability may influence the effectiveness of plant
defenses against fungal pathogens.

In this context, we examined the impact of water limitation on
the transcriptomic response of a susceptible soybean genotype
to P. pachyrhizi, analyzing infected leaves at four specific time
points. The time points chosen represent key phases of the fun-
gal infection process, including the formation of appressoria,
cuticle penetration, and the invasion and subsequent growth of
hyphae within the host tissue, observed at 12, 24, 72, and 192h
post-infection, respectively (Gupta et al. 2023).

The first overall analysis revealed that time had the most
profound effect on the transcriptome, irrespective of the in-
oculation state. The pairwise comparison per time point
of inoculated plants vs. inoculated plants under limited
water conditions showed that genes related to plant defense
(G0O:0006952) had an intensified response in plants under
water limitation at the early stages of infection. This effect
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diminished as time passed and disease progressed. The num-
ber of differentially expressed genes showed a biphasic re-
sponse, as seen before with the same pathosystem (van de
Mortel et al. 2007), with defense-related genes being upreg-
ulated at earlier stages of infection (12 HAI), followed by a
down-regulation (24 HAI) and then again being positively
regulated at later time points (72 and 192 HAI).

We unveiled 33% more DEGs in plants with combined stress
than in plants exposed to only the biotic stress. This higher
number of DEGs reflects the broader range of plant responses
necessary to maintain physiological homeostasis, coordinated
by gene expression (Pandey et al. 2015; Zandalinas et al. 2018).
Among the DEGs identified at 12 HAI, the strongest upregulated
under water limitation were Glyma.18g211100 (Peroxidase),
Glyma.18g267900 (Isoflavone 7-O-methyltransferase-like pro-
tein), Glyma.02g007400 (Chitinase), and Glyma.14g205200
(Cytochrome P450). Their expression levels were between 7
and 86 times higher in inoculated plants compared to non-
inoculated plants under water limitation. The induction of
these genes may lead to the production of phytoalexin, lignin,
flavonoids, ABA, and chitin-pathogen digestion, which serve
as chemical and physical barriers against fungal infection.
These immune system components may also play roles in the
response to water limitation (Almagro et al. 2009; Li et al. 2022;

Zhang et al. 2017). Moreover, these genes are involved in other
stress responses in soybean plants. Functional characteri-
zation of Glyma.18g211100 has been shown to contribute to
resistance against Cercospora leaf blight (Patel et al. 2024);
Glyma.18g267900 and Glyma.02g007400 are associated with
resistance to soybean cyst nematode (Hu et al. 2024; Zhang
et al. 2017), while Glyma.14g205200 was associated with
drought resistance (Li et al. 2022). The plant's adaptability to
diverse environmental conditions depends on a versatile defense
network of genes with sometimes overlapping functions, which
we also detected in our work.

The robust gene expression of plants exposed to combined
stresses may stimulate transcriptional changes, leading to
a faster and more intense response upon exposure to subse-
quent stress, as described for the priming effect (Mauch-Mani
et al. 2017). Indeed, our data showed 25% more RGADE iso-
forms in plants exposed to combined stresses compared to only
rust-inoculated plants. Additional evidence of the effects of
combined stresses was indicated by the increased expression
of RGAs in the early stages of infection, suggesting the acti-
vation of stress defense mechanisms under these conditions.
Approximately 36% of the total RGADESs encoded receptor-like
kinases (RLKs) and receptor-like proteins (RLPs). Considering
that TM-LRR proteins constitute 30% of all RGAs in the genome,
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our analysis revealed an enrichment of this receptor class under
both experimental conditions—ASR inoculation with and with-
out water limitation.

These proteins include pattern recognition receptors (PRRs),
such as leucine-rich repeat receptor-like kinases (LRR-RLKs)
and lectin receptor-like kinases (LecRLKSs), which are known
to recognize microbial-associated molecular patterns (MAMPs)
and initiate pattern-triggered immunity (PTI) (Jones and
Dangl 2006). In addition to their potential roles in pathogen
recognition, some PRRs have also been associated with the per-
ception of developmental and abiotic stress cues. Notably, water-
limited plants showed a higher abundance of RLK-encoding
RGADEs at 192 HAI, a time point corresponding to prolonged
water deficit. These RLKs include genes predicted to belong to
LRR-RLK and LecRLK subfamilies, which have been impli-
cated in osmotic stress signaling and immune responses in other
plant species (Osakabe et al. 2013). Based on these observations,
we propose that water limitation may enhance the perception of
multiple stress signals through overlapping receptor pathways,
potentially leading, although insufficiently, to PTI response in
susceptible plants. While this hypothesis remains to be explored
experimentally, the transcription patterns observed help narrow
down candidate RLKs for future functional validation, partic-
ularly those with stress-specific or time-dependent expression
profiles. The apparent decline in defense-related gene expres-
sion at later stages suggests a shift toward effector-triggered sus-
ceptibility (ETS), a possibility that requires deeper investigation.

These observations raise the possibility that water limitation en-
hances the plant's perception of multiple stressors, potentially
activating similar receptor types and leading to a stronger PTI
response in susceptible plants. Despite the activation of these
receptors, the overall diminished defense response observed in
water-limited plants at later stages, when the fungus has already
established itself and proliferated within the plant, suggests that
effector-triggered susceptibility (ETS) significantly contributes
to disease progression and severity, though this remains to be
experimentally validated.

Throughout their infection stages, biotrophic fungi overcome
plant defense systems by directing various effectors to impair
plant defenses, whether suppressing PTI-activated responses
after pathogen recognition or interacting with ETI receptors
(Torufio et al. 2016). ASR fungus presents an efficient strategy to
defeat responses upon that perception, leading to a strong down-
regulation of genes related to plant defense at 24 HAI. The low
representation of NBS-LRR-encoding genes among RGADEs at
this time suggests a potential ETI response deactivation related
to the expression and release of fungal effector proteins (Gupta
et al. 2023). Other authors identified similar patterns for rusts,
considering, for instance, time after inoculation for the analysis
(Dobon et al. 2016; Pradeu et al. 2024). The reduced expression
of defense genes in plants under water stress at 24 HAI is not as
marked but still noticeable. Following this wave down, an in-
crement toward positive net expression reaches its maximum at
192 HAI. With disease progress and fungal multiplication, the
increase in MAMPs may result in a new wave of pathogen per-
ception, reactivating the innate response at later moments. At
that point, the induction of genes in which GO terms refer to
plant defense, such as response to chitin and oxidative stress,

has no effect since the disease has already been established and
sporogenesis initiated.

The lower impact of the waves of recognition in water-limited
plants, along with an increased expression of genes related to
response to water deprivation, may indicate a redirection of ef-
forts otherwise used for controlling the pathogen's development,
resulting in a more robust plant susceptibility (Beattie 2011;
Leisner et al. 2023).

We also analyzed the distribution of RGAs across soybean chro-
mosomes and observed a tendency for these genes to accumulate
near chromosomal ends, forming gene clusters. This is consis-
tent with what has been described for RGAs in other crops' ge-
nomes, and is also similar to the distribution of protein-coding
genes in the soybean genome (Christie et al. 2016; Liu et al. 2020;
Rody et al. 2019; Wang et al. 2021). Notably, seven loci (Rppl to
Rpp7) harboring combinations of RGAs conferring race-specific
resistance to select P. pachyrhizi isolates have been genetically
mapped in soybean (Childs et al. 2018). In our study, all loci ex-
cept Rpp7 included differentially expressed RGAs (RGADEs),
which accounted for 50% of all RGAs detected at Rpp loci, with
11 genes shared between water-limited and control conditions at
specific time points. Among these, nine of these RGADESs were
within the Rpp2 locus encoding disease resistance proteins of
the TIR-NBS-LRR (TNLs) class. TNLs are active components
of the ETI response, which seems suppressed in our experi-
ments. Based on the earlier induction of Rpp2-associated genes
in water-stressed plants, we speculate this locus plays a central
role in P. pachyrhizi infection in the susceptible genotype stud-
ied. Functional validation will be needed to clarify the exact role
of these loci. Still, pinpointing differentially expressed RGAs
within important resistance regions offers a focused set of can-
didate genes that can be tested in future experiments to better
understand their involvement in stress responses.

The Rpp2 locus offers additional insights into their coordinated
expression and functional significance during pathogen at-
tack. Among the RGAs, Glyma.16g136000, Glyma.16g136900,
Glyma.16g137000, Glyma.16g137300, and Glyma.16g137600
were all induced at 12 HAI under water-limited conditions.
However, Glyma.16g136600 was consistently induced in
water-limited plants but repressed 24 HAI in regularly watered
plants, suggesting a role in abiotic stress. This may reflect an
intricate network that ties the clustering of genes and possibly
co-regulation to enable a rapid and localized immune response.
The clustering of resistance genes is a common feature in plant
genomes derived from selective pressures that favor the reten-
tion and duplication of genes involved in pathogen recognition
and defense (Shao et al. 2016). However, despite the upregulation
of these closely linked RGAs, particularly under water-limited
conditions, the pathogen continues to establish and proliferate
within the host.

We also identified DEGs related to abiotic stress that may con-
tribute to compromising the coordination of responses under
combined stress conditions. One example is the antagonistic
interaction between abscisic acid (ABA) and salicylic acid (SA)
signaling pathways. SA plays a central role in activating defense
responses against biotrophic pathogens (Yasuda et al. 2008),
while ABA is a key hormone regulating plant adaptation to
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drought by controlling stomatal closure, osmotic balance, and
other physiological processes. The crosstalk between ABA and
SA has been shown to suppress the expression of pathogenesis-
related genes, thereby impairing immune responses (Ghosh and
Roychoudhury 2024). As a result, the activation of ABA path-
ways under drought stress may prioritize abiotic stress adapta-
tion at the expense of biotic stress resistance, thereby facilitating
pathogen establishment and proliferation, although hormonal
levels were not directly assessed in the present study.

Exploring the regulatory networks governing RGA cluster
modulation and their interactions with abiotic stress pathways
is essential to better understanding the constraints on effec-
tive immunity in soybean genotypes. Our study emphasizes
the significant modulation of soybean immune responses by
water availability and identifies candidate genes for further in-
vestigation. These findings enhance our understanding of the
complex interplay between abiotic and biotic stress responses,
guiding the development of comprehensive strategies to man-
age drought and disease. Although no functional validation was
conducted in this study, the identification of differentially ex-
pressed genes located in known resistance loci and enriched in
defense-related processes supports their potential role in stress
responses. These findings provide a valuable basis for future
functional studies.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: Top 15 most enriched bi-
ological process (BP) GO terms at each time point (12, 24, 72, and 192
HAI) in plants inoculated vs. non-inoculated under water limitation
conditions. GO terms were ranked by p-value, and only the top 15 sig-
nificant terms are shown for each time point. Graphs are displayed from
top to bottom in chronological order. The enrichment score is plotted on
the x-axis, and significance is indicated by the color gradient represent-
ing-log10 (p-value). Figure S2: Top 15 most enriched biological process
(BP) GO terms at each time point (12, 24, 72, and 192 HAI) in plants
inoculated vs. non-inoculated under normal water conditions. GO
terms were ranked by p-value, and only the top 15 significant terms are
shown for each time point. Graphs are displayed from top to bottom in
chronological order. The enrichment score is plotted on the x-axis, and
significance is indicated by the color gradient representing-logl0 (p-
value). Figure S3: Temporal distribution of RGADE expression under
contrasting water conditions. The total number of RGADESs detected at
each time point post-inoculation (12, 24, 72, and 192 HAI) is shown for
plants under water limitation (blue line) and non-limiting water condi-
tions (red line). Figure S4: Heatmap of expression profiles for all dif-
ferentially expressed RGADESs across time points and water conditions.
Expression values are represented as log2 fold changes (LFC) from pair-
wise comparisons of inoculated vs. non-inoculated plants. The heatmap
includes eight experimental conditions: four infection time points (12,
24, 72, and 192h after inoculation—HAI) under two water regimes
(water-limited and non-limited). Columns represent each condition,
and rows correspond to individual RGADESs. Genes are grouped by hi-
erarchical clustering based on expression profiles, with RGA classes an-
notated by color on the left. Table S1: An overview of sequencing data
quality statistics. Table S2: Significant differentially expressed genes
for the Inoculated vs. Not Inoculated comparison for each time point
and water condition. Table S3: Significant Biological Process enriched
GO terms for all treatments and their associated statistics. Table S4:
Statistical significance of the differences between the expression levels
of control and water stressed plants for each plant defense related GO

term and time point. Table S5: RGADE isoform expression per RGA
class, water limitation condition and time point.
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