

# Síntese e caracterização de complexos metálicos com ligantes chalconas e seus derivados.

#### **David Vinícius Arruda**

Prof. Dr. Javier Ellena

Dr. Pedro H. O. Santiago

Instituto de Física de São Carlos - Universidade de São Paulo - IFSC/USP arrudavid@usp.br

## **Objetivos**

A realização da síntese e caracterização de chalconas e derivados, utilizando técnicas analíticas de espectroscopia vibracional no infravermelho (FTIR), e técnicas de análises térmicas (TG e DSC). Além disso, a técnica de difração de raios X em monocristal buscando elucidar a estrutura cristalina do composto. E dessa forma avaliar a viabilidade da síntese de complexos metálicos com possível atividade biológica.

#### Métodos e Procedimentos

Foram sintetizados três novas moléculas ao longo do projeto, sendo uma chalcona obtida por meio de uma condensação de Claisen-Schimdt com catálise ácida em refluxo ao longo de 24 horas.

Figura 1: Esquema de síntese da chalcona LCh.

A síntese de duas hidrazonas derivadas de uma chalcona, foram obtidas por meio de uma condensação com duas hidrazidas distintas, com catálise ácida e em refluxo por 3 horas cada. Todos os produtos foram separados pela cristalização via evaporação lenta de solvente, levados para as técnicas de análise disponíveis.

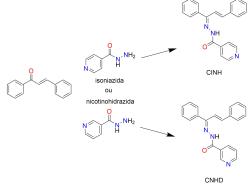



Figura 2: Esquema de síntese das hidrazonas.

#### Resultados

Figura 3: Desenho ORTEP da estrutura da chalcona LCh (cima) e para as hidrazonas CINH (esquerda) e CNHD (direita). Elipsoides térmicos representados com 50% de probabilidade.



| Composto           | LCh                                              | CINH                                             | CNHD                                             |
|--------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Fórmula Molecular  | C <sub>14</sub> H <sub>12</sub> O <sub>2</sub> S | C <sub>21</sub> H <sub>17</sub> N <sub>3</sub> O | C <sub>21</sub> H <sub>17</sub> N <sub>3</sub> O |
| Sistema Cristalino | Monoclínico                                      | Triclínico                                       | Monoclínico                                      |
| Grupo Espacial     | P2 <sub>1</sub>                                  | P <sub>-1</sub>                                  | P2 <sub>1</sub> /c                               |
| a (Å)              | 4,0172(1)                                        | 7,0078(1)                                        | 8,96808(12)                                      |
| b (A)              | 10,0188(2)                                       | 9,3614(2)                                        | 16,5017(3)                                       |
| c (A)              | 14,4791(3)                                       | 13,0704(2)                                       | 10,90273(16                                      |
| α (Å)              | 90                                               | 92,2590(10)                                      | 90                                               |
| β (Å)              | 92.807(2)                                        | 104,1780(10)                                     | 96,8414(13)                                      |
| γ(Å)               | 90                                               | 103,0130(10)                                     | 90                                               |
| Z                  | 2                                                | 2                                                | 4                                                |
| Temperatura        | 100 K                                            | 100 K                                            | 100 K                                            |
| Radiação           | Cu Ka                                            | Cu Ka                                            | Cu Ka                                            |
| Resolução (Å)      | 0,82                                             | 0,82                                             | 0,82                                             |

Tabela 1: Dados cristalográficos dos compostos sintetizados.

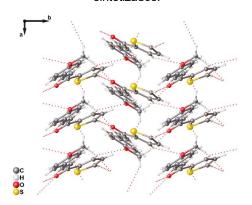



Figura 4: Arranjo supramolecular da estrutura cristalina da chalcona LCh no plano *ab*.

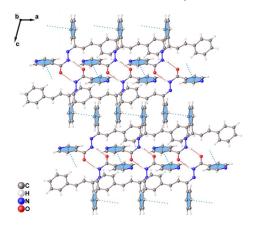



Figura 5: Arranjo supramolecular da estrutura cristalina da hidrazona CINH no plano *ac*.

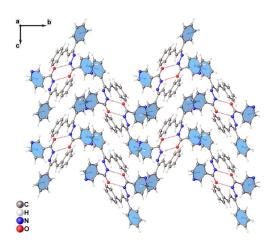



Figura 6: Arranjo supramolecular da estrutura cristalina da hidrazona CNHD no plano *bc*.

### Conclusões

A chalcona sintetizada foi caracterizada com sucesso, entretanto avaliando sua estrutura é notável que existem poucas regiões favoráveis para a formação de complexos, dessa forma foram sintetizadas duas hidrazonas derivadas de uma segunda chalcona, essas hidrazonas também foram caracterizadas e a presença dos nitrogênios em conjunto com a carbonila torna a molécula mais interessante para trabalhar com a síntese de complexos metálicos com possível atividade biológica, sendo essa a próxima etapa do projeto.

#### Referências

- 1- Benite, A. M. C.; et al., Rev. Eletrônica Farmácia. 2007, 4, 131.
- 2- Zhuang, C.; et al., Chem Rev 2017, 117, 7762.
- 3- Mahapatra DK, et al. Eur J Med Chem. 2019 Jul 15;174:142-158.

## **Agradecimentos**

