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ABSTRACT
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is the most destructive foliar disease of soybean, with yield losses 
up to 90%. With climate change intensifying drought and expanding disease incidence, it is critical to understand how combined 
abiotic and biotic stresses influence plant defense. We investigated the transcriptomic response of a susceptible soybean cultivar 
to ASR infection under normal and water-limited conditions at four infection stages (12, 24, 72, and 192 h after inoculation). We 
observed a biphasic expression of defense-related genes, particularly resistance gene analogs (RGAs), with an early peak at 12 h 
and a late resurgence at 192 h. Combined stress induced a greater number of differentially expressed genes (DEGs) than rust 
alone, especially at early infection. Among the differentially expressed RGAs (RGADEs), over 64% belonged to the TM-LRR 
class, and NBS-LRR genes were the most enriched at known ASR resistance loci, particularly Rpp2. Water limitation strongly 
modulated gene expression at late stages, revealing stress-specific transcriptional reprogramming. These findings were con-
sistent with the activation of potential cross-tolerance mechanisms in soybean, highlighted the temporal dynamics of RGADEs 
under dual stress, and provided potential targets for developing cultivars with improved resilience to both rust and water scarcity.

1   |   Introduction

Soybean (Glycine max (L.) Merr.) is considered one of the most 
important crops globally due to its high protein and oil con-
tents, making it a versatile nutritional resource for food, animal 
feed, and biofuel production (Rahman et  al.  2023). The most 
destructive disease affecting soybeans and the source of severe 
epidemics is Asian soybean rust (ASR), caused by the fungus 
Phakopsora pachyrhizi. Without chemical control, soybean 
producers can face productivity losses between 20% and 90%, 

characterizing the ASR pathogen among the 12 most damaging 
plant pathogens globally based on its scientific and economic 
importance (Dean et al. 2012).

Projections of the incidence of P. pachyrhizi, considering both 
the selection pressure on soybeans and climatic changes, point 
to an increase in disease occurrence in cultivated areas (Alves 
et al. 2011; Ghini et al. 2007). Soil moisture stress, a significant 
factor in soybean production losses, is expected to worsen due 
to climate change (Leng and Hall 2019). Changes in historical 
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precipitation patterns will likely lead to more severe drought 
stress in key soybean-growing regions (Thornton et  al.  2014). 
Climate change can further drive the expansion of pathogens 
and hosts, accelerating the spread of plant diseases to previously 
unaffected regions (Burdon and Zhan 2020; Delgado-Baquerizo 
et al. 2020). Moreover, it can indirectly influence plant-pathogen 
interactions by altering the biochemical, physiological, ecologi-
cal, and evolutionary processes of both the host and the patho-
gen (Cheng et al. 2019; Trivedi et al. 2022; Velásquez et al. 2018). 
Consequently, the combined effects of biotic and abiotic stresses, 
such as reduced water availability and pathogen infection, on 
plant development are being studied more extensively (Camejo 
et  al.  2005; Engelbrecht and Kursar  2003; Gerós et  al.  2016; 
Mittler 2006; Palliotti et al. 2009). Additionally, understanding 
the genetic basis for resistance to these stresses and their inter-
actions remains a critical area of interest (Kakumanu et al. 2012; 
Le et al. 2012; Xue et al. 2013).

The presence of ASR drastically reduces the photosynthetic 
capacity of the contaminated leaves. It causes severe defoli-
ation of the plants, effectively reducing the number of pods 
per plant and the quality and number of seeds (Echeveste Da 
Rosa 2015). Fungicides are regularly used to control the fun-
gus. However, in addition to the potentially harmful effects on 
the environment and the fungicide's high costs, the low sen-
sitivity of P. pachyrhizi to some active ingredients is reducing 
the availability of effective chemical compounds. Thus, to con-
trol ASR, there is a need for more efficient and lasting forms of 
control (Godoy et al. 2016; Ivancovich et al. 2007; Langenbach 
et al. 2016).

Among these alternatives, superior soybean varieties with 
high productivity and resistance to ASR appear to be the most 
effective way to control the disease (Vuong et  al.  2016). To 
date, soybean cultivars resistant to ASR have been mapped 
mainly to seven loci, named Rpp 1 to 7, which are specific 
genomic regions associated with varying degrees of resis-
tance to P. pachyrhizi (Childs et al. 2018; Goellner et al. 2010; 
Kelly et al. 2015; King et al. 2016; Pedley et al. 2019). The loci 
Rpp1 (Hyten et  al.  2007), Rpp4 (Silva et  al.  2008), and Rpp6 
(Li et  al.  2012) are all located on chromosome 18 but at dif-
ferent positions. Additionally, other Rpp loci are found on dis-
tinct chromosomes: Rpp2 (Silva et  al.  2008) on chromosome 
16, Rpp3 (Hyten et al. 2009) on chromosome 6, Rpp5 (Garcia 
et al. 2008) on chromosome 3, and Rpp7 (Childs et al. 2018) on 
chromosome 19.

From a functional perspective, immunity has been organized 
into two layers depending on the cellular response, either by 
activating extracellular receptors (TM-LRR), also known as pat-
tern recognition receptors (PRR), and usually related to pattern-
triggered immunity (PTI), or activating intracellular receptors 
(NBS-LRR), encoded by disease resistance (R) genes and re-
lated to effector-triggered immunity (ETI) (Dodds et al. 2024). 
These receptors with potential plant resistance activity are 
collectively termed resistance gene analogs (RGAs) (Sekhwal 
et  al.  2015). Independent of the RGA class, after apoplastic or 
intracellular perception, the immune response converges to a 
similar set of downstream events that will potentially prevent 
infection. These include processes such as reactive oxygen spe-
cies (ROS) production, calcium influx, signaling transduction 

by mitogen-activated protein kinases (MAPK), defense gene 
expression, and defense hormone production (DeFalco and 
Zipfel 2021).

Next-generation sequencing (NGS) technologies opened oppor-
tunities to identify genome-wide, based on sequence similar-
ity, RGAs that encode proteins with structural similarities to R 
genes and their transcription profile when pathogens challenge 
plants (Rody et  al.  2019; Sekhwal et  al.  2015). Notably, RGAs 
often form clusters in plant genomes, which may include func-
tionally related genes that are not necessarily similar in se-
quence (Chang et al. 2002). This clustering, driven by ancient 
whole-genome duplications and segmental duplications fol-
lowed by gene deletions and genomic reorganizations, has ex-
panded RGA families (Michelmore and Meyers 1998; Perazzolli 
et  al.  2014). Identifying these potential resistance-associated 
genes and mapping their genomic organization is highly bene-
ficial for plant breeding. This information supports the devel-
opment of selection strategies that facilitate the early selection 
of resistant cultivars, reducing costs through approaches such 
as marker-assisted selection (MAS) (AliFakheri 2014; Echeveste 
Da Rosa 2015).

In a previous report (Castro-Moretti et  al.  2024), we observed 
that water limitation enhanced disease severity caused by P. 
pachyrhizi in soybean, significantly changing the leaf metabolic 
profile. Complementing this previous report, our study aimed 
to reveal the comparative expression pattern of a susceptible 
genotype under the influence of reduced water availability in 
the severity of ASR. Furthermore, we identified RGAs that were 
differentially expressed across infection stages under these con-
ditions. Our results provide a better understanding of key mech-
anisms involved in disease progression for targeted strategies to 
develop ASR-resistant soybean cultivars addressing yield stabil-
ity and global food security.

2   |   Materials and Methods

2.1   |   Experimental Design, Plant Material 
and Inoculation

As an obligatory phytopathogen, the P. pachyrhizi inoculum was 
maintained in a greenhouse by regularly inoculating soybean 
plants. To achieve this, 8 to 10 soybean seeds were sown weekly 
until they reached the V4 stage. These plants were watered daily 
until the soil was fully saturated and inoculated with a rust 
spore solution (105 urediniospores.ml−1) in a humid chamber at 
23°C in the dark for 24 h.

The experiment was developed using a fully randomized fac-
torial design, with three biological replicates per treatment 
of the susceptible soybean commercial cultivar BMX Lança 
IPRO. These treatments included plants with and without the 
presence of biotic and abiotic stresses independently, and leaf 
samples collected at four time points, resulting in the gener-
ation of 16 treatments. Soybean plants were kept under two 
water availability levels: a moderate water deficit, defined 
as 65% of the plant-available soil water capacity, and a con-
trol group of plants cultivated with 80% soil water capacity. 
The humidity estimation of the soil mixture, prepared in a 
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2:2:1 (v/v/v) ratio of soil, sand, and manure, at the permanent 
wilting point was conducted using the procedure detailed by 
Ferreira  (2010). To verify the water status of the treatments, 
three fresh V2 trifoliate leaves were collected just prior to the 
inoculation (performed at 7:00 p.m.), and analyzed for relative 
water content, following the method described by Barrs and 
Weatherley (1962).

The plants were grown under controlled temperature condi-
tions in a greenhouse until the development stage V4 for the 
experimental treatments with controlled water availability. 
Water control for these plants began 48 h before inocula-
tion, ensuring that the treatments were well established. The 
plants were weighted daily and watered according to their 
respective water capacity—80% (control treatment) or 65% 
(water limited). The plants were then inoculated with the 
fungus suspension at the same maintenance concentration 
at 7:00 p.m. Inoculated and mock plants were covered with 
plastic bags and incubated in the dark in a humid chamber 
at 23°C (±2°C) for 24 h. Fungal inoculated and mock plants 
were maintained separately to avoid cross-contamination of 
the control plants. After this incubation period, the plants 
were returned to the greenhouse, where the controlled water 
conditions were maintained throughout the experiment. One 
V3 trifoliolate leaf per plant was collected at times 12, 24, 72, 
and 192 h after inoculation (HAI) and immediately frozen 
with liquid nitrogen and stored at −80°C until the extraction 
of total RNA.

2.2   |   Total RNA Extraction and Sequencing

Total RNA extraction was performed sequentially: first using 
the Trizol method (Sigma-Aldrich, St. Louis-MO, USA), fol-
lowed by RNA purification with the Purelink RNA mini kit 
(Invitrogen, Carlsbad-CA, USA), according to the manufactur-
er's instructions. After extraction, total RNA was treated with 
DNAse 1 (Sigma-Aldrich, St. Louis-MO, USA), and RNA qual-
ity was verified with electrophoresis on a 1.5% agarose gel and 
further observation under UV light (2100 Bioanalyzer, Agilent 
Technologies, Santa Clara, USA). Quantification and purity 
were verified in a NanoDrop 2000 UV Visible Spectrophotometer 
(Thermo Scientific, USA).

The RNA library construction by poly-A enrichment was 
performed using the Illumina TruSeq Stranded mRNA kit 
(Illumina Inc., USA), followed by paired-end sequencing using 
an Illumina NextSeq 2000 with read lengths of 100 bp and an 
average of 10 million clusters or 20 million paired-end reads 
per sample. In total, 48 independent libraries were sequenced, 
corresponding to four collection times, two fungal conditions 
(with and without the presence of the fungus), two water avail-
ability regimes (with and without water limitation), and three 
replicates.

2.3   |   Data Processing

The quality of the reads generated in the sequencing was 
verified through the software SeqKit (version 0.16.1) (Shen 
et  al.  2016). After quality verification, reads were mapped 

against the Soybean reference genome Glycine max (Schmutz 
et  al.  2010) version 4 using the program HISAT2 (version 
2.1.0) (Kim et al. 2015). Then, the aligned reads were assem-
bled in their possible transcripts and the gene abundance was 
estimated using StringTie (version 2.2.1) (Pertea et al. 2015). 
Subsequently, the prepDE script provided by StringTie was 
used to generate a count matrix, with genes represented in 
rows and samples in columns. For each time point, genes with 
a read count exceeding 10 in at least one sample were retained, 
a mild and commonly applied prefiltering step that minimizes 
the influence of low-abundance transcripts and reduces ran-
dom noise in downstream analyses. Expression levels of the 
remaining genes were normalized using the DESeq2 method 
(Love et al. 2014).

2.4   |   Gene Expression and Functional Annotation

Principal Component Analysis (PCA) was conducted to ex-
plore gene expression patterns using data that was normal-
ized and variance-stabilized transformed (VST) for all genes 
with the statistical R package DESeq2 (Love et al. 2014). This 
approach allowed for examining the overall variation in the 
dataset and visualizing the separation of samples based on the 
influences of time, biotic stress, and abiotic stress on gene ex-
pression. The identification of differentially expressed genes 
(DEGs) was also performed using DESeq2, considering genes 
with a False Discovery Rate (FDR) < 0.05 as differentially 
expressed.

The over-representation analysis (ORA) of the Gene 
Ontology (GO) biological process terms enriched in the 
DEGs was performed using the package topGO (Alexa 
and Rahnenfuhrer  2024) from the Bioconductor project 
(BiocManager v3.18) implementing the Kolmogorov–Smirnov 
test and the “classic” algorithm. This approach was selected 
because it incorporates gene ranking based on expression 
changes, allowing the detection of subtle, coordinated tran-
scriptional responses not captured by binary enrichment 
methods such as Fisher's exact test.

2.5   |   Resistance Gene Analogs (RGAs)

The RGAs (resistance gene analogs) were analyzed using the 
encoded proteome of the Soybean reference genome for all 
different possible gene's isoforms, based on the characteris-
tics conserved among the resistance genes (R) (Hammond-
Kosack and Jones 1997). To this end, six different tools were 
used to predict resistance gene domains and motifs: (1) Coils 
v2 (Lupas et al. 1991); (2) TMHMM v2 (Krogh et al. 2001); (3) 
InterProScan v5.33–72.0 (Zdobnov and Apweiler  2001); (4) 
PfamScan with Pfam v32.0 (Bateman et al. 2004); (5) Phobius 
(Käll et  al.  2004); and (6) TargetP 2.0 (Almagro Armenteros 
et al. 2019).

Each predictor can identify conserved features among the R genes 
by structural analysis. Following the classification framework 
proposed by Rody et al. (2019), only sequences containing at least 
one of the three conserved domains of the RGAs—LRR, NB-ARC, 
or NB-LRR—were kept to form the set of candidate RGAs for the 
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Soybean reference genome. These candidates were then mapped 
to their chromosomal locations and grouped into clusters using the 
same criteria: clusters consisted of at least three putative RGAs of 
any class if there were no more than nine other genes between two 
RGAs or if the distance between them was less than 250 kb.

While RGA classification was performed at the isoform level due 
to the potential variability in domain architecture introduced by 
alternative splicing, downstream expression analyses were con-
ducted at the gene level. In this case, the first annotated isoform 
for each RGA gene was used as a representative to summarize 
expression values, including for heatmap visualization.

3   |   Results

3.1   |   Transcriptome Data Analysis

A total of 48 RNA-Seq libraries were generated from leaf tis-
sues of Glycine max cv. BMX Lança IPRO, sampled under eight 
combinations of biotic (Asian soybean rust) and abiotic (water 
limitation) stress treatments, each applied with and without 
the respective stress factor, across four time points (12, 24, 72, 
and 192 h after inoculation), with three biological replicates per 
condition. High-quality sequencing reads were obtained from 
all libraries (Table S1). Subsequent quality control and mapping 
against the Glycine max Wm82.a4.v1 reference genome resulted 
in an average overall read alignment rate of 93.6%. This pro-
cess identified 86,256 transcripts associated with 52,872 unique 
genes. After filtering out low-expression genes, 40,012 genes re-
mained, encoding 75.7% of the predicted soybean proteome.

3.2   |   Differential Gene Expression Profiling

Visualization of the first two components of a Principal 
Component Analysis (PCA) of the samples revealed a predom-
inant clustering effect attributed to the time factor (Figure 1). 
These two components explained 87% of the total variance. 
Given the predominant clustering by time points, we focused on 
the specific impact of the other two factors on gene expression. 
For each time point and per water limitation condition, we com-
pared samples treated with the pathogen against those without 
the pathogen, resulting in eight pairwise comparisons.

As a result of this analysis, 9680, 3229, 932, and 1004 differ-
entially expressed genes (DEGs) were obtained for plants in 
normal water conditions at times 12, 24, 72, and 192 h after 
inoculation (HAI), respectively. For water-limited plants, the 
numbers were 12,666, 1554, 1170, and 4352 DEGs at the same 
time points (Figure 2, Table S2). Notably, the most significant 
number of DEGs occurred at 12 HAI in both water regimes, 
accounting for nearly 65% of all DEGs detected. This peak sug-
gests that 12 HAI represents a critical window for transcrip-
tional reprogramming related to pathogen perception and 
the early activation of defense responses. Additionally, the 
number of DEGs at 12 HAI was approximately 33% higher in 
water-limited plants, indicating that water deficit may inten-
sify or accelerate the plant's early response to infection.

We also analyzed the overlap between DEGs from different time 
points and treatments (Figure 2) with the objective of identify-
ing shared stress-response genes that may contribute to cross-
tolerance mechanisms. The highest number of total DEGs and 

FIGURE 1    |    First two components of a Principal component analysis (PCA) of gene expression profiles across time points (12, 24, 72, and 192 
HAI) and experimental conditions. Each point represents a biological replicate, colored according to the time point, shaped according to the inoc-
ulation treatment (asterisks for inoculated and triangles for non-inoculated samples), and sized according to water availability (smaller symbols for 
normal water conditions and larger symbols for water-limited conditions).
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shared DEGs was observed at the earliest time point (12 HAI), 
indicating extensive transcriptional changes at this stage across 
conditions.

3.3   |   Gene Ontology (GO) Enrichment Analysis 
of DEGs

To identify functional categories potentially enriched in DEGs, 
we conducted an overrepresentation analysis (ORA) to detect 
Gene Ontology (GO) terms associated with biological pro-
cesses in which genes statistically showed differential expres-
sion greater than expected by chance. GO enrichment analysis 
(Table S3, Figures S1 and S2) of DEGs across all time points 
identified a cumulative total of 2503 significant GO terms in 
control plants and 2351 in water-limited plants. At 12 HAI, 
terms related to photosynthesis were prominently enriched 
in both conditions. In addition, control plants showed spe-
cific enrichment for response to oxidative stress. At 24 HAI, 
water-limited plants displayed enriched terms associated with 
phenylpropanoid biosynthesis, response to stimulus, and de-
fense response. In contrast, control plants showed a broader 
spectrum of enriched GO terms at this time point, including 

response to stress, defense response, response to chitin, and 
response to hypoxia. These differences reflect condition-
specific transcriptional reprogramming in response to infec-
tion. At 72 HAI, water-limited plants displayed enrichment for 
protein phosphorylation, signaling, response to stress, and de-
fense response, whereas control plants showed enrichment for 
defense response and response to fungus. Finally, at 192 HAI, 
water-limited plants highlighted processes such as response 
to stress, defense response, response to biotic and abiotic stim-
ulus, and photosynthesis, while control plants enriched GO 
terms primarily associated with photosynthesis.

3.4   |   Plant Defense-Related GO Terms

Next, for the plant defense-related GO terms, we calculated 
the median log2 fold change (LFC) of the DEGs (Inoculated 
vs. Non-Inoculated) per GO term, which represents a quan-
tification of the variation between the expression of genes in 
plants with the presence of the pathogen compared to plants 
without the presence of the pathogen. These values were 
used to demonstrate the variation that the presence of abiotic 
stress caused in the average expression of genes grouped into 

FIGURE 2    |    Intersection and number of DEGs across all time points (12, 24, 72 and 192 HAI) and water condition (L: Water-limited/C: Control). 
DEGs were identified by comparing pathogen-inoculated samples against non-inoculated samples within each condition and time point, resulting 
in eight pairwise comparisons. The horizontal bars on the left represent the total number of DEGs identified per condition, while the vertical bars 
indicate the size of DEG intersections between different conditions. Black dots connected by lines specify the comparisons contributing to each in-
tersection. The numbers above the bars represent the exact intersection sizes.
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biological processes associated with the plant defense response 
(Figure  3). The statistical significance of the differences be-
tween the expression levels of control and water-stressed 
plants is provided in Table S4.

At the beginning of the infection process (12 HAI), upregulated 
genes were associated with response to oxidative stress, phen-
ylpropanoid biosynthetic process, and flavonoid biosynthetic 
process, with more pronounced expression changes under 
water-limited conditions. Concurrently, defense response and 
response to biotic stimulus were exclusively observed under 
these conditions. By 24 HAI, the expression levels of these 
defense-related genes were significantly decreased. In plants 
under water limitation, defense gene expression returned to 
basal levels, whereas in control plants, the genes were negatively 
regulated, showing expression levels below the basal threshold. 
At 72 HAI, there was a renewed increase in the expression of 
defense-related genes, particularly notable in plants not sub-
jected to water stress, including genes specifically associated 
with fungal response, which were positively regulated. This 
upward trend persisted and intensified until 192 HAI, when 
defense gene expression remained elevated, especially in plants 
without water limitation.

3.5   |   Water Deprivation Effect

To identify the effect of water deprivation on gene expression 
during infection, DEGs were analyzed between water-limited 
and control plants, both inoculated with the pathogen. The top 

10 most enriched GO terms for each time point are shown in 
Figure  4. At the beginning of the infection process (12 HAI), 
enrichment is primarily focused on processes related to gen-
eral metabolic pathways, such as the phenylpropanoid biosyn-
thetic process and secondary metabolite biosynthetic process, 
alongside stress-related categories such as response to oxidative 
stress. By 24 HAI, broader stress responses dominate, includ-
ing terms such as response to organic substance and response 
to abiotic stimulus. At 72 HAI, terms associated with defense 
response and response to chemical stimulus remain enriched, 
reflecting a continuation of general stress responses. However, 
at 192 HAI, following an extended period of water limitation, 
a notable shift occurs, with the emergence of genes specifically 
associated with water-related stress responses, such as response 
to water deprivation.

3.6   |   Prediction of Resistance Gene Analogs 
(RGAs)

Using domain prediction tools and a custom Python3 script, 
the predicted Soybean proteome was scanned for candidate 
RGA identification, which was subsequently classified based 
on their combinations of predicted domains (see Material and 
methods). A total of 4076 gene isoforms were predicted to en-
code RGAs classified according to their domain configuration 
(Figure 5A; Table 1). Clustering of the predicted RGAs showed 
that these genes are distributed throughout the genome, with 
an accumulation of RGAs toward the chromosome ends 
(Figure 5A).

FIGURE 3    |    Median log2 fold change (LFC) of genes annotated with GO terms related to plant defense response. Non-water-limited plants are 
represented at the upper part of the graph and the water-limited ones at the bottom. Each row represents a time of collection, while each column 
represents a GO term associated with plant defense response.
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Five classes of RGAs were predicted most frequently: CNL: 
coiled coil (CC) associated with NB-ARC and leucine-rich 
repeats (LRR); TNL: TIR domain associated with NB-ARC 
and LRR; RLK: receptor-like kinase; RLP: receptor-like pro-
tein; and TM-CC: transmembrane domain associated with a 
coiled-coil domain (Table  1). Differentially expressed RGA 
(RGADE) isoforms were detected on all chromosomes; how-
ever, chromosomes 2, 6, 8, 13, 16, and 18 harbored the highest 
numbers, together representing nearly 50% of all identified 
RGADEs (Figure 5B; Table 1). The most frequently predicted 
RGA classes were those containing a transmembrane domain, 
including RLK and RLP (TM-LRR encoding class), as well as 
the TM-CC subclass. Considering the total number of RGAs 
predicted in the genome, they correspond to 53%, and among 
DEGs, they represent 64% of all expressed RGAs combining 
both water conditions. This tendency further intensified when 
DEGs were separated based on water limitation, reaching 68% 
for plants under normal water conditions. On the other hand, 
in conditions with only biotic stress, the proportion of these 
RGAs aligned more closely with the overall set of RGADEs, 
maintaining around 64%.

When assessing the effect of water limitation, we observed no-
table variations in RGADE expression between plants exposed 
to water limitation and those maintained under controlled con-
ditions, when compared to the reference genome. For instance, 
the TNL subclass exhibited expression exclusively under water 
limitation; isoforms from the RLK subclass were expressed in 

both conditions but at a higher level in control plants, and the 
RLP subclass showed a more moderate expression profile.

The presence of the pathogen affected the proportion of RGAs 
relative to the total number of gene isoforms. In the reference 
genome, 4076 out of 66,210 gene isoforms (6.15%) were clas-
sified as RGAs. This proportion was higher among DEGs ob-
tained by comparing inoculated versus non-inoculated plants, 
with 1827 out of 19,165 DEGs isoforms (9.53%) identified as 
RGAs. Under water-limited conditions, 1451 out of 15,452 iso-
forms (9.39%) were classified as RGAs, compared to 1184 out of 
12,653 isoforms (9.36%) under control conditions. These results 
demonstrated an enrichment of RGAs among DEGs driven by 
pathogen inoculation, with no substantial impact from water 
stress on the proportion of RGAs among expressed genes.

The timing of RGADE expression largely coincides with early 
pathogen invasion, particularly at 12 HAI, when tissue pen-
etration is critical. Under water limitation, 1074 (56.76%) of 
RGADEs were expressed at 12 HAI, followed by a sharp drop to 
112 (5.91%) at 24 HAI, 136 (7.18%) at 72 HAI, and 570 (30.12%) at 
192 HAI. In contrast, under non-limiting water conditions, 788 
(55.85%) of RGADEs were expressed at 12 HAI, 313 (22.18%) at 
24 HAI, 203 (14.38%) at 72 HAI, and only 107 (7.58%) at 192 HAI 
(Figure S3; Table S5). These results suggest that water availabil-
ity modulates the temporal distribution of RGADE expression, 
particularly at later infection stages, although further studies 
are needed to confirm the underlying mechanisms.

FIGURE 4    |    Top 10 enriched Gene Ontology (GO) terms across time points (12, 24, 72, and 192 HAI) for DEGs identified from the comparison 
between water-limited and control plants inoculated with the pathogen. GO enrichment analysis was performed to identify biological processes (BP) 
significantly associated with DEGs at each time point. The x-axis represents the enrichment score, while the y-axis lists the enriched GO terms. The 
color gradient represents the statistical significance (−log10 (p-value)), with darker shades indicating higher enrichment significance. The vertical 
dashed line corresponds to a p-value threshold of 0.01.
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3.7   |   Expression Profile of Resistance Gene 
Analogs Differentially Expressed

After exploring RGA isoform-specific expression, we collectively 
examined the expression profiles of the 932 RGADEs at the gene 
level (Figure  S4). We observed a distinct temporal expression 

pattern between plants exposed to limited water and control 
plants. Under water-limited conditions, 54.85% of RGADEs were 
identified at 12 HAI, followed by 6.77% at 24 HAI, 8.48% at 72 
HAI, and 29.9% at 192 HAI. In contrast, control plants exhibited 
a markedly different distribution, with 50.71% of RGADEs ex-
pressed at 12 HAI, 24.15% at 24 HAI, 15.96% at 72 HAI, and only 

FIGURE 5    |    (A) Distribution of the predicted RGAs in the Glycine max genome, mapped across the 20 chromosomes. The predicted RGAs are 
classified into subclasses, which are represented by different colors. The outer ring indicates chromosome locations in millions of base pairs. (B) 
Chromosomal distribution of differentially expressed RGAs (RGADEs) isoforms grouped into subclasses based on their predicted functional do-
mains. The bar heights represent the frequency of each subclass per chromosome, and the colors correspond to the RGA subclasses in (A).

https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1
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9.18% at 192 HAI. These results highlighted a pronounced en-
richment of RGADE expression at 192 HAI under water-limited 
conditions, while control plants showed a more uniform distri-
bution of RGADEs across earlier time points, particularly at 24 
and 72 HAI.

Of the RGAs identified within the Rpp loci (55 genes), 28 were 
differentially expressed (RGADEs). These RGADEs were dis-
tributed across most loci and treatments, except for Rpp7 
(Figure 6). At 12 HAI, the water limitation resulted in the in-
duction of RGADEs of classes TNLs (6), RLK (1), and Other (3), 
whereas control plants downregulated RGADEs of classes TM-
CC (1) and TNLs (4). At 24 HAI, RGADEs were nearly absent 
in water-limited plants, while control plants displayed a diverse 
expression pattern, including both upregulated (e.g., 2 Other 
and 5 TNLs) and downregulated (e.g., 3 Other, 1 TN, and 1 CNL) 
RGADEs. At 72 HAI, both conditions resulted in upregulated 
genes in low numbers. By 192 HAI, plants exposed to water 
stress showed exclusively upregulated RGADEs of most classes: 
TNLs (4), RLP (1), Other (3), TM-CC (1), and TN (1), while con-
trol plants had only one upregulated TM-CC.

The highest numbers of differentially expressed RGAs were 
found at the Rpp2 (12 RGADEs, 43%) and Rpp3 (10 RGADEs, 
35.7%) loci, followed by Rpp1 (4 RGADEs, 14.3%) and Rpp5 (2 
RGADEs, 7.1%) (Figure  6). Across all loci and treatments, the 
TIR-NBS-LRR (TNL) class was the most represented, account-
ing for 52% of the differentially expressed RGAs.

4   |   Discussion

The interaction between climate-induced changes in global 
water availability and the susceptibility for plant diseases 
such as Asian Soybean Rust (ASR) remains unpredictable 
and critically important for the future of crop breeding (Jorge 

et al. 2015; Konapala et al. 2020). For some time, various au-
thors have been exploring the crosstalk between biotic and 
abiotic stresses, considering their effect as either positive or 
negative in different pathosystems (Choudhary and Senthil-
Kumar  2024; Singh et  al.  2023; Sunarti et  al.  2022). Also, 
we cannot assume that individual responses to different 
stresses can predict the effects of combined stresses (Pandey 
et  al.  2015). As already demonstrated in diverse pathosys-
tems (Paoletti et  al.  2001; Ragazzi et  al.  1995; van Niekerk 
et al. 2011), water deficit imposes a significant drought-stress 
penalty on plants, which has been widely associated with the 
aggravation of fungal diseases (Swett 2020) and negative im-
pacts on crop development (Ghosh and Roychoudhury 2024). 
The effects of drought facilitate pathogen colonization, in-
crease disease incidence, and exacerbate symptom sever-
ity due to the suppression of the plant defense mechanisms 
(Boyer 1995; Swett 2020). These findings support the notion 
that water availability may influence the effectiveness of plant 
defenses against fungal pathogens.

In this context, we examined the impact of water limitation on 
the transcriptomic response of a susceptible soybean genotype 
to P. pachyrhizi, analyzing infected leaves at four specific time 
points. The time points chosen represent key phases of the fun-
gal infection process, including the formation of appressoria, 
cuticle penetration, and the invasion and subsequent growth of 
hyphae within the host tissue, observed at 12, 24, 72, and 192 h 
post-infection, respectively (Gupta et al. 2023).

The first overall analysis revealed that time had the most 
profound effect on the transcriptome, irrespective of the in-
oculation state. The pairwise comparison per time point 
of inoculated plants vs. inoculated plants under limited 
water conditions showed that genes related to plant defense 
(GO:0006952) had an intensified response in plants under 
water limitation at the early stages of infection. This effect 

TABLE 1    |    Number of putative RGAs by domain family and their classes in the reference genome and DEGs (up and down regulated combined).

RGA class Whole genome Overall DEGs Water limited DEGs Control DEGs

NBS-LRR encoding

CNL 264 (6.48%) 106 (5.80%) 58 (4.00%) 86 (7.26%)

TNL 225 (5.52%) 130 (7.11%) 115 (7.92%) 43 (3.63%)

TN 26 (0.64%) 10 (0.55%) 10 (0.69%) 7 (0.59%)

CN 9 (0.22%) 3 (0.16%) 3 (0.20%) 3 (0.25%)

TM-LRR encoding

RLK 916 (22.47%) 464 (25.40%) 372 (25.64%) 345 (29.14%)

RLP 340 (8.34%) 189 (10.35%) 149 (10.27%) 126 (10.64%)

Other variants

TM-CC 1158 (22.41%) 518 (28.35%) 416 (28.67%) 337 (28.46%)

TL 1 (0.02%) 1 (0.05%) 0 (0%) 1 (0.08%)

TIR 50 (1.23%) 14 (0.76%) 14 (0.96%) 8 (0.68%)

Other 1087 (26.67%) 392 (21.45%) 314 (21.64%) 228 (19.25%)

Total number of RGAs 4076 (100%) 1827 (100%) 1451 (100%) 1184 (100%)
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diminished as time passed and disease progressed. The num-
ber of differentially expressed genes showed a biphasic re-
sponse, as seen before with the same pathosystem (van de 
Mortel et  al.  2007), with defense-related genes being upreg-
ulated at earlier stages of infection (12 HAI), followed by a 
down-regulation (24 HAI) and then again being positively 
regulated at later time points (72 and 192 HAI).

We unveiled 33% more DEGs in plants with combined stress 
than in plants exposed to only the biotic stress. This higher 
number of DEGs reflects the broader range of plant responses 
necessary to maintain physiological homeostasis, coordinated 
by gene expression (Pandey et al. 2015; Zandalinas et al. 2018). 
Among the DEGs identified at 12 HAI, the strongest upregulated 
under water limitation were Glyma.18 g211100 (Peroxidase), 
Glyma.18 g267900 (Isoflavone 7-O-methyltransferase-like pro-
tein), Glyma.02 g007400 (Chitinase), and Glyma.14 g205200 
(Cytochrome P450). Their expression levels were between 7 
and 86 times higher in inoculated plants compared to non-
inoculated plants under water limitation. The induction of 
these genes may lead to the production of phytoalexin, lignin, 
flavonoids, ABA, and chitin-pathogen digestion, which serve 
as chemical and physical barriers against fungal infection. 
These immune system components may also play roles in the 
response to water limitation (Almagro et al. 2009; Li et al. 2022; 

Zhang et al. 2017). Moreover, these genes are involved in other 
stress responses in soybean plants. Functional characteri-
zation of Glyma.18 g211100 has been shown to contribute to 
resistance against Cercospora leaf blight (Patel et  al.  2024); 
Glyma.18 g267900 and Glyma.02 g007400 are associated with 
resistance to soybean cyst nematode (Hu et  al.  2024; Zhang 
et  al.  2017), while Glyma.14 g205200 was associated with 
drought resistance (Li et  al.  2022). The plant's adaptability to 
diverse environmental conditions depends on a versatile defense 
network of genes with sometimes overlapping functions, which 
we also detected in our work.

The robust gene expression of plants exposed to combined 
stresses may stimulate transcriptional changes, leading to 
a faster and more intense response upon exposure to subse-
quent stress, as described for the priming effect (Mauch-Mani 
et  al.  2017). Indeed, our data showed 25% more RGADE iso-
forms in plants exposed to combined stresses compared to only 
rust-inoculated plants. Additional evidence of the effects of 
combined stresses was indicated by the increased expression 
of RGAs in the early stages of infection, suggesting the acti-
vation of stress defense mechanisms under these conditions. 
Approximately 36% of the total RGADEs encoded receptor-like 
kinases (RLKs) and receptor-like proteins (RLPs). Considering 
that TM-LRR proteins constitute 30% of all RGAs in the genome, 

FIGURE 6    |    Heatmap of RGAs expression at Rpp loci across all time points (12, 24, 72 and 192 HAI) and both water conditions (L: Water-limited/C: 
Control). The color scale indicates the log2 fold change for inoculated vs. not-inoculated plants, with red representing upregulation and blue repre-
senting downregulation. The RGA subclass of each gene is indicated by the color-coded bar on the left. Asterisks (*) denote DEGs. Annotations on 
the right indicate Rpp loci (Rpp1, Rpp2, Rpp3, Rpp4, Rpp5, and Rpp6) where these RGAs are located.
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our analysis revealed an enrichment of this receptor class under 
both experimental conditions—ASR inoculation with and with-
out water limitation.

These proteins include pattern recognition receptors (PRRs), 
such as leucine-rich repeat receptor-like kinases (LRR-RLKs) 
and lectin receptor-like kinases (LecRLKs), which are known 
to recognize microbial-associated molecular patterns (MAMPs) 
and initiate pattern-triggered immunity (PTI) (Jones and 
Dangl  2006). In addition to their potential roles in pathogen 
recognition, some PRRs have also been associated with the per-
ception of developmental and abiotic stress cues. Notably, water-
limited plants showed a higher abundance of RLK-encoding 
RGADEs at 192 HAI, a time point corresponding to prolonged 
water deficit. These RLKs include genes predicted to belong to 
LRR-RLK and LecRLK subfamilies, which have been impli-
cated in osmotic stress signaling and immune responses in other 
plant species (Osakabe et al. 2013). Based on these observations, 
we propose that water limitation may enhance the perception of 
multiple stress signals through overlapping receptor pathways, 
potentially leading, although insufficiently, to PTI response in 
susceptible plants. While this hypothesis remains to be explored 
experimentally, the transcription patterns observed help narrow 
down candidate RLKs for future functional validation, partic-
ularly those with stress-specific or time-dependent expression 
profiles. The apparent decline in defense-related gene expres-
sion at later stages suggests a shift toward effector-triggered sus-
ceptibility (ETS), a possibility that requires deeper investigation.

These observations raise the possibility that water limitation en-
hances the plant's perception of multiple stressors, potentially 
activating similar receptor types and leading to a stronger PTI 
response in susceptible plants. Despite the activation of these 
receptors, the overall diminished defense response observed in 
water-limited plants at later stages, when the fungus has already 
established itself and proliferated within the plant, suggests that 
effector-triggered susceptibility (ETS) significantly contributes 
to disease progression and severity, though this remains to be 
experimentally validated.

Throughout their infection stages, biotrophic fungi overcome 
plant defense systems by directing various effectors to impair 
plant defenses, whether suppressing PTI-activated responses 
after pathogen recognition or interacting with ETI receptors 
(Toruño et al. 2016). ASR fungus presents an efficient strategy to 
defeat responses upon that perception, leading to a strong down-
regulation of genes related to plant defense at 24 HAI. The low 
representation of NBS-LRR-encoding genes among RGADEs at 
this time suggests a potential ETI response deactivation related 
to the expression and release of fungal effector proteins (Gupta 
et al. 2023). Other authors identified similar patterns for rusts, 
considering, for instance, time after inoculation for the analysis 
(Dobon et al. 2016; Pradeu et al. 2024). The reduced expression 
of defense genes in plants under water stress at 24 HAI is not as 
marked but still noticeable. Following this wave down, an in-
crement toward positive net expression reaches its maximum at 
192 HAI. With disease progress and fungal multiplication, the 
increase in MAMPs may result in a new wave of pathogen per-
ception, reactivating the innate response at later moments. At 
that point, the induction of genes in which GO terms refer to 
plant defense, such as response to chitin and oxidative stress, 

has no effect since the disease has already been established and 
sporogenesis initiated.

The lower impact of the waves of recognition in water-limited 
plants, along with an increased expression of genes related to 
response to water deprivation, may indicate a redirection of ef-
forts otherwise used for controlling the pathogen's development, 
resulting in a more robust plant susceptibility (Beattie  2011; 
Leisner et al. 2023).

We also analyzed the distribution of RGAs across soybean chro-
mosomes and observed a tendency for these genes to accumulate 
near chromosomal ends, forming gene clusters. This is consis-
tent with what has been described for RGAs in other crops' ge-
nomes, and is also similar to the distribution of protein-coding 
genes in the soybean genome (Christie et al. 2016; Liu et al. 2020; 
Rody et al. 2019; Wang et al. 2021). Notably, seven loci (Rpp1 to 
Rpp7) harboring combinations of RGAs conferring race-specific 
resistance to select P. pachyrhizi isolates have been genetically 
mapped in soybean (Childs et al. 2018). In our study, all loci ex-
cept Rpp7 included differentially expressed RGAs (RGADEs), 
which accounted for 50% of all RGAs detected at Rpp loci, with 
11 genes shared between water-limited and control conditions at 
specific time points. Among these, nine of these RGADEs were 
within the Rpp2 locus encoding disease resistance proteins of 
the TIR-NBS-LRR (TNLs) class. TNLs are active components 
of the ETI response, which seems suppressed in our experi-
ments. Based on the earlier induction of Rpp2-associated genes 
in water-stressed plants, we speculate this locus plays a central 
role in P. pachyrhizi infection in the susceptible genotype stud-
ied. Functional validation will be needed to clarify the exact role 
of these loci. Still, pinpointing differentially expressed RGAs 
within important resistance regions offers a focused set of can-
didate genes that can be tested in future experiments to better 
understand their involvement in stress responses.

The Rpp2 locus offers additional insights into their coordinated 
expression and functional significance during pathogen at-
tack. Among the RGAs, Glyma.16 g136000, Glyma.16 g136900, 
Glyma.16 g137000, Glyma.16 g137300, and Glyma.16 g137600 
were all induced at 12 HAI under water-limited conditions. 
However, Glyma.16 g136600 was consistently induced in 
water-limited plants but repressed 24 HAI in regularly watered 
plants, suggesting a role in abiotic stress. This may reflect an 
intricate network that ties the clustering of genes and possibly 
co-regulation to enable a rapid and localized immune response. 
The clustering of resistance genes is a common feature in plant 
genomes derived from selective pressures that favor the reten-
tion and duplication of genes involved in pathogen recognition 
and defense (Shao et al. 2016). However, despite the upregulation 
of these closely linked RGAs, particularly under water-limited 
conditions, the pathogen continues to establish and proliferate 
within the host.

We also identified DEGs related to abiotic stress that may con-
tribute to compromising the coordination of responses under 
combined stress conditions. One example is the antagonistic 
interaction between abscisic acid (ABA) and salicylic acid (SA) 
signaling pathways. SA plays a central role in activating defense 
responses against biotrophic pathogens (Yasuda et  al.  2008), 
while ABA is a key hormone regulating plant adaptation to 
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drought by controlling stomatal closure, osmotic balance, and 
other physiological processes. The crosstalk between ABA and 
SA has been shown to suppress the expression of pathogenesis-
related genes, thereby impairing immune responses (Ghosh and 
Roychoudhury 2024). As a result, the activation of ABA path-
ways under drought stress may prioritize abiotic stress adapta-
tion at the expense of biotic stress resistance, thereby facilitating 
pathogen establishment and proliferation, although hormonal 
levels were not directly assessed in the present study.

Exploring the regulatory networks governing RGA cluster 
modulation and their interactions with abiotic stress pathways 
is essential to better understanding the constraints on effec-
tive immunity in soybean genotypes. Our study emphasizes 
the significant modulation of soybean immune responses by 
water availability and identifies candidate genes for further in-
vestigation. These findings enhance our understanding of the 
complex interplay between abiotic and biotic stress responses, 
guiding the development of comprehensive strategies to man-
age drought and disease. Although no functional validation was 
conducted in this study, the identification of differentially ex-
pressed genes located in known resistance loci and enriched in 
defense-related processes supports their potential role in stress 
responses. These findings provide a valuable basis for future 
functional studies.

Acknowledgments

Dr. Quirijn de Jong van Lier (Soil Physics Laboratory, CENA/USP) for 
helping us to estimate the soil humidity at the permanent wilting point. 
Carlos Martinelli and GDM Seeds for their generous donations of soy-
bean seeds. Dr. Sergio Pascholati and Ms. Sabrina Holz for sharing their 
Phakopsora pachyrhizi population. C.B.M.-V., L.A., and P.M. thank 
CNPq (The Brazilian National Council for Scientific and Technological 
Development) for research fellowships. G.H. was supported by 
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES 
88887.671506/2022-00). This study was supported by the Fundação de 
Amparo à Pesquisa do Estado de São Paulo (FAPESP—2019/13191-5).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available in 
NCBI Sequence Read Archive at https://​www.​ncbi.​nlm.​nih.​gov/​sra/​
PRJNA​1137319, reference number PRJNA1137319. All scripts used in 
this study are available at the GitHub repository (https://​github.​com/​
Gusta​voHus​ein/​soybe​an-​RGA-​combi​ned-​stress) and have been ar-
chived with a DOI via Zenodo: https://​doi.​org/​10.​5281/​zenodo.​15395777.

References

Alexa, A., and J. Rahnenfuhrer. 2024. “topGO: Enrichment Analysis 
for Gene Ontology. R Package Version 2.56.0.” https://​doi.​org/​10.​1016/j.​
proenv.​2011.​05.​005.

AliFakheri, B. 2014. “Marker-Assisted Selection for Disease Resistance: 
Applications in Breeding.”

Almagro Armenteros, J. J., M. Salvatore, O. Emanuelsson, et  al. 
2019. “Detecting Sequence Signals in Targeting Peptides Using Deep 
Learning.” Life Science Alliance 2: e201900429. https://​doi.​org/​10.​
26508/​​lsa.​20190​0429.

Almagro, L., L. V. Gómez Ros, S. Belchi-Navarro, R. Bru, A. Ros Barceló, 
and M. A. Pedreño. 2009. “Class III Peroxidases in Plant Defence 
Reactions.” Journal of Experimental Botany 60: 377–390. https://​doi.​org/​
10.​1093/​jxb/​ern277.

Alves, M. D. C., L. G. De Carvalho, E. A. Pozza, L. Sanches, and J. C. 
D. S. Maia. 2011. “Ecological Zoning of Soybean Rust, Coffee Rust and 
Banana Black Sigatoka Based on Brazilian Climate Changes.” Procedia 
Environmental Sciences 6: 35–49. https://​doi.​org/​10.​1016/j.​proenv.​2011.​
05.​005.

Barrs, H., and P. Weatherley. 1962. “A Re-Examination of the Relative 
Turgidity Technique for Estimating Water Deficits in Leaves.” 
Australian Journal of Biological Sciences 15: 413–428.

Bateman, A., L. Coin, R. Durbin, et  al. 2004. “The Pfam Protein 
Families Database.” Nucleic Acids Research 32: D138–D141. https://​doi.​
org/​10.​1093/​nar/​gkh121.

Beattie, G. A. 2011. “Water Relations in the Interaction of Foliar 
Bacterial Pathogens With Plants.” Annual Review of Phytopathology 49: 
533–555. https://​doi.​org/​10.​1146/​annur​ev-​phyto​-​07300​9-​114436.

Boyer, J. S. 1995. “Biochemical and Biophysical Aspects of Water 
Deficits and the Predisposition to Disease.” Annual Review of 
Phytopathology 33: 251–274. https://​doi.​org/​10.​1146/​annur​ev.​py.​33.​
090195.​001343.

Burdon, J. J., and J. Zhan. 2020. “Climate Change and Disease in Plant 
Communities.” PLoS Biology 18: e3000949. https://​doi.​org/​10.​1371/​
journ​al.​pbio.​3000949.

Camejo, D., P. Rodríguez, M. A. Morales, J. M. Dell'Amico, A. Torrecillas, 
and J. J. Alarcón. 2005. “High Temperature Effects on Photosynthetic 
Activity of Two Tomato Cultivars With Different Heat Susceptibility.” 
Journal of Plant Physiology 162: 281–289. https://​doi.​org/​10.​1016/j.​jplph.​
2004.​07.​014.

Castro-Moretti, F. R., G. Husein, J. D. K. Nunes, et  al. 2024. “Water 
Limitation Causes Early-Stage Metabolic Perturbation in the Interaction 
of Soybean and the Causal Agent of Asian Soybean Rust.” https://​doi.​
org/​10.​2139/​ssrn.​5042386.

Chang, J. H., Y.-S. Tai, A. J. Bernal, D. T. Lavelle, B. J. Staskawicz, and 
R. W. Michelmore. 2002. “Functional Analyses of the Pto Resistance 
Gene Family in Tomato and the Identification of a Minor Resistance 
Determinant in a Susceptible Haplotype.” Molecular Plant-Microbe 
Interactions 15: 281–291. https://​doi.​org/​10.​1094/​MPMI.​2002.​
15.3.​281.

Cheng, Y. T., L. Zhang, and S. Y. He. 2019. “Plant-Microbe Interactions 
Facing Environmental Challenge.” Cell Host & Microbe 26: 183–192. 
https://​doi.​org/​10.​1016/j.​chom.​2019.​07.​009.

Childs, S. P., J. W. Buck, and Z. Li. 2018. “Breeding Soybeans With 
Resistance to Soybean Rust (Phakopsora pachyrhizi).” Plant Breeding 
137: 250–261. https://​doi.​org/​10.​1111/​pbr.​12595​.

Choudhary, A., and M. Senthil-Kumar. 2024. “Drought: A Context-
Dependent Damper and Aggravator of Plant Diseases.” Plant, Cell & 
Environment 47: 2109–2126. https://​doi.​org/​10.​1111/​pce.​14863​.

Christie, N., P. A. Tobias, S. Naidoo, and C. Külheim. 2016. “The 
Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and 
Expression Hotspots.” Frontiers in Plant Science 6: 1238. https://​doi.​org/​
10.​3389/​fpls.​2015.​01238​.

Dean, R., J. A. L. Van Kan, Z. A. Pretorius, et  al. 2012. “The 
Top 10 Fungal Pathogens in Molecular Plant Pathology.” 
Molecular Plant Pathology 13: 804. https://​doi.​org/​10.​1111/j.​1364-​3703.​
2012.​00822.​x.

DeFalco, T. A., and C. Zipfel. 2021. “Molecular Mechanisms of Early 
Plant Pattern-Triggered Immune Signaling.” Molecular Cell 81: 3449–
3467. https://​doi.​org/​10.​1016/j.​molcel.​2021.​07.​029.

Delgado-Baquerizo, M., C. A. Guerra, C. Cano-Díaz, et al. 2020. “The 
Proportion of Soil-Borne Pathogens Increases With Warming at the 

https://www.ncbi.nlm.nih.gov/sra/PRJNA1137319
https://www.ncbi.nlm.nih.gov/sra/PRJNA1137319
https://github.com/GustavoHusein/soybean-RGA-combined-stress
https://github.com/GustavoHusein/soybean-RGA-combined-stress
https://doi.org/10.5281/zenodo.15395777
https://doi.org/10.1016/j.proenv.2011.05.005
https://doi.org/10.1016/j.proenv.2011.05.005
https://doi.org/10.26508/lsa.201900429
https://doi.org/10.26508/lsa.201900429
https://doi.org/10.1093/jxb/ern277
https://doi.org/10.1093/jxb/ern277
https://doi.org/10.1016/j.proenv.2011.05.005
https://doi.org/10.1016/j.proenv.2011.05.005
https://doi.org/10.1093/nar/gkh121
https://doi.org/10.1093/nar/gkh121
https://doi.org/10.1146/annurev-phyto-073009-114436
https://doi.org/10.1146/annurev.py.33.090195.001343
https://doi.org/10.1146/annurev.py.33.090195.001343
https://doi.org/10.1371/journal.pbio.3000949
https://doi.org/10.1371/journal.pbio.3000949
https://doi.org/10.1016/j.jplph.2004.07.014
https://doi.org/10.1016/j.jplph.2004.07.014
https://doi.org/10.2139/ssrn.5042386
https://doi.org/10.2139/ssrn.5042386
https://doi.org/10.1094/MPMI.2002.15.3.281
https://doi.org/10.1094/MPMI.2002.15.3.281
https://doi.org/10.1016/j.chom.2019.07.009
https://doi.org/10.1111/pbr.12595
https://doi.org/10.1111/pce.14863
https://doi.org/10.3389/fpls.2015.01238
https://doi.org/10.3389/fpls.2015.01238
https://doi.org/10.1111/j.1364-3703.2012.00822.x
https://doi.org/10.1111/j.1364-3703.2012.00822.x
https://doi.org/10.1016/j.molcel.2021.07.029


13 of 15Food and Energy Security, 2025

Global Scale.” Nature Climate Change 10: 550–554. https://​doi.​org/​10.​
1038/​s4155​8-​020-​0759-​3.

Dobon, A., D. C. E. Bunting, L. E. Cabrera-Quio, C. Uauy, and D. G. 
O. Saunders. 2016. “The Host-Pathogen Interaction Between Wheat 
and Yellow Rust Induces Temporally Coordinated Waves of Gene 
Expression.” BMC Genomics 17: 380. https://​doi.​org/​10.​1186/​s1286​
4-​016-​2684-​4.

Dodds, P. N., J. Chen, and M. A. Outram. 2024. “Pathogen Perception 
and Signaling in Plant Immunity.” Plant Cell 36: 1465–1481. https://​doi.​
org/​10.​1093/​plcell/​koae020.

Echeveste Da Rosa, C. R. 2015. “Asian Soybean Rust Resistance: An 
Overview.” Journal of Plant Pathology & Microbiology 6: 307. https://​doi.​
org/​10.​4172/​2157-​7471.​1000307.

Engelbrecht, B. M. J., and T. A. Kursar. 2003. “Comparative Drought-
Resistance of Seedlings of 28 Species of Co-Occurring Tropical 
Woody Plants.” Oecologia 136: 383–393. https://​doi.​org/​10.​1007/​s0044​
2-​003-​1290-​8.

Ferreira, M. F. 2010. “Caracterização Física do Solo.” In Física do Solo, 
edited by Q. de Jong van Lier, 1–27. Sociedade Brasileira de Ciência do 
Solo.

Garcia, A., É. S. Calvo, R. A. Souza Kiihl, A. Harada, D. M. Hiromoto, 
and L. G. E. Vieira. 2008. “Molecular Mapping of Soybean Rust 
(Phakopsora pachyrhizi) Resistance Genes: Discovery of a Novel Locus 
and Alleles.” Theoretical and Applied Genetics 117: 545–553. https://​doi.​
org/​10.​1007/​s0012​2-​008-​0798-​z.

Gerós, H., M. M. Chaves, H. M. Gil, and S. Delrot. 2016. “A Molecular 
and Ecophysiological Perspective.”

Ghini, R., E. Hamada, R. R. V. Gonçalves, L. Gasparotto, and J. C. R. 
Pereira. 2007. “Análise de Risco Das Mudanças Climáticas Globais 
Sobre a Sigatoka-Negra da Bananeira no Brasil.” Fitopatologia 
Brasileira 32: 197–204. https://​doi.​org/​10.​1590/​S0100​-​41582​00700​
0300003.

Ghosh, P., and A. Roychoudhury. 2024. “Molecular Basis of Salicylic 
Acid–Phytohormone Crosstalk in Regulating Stress Tolerance in 
Plants.” Brazilian Journal of Botany 47: 735–750. https://​doi.​org/​10.​
1007/​s4041​5-​024-​00983​-​3.

Godoy, C. V., C. D. S. Seixas, R. M. Soares, F. C. Marcelino-Guimarães, 
M. C. Meyer, and L. M. Costamilan. 2016. “Asian Soybean Rust in 
Brazil: Past, Present, and Future.” Pesquisa Agropecuária Brasileira 51: 
407–421. https://​doi.​org/​10.​1590/​S0100​-​204X2​01600​0500002.

Goellner, K., M. Loehrer, C. Langenbach, U. Conrath, E. Koch, and U. 
Schaffrath. 2010. “Phakopsora pachyrhizi, the Causal Agent of Asian 
Soybean Rust.” Molecular Plant Pathology 11: 169–177. https://​doi.​org/​
10.​1111/j.​1364-​3703.​2009.​00589.​x.

Gupta, Y. K., F. C. Marcelino-Guimarães, C. Lorrain, et  al. 2023. 
“Major Proliferation of Transposable Elements Shaped the Genome 
of the Soybean Rust Pathogen Phakopsora pachyrhizi.” Nature 
Communications 14: 1835. https://​doi.​org/​10.​1038/​s4146​7-​023-​37551​-​4.

Hammond-Kosack, K. E., and J. D. G. Jones. 1997. “Plant Disease 
Resistance Genes.” Annual Review of Plant Biology 48: 575–607. https://​
doi.​org/​10.​1146/​annur​ev.​arpla​nt.​48.1.​575.

Hu, H., L. Yi, D. Wu, et  al. 2024. “Identification of Candidate Genes 
Associating With Soybean Cyst Nematode in Soybean (Glycine max L.) 
Using BSA-Seq.” PeerJ 12: e18252. https://​doi.​org/​10.​7717/​peerj.​18252​.

Hyten, D. L., G. L. Hartman, R. L. Nelson, et al. 2007. “Map Location of 
the Rpp1 Locus That Confers Resistance to Soybean Rust in Soybean.” 
Crop Science 47: 837–838. https://​doi.​org/​10.​2135/​crops​ci2006.​07.​0484.

Hyten, D. L., J. R. Smith, R. D. Frederick, M. L. Tucker, Q. Song, and 
P. B. Cregan. 2009. “Bulked Segregant Analysis Using the GoldenGate 
Assay to Locate the Rpp3 Locus That Confers Resistance to Soybean 
Rust in Soybean.” Crop Science 49: 265–271. https://​doi.​org/​10.​2135/​
crops​ci2008.​08.​0511.

Ivancovich, A. J., G. Botta, M. Rivadaneira, E. Saieg, L. Erazzú, and 
E. Guillin. 2007. “First Report of Soybean Rust Caused by Phakopsora 
pachyrhizi on Phaseolus spp. in Argentina.” Plant Disease 91: 111. 
https://​doi.​org/​10.​1094/​PD-​91-​0111C​.

Jones, J. D. G., and J. L. Dangl. 2006. “The Plant Immune System.” 
Nature 444: 323–329. https://​doi.​org/​10.​1038/​natur​e05286.

Jorge, V. R., M. R. Silva, E. A. Guillin, et al. 2015. “The Origin and Genetic 
Diversity of the Causal Agent of Asian Soybean Rust, Phakopsora 
pachyrhizi, in South America.” Plant Pathology 64: 729–737. https://​doi.​
org/​10.​1111/​ppa.​12300​.

Kakumanu, A., M. M. R. Ambavaram, C. Klumas, et al. 2012. “Effects of 
Drought on Gene Expression in Maize Reproductive and Leaf Meristem 
Tissue Revealed by RNA-Seq1[W][OA].” Plant Physiology 160: 846–867. 
https://​doi.​org/​10.​1104/​pp.​112.​200444.

Käll, L., A. Krogh, and E. L. L. Sonnhammer. 2004. “A Combined 
Transmembrane Topology and Signal Peptide Prediction Method.” 
Journal of Molecular Biology 338: 1027–1036. https://​doi.​org/​10.​1016/j.​
jmb.​2004.​03.​016.

Kelly, H. Y., N. S. Dufault, D. R. Walker, et al. 2015. “From Select Agent 
to an Established Pathogen: The Response to Phakopsora pachyrhizi 
(Soybean Rust) in North America.” Phytopathology 105: 905–916. 
https://​doi.​org/​10.​1094/​PHYTO​-​02-​15-​0054-​FI.

Kim, D., B. Langmead, and S. L. Salzberg. 2015. “HISAT: A Fast Spliced 
Aligner With Low Memory Requirements.” Nature Methods 12: 357–
360. https://​doi.​org/​10.​1038/​nmeth.​3317.

King, Z. R., D. K. Harris, K. F. Pedley, et al. 2016. “A Novel Phakopsora 
pachyrhizi Resistance Allele (Rpp) Contributed by PI 567068A.” 
Theoretical and Applied Genetics 129: 517–534. https://​doi.​org/​10.​1007/​
s0012​2-​015-​2645-​3.

Konapala, G., A. K. Mishra, Y. Wada, and M. E. Mann. 2020. 
“Climate Change Will Affect Global Water Availability Through 
Compounding Changes in Seasonal Precipitation and Evaporation.” 
Nature Communications 11: 3044. https://​doi.​org/​10.​1038/​s4146​7-​
020-​16757​-​w.

Krogh, A., B. Larsson, G. von Heijne, and E. L. L. Sonnhammer. 2001. 
“Predicting Transmembrane Protein Topology With a Hidden Markov 
Model: Application to Complete genomes11Edited by F. Cohen.” 
Journal of Molecular Biology 305: 567–580. https://​doi.​org/​10.​1006/​jmbi.​
2000.​4315.

Langenbach, C., R. Campe, S. F. Beyer, A. N. Mueller, and U. Conrath. 
2016. “Fighting Asian Soybean Rust.” Frontiers in Plant Science 7: 797. 
https://​doi.​org/​10.​3389/​fpls.​2016.​00797​.

Le, D. T., R. Nishiyama, Y. Watanabe, et al. 2012. “Differential Gene 
Expression in Soybean Leaf Tissues at Late Developmental Stages 
Under Drought Stress Revealed by Genome-Wide Transcriptome 
Analysis.” PLoS One 7: e49522. https://​doi.​org/​10.​1371/​journ​al.​pone.​
0049522.

Leisner, C. P., N. Potnis, and A. Sanz-Saez. 2023. “Crosstalk and Trade-
Offs: Plant Responses to Climate Change-Associated Abiotic and Biotic 
Stresses.” Plant, Cell & Environment 46: 2946–2963. https://​doi.​org/​10.​
1111/​pce.​14532​.

Leng, G., and J. Hall. 2019. “Crop Yield Sensitivity of Global Major 
Agricultural Countries to Droughts and the Projected Changes in the 
Future.” Science of the Total Environment 654: 811–821. https://​doi.​org/​
10.​1016/j.​scito​tenv.​2018.​10.​434.

Li, M., H. Li, A. Sun, et al. 2022. “Transcriptome Analysis Reveals Key 
Drought-Stress-Responsive Genes in Soybean.” Frontiers in Genetics 13: 
1060529. https://​doi.​org/​10.​3389/​fgene.​2022.​1060529.

Li, S., J. R. Smith, J. D. Ray, and R. D. Frederick. 2012. “Identification 
of a New Soybean Rust Resistance Gene in PI 567102B.” Theoretical 
and Applied Genetics 125: 133–142. https://​doi.​org/​10.​1007/​s0012​
2-​012-​1821-​y.

https://doi.org/10.1038/s41558-020-0759-3
https://doi.org/10.1038/s41558-020-0759-3
https://doi.org/10.1186/s12864-016-2684-4
https://doi.org/10.1186/s12864-016-2684-4
https://doi.org/10.1093/plcell/koae020
https://doi.org/10.1093/plcell/koae020
https://doi.org/10.4172/2157-7471.1000307
https://doi.org/10.4172/2157-7471.1000307
https://doi.org/10.1007/s00442-003-1290-8
https://doi.org/10.1007/s00442-003-1290-8
https://doi.org/10.1007/s00122-008-0798-z
https://doi.org/10.1007/s00122-008-0798-z
https://doi.org/10.1590/S0100-41582007000300003
https://doi.org/10.1590/S0100-41582007000300003
https://doi.org/10.1007/s40415-024-00983-3
https://doi.org/10.1007/s40415-024-00983-3
https://doi.org/10.1590/S0100-204X2016000500002
https://doi.org/10.1111/j.1364-3703.2009.00589.x
https://doi.org/10.1111/j.1364-3703.2009.00589.x
https://doi.org/10.1038/s41467-023-37551-4
https://doi.org/10.1146/annurev.arplant.48.1.575
https://doi.org/10.1146/annurev.arplant.48.1.575
https://doi.org/10.7717/peerj.18252
https://doi.org/10.2135/cropsci2006.07.0484
https://doi.org/10.2135/cropsci2008.08.0511
https://doi.org/10.2135/cropsci2008.08.0511
https://doi.org/10.1094/PD-91-0111C
https://doi.org/10.1038/nature05286
https://doi.org/10.1111/ppa.12300
https://doi.org/10.1111/ppa.12300
https://doi.org/10.1104/pp.112.200444
https://doi.org/10.1016/j.jmb.2004.03.016
https://doi.org/10.1016/j.jmb.2004.03.016
https://doi.org/10.1094/PHYTO-02-15-0054-FI
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1007/s00122-015-2645-3
https://doi.org/10.1007/s00122-015-2645-3
https://doi.org/10.1038/s41467-020-16757-w
https://doi.org/10.1038/s41467-020-16757-w
https://doi.org/10.1006/jmbi.2000.4315
https://doi.org/10.1006/jmbi.2000.4315
https://doi.org/10.3389/fpls.2016.00797
https://doi.org/10.1371/journal.pone.0049522
https://doi.org/10.1371/journal.pone.0049522
https://doi.org/10.1111/pce.14532
https://doi.org/10.1111/pce.14532
https://doi.org/10.1016/j.scitotenv.2018.10.434
https://doi.org/10.1016/j.scitotenv.2018.10.434
https://doi.org/10.3389/fgene.2022.1060529
https://doi.org/10.1007/s00122-012-1821-y
https://doi.org/10.1007/s00122-012-1821-y


14 of 15 Food and Energy Security, 2025

Liu, Y., H. Du, P. Li, et al. 2020. “Pan-Genome of Wild and Cultivated 
Soybeans.” Cell 182: 162–176.e13. https://​doi.​org/​10.​1016/j.​cell.​2020.​
05.​023.

Love, M. I., W. Huber, and S. Anders. 2014. “Moderated Estimation of 
Fold Change and Dispersion for RNA-Seq Data With DESeq2.” Genome 
Biology 15: 550. https://​doi.​org/​10.​1186/​s1305​9-​014-​0550-​8.

Lupas, A., M. Van Dyke, and J. Stock. 1991. “Predicting Coiled Coils 
From Protein Sequences.” Science 252: 1162–1164. https://​doi.​org/​10.​
1126/​scien​ce.​252.​5009.​1162.

Mauch-Mani, B., I. Baccelli, E. Luna, and V. Flors. 2017. “Defense 
Priming: An Adaptive Part of Induced Resistance.” Annual Review of 
Plant Biology 68: 485–512. https://​doi.​org/​10.​1146/​annur​ev-​arpla​nt-​
04291​6-​041132.

Michelmore, R. W., and B. C. Meyers. 1998. “Clusters of Resistance 
Genes in Plants Evolve by Divergent Selection and a Birth-And-Death 
Process.” Genome Research 8: 1113–1130. https://​doi.​org/​10.​1101/​gr.8.​
11.​1113.

Mittler, R. 2006. “Abiotic Stress, the Field Environment and Stress 
Combination.” Trends in Plant Science 11: 15–19. https://​doi.​org/​10.​
1016/j.​tplan​ts.​2005.​11.​002.

Osakabe, Y., K. Yamaguchi-Shinozaki, K. Shinozaki, and L.-S. P. 
Tran. 2013. “Sensing the Environment: Key Roles of Membrane-
Localized Kinases in Plant Perception and Response to Abiotic 
Stress.” Journal of Experimental Botany 64: 445–458. https://​doi.​org/​
10.​1093/​jxb/​ers354.

Palliotti, A., O. Silvestroni, and D. Petoumenou. 2009. “Photosynthetic 
and Photoinhibition Behavior of Two Field-Grown Grapevine Cultivars 
Under Multiple Summer Stresses.” American Journal of Enology and 
Viticulture 60: 189–198. https://​doi.​org/​10.​5344/​ajev.​2009.​60.2.​189.

Pandey, P., V. Ramegowda, and M. Senthil-Kumar. 2015. “Shared and 
Unique Responses of Plants to Multiple Individual Stresses and Stress 
Combinations: Physiological and Molecular Mechanisms.” Frontiers in 
Plant Science 6: 723. https://​doi.​org/​10.​3389/​fpls.​2015.​00723​.

Paoletti, Danti, and Strati. 2001. “Pre- and Post-Inoculation Water 
Stress Affects Sphaeropsis sapinea Canker Length in Pinus halepensis 
Seedlings.” Forensic Pathology 31: 209–218. https://​doi.​org/​10.​1046/j.​
1439-​0329.​2001.​00237.​x.

Patel, J., T. W. Allen, B. Buckley, et  al. 2024. “Deciphering Genetic 
Factors Contributing to Enhanced Resistance Against Cercospora Leaf 
Blight in Soybean (Glycine max L.) Using GWAS Analysis.” Frontiers in 
Genetics 15: 1377223. https://​doi.​org/​10.​3389/​fgene.​2024.​1377223.

Pedley, K. F., A. K. Pandey, A. Ruck, L. M. Lincoln, S. A. Whitham, and 
M. A. Graham. 2019. “Rpp1 Encodes a ULP1-NBS-LRR Protein That 
Controls Immunity to Phakopsora pachyrhizi in Soybean.” Molecular 
Plant-Microbe Interactions 32: 120–133. https://​doi.​org/​10.​1094/​
MPMI-​07-​18-​0198-​FI.

Perazzolli, M., G. Malacarne, A. Baldo, et  al. 2014. “Characterization 
of Resistance Gene Analogues (RGAs) in Apple (Malus × Domestica 
Borkh.) and Their Evolutionary History of the Rosaceae Family.” PLoS 
One 9: e83844. https://​doi.​org/​10.​1371/​journ​al.​pone.​0083844.

Pertea, M., G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell, 
and S. L. Salzberg. 2015. “StringTie Enables Improved Reconstruction 
of a Transcriptome From RNA-Seq Reads.” Nature Biotechnology 33: 
290–295. https://​doi.​org/​10.​1038/​nbt.​3122.

Pradeu, T., B. P. H. J. Thomma, S. E. Girardin, and B. Lemaitre. 2024. 
“The Conceptual Foundations of Innate Immunity: Taking Stock 
30 Years Later.” Immunity 57: 613–631. https://​doi.​org/​10.​1016/j.​im-
muni.​2024.​03.​007.

Ragazzi, A., S. Moricca, I. Dellavalle, and F. Mancini. 1995. “Infection 
of Cotton Byfusarium oxysporum f.sp.Vasinfectum as Affected by Water 
Stress.” Phytoparasitica 23: 315–321. https://​doi.​org/​10.​1007/​BF029​
81424​.

Rahman, S. U., E. McCoy, G. Raza, Z. Ali, S. Mansoor, and I. Amin. 
2023. “Improvement of Soybean; A Way Forward Transition From 
Genetic Engineering to New Plant Breeding Technologies.” Molecular 
Biotechnology 65: 162–180. https://​doi.​org/​10.​1007/​s1203​3-​022-​00456​-​6.

Rody, H. V. S., R. G. H. Bombardelli, S. Creste, L. E. A. Camargo, M.-
A. Van Sluys, and C. B. Monteiro-Vitorello. 2019. “Genome Survey 
of Resistance Gene Analogs in Sugarcane: Genomic Features and 
Differential Expression of the Innate Immune System From a Smut-
Resistant Genotype.” BMC Genomics 20: 809. https://​doi.​org/​10.​1186/​
s1286​4-​019-​6207-​y.

Schmutz, J., S. B. Cannon, J. Schlueter, et al. 2010. “Genome Sequence 
of the Palaeopolyploid Soybean.” Nature 463: 178–183. https://​doi.​org/​
10.​1038/​natur​e08670.

Sekhwal, M. K., P. Li, I. Lam, X. Wang, S. Cloutier, and F. M. You. 2015. 
“Disease Resistance Gene Analogs (RGAs) in Plants.” International 
Journal of Molecular Sciences 16: 19248. https://​doi.​org/​10.​3390/​ijms1​
60819248.

Shao, Z.-Q., J.-Y. Xue, P. Wu, et  al. 2016. “Large-Scale Analyses of 
Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes 
Reveal Three Anciently Diverged Classes With Distinct Evolutionary 
Patterns.” Plant Physiology 170: 2095–2109. https://​doi.​org/​10.​1104/​pp.​
15.​01487​.

Shen, W., S. Le, Y. Li, and F. Hu. 2016. “SeqKit: A Cross-Platform 
and Ultrafast Toolkit for FASTA/Q File Manipulation.” PLoS One 11: 
e163962. https://​doi.​org/​10.​1371/​journ​al.​pone.​0163962.

Silva, D. C. G., N. Yamanaka, R. L. Brogin, et  al. 2008. “Molecular 
Mapping of Two Loci That Confer Resistance to Asian Rust in Soybean.” 
Theoretical and Applied Genetics 117: 57–63. https://​doi.​org/​10.​1007/​
s0012​2-​008-​0752-​0.

Singh, B. K., M. Delgado-Baquerizo, E. Egidi, et  al. 2023. “Climate 
Change Impacts on Plant Pathogens, Food Security and Paths Forward.” 
Nature Reviews. Microbiology 21: 640–656. https://​doi.​org/​10.​1038/​
s4157​9-​023-​00900​-​7.

Sunarti, S., C. Kissoudis, Y. Van Der Hoek, et al. 2022. “Drought Stress 
Interacts With Powdery Mildew Infection in Tomato.” Frontiers in Plant 
Science 13: 845379. https://​doi.​org/​10.​3389/​fpls.​2022.​845379.

Swett, C. L. 2020. “Managing Crop Diseases Under Water Scarcity.” 
Annual Review of Phytopathology 58: 387–406. https://​doi.​org/​10.​1146/​
annur​ev-​phyto​-​03032​0-​041421.

Thornton, P. K., P. J. Ericksen, M. Herrero, and A. J. Challinor. 2014. 
“Climate Variability and Vulnerability to Climate Change: A Review.” 
Global Change Biology 20: 3313–3328. https://​doi.​org/​10.​1111/​gcb.​
12581​.

Toruño, T. Y., I. Stergiopoulos, and G. Coaker. 2016. “Plant-Pathogen 
Effectors: Cellular Probes Interfering With Plant Defenses in Spatial 
and Temporal Manners.” Annual Review of Phytopathology 54: 419–441. 
https://​doi.​org/​10.​1146/​annur​ev-​phyto​-​08061​5-​100204.

Trivedi, P., B. D. Batista, K. E. Bazany, and B. K. Singh. 2022. “Plant-
Microbiome Interactions Under a Changing World: Responses, 
Consequences and Perspectives.” New Phytologist 234: 1951–1959. 
https://​doi.​org/​10.​1111/​nph.​18016​.

van de Mortel, M., J. C. Recknor, M. A. Graham, et al. 2007. “Distinct 
Biphasic mRNA Changes in Response to Asian Soybean Rust Infection.” 
Molecular Plant-Microbe Interactions Journal 20: 887–899. https://​doi.​
org/​10.​1094/​MPMI-​20-​8-​0887.

van Niekerk, J. M., A. E. Strever, P. G. du Toit, F. Halleen, and P. H. 
Fourie. 2011. “Influence of Water Stress on Botryosphaeriaceae 
Disease Expression in Grapevines.” Phytopathologia Mediterranea 50: 
S151–S165.

Velásquez, A. C., C. D. M. Castroverde, and S. Y. He. 2018. “Plant–
Pathogen Warfare Under Changing Climate Conditions.” Current 
Biology 28: R619–R634. https://​doi.​org/​10.​1016/j.​cub.​2018.​03.​054.

https://doi.org/10.1016/j.cell.2020.05.023
https://doi.org/10.1016/j.cell.2020.05.023
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1126/science.252.5009.1162
https://doi.org/10.1126/science.252.5009.1162
https://doi.org/10.1146/annurev-arplant-042916-041132
https://doi.org/10.1146/annurev-arplant-042916-041132
https://doi.org/10.1101/gr.8.11.1113
https://doi.org/10.1101/gr.8.11.1113
https://doi.org/10.1016/j.tplants.2005.11.002
https://doi.org/10.1016/j.tplants.2005.11.002
https://doi.org/10.1093/jxb/ers354
https://doi.org/10.1093/jxb/ers354
https://doi.org/10.5344/ajev.2009.60.2.189
https://doi.org/10.3389/fpls.2015.00723
https://doi.org/10.1046/j.1439-0329.2001.00237.x
https://doi.org/10.1046/j.1439-0329.2001.00237.x
https://doi.org/10.3389/fgene.2024.1377223
https://doi.org/10.1094/MPMI-07-18-0198-FI
https://doi.org/10.1094/MPMI-07-18-0198-FI
https://doi.org/10.1371/journal.pone.0083844
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1016/j.immuni.2024.03.007
https://doi.org/10.1016/j.immuni.2024.03.007
https://doi.org/10.1007/BF02981424
https://doi.org/10.1007/BF02981424
https://doi.org/10.1007/s12033-022-00456-6
https://doi.org/10.1186/s12864-019-6207-y
https://doi.org/10.1186/s12864-019-6207-y
https://doi.org/10.1038/nature08670
https://doi.org/10.1038/nature08670
https://doi.org/10.3390/ijms160819248
https://doi.org/10.3390/ijms160819248
https://doi.org/10.1104/pp.15.01487
https://doi.org/10.1104/pp.15.01487
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1007/s00122-008-0752-0
https://doi.org/10.1007/s00122-008-0752-0
https://doi.org/10.1038/s41579-023-00900-7
https://doi.org/10.1038/s41579-023-00900-7
https://doi.org/10.3389/fpls.2022.845379
https://doi.org/10.1146/annurev-phyto-030320-041421
https://doi.org/10.1146/annurev-phyto-030320-041421
https://doi.org/10.1111/gcb.12581
https://doi.org/10.1111/gcb.12581
https://doi.org/10.1146/annurev-phyto-080615-100204
https://doi.org/10.1111/nph.18016
https://doi.org/10.1094/MPMI-20-8-0887
https://doi.org/10.1094/MPMI-20-8-0887
https://doi.org/10.1016/j.cub.2018.03.054


15 of 15Food and Energy Security, 2025

Vuong, T. D., D. R. Walker, B. T. Nguyen, et  al. 2016. “Molecular 
Characterization of Resistance to Soybean Rust (Phakopsora pachyrhizi 
Syd. & Syd.) in Soybean Cultivar DT 2000 (PI 635999).” PLoS One 11: 
e0164493. https://​doi.​org/​10.​1371/​journ​al.​pone.​0164493.

Wang, L., X. Yang, Y. Gao, and S. Yang. 2021. “Genome-Wide 
Identification and Characterization of TALE Superfamily Genes in 
Soybean (Glycine max L.).” International Journal of Molecular Sciences 
22: 4117. https://​doi.​org/​10.​3390/​ijms2​2084117.

Xue, Y., M. L. Warburton, M. Sawkins, et  al. 2013. “Genome-Wide 
Association Analysis for Nine Agronomic Traits in Maize Under Well-
Watered and Water-Stressed Conditions.” Theoretical and Applied 
Genetics 126: 2587–2596. https://​doi.​org/​10.​1007/​s0012​2-​013-​2158-​x.

Yasuda, M., A. Ishikawa, Y. Jikumaru, et  al. 2008. “Antagonistic 
Interaction Between Systemic Acquired Resistance and the Abscisic 
Acid–Mediated Abiotic Stress Response in Arabidopsis.” Plant Cell 20: 
1678–1692. https://​doi.​org/​10.​1105/​tpc.​107.​054296.

Zandalinas, S. I., R. Mittler, D. Balfagón, V. Arbona, and A. Gómez-
Cadenas. 2018. “Plant Adaptations to the Combination of Drought and 
High Temperatures.” Physiologia Plantarum 162: 2–12. https://​doi.​org/​
10.​1111/​ppl.​12540​.

Zdobnov, E. M., and R. Apweiler. 2001. “InterProScan—An Integration 
Platform for the Signature-Recognition Methods in InterPro.” 
Bioinformatics 17: 847–848. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
17.9.​847.

Zhang, H., S. Kjemtrup-Lovelace, C. Li, Y. Luo, L. P. Chen, and B.-H. 
Song. 2017. “Comparative RNA-Seq Analysis Uncovers a Complex 
Regulatory Network for Soybean Cyst Nematode Resistance in Wild 
Soybean (Glycine soja).” Scientific Reports 7: 9699. https://​doi.​org/​10.​
1038/​s4159​8-​017-​09945​-​0.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: Top 15 most enriched bi-
ological process (BP) GO terms at each time point (12, 24, 72, and 192 
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conditions. GO terms were ranked by p-value, and only the top 15 sig-
nificant terms are shown for each time point. Graphs are displayed from 
top to bottom in chronological order. The enrichment score is plotted on 
the x-axis, and significance is indicated by the color gradient represent-
ing–log10 (p-value). Figure S2: Top 15 most enriched biological process 
(BP) GO terms at each time point (12, 24, 72, and 192 HAI) in plants 
inoculated vs. non-inoculated under normal water conditions. GO 
terms were ranked by p-value, and only the top 15 significant terms are 
shown for each time point. Graphs are displayed from top to bottom in 
chronological order. The enrichment score is plotted on the x-axis, and 
significance is indicated by the color gradient representing–log10 (p-
value). Figure S3: Temporal distribution of RGADE expression under 
contrasting water conditions. The total number of RGADEs detected at 
each time point post-inoculation (12, 24, 72, and 192 HAI) is shown for 
plants under water limitation (blue line) and non-limiting water condi-
tions (red line). Figure S4: Heatmap of expression profiles for all dif-
ferentially expressed RGADEs across time points and water conditions. 
Expression values are represented as log2 fold changes (LFC) from pair-
wise comparisons of inoculated vs. non-inoculated plants. The heatmap 
includes eight experimental conditions: four infection time points (12, 
24, 72, and 192 h after inoculation—HAI) under two water regimes 
(water-limited and non-limited). Columns represent each condition, 
and rows correspond to individual RGADEs. Genes are grouped by hi-
erarchical clustering based on expression profiles, with RGA classes an-
notated by color on the left. Table S1: An overview of sequencing data 
quality statistics. Table  S2: Significant differentially expressed genes 
for the Inoculated vs. Not Inoculated comparison for each time point 
and water condition. Table S3: Significant Biological Process enriched 
GO terms for all treatments and their associated statistics. Table  S4: 
Statistical significance of the differences between the expression levels 
of control and water stressed plants for each plant defense related GO 

term and time point. Table  S5: RGADE isoform expression per RGA 
class, water limitation condition and time point. 
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