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Abstract: The Jarque–Bera test is commonly used in statistics and econometrics to test the hypothesis
that sample elements adhere to a normal distribution with an unknown mean and variance. This
paper proposes several modifications to this test, allowing for testing hypotheses that the considered
sample comes from: a normal distribution with a known mean (variance unknown); a normal
distribution with a known variance (mean unknown); a normal distribution with a known mean
and variance. For given significance levels, α = 0.05 and α = 0.01, we compare the power of
our normality test with the most well-known and popular tests using the Monte Carlo method:
Kolmogorov–Smirnov (KS), Anderson–Darling (AD), Cramér–von Mises (CVM), Lilliefors (LF), and
Shapiro–Wilk (SW) tests. Under the specific distributions, 1000 datasets were generated with the
sample sizes n = 25, 50, 75, 100, 150, 200, 250, 500, and 1000. The simulation study showed that the
suggested tests often have the best power properties. Our study also has a methodological nature,
providing detailed proofs accessible to undergraduate students in statistics and probability, unlike
the works of Jarque and Bera.

Keywords: normality test; Jarque–Bera test; skewness; kurtosis; Monte Carlo simulation

MSC: 60F05; 62F03; 62F05

1. Introduction

C. Jarque and A.K. Bera proposed the following goodness-of-fit test (see [1–3]) to de-
termine whether the empirical skewness and kurtosis match those of a normal distribution.
The hypothesis to be tested is as follows:

H0. If the population the sample presents is normally distributed against the alternative hypothesis.

H1. If the population the sample presents follows a distribution from the Pearson family that is not
normally distributed.
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More precisely, the null hypothesis is formulated as follows: the sample comes from
a population with a finite eighth moment, the odd central moments (up to the seventh)
are equal to zero, and the kurtosis is equal to three, K = 3. Note that only the normal
distribution has these properties within any reasonable family of distributions. For sure, it
is true for the Pearson family. In practice, the Pearson family is not typically mentioned in
the hypothesis.

The test statistic is a combination of squares of normalized skewness, S, and kurtosis, K:

JB = n
(

S2

6
+

(K − 3)2

24

)
.

If the null hypothesis, H0, is true, then as n → ∞, the distribution of the random
variable JB converges to χ2(2). Therefore, for a sufficiently large sample size, the following
testing rule can be applied: given a significance level α, if JB < χ2

1−α(2) (where χ2
1−α(2)

is the 1 − α quantile of the χ2(2) distribution), then the null hypothesis H0 is accepted;
otherwise, it is rejected.

Note that the Pearson family of distributions is quite rich, including exponential,
gamma, beta, Student’s t, and normal distributions. Suppose it is known that a random
variable has a distribution from the Pearson family and has the first four moments. In
that case, its specific form is uniquely determined by the skewness, S, and kurtosis, K,
see [4]. For an illustration, we present this classification in Figure 1. Due to this property,
the Jarque–Bera test is a goodness-of-fit test, i.e., if the alternative hypothesis H1 holds for
the sample elements, the statistic JB converges in probability to ∞ as n → ∞.

S

K

gamma distribution

inverse 𝜒2distribution

do not exist

not Pearson family

Student’s 
t-distribution

normal 
distribution

Figure 1. Some distributions from the Pearson family in the S−K plot. Figure created by A. Logachov
and A. Yambartsev.

This article emerged as a result of addressing the following question: How does the
JB statistic change when the researcher knows the following?

1. The mean of the population distribution (the variance is unknown);
2. The variance of the population distribution (the mean is unknown);
3. The mean and variance of the population distribution.
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In the last case, the known mean and variance lead us to the known coefficient of
variation. For a discussion on inference when the coefficient of variation is known, we refer
the reader to [5,6], and the references therein.

In this paper, we adapt the JB statistic for cases where one or both normal distribution
parameters are known. As simulations show, the proposed tests also demonstrate good
power for many samples not belonging to the Pearson family of distributions.

To conclude this section, we note the following: In practical research, knowing the
parameters of the normal distribution is crucial, as it allows us to estimate the probabilities
of desired events. Testing the hypothesis of normality with specific parameters is significant
because any deviation—whether in the form of outliers (deviations from normality) or
change points in stochastic processes (a sudden change in the parameter)—can indicate the
presence of unusual or catastrophic events. For example, small but significant parameter
changes can signal a disturbance in the production process. Strong and rare deviations are
of particular interest when studying stochastic processes with catastrophes. We believe
a deeper connection exists between these seemingly distinct fields, which still awaits
thorough investigation.

The rest of this paper is organized as follows. The following section, Section 2, presents
the main results (the limit theorem and criteria for testing the corresponding statistical
hypotheses). In Section 3, we present a Monte Carlo simulation to compare the suggested
tests with some existing procedures. We prove Theorem 1 in Section 4. Finally, the last
section contains tables of test power resulting from the Monte Carlo numerical simulations.

2. Definitions and Results

Let X1, X2, . . . , Xn, n ∈ N be i.i.d. random variables on the same probability space
(Ω,F, P). We use E and D to denote expectation and variance with respect to the probability

measure P. The convergence in distribution we denote as d−→
n→∞

.
Recall the definition of empirical skewness, S, and kurtosis, K:

S =

1
n

n
∑

i=1
(Xi − X)3

σ̂3 , K =

1
n

n
∑

i=1
(Xi − X)4

σ̂4 ,

where, as usual, we have the following:

σ̂ =

(
1
n

n

∑
i=1

(Xi − X)2

) 1
2

, X =
1
n

n

∑
i=1

Xi.

The main result is as follows:

Theorem 1. Let X, X1, . . . , Xn, n ∈ N be i.i.d. random variables. Then, we have the following:
(1) If X has a non-degenerate normal distribution and EX = a, then

JBa = n
(

S2
a

15
+

(Ka − 3)2

24

)
d−→

n→∞
Y ∼ χ2(2),

where

Sa =

1
n

n
∑

i=1
(Xi − a)3

σ̂3
a

, Ka =

1
n

n
∑

i=1
(Xi − a)4

σ̂4
a

, σ̂a =

(
1
n

n

∑
i=1

(Xi − a)2

) 1
2

;

(2) If X has a normal distribution and DX = σ2 > 0, then

JBσ2 = n

(
S2

σ2

6
+

(Kσ2 − 3)2

96

)
d−→

n→∞
Y ∼ χ2(2),
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where

Sσ2 =

1
n

n
∑

i=1
(Xi − X)3

σ3 , Kσ2 =

1
n

n
∑

i=1
(Xi − X)4

σ4 ;

(3) If X has a normal distribution with EX = a and DX = σ2 > 0, then

JBa,σ2 = n

(
S2

a,σ2

15
+

(Ka,σ2 − 3)2

96

)
d−→

n→∞
Y ∼ χ2(2),

where

Sa,σ2 =

1
n

n
∑

i=1
(Xi − a)3

σ3 , Ka,σ2 =

1
n

n
∑

i=1
(Xi − a)4

σ4 .

Theorem 1 yields the following asymptotic tests. Let α be the significance level. Recall
that χ2

1−α(2) denotes the 1 − α quantile of the χ2(2) distribution.

1. If we test the null hypothesis H0 : Xi ∼ N(a, σ2), 1 ≤ i ≤ n, (where a is known and
σ2 is unknown) against the alternative hypothesis H1 : Xi follows a distribution from
the Pearson family that is not normal but has a mean equal to a. Then, from statement
(1) of Theorem 1, for a sufficiently large sample size, the following rule can be used: if
JBa < χ2

1−α(2), then the null hypothesis H0 is accepted; otherwise, it is rejected.
2. When we test the null hypothesis H0 : Xi ∼ N(a, σ2), 1 ≤ i ≤ n, (where a is unknown

and σ2 is known) against the alternative H1 : Xi follows a distribution from the
Pearson family that is not normal with variance equal to σ2. Then, from statement (2)
of Theorem 1, for a sufficiently large sample size, the following rule can be used: if
JBσ2 < χ2

1−α(2), then the null hypothesis H0 is accepted; otherwise, it is rejected.
3. When the null hypothesis H0 : Xi ∼ N(a, σ2), 1 ≤ i ≤ n, (a and σ2 are known) is

tested against the alternative H1 : Xi follows a distribution from the Pearson family
that is not N(a, σ2). Then, from statement (3) of Theorem 1, for a sufficiently large
sample size, the following testing rule can be applied: if JBa,σ2 < χ2

1−α(2), then the
null hypothesis H0 is accepted; otherwise, it is rejected.

It should also be noted that the above tests are goodness-of-fit tests, i.e., if the alter-
native hypothesis H1 holds for the sample elements, then the values of the corresponding
statistics JBa, JBσ2 , and JBa,σ2 converge in probability to ∞ as n → ∞.

3. Simulation Study

In this section, we compare the power of various tests for normality using Monte
Carlo simulations of alternative hypotheses. The simulations were performed in R soft-
ware, version 4.2.3. We used the following sample sizes (small, moderate, and large):
n = 25, 50, 75, 100, 150, 200, 250, 500, and 1000. The null hypothesis is N(0, 1) in almost all
cases; we specify separately where this is not the case. As alternative hypotheses, we
considered normal, log-normal, mixed normal, Student, gamma, and uniform distributions.
Note that the log-normal and mixed normal distributions do not belong to the Pearson
family of distributions and uniform distribution is the limit of the Pearson type I distribu-
tion. All codes are written in R and available at https://github.com/KhrushchevSergey/
Modified-Jarque-Bera-test, accessed on 1 June 2024.

Here, we consider the following tests for normality:

Kolmogorov–Smirnov (KS) test. The test statistic measures the maximum deviation
between the theoretical cumulative distribution function and the empirical cumulative
distribution function. When the parameters of the normal distribution are unknown,
they are estimated from the sample and used in the test.
Anderson–Darling (AD) test. The Anderson–Darling test assesses whether a sample
comes from a specific distribution, often the normal distribution. It gives more weight

https://github.com/KhrushchevSergey/Modified-Jarque-Bera-test
https://github.com/KhrushchevSergey/Modified-Jarque-Bera-test
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to the tails of the distribution compared to other tests, making it sensitive to deviations
from normality in those areas.
Cramér–von Mises (CVM) test. The Cramér–von Mises test, like the KS test, is
based on the distance between the empirical and specified theoretical distributions. It
measures the cumulative squared differences between the empirical and theoretical
cumulative distribution functions, providing a robust assessment of overall fit.
Lilliefors (LF) Kolmogorov–Smirnov test. The Lilliefors test is based on the Kolmogorov–
Smirnov test. It tests the null hypothesis that data come from a normally distributed
population without specifying the parameters.
Shapiro–Wilk (SW) test. The Shapiro–Wilk test is one of the most popular tests with
good power. It is based on a correlation between given observations and associated
normal scores.

We estimate the power in the following way. For the given n, we generate 1000 samples
with the sample size n according to the alternative hypothesis. The empirical power is the
ratio of the number of rejections of the null hypothesis to 1000. We categorize our findings
based on the following cases of the alternative hypothesis distribution.

3.1. Normal versus Normal

Different variances and the same means. We start by comparing the test powers when
the alternative distribution is the normal distribution with a zero mean and a variance
different from one, specifically, N(0, 2). See Table A1. Since we considered two normal
distributions with different variances but the same mean, we added the column with
the power of the Fisher test. The Fisher test checks the hypothesis if the variance
is equal to one. We expect that, in this situation, the modified Jarque–Bera statistic
would exhibit the highest power. The KS and CVM statistics have demonstrated
similarly lower power, while the power of the AD statistic falls between that of the
KS, CVM, and modified Jarque–Bera statistics.
Different means and the same variances. Here, we compare the test powers when the
alternative distribution is a normal distribution with a mean of one and a variance of
one, N(1, 1). See Table A2. Since two normal distributions with different means but the
same variance are considered, we added two additional columns with the test powers
of the Student and Welch tests, respectively. All statistics perform similarly well,
except for the modified Jarque–Bera with a known mean for the small sample sizes.

3.2. Normal versus Student’s t with Degrees of Freedom 1 (Cauchy), 5, and 9

Cauchy. Here, consider the case where the alternative distribution is the Cauchy
distribution. See Table A3. Since the alternative distribution is not normal, we did
not conduct additional tests such as the Student or Fisher tests. In this case, the
Ja,σ2 test provided the best power, but all tests performed similarly well, except for
the Kolmogorov–Smirnov and the Cramér–von Mises tests. Since the normal distri-
bution differs significantly from the Cauchy distribution, almost all tests provided
good power.
Student’s t-distribution with 5 and 9 degrees of freedom. Here, we consider the
comparison between the test powers when the alternative distribution is the tν distri-
bution with ν = 5. In contrast to the Cauchy distribution, the Student’s t distribution
is more similar to the normal distribution, so the expected values of the powers are
smaller than in the Cauchy case. Moreover, the Ja,σ2 statistic provided significantly
better power. See Table A4. Since the Student’s t distribution with ν = 9 is even more
similar to the standard normal distribution, the power will be smaller with similar
relationships between different tests. Therefore, we omitted the entire table of powers.
To give an idea about the magnitude of the changes in power, for the Ja,σ2 statistic
with n = 25 and α = 0.05, the power changed from 0.56 to 0.34. Note that the KS test
exhibited the worst power. Additionally, observe that the performance of Ja is worse
than those of Ja,σ2 and Jσ2 . This, of course, is expected because the null and alternative
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distributions have the same zero mean. Note that the ADc, CVMc, and SW statistics
exhibited power lower than but comparable to those of all the Jarque–Bera statistics.
For this case, for Student’s t with 5 degrees of freedom, we plotted the test power for
both α values to provide a more detailed breakdown of these power comparisons. See
Figures A1 and A2 in Appendix A.

3.3. Normal versus Non-Symmetric and Non-Pearson Type Distributions

For non-symmetric alternative distributions, (i) the gamma (2,1), γ(2, 1), (ii) log-
normal (0,1), and LN(0, 1) were considered; for non-Pearson type alternative distribu-
tions, we considered (iii) the uniform on interval [−3, 3], U[−3, 3], and (iv) the mixture
of standard normal N(0, 1) and normal N(0, 9) distributions with the same mixture
weights, denoted by Mix. Since all alternative distributions are “significantly different”
from the standard normal distribution, all tables “are similar” to that of the Cauchy
distribution. See Tables A5–A8. It is expected that the JBa statistic will lose power un-
der symmetric alternative distributions. Moreover, the AD statistic is likely to perform
comparably well to the Jarque–Bera statistics JBa,σ2 and JBσ2 . See Tables A5 and A8.
In the non-symmetric case (Tables A6 and A7), the KS, AD, CVM, and SW statistics
exhibit similar high power to the modified Jarque–Bera statistic, JBa,σ2 .

3.4. Normal versus Gamma Distribution with the Same Mean Value

Finally, we decided to perform the comparison between test powers when the null
hypothesis was not a standard normal distribution. Here, we test the normal distri-
bution N(2, 2) versus gamma distribution γ(2, 1), which has a mean value of 2. The
results are presented in Table A9. In this case, as before, the modified JBa,σ2 , JBσ2 , and
AD statistics exhibit the highest power, while the KS, CVM, and SW statistics show a
loss in power.

3.5. Robustness in the Presence of Outliers

To evaluate the performance of the modified Jarque–Bera tests in the presence of
outliers, we generated data from a mixture of a standard normal distribution (weight
0.9) and a sum of independent random variables—one with a standard normal distri-
bution and the other with a Poisson distribution with a mean of 5 (weight 0.1). This
type of mixture is rarely used in simulation studies, but such discrete-value outliers
can occur due to failures in production machines, for example; see Table A10. In this
case, the KS and CVM tests showed the lowest power performance. The modified
Jarque–Bera tests showed the best power, while the other tests (JB, LF, AD, ADc,
CVMc, and SW) had lower but similar power. We also refer the readers to [7] for
robust modifications to the Jarque–Bera statistic.

3.6. Application to Real Data

We tested the hypothesis that the mass of penguins, based on their species and
gender, follows a normal distribution. We applied a modified Jarque–Bera test, using
the sample mean and variance as known values. The observations were taken from a
popular dataset featuring penguin characteristics from the study [8], where sexual size
dimorphism (SSD), i.e., ecological sexual dimorphism, was studied in penguin populations.
The normal variability of penguin mass is well-accepted, thus, accepting the null hypothesis
is anticipated for this dataset. The corresponding p-values are provided in the table below.

Species Male Female

Adelie 0.7787 0.7361
Chinstrap 0.9194 0.5876
Gentoo 0.9598 0.7687

In the next section, we provide the detailed proof of our main results.
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4. Proof of Theorem 1

Let us prove proposition (1) of the theorem. Consider the sequence of random vari-
ables, as follows:

−→
Z n := (Z1,n, Z2,n) :=

( 1√
n

n
∑

i=1
(Xi − a)3

σ̂3
a

,

1√
n

n
∑

i=1
((Xi − a)4 − 3σ̂4

a )

σ̂4
a

)
.

From the convergence, i.e.,

lim
n→∞

σ̂a = σ > 0 a.s.

and Slutsky’s theorem [9], it follows that the limiting distribution of the sequence
−→
Z n

coincides with the limiting distribution of the sequence

−→
Z′

n := (Z′
1,n, Z′

2,n) :=

( 1√
n

n
∑

i=1
(Xi − a)3

σ3 ,

1√
n

n
∑

i=1
((Xi − a)4 − 3σ̂4

a )

σ4

)
.

It is easy to see the following:

1√
n

n

∑
i=1

((Xi − a)4 − 3σ̂4
a ) =

1√
n

n

∑
i=1

(Xi − a)4 − 3

(
1
n

n

∑
j=1

(Xj − a)2

)2

± 3σ4


=

1√
n

n

∑
i=1

(
(Xi − a)4 − 3σ4 + 3

(
σ2 − 1

n

n

∑
j=1

(Xj − a)2

)(
σ2 +

1
n

n

∑
j=1

(Xj − a)2

))

=
1√
n

n

∑
i=1

(
(Xi − a)4 − 3σ4 + 3

(
σ2 − 1

n

n

∑
j=1

(Xj − a)2

)(
2σ2 +

(
1
n

n

∑
j=1

(Xj − a)2 − σ2

)))

=
1√
n

n

∑
i=1

(
(Xi − a)4 − 3σ4 + 6σ2

(
σ2 − 1

n

n

∑
j=1

(Xj − a)2

))
− 3√

n

n

∑
i=1

(
σ2 − 1

n

n

∑
j=1

(Xj − a)2

)2

=
1√
n

n

∑
i=1

(
(Xi − a)4 + 3σ4 − 6σ2(Xi − a)2

)
− 3

√
n

(
1
n

n

∑
j=1

(σ2 − (Xj − a)2)

)2

=
1√
n

n

∑
i=1

(
(Xi − a)4 + 3σ4 − 6σ2(Xi − a)2

)
− 3

(
1

n
3
4

n

∑
j=1

(σ2 − (Xj − a)2)

)2

.

The law of the iterative logarithm yields the following:

lim
n→∞

1

n
3
4

n

∑
j=1

(σ2 − (Xj − a)2) = 0 a.s.

Therefore, applying Slutsky’s theorem, we can conclude that the limiting distribution

of the sequence
−→
Z′

n coincides with the limiting distribution of the sequence, as follows:

−→
Z′′

n := (Z′
1,n, Z′′

2,n) :=

( 1√
n

n
∑

i=1
(Xi − a)3

σ3 ,

1√
n

n
∑

i=1
((Xi − a)4 − 6σ2(Xi − a)2 + 3σ4)

σ4

)

=
1√
n

n

∑
i=1

(
(Xi − a)3

σ3 ,
(Xi − a)4 − 6σ2(Xi − a)2 + 3σ4

σ4

)
.
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By the central limit theorem, the sequence
−→
Z′′

n converges to the random vector
(W1, W2), whose coordinates have a joint normal distribution. Therefore, it suffices to
show that these coordinates are uncorrelated and have the required variances.

It is easy to see that D(Xi − a)3 = 15σ6 (thus, DW1 = 15); D((Xi − a)4 − 6σ2(Xi −
a)2 + 3σ4) = 24σ8 (thus DW2 = 24). From the fact that the odd moments of a centered
normally distributed random variable are equal to zero, it follows that

E
(
(Xi − a)3

σ3 · (Xi − a)4 − 6σ2(Xi − a)2 + 3σ4

σ4

)
= 0

(therefore, EW1W2 = 0).
Therefore, we have shown that (W1, W2) has a joint normal distribution with a covari-

ance matrix, as follows:

Σ =

(
15 0
0 24

)
.

Thus,
W2

1
15

+
W2

2
24

∼ χ2(2).

Let us prove statement (2). Consider the following sequence of random vectors:

−→
Z n := (Z1,n, Z2,n) :=

( 1√
n

n
∑

i=1
(Xi − X)3

σ3 ,

1√
n

n
∑

i=1
((Xi − X)4 − 3σ4)

σ4

)
.

It is easy to see the following:

1√
n

n

∑
i=1

(Xi − X)3 =
1√
n

n

∑
i=1

((Xi − a)− (X − a))3 =
1√
n

n

∑
i=1

(
(Xi − a)− 1

n

n

∑
j=1

(Xj − a)

)3

=
1√
n

n

∑
i=1

(Xi − a)3 − 3√
n

n

∑
i=1

(Xi − a)2 · 1
n

n

∑
j=1

(Xj − a)

+
3√
n

n

∑
i=1

(Xi − a) ·
(

1
n

n

∑
j=1

(Xj − a)

)2

−
√

n

(
1
n

n

∑
j=1

(Xj − a)

)3

=
1√
n

n

∑
i=1

(Xi − a)3 −
(

1
n

n

∑
i=1

(Xi − a)2

)
· 3√

n

n

∑
j=1

(Xj − a)

+
3
n

n

∑
i=1

(Xi − a) ·
(

1

n
3
4

n

∑
j=1

(Xj − a)

)2

−
(

1

n
5
6

n

∑
j=1

(Xj − a)

)3

Finally, introducing g1,n, g1,n and g3,n we have the following:

1√
n

n

∑
i=1

(Xi − X)3 =:
1√
n

n

∑
i=1

(Xi − a)3 − g1,n ·
3√
n

n

∑
j=1

(Xj − a) + g2,n − g3,n. (1)

The law of large numbers and the law of the iterated logarithm yield the following:

lim
n→∞

g1,n = σ2 a.s. and lim
n→∞

g3,n = 0 a.s. (2)

The sequences 3
n

n
∑

i=1
(Xi − a) and 1

n
3
4

n
∑

j=1
(Xj − a) converge almost surely to zero as

n → ∞, due to the law of large numbers and the law of the iterated logarithm, respectively;
therefore, we have the following:
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lim
n→∞

g2,n = 0 a.s. (3)

Let us consider the numerator of the second coordinate of the random vector as follows:

1√
n

n

∑
i=1

(Xi − X)4 =
1√
n

n

∑
i=1

((Xi − a)− (X − a))4 =
1√
n

n

∑
i=1

(
(Xi − a)− 1

n

n

∑
j=1

(Xj − a)

)4

=
1√
n

n

∑
i=1

(Xi − a)4 − 4√
n

n

∑
i=1

(Xi − a)3 · 1
n

n

∑
j=1

(Xj − a) +
6√
n

n

∑
i=1

(Xi − a)2 ·
(

1
n

n

∑
j=1

(Xj − a)

)2

− 4√
n

n

∑
i=1

(Xi − a) ·
(

1
n

n

∑
j=1

(Xj − a)

)3

+
√

n

(
1
n

n

∑
j=1

(Xj − a)

)4

=
1√
n

n

∑
i=1

(Xi − a)4 − 4

n
3
4

n

∑
i=1

(Xi − a)3 · 1

n
3
4

n

∑
j=1

(Xj − a) +
6
n

n

∑
i=1

(Xi − a)2 ·
(

1

n
3
4

n

∑
j=1

(Xj − a)

)2

− 4
n

n

∑
i=1

(Xi − a) ·
(

1

n
5
6

n

∑
j=1

(Xj − a)

)3

+

(
1

n
7
8

n

∑
j=1

(Xj − a)

)4

.

Denoting g4,n, the four last terms, we have the following:

1√
n

n

∑
i=1

(Xi − X)4 =:
1√
n

n

∑
i=1

(Xi − a)4 + g4,n. (4)

From the law of large numbers and the law of the iterated logarithm, we have
the following:

lim
n→∞

g4,n = 0 a.s. (5)

From (1)–(5) and Slutsky’s theorem, it follows that the limiting distribution of the
sequence

−→
Z n coincides with the limiting distribution of the sequence, as follows:

−→
Z′

n := (Z′
1,n, Z′

2,n) :=

( 1√
n

n
∑

i=1
((Xi − a)3 − 3σ2(Xi − a))

σ3 ,

1√
n

n
∑

i=1
((Xi − a)4 − 3σ4)

σ4

)

=
1√
n

n

∑
i=1

(
(Xi − a)3 − 3σ2(Xi − a)

σ3 ,
(Xi − a)4 − 3σ4

σ4

)
.

By the central limit theorem, the sequence
−→
Z′

n converges to the random vector
(W1, W2), whose coordinates have a joint normal distribution with a covariance matrix,
as follows:

Σ =

(
DW1 EW1W2

EW1W2 DW2

)
.

It is easy to see that D((Xi − a)3 − 3σ2(Xi − a)) = 6σ6 (thus, DW1 = 6); D((Xi −
a)4 − 3σ4) = 96σ8 (thus, DW2 = 96). From the fact that the odd moments of a centered
normally distributed random variable are equal to zero, we derive the following:

E
(
(Xi − a)3 − 3σ2(Xi − a)

σ3 · (Xi − a)4 − 3σ4

σ4

)
= 0

(and, thus, EW1W2 = 0). Therefore,

W2
1

6
+

W2
2

96
∼ χ2(2).
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Proof. The proof of statement (3) is similar (just simpler since a and σ2 are known), so we
omit it.

5. Conclusions

In this paper, new modifications to the Jarque–Bera statistics are proposed. Detailed
proofs are provided, which are simple and accessible even to undergraduate students in
probability and statistics.

A Monte Carlo study showed that the Jarque–Bera statistic and its new modifications
perform well on the class of Pearson distributions. When the alternative distribution does
not belong to the Pearson family, Jarque–Bera and its modifications perform well alongside
other statistics such as Anderson–Darling, Cramér–von Mises, and Shapiro–Wilk. Like
any specific test, the Jarque–Bera test and its modifications have natural limitations in
their application. Despite the test performing well on classical distributions, a significant
drawback is that it cannot distinguish between symmetric distributions with a kurtosis
of 3.

Our goal was not to explore and compare all existing tests; therefore, we limited our
comparison to the most widely used tests for normality. Comparative studies on a broader
class of normality tests can be found in [10,11]. Note that the findings of [10,11] are aligned
with our simulation results. For more comparative studies, we also refer to [12].

In this paper, we are limited to the univariate case. Multivariate normality tests
represent a curious and interesting area of research. For discussions on existing tests and
the possibility of multivariate extensions of some known statistics, including Jarque–Bera
we refer the readers to [12,13], and the references therein.
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Appendix A. Tables and Figures

In this section, we report the power of various tests for normality using Monte Carlo
simulations under alternative hypotheses. The simulations were performed in R. The
sample sizes were small, moderate, and large, with n = 25, 50, 75, 100, 150, 200, 250,
500, and 1000. Although simulations were conducted for all stated sample sizes, the table
includes only rows up to the first row where all criteria have a power of 1, to maintain
shorter tables.

The null hypothesis is N(0, 1) in almost all cases; exceptions are specified separately.
As alternative hypotheses, we considered normal, log-normal, mixed normal, Student’s t,
gamma, and uniform distributions.

Recall that the following procedure to estimate the power was used: 1000 samples with
a given sample size were generated from the alternative hypothesis with specific parame-
ters, and the ratio of the number of rejections of the null hypothesis to 1000 was calculated.

We used the notations ADc and CVMc for Anderson–Darling and Cramér–von Mises
tests respectively, where the parameters were replaced with their estimates (i.e., modifica-
tions for testing composite hypotheses).
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Table A1. The estimated power is reported when the null hypothesis H0 : X ∼ N(0, 1) is tested
against samples simulated from the normal distribution N(0, 2). The last column contains the test
power of the Fisher test for the null hypothesis where the variance is equal to 1.

n JBa,σ2 JBσ2 KS AD CV M Fisher

α = 0.05 25 0.739 0.673 0.175 0.418 0.173 0.392
50 0.907 0.882 0.265 0.655 0.276 0.680
75 0.975 0.970 0.391 0.832 0.433 0.835
100 0.991 0.991 0.510 0.924 0.607 0.929
150 1 0.999 0.732 0.993 0.822 0.994
200 1 1 0.857 1 0.933 1
250 1 1 0.951 1 0.978 1
500 1 1 1 1 1 1

α = 0.01 25 0.655 0.576 0.042 0.179 0.039 0.164
50 0.852 0.831 0.077 0.348 0.074 0.401
75 0.953 0.940 0.137 0.529 0.124 0.631
100 0.988 0.986 0.191 0.752 0.204 0.801
150 1 1 0.385 0.940 0.454 0.943
200 1 1 0.539 0.982 0.669 0.991
250 1 1 0.730 0.997 0.841 0.998
500 1 1 0.996 1 1 1
1000 1 1 1 1 1 1

Table A2. The estimated power is reported when the null hypothesis H0 : X ∼ N(0, 1) is tested
against samples simulated from the normal distribution N(1, 1). The two last columns contain the
test powers of the Student and Welch statistics used to test whether the difference between the two
means is statistically significant or not.

n JBa,σ2 JBa KS AD CV M Student Welch

α = 0.05 25 0.946 0.015 0.993 0.997 0.997 0.929 0.929
50 1 0.961 1 1 1 0.999 0.999
75 1 0.999 1 1 1 1 1
100 1 1 1 1 1 1 1

α = 0.01 25 0.889 0.002 0.949 0.987 0.978 0.803 0.803
50 0.997 0.030 0.999 1 1 0.988 0.988
75 1 0.967 1 1 1 0.999 0.999
100 1 1 1 1 1 1 1

Table A3. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from the
Cauchy distribution.

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.999 0.900 0.997 0.896 0.262 0.909 0.971 0.927 0.248 0.927 0.939
50 1 0.994 1 0.993 0.478 0.992 0.999 0.995 0.478 0.997 0.997
75 1 1 1 1 0.720 1 1 1 0.676 1 1
100 1 1 1 1 0.864 1 1 1 0.853 1 1
150 1 1 1 1 0.984 1 1 1 0.971 1 1
200 1 1 1 1 0.999 1 1 1 1 1 1
250 1 1 1 1 1 1 1 1 1 1 1

α = 0.01 25 0.995 0.854 0.994 0.854 0.072 0.816 0.945 0.882 0.071 0.880 0.894
50 1 0.988 1 0.986 0.186 0.986 0.996 0.995 0.161 0.996 0.994
75 1 1 1 1 0.329 1 1 1 0.283 1 1
100 1 1 1 1 0.512 1 1 1 0.463 1 1
150 1 1 1 1 0.867 1 1 1 0.806 1 1
200 1 1 1 1 0.971 1 1 1 0.935 1 1
250 1 1 1 1 0.997 1 1 1 0.994 1 1
500 1 1 1 1 1 1 1 1 1 1 1
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Table A4. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from the Student’s t
distribution with 5 degrees of freedom.

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.560 0.215 0.531 0.216 0.069 0.135 0.168 0.200 0.078 0.178 0.265
50 0.742 0.371 0.715 0.385 0.069 0.173 0.186 0.269 0.065 0.230 0.411
75 0.857 0.523 0.828 0.527 0.065 0.27 0.254 0.387 0.078 0.341 0.531
100 0.910 0.628 0.911 0.624 0.06 0.326 0.297 0.473 0.070 0.422 0.624
150 0.976 0.764 0.974 0.758 0.073 0.443 0.420 0.605 0.086 0.555 0.750
200 0.992 0.861 0.991 0.856 0.082 0.540 0.510 0.736 0.112 0.685 0.861
250 0.996 0.904 0.997 0.914 0.102 0.634 0.625 0.829 0.124 0.771 0.907
500 1 0.990 1 0.991 0.174 0.905 0.936 0.976 0.205 0.965 0.987
1000 1 1 1 1 0.480 0.998 1 1 0.497 1 1

α = 0.01 25 0.506 0.138 0.459 0.148 0.012 0.057 0.053 0.097 0.016 0.081 0.136
50 0.66 0.285 0.647 0.288 0.011 0.078 0.066 0.153 0.013 0.129 0.235
75 0.803 0.421 0.803 0.442 0.007 0.124 0.077 0.247 0.011 0.191 0.385
100 0.882 0.504 0.875 0.517 0.008 0.158 0.094 0.287 0.013 0.248 0.450
150 0.96 0.702 0.95 0.698 0.013 0.264 0.163 0.462 0.024 0.407 0.644
200 0.986 0.789 0.983 0.793 0.020 0.346 0.240 0.575 0.023 0.512 0.744
250 0.991 0.865 0.991 0.873 0.022 0.388 0.313 0.672 0.026 0.596 0.840
500 1 0.990 1 0.992 0.035 0.750 0.716 0.940 0.040 0.902 0.986
1000 1 1 1 1 0.128 0.970 0.990 1 0.122 0.997 1

Table A5. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from U[−3, 3].

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.989 0 0.976 0.001 0.677 0.125 0.972 0.230 0.708 0.178 0.128
50 1 0 0.999 0.001 0.953 0.252 1 0.567 0.976 0.414 0.446
75 1 0.112 1 0.084 0.995 0.435 1 0.844 1 0.681 0.837
100 1 0.602 1 0.543 1 0.574 1 0.941 1 0.832 0.964
150 1 0.987 1 0.985 1 0.839 1 0.997 1 0.974 1
200 1 1 1 1 1 0.947 1 1 1 0.996 1
250 1 1 1 1 1 0.989 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1

α = 0.01 25 0.977 0 0.957 0 0.339 0.024 0.874 0.058 0.323 0.043 0.014
50 1 0 0.999 0 0.782 0.074 0.998 0.271 0.823 0.179 0.126
75 1 0 1 0 0.959 0.147 1 0.553 0.982 0.373 0.444
100 1 0.005 1 0.002 0.999 0.276 1 0.799 1 0.576 0.777
150 1 0.531 1 0.483 1 0.524 1 0.976 1 0.887 0.990
200 1 0.975 1 0.970 1 0.725 1 0.998 1 0.972 0.999
250 1 0.999 1 0.999 1 0.891 1 1 1 0.996 1
500 1 1 1 1 1 1 1 1 1 1 1

Table A6. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from γ(2, 1).

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 1 0.128 0.760 0.380 1 0.409 1 0.576 1 0.512 0.623
50 1 1 0.950 0.772 1 0.730 1 0.896 1 0.843 0.934
75 1 1 0.993 0.944 1 0.880 1 0.975 1 0.954 0.984
100 1 1 0.999 0.992 1 0.948 1 0.999 1 0.994 0.999
150 1 1 1 1 1 0.994 1 1 1 0.998 1
200 1 1 1 1 1 1 1 1 1 1 1
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Table A6. Cont.

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.01 25 1 0.046 0.676 0.244 1 0.186 1 0.332 1 0.287 0.349
50 1 0.307 0.930 0.640 1 0.444 1 0.755 1 0.676 0.805
75 1 1 0.983 0.847 1 0.700 1 0.936 1 0.879 0.957
100 1 1 0.994 0.935 1 0.825 1 0.982 1 0.955 0.994
150 1 1 1 0.999 1 0.965 1 1 1 0.997 1
200 1 1 1 1 1 0.995 1 1 1 1 1
250 1 1 1 1 1 0.999 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1

Table A7. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from the log-normal
distribution LN(0, 1).

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.994 0.760 0.907 0.860 1 0.889 1 0.960 1 0.947 0.963
50 1 1 0.994 0.994 1 0.998 1 1 1 1 1
75 1 1 1 1 1 1 1 1 1 1

α = 0.01 25 0.996 0.574 0.850 0.737 1 0.727 1 0.881 1 0.853 0.888
50 1 0.966 0.980 0.978 1 0.972 1 0.996 1 0.991 0.998
75 1 1 0.998 0.999 1 1 1 1 1 1 1
100 1 1 0.999 1 1 1 1 1 1 1 1
150 1 1 1 1 1 1 1 1 1 1 1 1

Table A8. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from the Mix, which
is a mixture of the standard normal distribution N(0, 1) and the normal distribution N(0, 9) with
equal mixture weights.

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.997 0.228 0.997 0.212 0.277 0.271 0.955 0.339 0.292 0.345 0.366
50 1 0.430 1 0.433 0.499 0.425 0.999 0.553 0.538 0.536 0.581
75 1 0.599 1 0.575 0.791 0.626 1 0.756 0.831 0.742 0.737
100 1 0.737 1 0.724 0.889 0.745 1 0.878 0.937 0.87 0.863
150 1 0.884 1 0.889 0.991 0.893 1 0.972 0.996 0.967 0.97
200 1 0.957 1 0.957 1 0.975 1 0.996 1 0.997 0.993
250 1 0.988 1 0.986 1 0.991 1 0.999 1 0.999 0.999
500 1 1 1 1 1 1 1 1 1 1 1

α = 0.01 25 0.998 0.155 0.993 0.154 0.089 0.105 0.840 0.147 0.077 0.139 0.170
50 1 0.349 1 0.334 0.196 0.235 0.983 0.374 0.202 0.350 0.363
75 1 0.446 1 0.444 0.420 0.355 0.998 0.537 0.436 0.525 0.505
100 1 0.591 1 0.581 0.564 0.485 1 0.721 0.613 0.699 0.662
150 1 0.789 1 0.791 0.896 0.738 1 0.909 0.934 0.899 0.883
200 1 0.893 1 0.893 0.986 0.892 1 0.983 0.994 0.981 0.961
250 1 0.958 1 0.952 1 0.961 1 0.996 1 0.995 0.991
500 1 1 1 1 1 1 1 1 1 1 1
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Table A9. The null hypothesis H0 : X ∼ N(2, 2) is tested against data sampled from the gamma (2, 1)
distribution.

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.292 0.274 0.353 0.410 0.136 0.400 0.134 0.558 0.131 0.505 0.620
50 0.421 0.477 0.592 0.761 0.269 0.732 0.307 0.885 0.263 0.837 0.913
75 0.523 0.652 0.765 0.942 0.370 0.856 0.482 0.975 0.382 0.949 0.991
100 0.643 0.805 0.948 0.995 0.421 0.952 0.658 0.999 0.465 0.990 1
150 0.815 0.935 1 1 0.619 0.996 0.913 1 0.679 1 1
200 0.923 0.971 1 1 0.831 1 0.992 1 0.837 1 1
250 0.989 0.994 1 1 0.979 1 1 1 0.928 1 1
500 1 1 1 1 1 1 1 1 1 1 1

α = 0.01 25 0.219 0.176 0.260 0.272 0.045 0.171 0.034 0.316 0.040 0.270 0.360
50 0.363 0.412 0.488 0.617 0.098 0.459 0.084 0.757 0.092 0.675 0.790
75 0.451 0.581 0.665 0.832 0.173 0.671 0.179 0.928 0.169 0.872 0.962
100 0.563 0.701 0.800 0.945 0.197 0.818 0.250 0.979 0.197 0.946 0.991
150 0.684 0.882 0.967 0.997 0.371 0.969 0.571 1 0.407 0.997 1
200 0.807 0.951 0.999 1 0.507 0.996 0.797 1 0.549 1 1
250 0.904 0.99 1 1 0.667 1 0.951 1 0.724 1 1
500 1 1 1 1 1 1 1 1 0.992 1 1
1000 1 1 1 1 1 1 1 1 1 1 1

Table A10. The null hypothesis H0 : X ∼ N(0, 1) is tested against data sampled from a mixture of
a standard normal distribution (weight 0.9) and a sum of independent random variables—with a
standard normal distribution and Poisson distribution with λ = 5 (weight 0.1).

n JBa,σ2 JBa JBσ2 JB KS LF AD ADc CV M CV Mc SW

α = 0.05 25 0.994 0.923 0.985 0.884 0.111 0.808 0.878 0.890 0.160 0.878 0.920
50 1 0.999 1 0.990 0.134 0.952 0.966 0.990 0.194 0.981 0.995
75 1 1 1 1 0.235 0.991 0.999 0.999 0.319 0.999 1
100 1 1 1 1 0.310 0.998 1 1 0.398 1 1
150 1 1 1 1 0.570 1 1 1 0.609 1 1
200 1 1 1 1 0.823 1 1 1 0.770 1 1
250 1 1 1 1 0.974 1 1 1 0.887 1 1
500 1 1 1 1 1 1 1 1 0.999 1 1
1000 1 1 1 1 1 1 1 1 1 1 1

α = 0.01 25 0.996 0.861 0.992 0.796 0.033 0.647 0.671 0.791 0.049 0.754 0.842
50 1 0.992 1 0.985 0.043 0.884 0.854 0.966 0.065 0.951 0.984
75 1 1 1 0.998 0.085 0.979 0.990 0.994 0.131 0.989 0.999
100 1 1 1 1 0.108 0.994 0.998 1 0.169 0.998 1
150 1 1 1 1 0.207 1 1 1 0.275 1 1
200 1 1 1 1 0.379 1 1 1 0.424 1 1
250 1 1 1 1 0.622 1 1 1 0.617 1 1
500 1 1 1 1 1 1 1 1 0.972 1 1
1000 1 1 1 1 1 1 1 1 1 1 1
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Figure A1. The power for α = 0.05 depending on the sample size n (H0 : X ∼ N(0, 1) is tested
against data sampled from the Student’s t distribution with 5 degrees of freedom. Figure created by
S. Khrushchev and A. Yambartsev.
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Figure A2. The power for α = 0.01 depending on the sample size n (H0 : X ∼ N(0, 1) is tested
against data sampled from the Student’s t distribution with 5 degrees of freedom. Figure created by
S. Khrushchev and A. Yambartsev.
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