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Abstract: Niobium-based oxides have garnered increased attention in recent years for their remark-
able enhancement of corrosion resistance, as well as biofunctional properties of various metallic
materials, including 316L SS. However, the mechanical properties of these promising coatings have
not been fully elucidated. This study investigated how much the environmental conditions (air,
artificial saliva, and NaCl solution) impact the wear performance of 316L SS without and with Nb2O5

coatings deposited via the reactive sputtering technique. The results exhibited a notable decrease in
friction coefficient (55% in air, 18% in artificial saliva, 10% in 0.9 wt% NaCl solution), wear area (46%
in air, 36% in AS, 17.5% in 0.9 wt% NaCl solution), and wear rate (44.0% in air, 19.5% in AS, 12.0% in
0.9 wt% NaCl solution). Ultimately, the results obtained in the present study elucidate the synergistic
mechanisms of corrosion and wear in 316L SS containing Nb2O5 coatings, highlighting its significant
potential for applications in the biomedical sector.

Keywords: 316L SS; sputtering; niobium films; wear resistance

1. Introduction

With advancements in various medical fields and the subsequent rise in life expectancy,
the demand for innovative biomaterials has become paramount [1]. For instance, the num-
ber of hip and knee replacement surgeries continues to rise significantly each year [2].
However, the materials currently employed in these procedures have significant drawbacks
for many patients, including implant loosening, infections, and, in the case of Ti-6Al-4V
alloy, the potential release of harmful metal ions over time [3–8]. Recently, 316L stainless
steel (316 L SS) has garnered increased attention as an implantable biomaterial due to its
cost-effectiveness compared to titanium-based alloys, and its relatively high biocompat-
ibility [9–15]. Despite these advantages, 316L SS has certain limitations, particularly in
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terms of corrosion resistance and wear performance when exposed to the highly aggressive
conditions of the human body [5].

The surface functionalisation of 316L SS with niobium-based coatings, employing the
reactive sputtering technique, has emerged as a highly effective alternative for improving
corrosion resistance and enhancing biological response across various alloy types [16–27].
The earlier studies conducted by this research group [26,27] highlighted the significant
influence of Nb2O5 thin films on the wear properties of Ti-6Al-4V alloy. The authors
observed an impressive 80% reduction in the wear volume of the coated material compared
to the uncoated alloy. Moreto and colleagues [27] investigated the effect of Nb2O5 on
the biological response of 316L SS and demonstrated that the coating not only improved
protection in a physiological environment, but also reduced toxicity, leading to a lower
inflammatory response compared to the uncoated specimens. Ferreira et al. [26] evaluated
the electrochemical behaviour of 316L SS coated with Nb2O5 and amorphous carbon
thin films in a 0.6 mol L−1 NaCl solution. Their assessment included the use of open
circuit potential (OCP), potentiodynamic polarisation curves (PPCs), and electrochemical
impedance spectroscopy (EIS). As reported by the authors [26], the findings indicated that
the surface treatments significantly improved the corrosion resistance of 316L SS, since the
coatings acted as effective protective barriers, mitigating uniform and localised corrosion
processes that could compromise the integrity of the substrate.

In this context, Nb2O5-based coatings present a promising strategy for extending the
lifespan of biomedical implants. Given the significant gap in the international literature
regarding studies that focus on wear testing of Nb2O5 coatings, it is essential to advance
research in this area. The present work is an innovative applied research initiative aimed
at exploring the impact of various environmental conditions on the wear performance of
Nb2O5 coatings deposited on 316L SS surfaces by using the reactive sputtering technique.
To accomplish this, a series of wear tests were conducted using a pin-on-disk apparatus
under various environmental conditions, including air, 0.9 wt% NaCl solution, and ar-
tificial saliva (AS). It is important to emphasise that, following the mechanical tests, a
comprehensive morphological analysis was conducted to elucidate the wear mechanisms.

2. Materials and Methods
2.1. Materials

Square plate samples (20 mm × 20 mm × 2 mm) of 316L SS were obtained through
electrical erosion cutting and subsequently underwent a grinding process using SiC abra-
sives in the sequence range 800, 1200, 2400, and 4000 mesh. Polishing was then performed
using 3, 2, and 1 µm diamond pastes and an ultrasonic bath for 10 min each in distilled
water and isopropyl alcohol. The chemical composition (wt%) of the 316L SS was previ-
ously validated by this research group in previously published work [6], and is presented
on Table 1. As reported in the literature, the hardness of the 316L SS is about 95 HRB [28].
To deposit niobium-based coatings on the 316L SS surfaces, a DC-magnetron sputtering
chamber was used (see Figure 1), featuring 2-inch diameter targets of niobium (99.99%) at
a temperature of 25 ± 1 ◦C. The chamber atmosphere comprised an argon (99.99%) and
oxygen (99.99%) mixture at 5.0 and 0.5 mTorr, respectively, with an applied voltage of
440 V and a current of 140 mA. The coating was applied uniformly across the entire surface
of the 316L SS specimens. The mechanism of sputtering deposition comprises several steps:
(i) plasma formation; (ii) ion bombardment; (iii) ejection of target atoms; (iv) transport of
ejected atoms; and (v) film growth on the substrate. During sputtering deposition, various
interaction mechanisms can occur among the atoms, gas species, and the substrate surface.
Such interactions significantly influence the quality and characteristics of the thin film.
By controlling these mechanisms, one can adjust deposition parameters (e.g., substrate
temperature, target power, gas pressure), thereby improving the properties and quality of
the resulting film. The attractive results of the Nb2O5 thin films produced in the present
study were achievable solely through the optimisation of the deposition process.
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Table 1. Chemical composition of the 316L SS obtained by EDX analysis.

Elements Cr Ni Mo Mn Si Fe

wt% 17.4 9.8 2.5 1.6 0.5 68.2
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Figure 1. Schematic representation of the experimental apparatus employed to produce Nb2O5

coatings on the surfaces of 316L SS by using the reactive sputtering technique.

The fitting of the Nb 3D levels revealed a single phase of Nb2O5, which is supported
by the predominant contribution at 530.7 eV attributed to O 1s. The DRX results, both
measured and Rietveld refined, confirmed the presence of 89 ± 1 wt% Nb2O5, 9 ± 1 wt%
NbO2, and 2.1 ± 1 wt% NbO crystalline phases. The oxide compositions were identified
using the crystallographic data files PDF 01-089-6902 for NbO, PDF 01-076-1095 for NbO2,
and PDF 01-080-2493 for Nb2O5 [26,27,29–31]. By employing these comprehensive datasets,
it was possible to identify and confirm the presence of the various niobium oxides, which
play a crucial role in determining the material properties and functionalities in applications
such as coatings. These results are consistent with another study we recently published,
where the X-ray absorption near-edge structure spectroscopy (GE-XANES) technique
indicated the formation of a uniform layer of Nb2O5 thin films on the Ti-6Al-4V alloy
surface [32]. Moreover, when combined with a detector such as pnCCD, this approach
enables the monitoring of oxidation processes, which, in fact, allows for the identification of
the Nb2O5 coatings. By integrating grazing exit X-ray fluorescence spectroscopy (GE-XRF)
geometry with a pnCCD detector, we offer a scanning-free, nondestructive analysis that is
depth-resolved within a sub-micrometer range. The pnCCD detector is distinguished by
its capacity to discriminate between various energy levels, thereby enabling the selective
analysis of specific emission lines and enhancing the accuracy and precision of our data
interpretation [32]. Finally, the Nb2O5 thickness of the deposited coating on the 316L SS
surface was determined using the atomic force microscopy (AFM) technique.
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2.2. Tribological Testing

The wear analysis was conducted using a pin-on-disk tribometer in accordance with
ASTM G99-23 standard [33]. All the wear tests were conducted in triplicate maintaining a
constant load (5 N), a track diameter of 9 mm, for a period of 300 s, a sliding velocity of
0.01 m s−1 and using an alumina sphere (Al2O3) with a diameter (Ø) 4.78 mm. It is
important to emphasise that all wear tests were conducted at a controlled temperature of
25 ± 1 ◦C. The samples were fixed on the disk plate by using an appropriated double-side
tape that avoided position changing and unevenness of the samples during the wear tests.
Both coated and uncoated samples were tested under three environmental conditions:
air, after immersion in 0.9 wt% NaCl solution, and in AS with a neutral pH, free from
odor or color. Following the wear tests, both coated and uncoated samples for the three
environments were verified using a field emission scanning electron microscope (FEG-SEM)
JEOL 7001F, equipped with an Oxford light element detector for energy dispersive X-ray
spectroscopy (EDX). The use of both techniques was essential for characterizing the wear
track profile on the sample surfaces, enabling the investigation of the wear mechanisms
associated with the different conditions. In a collaborative effort, an LEXT model OSL4100
3D confocal laser scanning microscope (CLSM) was employed to examine the topography
of the wear track and to obtain information regarding the worn area. To this end, a
wear profile assessment was conducted at various points along the track, allowing the
determination of the average wear area values. In addition, the wear topography was
carried out by using a VEECO non-contact high-resolution profiler Wyko NT 1100. The
objective lens used was 20× with field of view lens of 0.5×. The measuring technique
used was vertical scanning interferometry. The vertical resolution was <1 Å Ra and the
lateral spatial sampling was 0.08 to 13.1 mm. The scanning areas for all measurements were
kept constant at 470 µm × 620 µm. Four measurements were obtained at each 90◦ around
the worn tracks, and average and standard deviation were calculated. Figure 2 presents
a schematic illustration of the pin-on-disk apparatus employed in the wear tests, along
with its components: the sphere support, load cell, sample holder, arm, applied load, and
the disk.
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3. Results and Discussion

Both 2D and 3D topographic images of the 316L SS can be seen in Figures 3a and 3b,
respectively. In both images, the presence of scratches resulting from the sample grinding
process can be observed. The topography of the 316L SS alloy containing Nb2O5 coating
was evaluated using atomic force microscopy (AFM) over an area of 2.0 × 2.0 µm, as
illustrated in Figure 4a. The three-dimensional (3D) morphological projection of the 316L
SS/Nb2O5 is shown in Figure 4b, while the measurements conducted to determine the
thickness of the coating are presented in Figure 4c. It is evident that the Nb2O5 thin film
was deposited uniformly on the substrate surface, exhibiting the presence of certain grains
typically associated with the initial stage of nucleation in the vapour phase. The coating
produced in the present work using the reactive sputtering technique exhibits a thickness
of approximately 130 nm, and is expected to substantially contribute to enhancing the wear
resistance of the 316L SS, as will be discussed in the following sections.
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Figure 4. (a) 2D and (b) 3D topographic images of 316L SS containing Nb2O5 thin film produced
via reactive sputtering technique, and (c) the profilometer values in two regions indicated by traces
1 and 2 in (a).

Figure 5 presents the results of the pin-on-disk analysis, depicting the coefficients of
friction (COF) over time. When analysed in air, it was found that the 316L SS exhibited
significant COF variation, fluctuating around 0.42. This fluctuation is attributed to the con-
tact of the Al2O3 sphere with the non-uniform surface of the sample [34]. However, when
the 316L SS/Nb2O5 sample is examined, there is a significant reduction in the COF (0.19),
with less variation observed from the start of the measurement up to 150 s. The COF of the
316L SS/Nb2O5 sample is also significantly lower than that of the uncoated sample. After
150 s, the COF values gradually increase until they reach levels comparable to those of the
316L SS sample. This suggests a breakdown of the Nb2O5 film and exposure of the metallic
matrix to wear. Figure 5b presents the results from the analysis after immersion in 0.9%
NaCl solution. Here, a significant decrease in the variability of the COF values for the 316L
SS (0.21) was observed. This reduction can be ascribed to the corrosion products formed on
the sample surface, serving as a lubricant that diminishes the interaction between the Al2O3
sphere and the metallic surface [35]. Ferreira et al. [26] investigated the impact of Nb2O5
and carbon nanostructured coatings on the corrosion resistance of 316L SS when exposed to
0.6 mol L−1 NaCl solution by using open circuit potential (OCP), potentiodynamic po-
larization curves (PPCs), and electrochemical impedance spectroscopy (EIS). The authors
reported that these corrosion products are likely to seal the pits present on the surface.
Otherwise, for the 316L SS/Nb2O5 sample, no statistical reduction of the COF values in
comparison with the air condition is observed.
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Figure 5. Coefficient of friction of 316L SS and 316L SS/Nb2O5 for different conditions: (a) air,
(b) 0.9 wt% NaCl solution after 2 h of immersion, (c) AS after 2 h of immersion, and (d) comparison
average COF for all the tested materials.

When examining the analyses of the samples post-immersion in AS, as shown in
Figure 5c, a significant alteration in the COF values (0.11) and wear mechanism for the
uncoated sample is observed. Moreto et al. [36], while studying the corrosion behaviour of
the CoCrMo alloy in Hank’s solution, observed an increase in the corrosion resistance of the
alloy after 168 h of immersion. The authors attributed such counterintuitive behaviour to
the formation of a D-glucose thin film due to the composition of the tested solution. In this
context, a comparable phenomenon may be taking place with the AS solution, resulting in
a decrease in the friction COF. Regarding the 316L SS/Nb2O5 specimen, this same effect
could elucidate the decline in the COF (0.09), albeit to a lesser extent compared to the
uncoated sample.

The CLSM analysis for the 316L SS and 316L SS/Nb2O5 after the pin-on-disk tests
in the air condition may be seen in Figures 6a and 6d, respectively. Considering the 316L
SS, the wear track exhibits parallel grooves that align with the direction of rotation of the
disc, indicative of a two-body abrasive wear mechanism. This wear phenomenon arises
from friction between two bodies possessing differing hardness values, such as 316L SS
and the Al2O3 sphere used in the mechanical tests. Considering 316L SS/Nb2O5 tested in
air, the greenish hue may be associated with the Nb2O5 coating deposited on the 316L SS
surface by using the reactive sputtering technique, while the greyish region corresponds
to the metallic substrate. These results are consistent with the data obtained for the COF,
as the coated material showed an increase in its COF after 200 s, indicating failure of the
Nb2O5 layer. However, upon comparing the CLSM images of the coated material with
those of the substrate, the difference in dimensions becomes apparent. Consequently, it
can be concluded that the Nb2O5 coating was effective in protecting the metallic substrate
against wear processes, thereby contributing to an increased service life.
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Figure 6b illustrates the wear track of 316L SS following exposure to 0.9% NaCl
solution. This result not only reveals the same abrasive wear pattern observed under
atmospheric conditions, but also highlights the presence of various pits scattered across its
surface. These pits are likely the result of corrosion processes induced by the exposure of
316L SS to the corrosive environment. Pitting is a localised form of corrosion which can
ultimately compromise structural integrity, and when the protective oxide layer on the
metal is disrupted, permits aggressive ions, such as chlorides, to penetrate the underlying
substrate. It is important to emphasise that the development and propagation of these pits
are influenced by several factors, including the electrochemical properties of the metal,
the presence of corrosive agents, and specific environmental conditions. The wear track
exhibited smaller dimensions in this condition compared to that observed in air. This
phenomenon can be attributed to the presence of corrosion products, which acted as
mitigators of the wear process, as well as the development of a thicker oxide layer on the
surface of 316L SS when exposed to an aggressive environmental condition [37,38].

Upon analysing the topography of the 316L/Nb2O5 after immersion in 0.9% NaCl
solution, a drastic reduction in the wear profile is observed (see Figure 6e). Furthermore, it
is evident that the process displays characteristics typical of two-body abrasive wear, likely
arising from the difference in hardness between the Nb2O5 coating and the Al2O3 sphere.
The reduction in wear under these conditions cannot be attributed to the formation of cor-
rosion products, as the Nb2O5 coating has proven to be extremely effective in protecting the
metallic substrate, even after prolonged exposure to highly aggressive solutions [26,29,31].
Figure 6c,f illustrates the wear results for the 316L SS and 316L SS/Nb2O5 samples follow-
ing exposure to AS solution for 2 h. As shown, there was a reduction in the wear volume of
these specimens when compared to the conditions of air and 0.9% NaCl solution. The most
plausible explanation for the observed reduction in wear volume and COF is the formation
of a D-glucose thin film on the surface of the studied samples [36]. Alongside acquiring
the wear track via confocal microscopy, comprehensive data about the worn area of the
specimens under each analysed condition were obtained. Four cross-section regions of the
wear track were verified, yielding 12 measurements for the present study. Following this,
the mean of all values generated by the equipment’s software was calculated in conjunction
with the diameters of each wear track, as shown in Figure 7.
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Among all of the conditions studied, the tests conducted in air demonstrated the
highest wear volumes. The Nb2O5 coating, in turn, resulted in a significant reduction in
the amount of material removed, approximately 50% compared to the uncoated material.
Furthermore, a notable decrease in wear volume values was observed for both 316L SS
and 316L SS/Nb2O5 in the tests conducted following immersion in 0.9% NaCl and AS,
respectively. This is likely associated with the corrosion products formed on the surface of
the samples, which can act as mitigators in the wear process [38]. Moreover, another factor
that may impact the wear of 316L SS is the high concentration of chromium (Cr). This
element contributes to a thicker passive film on the material’s surface, promoting a more
rapid repassivation when immersed in an aggressive medium [37]. This, in turn, provides
additional protection to the substrate against corrosion and wear processes with prolonged
immersion time, a phenomenon documented by authors such as Ferreira et al. [26] and
Labiapari et al. [37]. However, in the present study, only the performance of 316L SS after
immersion was evaluated, rather than under tribocorrosion conditions, meaning that the
effects of film repassivation on the substrate did not influence its wear performance.

Additionally, even considering a scenario in which the wear volume is significantly
lower, the coated material exhibited lower values compared to the base material, indicating
that the Nb2O5 coating produced by using the reactive sputtering technique reduced
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the amount of material removed and, consequently, extended the wear life of 316L SS.
Specifically for the 0.9% NaCl solution, the wear area found for 316L SS/Nb2O5 is 16.3%
lower than that of the uncoated material. Concerning the 316L SS/Nb2O5 exposed to the AS
solution, a reduction in the wear area of approximately 25% was observed. It is important
to note that, following immersion in both media, only the Nb2O5 coating underwent wear,
without any exposure of the metallic substrate, whereas the base material experienced wear
directly within its metallic matrix. For the tests conducted in air, both the base material and
the coated one displayed the highest COF values, indicating a greater interaction between
the surfaces of these samples and the sphere used for the pin-on-disk tests, resulting in a
larger volume of removed material. However, the COF for the 316L SS and 316L/Nb2O5
samples after exposure to 0.9% NaCl and AS solutions were lower in comparison to those
in air. This, in turn, corresponds to reduced wear volumes due to the lesser interaction
between the pin-on-disk sphere and the surfaces of the samples. Finally, this finding can be
summarized in Figure 7c, which highlights the wear rate for all of the tested conditions, in
which the Nb2O5 coatings were able to reduce the rate of material removal when compared
to the uncoated 316L SS.

The SEM/EDX analysis of 316L SS following the pin-on-disk tests conducted under
air conditions is presented in Figure 8a. The results indicated a strong interaction between
the metallic substrate and the sphere during the tests. This is evident from the presence of
cavities and irregularities at the centre of the wear track, as well as the grooving aligned
with the direction of the pin’s motion, which characterizes the wear type as abrasive. Similar
wear track characteristics were observed in the study conducted by Alvi and colleagues [39],
who investigated the influence of laser treatments on the wear behaviour of 316L SS.
The authors identified abrasive markings on the wear track under all tested conditions,
resembling those exhibited in the present work. They noted the presence of grooves and fine
particles along the wear track; in line with the results obtained in the present study, Ralls
et al. [40], Özer et al. [41], and Li et al. [20] reported analogous characteristics concerning
the wear performance of 316L SS. EDX analysis showed the presence of iron (Fe), chromium
(Cr), nickel (Ni), manganese (Mn), and oxygen (O) elements, which is expected given that
the material is 316L SS. Figure 8b presents the SEM/EDX results corresponding to the 316L
SS/Nb2O5 specimen tested in air. As previously discussed, the 316L SS/Nb2O5 sample
exhibited a highly irregular profile in the wear track (see Figure 5d), which pertains to
the external surface of the specimen, where the wear process is still in the establishment
phase. This morphological difference is evident when comparing materials with and
without Nb2O5 coating. The EDX maps confirmed the presence of Fe, Cr, Ni, O, and Nb
elements. Figure 8c displays the SEM image regarding the 316L SS specimen exposed to
0.9% NaCl solution. A more clearly defined wear pattern can be observed compared to
the 316L SS tested in air. In other words, there is not only a reduced number of regions
with cavities, but also potential debris resulting from the wear process, and some corrosion
products throughout the central part of the wear track. This hypothesis is supported by the
EDX maps.

In relation to the 316L SS/Nb2O5 sample exposed to 0.9% NaCl solution (Figure 8d),
the presence of delamination regions in the wear track was observed. This finding was
corroborated by the increased concentration of Fe and Ni elements in isolated points, as
demonstrated by the EDX maps. Regarding the 316L SS specimens subjected to the AS
solution (see Figure 8e), parallel lines are observed on the wear track, indicating a more
pronounced degradation process. This area exhibits various corrosion products, which is
supported by the high concentration of oxygen distributed across its surface, as shown in
the EDX map. Furthermore, several cavities are present in this region, although they are
found in significantly lower quantities compared to the 316L SS specimens exposed to air.
Finally, considering the 316L SS/Nb2O5 exposed to AS solution (Figure 8f), it is evident
that the coating produced by the reactive sputtering technique remained intact and did not
exhibit delamination, in contrast to the observations made following immersion in the 0.9%
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NaCl solution. Figure 9 presents the profilometry analysis of a segment from both 316L SS
and 316L SS/Nb2O5, showing the wear track topography.
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The results reveal a non-uniform wear track profile characterised by multiple grooves
in both samples, which is consistent with the findings from the CLSM and SEM/EDX
analyses. As previously discussed, these grooves are attributable to the high level of
interaction between the uncoated sample surface and the Al2O3 sphere. In contrast, the
coated 316L SS exhibits a more uniform profile with a shallower wear track, likely attributed
to the higher hardness of the coating, which reduces interaction with the Al2O3 sphere (see
Figure 10). Furthermore, changes in environmental conditions affect the wear track depth
in both uncoated and coated samples. This variation corresponds to the wear mechanisms
previously discussed for the NaCl solution and AS. After immersion in 0.9 wt% NaCl
solution, the corrosion products on 316L SS and surface deposition of NaCl on 316L
SS/Nb2O5 reduce the coefficient of friction, lowering the interaction between the sphere
and the sample surfaces during pin-on-disk tests. This reduction is accompanied by less
variation in wear track depth in both samples. For samples immersed in AS, the D-glucose
thin film reduced the interaction between the sphere and the material surfaces. However,
despite a slightly lower wear track depth, the 316L SS sample exhibited significantly greater
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variation in values compared to 316L SS/Nb2O5, indicating that the D-glucose thin film
did not protect the 316L SS surface against wear as effectively as Nb2O5.
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Figure 11 displays a schematic representation of the wear mechanism for 316L SS and
316L SS/Nb2O5 under the different tested environmental conditions. Here, it is possible to
verify that in air, only the interaction of the Al2O3 sphere and the sample surfaces affected
the removal of material. Thus, it can be observed that a harder surface exhibited a lower
volume of material removal. When considering the samples after immersion in 0.9 wt%
NaCl solution, several corrosion products and deposited particles were present, which
acted as lubricants, thereby reducing the interaction between the sphere and the metallic
substrate. Finally, the samples immersed in AS displayed the distinctive formation of a
D-glucose thin film that partially protected the surface against wear.
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Figure 11. A schematic representation illustrating the influence of environmental conditions on the
wear performance of 316L SS and 316L SS/Nb2O5 in (a,d) air, (b,e) after immersion in 0.9 wt% NaCl
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4. Conclusions

The pin-on-disk analysis revealed that environmental conditions prominently influ-
enced the wear behaviour of both the 316L SS and the 316L SS/Nb2O5 specimens. Notably,
among all of the samples tested, those exposed to air displayed the highest wear volume,
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as these conditions were devoid of interfering compounds, such as corrosion products or
thin saccharide films, which can mitigate wear. In contrast, the Nb2O5 coating emerged
as a highly effective solution for enhancing the wear properties of 316L SS. The presence
of this coating not only led to a significant reduction in the coefficient of friction, but also
decreased the wear area substantially, even after extended exposure to adverse conditions.
This enhancement in wear performance underscores the potential of Nb2O5 coatings in
extending the lifespan of biomedical implants and other applications where wear resistance
is critical.
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