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Abstract

The activation of materials due to exposure to cosmic rays may become
an important background source for experiments investigating rare event
phenomena. DarkSide-20k, currently under construction at the Laboratori
Nazionali del Gran Sasso, is a direct detection experiment for galactic dark
matter particles, using a two-phase liquid-argon Time Projection Chamber
(TPC) filled with 49.7 tonnes (active mass) of Underground Argon (UAr)
depleted in *Ar. Despite the outstanding capability of discriminating v/
background in argon TPCs, this background must be considered because of
induced dead time or accidental coincidences mimicking dark-matter signals
and it is relevant for low-threshold electron-counting measurements. Here,
the cosmogenic activity of relevant long-lived radioisotopes induced in the
experiment has been estimated to set requirements and procedures during
preparation of the experiment and to check that it is not dominant over
primordial radioactivity; particular attention has been paid to the activation
of the 120 t of UAr used in DarkSide-20k. Expected exposures above ground
and production rates, either measured or calculated, have been considered in
detail. From the simulated counting rates in the detector due to cosmogenic
isotopes, it is concluded that activation in copper and stainless steel is not
problematic. The activity of *Ar induced during extraction, purification and
transport on surface is evaluated to be 2.8% of the activity measured in UAr
by DarkSide-50 experiment, which used the same underground source, and
thus considered acceptable. Other isotopes in the UAr such as 3"Ar and *H
are shown not to be relevant due to short half-life and assumed purification
methods.

Keywords: Cosmogenic activation, Argon, Dark matter, Rare events

1. Introduction

Great efforts have been devoted worldwide to unravel the nature of dark
matter [1] which is expected to fill our galaxy. One strategy is to search



11

12

13

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

for Weakly Interacting Massive Particles (WIMPs) by direct detection via
WIMP-nucleus elastic scattering using of different kinds of sensitive radiation
detectors [2, 3]. Noble elements like xenon and argon are ideal targets because
the material is easily purified and detectors can be scaled in mass for high
senstivity. [4-10].

The expected counting rate from the interaction of WIMPs is extremely
low, requiring ultra-low background conditions. This is achieved by operating
in deep underground locations, using active and passive shielding, carefully
selecting radiopure materials, and developing background-rejection methods
in analysis [11, 12]. In this context, long-lived radioactive isotopes induced
in the materials of the experiment by the exposure to cosmic rays during fab-
rication, transport and storage can be as relevant as residual contamination
from primordial nuclides. In principle, cosmogenic activation can be kept
under control by minimizing exposure on the surface and storing materials
underground, avoiding flights, and even using shielding against the hadronic
component of cosmic rays. It would be desirable to have reliable estimates
of activation yields to assess the real danger of exposing materials to cosmic
rays. Direct assay measurements of exposed materials, in very low back-
ground conditions, and calculations of production rates and yields, following
different approaches, have been made for several materials in the context of
dark matter, neutrinoless 23 decay, and solar neutrino experiments [13, 14].
Results have been calculated for detector media such as germanium [15-23],
silicon [24], Nal [20, 25-28], tellurium and TeO, [29-31], xenon [32-34], ar-
gon [20, 35, 36] and molybdate [37] as well as for copper [18, 32, 33, 38, 39],
lead [40] or stainless steel [33, 38].

Liquid Argon (LAr) provides an outstanding Pulse Shape Discrimina-
tion (PSD) power to separate electron recoils (ER) from nuclear recoil (NR)
events, as shown by the single-phase LAr detector DEAP-3600 [7]. Dual-
phase Time Projection Chambers (TPCs) have additional capabilities like
excellent spatial resolution. The DarkSide-50 experiment at the Laboratori
Nazionali del Gran Sasso (LNGS) in Italy followed this approach using Un-
derground Argon (UAr) (depleted of 3?Ar by a factor 14004200 with respect
to the Atmospheric Argon (AAr) activity of ~1 Bq/kg) [8-10]. Despite these
excellent background discrimination capabilities, acceptance losses (via ER
+ NR pile-up in the TPC or accidental coincidence between the Veto and
TPC signals that mimic the neutron capture signature) can be produced by
~ or 0 emitters in the set-up; therefore, these background sources must be
carefully considered too. The goal of this work is, considering exposure on
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the Earth’s surface under realistic conditions, to quantify the yields of cosmo-
genic activation of detector materials and the effect on the expected counting
rates of the DarkSide-20k detector; the results will be compared with those
from other radioactive backgrounds like *Ar. This allows requirements and
procedures during the preparation and commissioning of the experiment to
be set. The study has been carried out for UAr as well as for copper, and
stainless steel, since the use of large quantities of these materials is foreseen
in different components, according to the design of DarkSide-20k. The paper
is structured as follows: the DarkSide-20k project is presented in Sec. 2; the
methodology applied to quantify cosmogenic activities is described in Sec. 3,
showing the obtained results for different materials in Secs. 4 and 5; the
counting rates expected from these activities are discussed in Sec. 6, before
summarizing conclusions in Sec. 7.

2. The GADMC and the DarkSide-20k detector

The Global Argon Dark Matter Collaboration (GADMC) has been estab-
lished to push the sensitivity for WIMP detection down through the neutrino
fog [41, 42]. The first step will be the DarkSide-20k experiment at LNGS;
the data taking is intended to start in 2026. The experiment is designed with
a goal of an instrumental background <0.1 events over a 200 t-y exposure
for a fiducial mass of 20 t. In parallel, a much smaller detector specifically
optimized for the investigation of low-mass dark matter, DarkSide-LowMass,
is being considered [43]. ARGO will be a multi-hundred tonne detector possi-
bly operated at SNOLAB, having also excellent sensitivity to CNO neutrinos
and galactic supernovae [44].

2.1. Underground Argon

One of the goals of GADMC is the procurement of large amounts of low-
radioactivity UAr as detector target; three projects are in development to
ensure this:

e Extraction of argon from an underground source (COy wells) will be
carried out at the Urania plant, in Cortez, CO (US). This is the same
source used for the DarkSide-50 detector.

e UAr will be further chemically purified to detector-grade argon in the
Aria facility, in Sardinia (Italy), to remove non-Argon isotopes. Aria
will consist of a 350 m cryogenic distillation column, currently being

7
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installed. Isotopic distillation with a short version of this column was
demonstrated both with nitrogen [45] and argon isotopes [46]. Aria can
also be operated in isotopic separation mode to achieve a 10-fold sup-
pression of 3Ar although at a much reduced throughput [46]; this fur-
ther suppression beyond UAr level is not needed to achieve the physics
goals of DarkSide-20k.

e Assessing the ultra-low 3Ar content of the UAr is the the goal of the
DArT detector [47] in construction at the Canfranc Underground Lab-
oratory (LSC) in Spain.

There is a growing interest in the use of ultra-pure UAr outside GADMC,
as it has potential broader applications for measuring coherent neutrino scat-
tering in the COHERENT experiment [48], neutrinoless 23 decay in the
LEGEND-1000 project [49], and future modules of the DUNE experiment
[50]; the challenges for its production and characterization are carefully ad-
dressed in Refs. [51, 52].

2.2. DarkSide-20k

In DarkSide-20k the core of the apparatus is a dual-phase TPC, serving
both as active WIMP target, filled by low-radioactivity UAr [53]; a total
of 99.2 t of UAr is required, 51.1 t inside the TPC and the rest in the
neutron veto. It is planned to produce 120 t of UAr considering contingency.
SiPMs in Photo-Detector Modules (PDMs) read the prompt scintillation in
the liquid (S1) and delayed electroluminescence in the gas phase (S2). The
TPC walls is made of a gadolinium-loaded acrylic vessel (Gd-PMMA); this
material is highly efficient at moderating and then capturing neutrons, the
capture resulting in the emission of several y-rays that allow to tag neutron-
induced background events. The detector is housed within a 12-ton vessel,
made of stainless steel, immersed in a bath of 700 t of AAr acting as radiation
shield and outer veto detector for cosmic background. All the materials used
to build the whole detector system are carefully selected for low levels of
radioactivity. Figure 1 shows cross views of the cryostat and of the inner
detector. Table 1 lists materials, masses and considered cosmogenic isotopes
for the main components in the design.

G4DS [54] is a Monte Carlo (MC) simulation framework developed for
DarkSide background studies based on GEANT4, providing accurate simu-
lation of light production, propagation, and detection for background and



Stainless Steel
vessel

Top OP

" Bottom OP

Figure 1: Cross sections of the cryostat (left) and of the vessel containing the inner veto
and TPC (right) of the DarkSide-20k detector. OP stands for Optical Plane and vPDU
for veto Photo Detection Unit.

Table 1: Detector components, materials and masses of the DarkSide-20k detector shown
in Fig. 1. Cosmogenically-induced isotopes considered for each material in this work
are also indicated; activation in Gd-loaded PMMA has not been analyzed as no hint was
found in the radiopurity measurements by - spectroscopy performed for acrylic and GdyO3
samples.

Component Material Mass  Induced isotopes
Membrane cryostat Stainless steel 224.6 t See Table 2
Outer Veto: filling AAr 700 t 3TAr, 3°Ar, °H
Inner Veto: vessel Stainless steel 12 t See Table 2
TPC: barrel Gd-loaded PMMA 11t -

TPC: grids, frame, brackets Stainless steel 1055 kg See Table 2
TPC: cables Copper 117.8 kg See Table 2
Inner Veto+TPC: filling UAr 99.2 t 3TAr, 3Ar, °H
Electronic boards Copper 47.3 kg See Table 2
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signal events; it has been extensively validated on DarkSide-50 data [54].
For DarkSide-20k, v emissions from the full set of detector components have
been simulated to estimate the corresponding background rates in the TPC
and in the Veto; activities measured in an extensive material screening cam-
paign based on the combination of different radioassay techniques have been
considered. Discrimination techniques based on energy and position of the
interactions are implemented to compute the rate in the fiducial volume. As
used in [44], preliminary estimates of v background rates point to values
around 50 Hz in the TPC and 100 Hz in the neutron Veto, with dominant
contribution from PDMs. The 3 contribution of 3*Ar, considering the total
active mass of UAr in the TPC (50 tonnes) and in the inner veto (32 tonnes)
and the measured activity value in DarkSide-50, yields 36 Hz in the TPC
and 26 Hz in the Veto. In this work, cosmogenically induced background
shall be compared to these expected rates from radiogenic background from
detector material.

3. Methodology

One of the most relevant processes in the production of radioactive iso-
topes in materials is the spallation of nuclei by high energy nucleons; other
reactions like fragmentation, induced fission or capture can be important for
some nuclei too. On Earth’s surface, as the proton to neutron ratio in cosmic
rays decreases significantly at energies below the GeV scale because of the
absorption of charged particles in the atmosphere, activation by neutrons is
usually dominant. Cosmogenic production of radionuclides underground can
often be considered negligible, as the flux of cosmic nucleons is suppressed
by more than four orders of magnitude for depths of a few tens of meters
water equivalent (m.w.e.) [11]. Radiogenic neutrons, with fluxes in deep un-
derground facilities that are orders of magnitude lower than that of cosmic
neutrons on surface, have energies around a few MeV, too low for spallation
processes.

To quantify the effect of material cosmogenic activation in a particular
experiment, the first step is to know the production rates, R, of the relevant
isotopes induced in the material targets. Then, the produced activity, A, can
be estimated according to the exposure history to cosmic rays; for instance,
considering just a time of exposure ¢, followed by a cooling time (time spent
underground once shielded from cosmic rays) .., for an isotope with decay
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constant A, the activity can be evaluated as:
A = R[1 — exp(—Mezp)] exp(—AMeool)- (1)

Finally, the counting rate generated in the detector by this activity can be
computed using G4DS [54].

Some direct measurements of production rates at sea level have been
carried out for a few materials from the saturation activity, obtained by
sensitive screening of samples exposed in well-controlled conditions or by
irradiating samples in high flux particle beams. However, in many cases,
production rates must be evaluated from the flux of cosmic rays, ¢, and
the isotope production cross-section, o, with both dependent on the particle
energy F:

R= N, [ o(E)o(B)IE. (2)

where N, is the number of target nuclei. The spread for different calculations
of productions rates is usually important, even within a factor 2 (see for
instance Tables 4 and 5). In this work, measured production rates have
been used whenever available and dedicated calculations have been performed
otherwise.

3.1. Cosmic ray flux

An analytic expression for the cosmic neutron spectrum at sea level is
presented by Gordon et al in Ref. [55], deduced by fitting data from a set
of measurements for energies above 0.4 MeV; with this parameterization,
the integral flux from 10 MeV to 10 GeV is 3.6x10 3cm~2s™! (for New York
City). In Ref. [56], a similar parametrization is provided as well as correction
factors, f, to the flux when considering exposure at different locations, as
flux depends on the altitude and geomagnetic rigidity. For example, outside
LNGS at an altitude of ~1000 m, a correction factor f =2.1 [18] is used.
Alternatively, the EXPACS (“EXcel-based Program for calculating Atmo-
spheric Cosmic-ray Spectrum”) program? could be used to calculate fluxes
of nucleons, muons, and other particles for different positions and times in the
Earth’s atmosphere; in this way, possible temporal variations of the cosmic
rays fluxes are taken into account. Although precise EXPACS calculations
are being considered, results presented here are based on the parameteriza-
tion from Ref. [55] and correction factor from Ref. [56].

2EXPACS: https://phits.jaea.go.jp/expacs/.
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3.2. Production cross sections

Measurements at fixed energies and calculations using different compu-
tational codes must be both be taken into account in evaluating o(E). The
following have been used in this work:

e The Experimental Nuclear Reaction Data database (EXFOR, CSISRS

in US) [57], which provides nuclear reaction data and then measured

production cross sections 3.

The Silberberg and Tsao equations presented in Refs. [58-60], which
are semiempirical formulae derived from proton-induced reactions for
energies >100 MeV and integrated in different codes: COSMO [61],
YIELDX [60] and ACTIVIA [62].

The MC simulation of the interaction between projectiles and nuclei,
which allows also computation of production cross sections. Many dif-
ferent models and codes have been developed and validated considering
the relevant processes. Evaluated libraries of production cross sections
have been elaborated, covering different types of reactions or projec-
tiles and different energies, like TENDL (TALYS-based Evaluated Nu-
clear Data Library)* [63] (based on the TALYS code, for protons and
neutrons with energies up to 200 MeV); JENDL (Japanese Evaluated
Nuclear Data Library) [64] High Energy File® (based on the GNASH
code, for protons and neutrons from 20 MeV to 3 GeV) is an exten-
sion of the JENDL-4.0/HE library including results up to 200 MeV;
HEAD-2009 (High Energy Activation Data) [65] (for protons and neu-
trons with higher energies, from 150 MeV up to 1 GeV) uses a selection
of models and codes (CEM, CASCADE/INPE, MCNP, etc.).

4. Cosmogenic yields in Copper and Steel

The effect on DarkSide-20k of cosmogenic activity in the components
made of copper and stainless steel, known to become activated [13, 14], is
analyzed here.

SEXFOR: http://www.nndc.bnl.gov/exfor/exfor.htm, http://www-nds.iaea.
org/exfor/exfor.htm.

‘https://tendl.web.psi.ch/tendl_2019/tend12019.html

°JENDL HE library, https://wwwndc.jaea.go.jp/ftpnd/jendl/jend140he.html;
https://wwwndc. jaea.go.jp/jendl/jendl.html
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4.1. Production rates

The production rates of the radionuclides typically induced in these ma-
terials have been selected from measured and calculated results available in
the literature [13, 14]. Estimates using mainly ACTIVIA, GEANT4, and
TALYS codes have been made. Saturation activities have been measured
with sensitive germanium detectors in samples of copper [32, 38, 39] and
steel [38], exposed for long times to cosmic rays. In particular, in this work,
the production rates from dedicated measurements, using 125 kg of copper
provided by Norddeutsche Affinerie (now Aurubis) exposed for 270 days at
Gran Sasso and Nironit stainless steel exposed for 314 days, have been con-
sidered [38]; values are reproduced in Table 2. Among the different products
identified in copper, %°Co has the longest half-life and, unfortunately, there
is a significant disagreement on the production rate estimates [13, 14]; the
measured value in Ref. [38] is higher than most of the other estimates by a
factor of up to a few times. No assessment of °Co production in stainless
steel is made in Ref. [38], as the cosmogenically induced activity is shadowed
by the intrinsic %°Co at similar level naturally occurring in typical stainless
steel material; for this reason, the rate derived from GEANT4 calculations
[33] has been used. Following the half-lives of the different cosmogenic iso-
topes identified in copper and steel (also shown in Table 2), 4Mn, 5"Co and
%0Co are in principle the most relevant products.

4.2. Activity

To assess the possible effect of the cosmogenic isotopes in these mate-
rials for DarkSide-20k, activity A has been evaluated considering the se-
lected production rates at sea level, t.,,; =0 and extreme cases of exposure:
tezp =1 month, ¢.,, =1 year and t.;, =10 years. It is worth noting that as
measured production rates have been taken into account, the deduced acti-
vation corresponds to all cosmic ray particles. The final expected activity is
obtained from the specific activities derived from the production rates (per
mass unit) using Eq. 1 and the mass of all the components used in the
experimental set-up, which according to the present design of DarkSide-20k
are 165.1 kg of copper (mainly from cables and PDMs electronic compo-
nents) and 226 tons of stainless steel (mainly from cryostat components)
plus 12 tonnes from the inner detector.

Table 2 summarizes the total induced activity in copper and stainless
steel, respectively, for the relevant isotopes evaluated at the end of the differ-
ent exposure times; contribution from each individual component is propor-
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tional to its mass (see Table 1). Following the decay mode of these nuclei, v
emissions of the order of 1 MeV will be generated around the active volume
by this cosmogenic activation. In the case of copper, even assuming 10 years
of exposure, the total activity is at the level of 0.5 Bq. The induced activities
are then compared with available measurements from radioassays. For the
copper from the Luvata company which is being considered in DarkSide-20k,
upper limits of 0.30 mBq/kg of ©°Co and 0.35 mBq/kg of **Mn are obtained
using a HPGe detector (named GeOroel) in the Canfranc Underground Lab-
oratory. Exposure to cosmic rays of this copper material for a few years
can be tolerated since it would contribute a fraction of the upper limit on
%0Co contamination. For all stainless steel components, some cosmogenic
activities can be at the level of a few hundreds of Bq, even for just 1 year
of exposure; **Mn is identified as a potential relevant contributor to the
background. Comparing with available measurements from screening, the
derived cosmogenic activity of ®°Co is much lower than for instance the one
measured for a sample of stainless steel for the DarkSide-20k crysotat, using
the same HPGe detector in the Canfranc Underground Laboratory, finding
(10.840.9) mBq/kg of ®Co. A more stringent requirement of ~1 year of
exposure would come by requiring the *Mn induced activity being less than
the measured one in radio-assay of (1.4£0.3) mBq/kg.
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5. Cosmogenic yields in Argon

Argon in the atmosphere contains stable °Ar at 99.6%:; cosmogenically
produced radioactive isotopes, mainly 3*Ar but also 3"Ar or *?Ar, can be a
significant background if argon obtained from air is used. The concentra-
tion of these three isotopes is much reduced in UAr, but the production of
cosmogenic radionuclides after extraction must be taken into consideration.

5.1. Relevant isotopes

39Ar is a B~ emitter with a transition energy of 565 keV and half-life of
269 y [67]; it is mainly produced by the *°Ar(n,2n)3°Ar reaction by cosmic
neutrons [35]. The typical activity of 3°Ar in AAr is at the level of ~1 Bq/kg,
as measured by WARP [68], ArDM [69] and DEAP [70]. In UAr, after a first
study on argon from deep underground sources [71], the measured activity
of 3Ar in the DarkSide-50 detector was (0.73 & 0.11) mBq/kg following a
campaign of extracting and purifying argon from deep CO, wells in Colorado,
US; as mentioned in Sec. 1, this means a reduction of a factor (1.4+0.2)x10?
relative to the AAr [8].

The presence of cosmogenically produced 3"Ar was also detected at the
beginning of the run of the DarkSide-50 detector with UAr [8]. It decays
100% by electron capture to the ground state of the daughter nuclei with a
half-life of 35.02 days [66]; then, the binding energy of electrons from K-shell
(2.8 keV, at 90.21%) and L-shell (0.20-0.27 keV, at 8.72%) can be measured
as a distinctive signature. The main production channel is the “°Ar(n,4n)37 Ar
reaction [35]. Underground production in UAr by thermal and epithermal
neutron capture is negligible, as for 3°Ar, considering rates as in Ref. [35]
and neutron fluxes at LNGS.

“2Ar is a pure S~ emitter with a 32.9 y half-life and transition energy
of 599 keV, generating *?K, also a 3~ emitter with half-life of 12.36 h and
transition energy of 3525 keV [67]; this isotope can affect neutrinoless 23
experiments using liquid argon as cooling bath and shielding, as shown
by the GERDA experiment [72] and its specific activity has been studied
by ICARUS [73], DBA (92%3 1uBq/kg [74]) and DEAP (40.44+5.9 uBq/kg
[70]). The production rate of **Ar in UAr at sea level has been evaluated by
GEANT4 simulation as 5.8x107% atoms/kg/day in Ref. [36]; this rate would
give from Eq. 1 a saturation activity of 0.07 uBq/kg, about three orders of
magnitude lower than measured values in AAr. Taking all this into account,
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the effect of ?Ar in DarkSide-20k will not be considered here although a spe-
cific study to quantify radiogenic and cosmogenic production in the Earth’s
crust is underway®.

3H is a pure 3~ emitter with transition energy of 18.6 keV and a long
half-life of 12.3 y [66]. The quantification of its cosmogenic production is
not easy by calculations (*H can be generated by different reaction chan-
nels) nor experimentally (the § emissions are hard to disentangle from other
background contributions). Estimates of the *H production rate in several
dark matter targets were attempted in Ref. [20]; the rate has been measured
for germanium from EDELWEISS [19] and CDMSlite [21] data and for sil-
icon and Nal(Tl) from neutron irradiation [24, 28]. The possible presence
of *H has been observed also in Nal(T1) crystals by the ANAIS [25, 75] and
COSINE experiments [27, 76]. In principle, purification systems for LAr
may remove all non-argon radionuclides and 3H should not be a problem for
DarkSide. This was also assumed for liquid xenon, but 3H was considered
as a possible explanation for the excess of electronic recoil events observed
in the XENONIT experiment below 7 keV [77, 78], which was not observed
in XENONNT [5]. Activated *H is separated from argon with SAES Getters
[79] and will be removed in situ while the UAr recirculates.

Other radioisotopes with half-lives longer than 10 days like "Be, '“Be,
4C, 2Na, A1, 2P, 3P, 32Gi, 35S, 36Cl1, K and #!'Ca are also produced
in argon, as shown using the COSMO code. The production rates of these
isotopes at sea level from fast neutrons, high energy muons and protons have
been evaluated by GEANT4 simulation in Ref. [36]. Assuming an efficient
purification of non-noble isotopes, they will not be considered in this study.

5.2. Production rates

The production rates of *”Ar and ?Ar from cosmic neutrons at sea level
were measured for the first time through controlled irradiation at Los Alamos
Neutron Science Center (LANSCE) with a neutron beam resembling the cos-
mic neutron spectrum and later direct counting with sensitive proportional
counters at Pacific Northwest National Laboratory (PNNL) [35]. In addition,
the study of other production mechanisms due to muon capture, cosmic pro-
tons and high energy v rays at the Earth’s surface was made using available
cross sections to compute total production rates at sea level. The production

Shttps://indico.sanfordlab.org/event/29/contributions/487/
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Table 3: Calculation of the correction factor f to be applied to the cosmic neutron flux at
sea level (in New York) for the location of the Urania facilities in Colorado. The relative
intensities I are derived from Eq. 3. The final factor for Urania is the average between
the_deduced ones from Denver and Leadville data.

Location | H A f Relative I Deduced f
(m) (g/cm?) from Ref. [56] to Urania for Urania
Denver 1609  852.3 4.11 0.659 6.24
Leadville | 3109  705.2 12.86 1.942 6.62
Urania 2164  795.5 6.43

rates obtained in Ref. [35] for UAr are reproduced in Table 6 as they will
be used to evaluate the induced activity in DarkSide-20k. The production
rates of both 3"Ar and *°Ar at sea level were also evaluated by GEANT4
simulation in Ref. [36].

The UAr to be used in DarkSide-20k is extracted in Colorado, at a quite
high altitude, so the corresponding correction factors f to the cosmic ray flux
at sea level must be taken into consideration. In Ref. [56], high values of f
are reported for neutrons at Colorado locations: 4.11 and 12.86 for Denver
(at 1609 m) and Leadville (at 3109 m), respectively. These correction factors
/ have been adjusted to the altitude at the Urania facilities (at 2164 m),
assuming that the ratio of f for different altitudes is the same as the ratio of
cosmic flux intensities. As described in Ref. [56], the intensities I; and I, at
two different altitudes A; and Ay (converted to g/cm?) are related as:

12 = Il exp[(Al — 142)/[/]7 (3)

being L the absorption length for the cosmic ray particles. Calculations for
the cosmic neutron flux correction factor are summarized in Table 3, using
L =136 g/cm?; the final result for Urania is the average between those from
Denver and Leadville data, f =6.43. For cosmic protons and muons, the
correction factors have been obtained just from Eq. 3 considering the corre-
sponding absorption lengths (L = 110 g/cm? for protons and L = 261 g/cm?
for muons [56]); the results are f = 8.67 for protons and f = 2.48 for muons.

Following Eq. 2, a calculation of the production rates of relevant iso-
topes in argon (assuming 100% “°Ar) by cosmic neutrons from Ref. [55] has
been made considering a selection of excitation functions from libraries and
YIELDX calculations. Figure 2 shows our compilation of production cross
sections of *H, 3" Ar and 3°Ar by nucleons. For 3°Ar, although no experimen-
tal data at EXFOR was found for the total production cross section, there are
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results for partial (n,2n+) reactions in natural argon at 1-30 MeV taken from
Ref. [80]. For *H, an irradiation experiment with neutrons having an energy
spectrum peaked at 22.5 MeV measured the corresponding production cross
section [81].

A mismatch between cross section data from different libraries is observed.
Several descriptions of the cross sections, even from different libraries below
and above a particular energy cut, have been considered to estimate the
corresponding uncertainty; the obtained maximum and minimum rates define
an interval, whose central value and half width have been considered as the
final result and its uncertainty for the evaluation of the production rates.
Table 4 presents the obtained results for 3"Ar and ??Ar, together with the
measured production rate for fast neutrons and different calculations from
Refs. [35, 36]. The production rate of 3?Ar derived here is fully compatible
with the measured value (and with several of the calculations in Ref. [35]).
The production rate of 3"Ar is a factor 2 higher than the measured one,
but lower than the GEANT4 estimate in Ref. [36]. For calculating the final
activity yields of 3"Ar and 3°Ar, the values of the total production rates
obtained in Ref. [35] will be used; but this comparison can be useful to
assess the reliability of the production rates of isotopes estimated only from
calculations, like ®H in argon.

The production rate of H in argon was calculated, as for other targets,
using different codes like TALYS [16] and GEANT4 and ACTIVIA [33]. It
was also computed in Ref. [20] using a similar approach as used in this
work from a selection of excitation functions considering the TENDL and
HEAD2009 libraries. The results ranged from 115.1 to 177.2 atoms/kg/day
and the approach was cross-checked against experimental data for Nal and
germanium, reproducing properly measured production rates [19, 21, 28].
We add to the analysis new data included in the JENDL-HE library which
gives a production rate of 221.6 atoms/kg/day. We combine the results in
Ref. [20] with this latter one to estimate a central value and uncertainty
for the production of ®H as (168+53) atoms/kg/day. It must be noted that
this value gives only production by neutrons; assuming equal flux and cross
sections of protons and neutrons above 1 GeV, it is estimated that protons
would increase the rate by 10% at most [20] and is thus neglected in the
following. Table 5 compares the production rate estimated in this work with
all the available ones for *H production in argon taken from the literature
following different approaches; an important dispersion of values is found.
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Figure 2: Production cross sections of *H (top), *"Ar (middle) and 3°Ar (bottom) in 4°Ar
by nucleons vs energy taken from different sources.
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Table 5: Production rate R of ®H in Ar at sea level from this work and from different
calculations from the literature.

R (atoms/kg/day)

TENDL 115.1
HEAD2009 177.2
JENDL-HE 221.6
Estimated rate in this work 168+53
Not used for estimation:

TALYS [16] 44.4
GEANT4 [33] 84.9
ACTIVIA [33] 82.9

5.8. Activity

The possible activity yields of relevant cosmogenic isotopes in Ar have
been analyzed for the DarkSide-20k detector considering Ar extraction, stor-
age and transportation and taking into account different cosmic ray compo-
nents. For 3"Ar and 3°Ar, the production rates at sea level precisely deter-
mined with the LANSCE neutron beam and the estimates for muons, protons
and cosmic v rays [35] have been considered, while for *H the production rate
estimated in this work has been assumed.

The UAr extracted at the Urania plant will be shipped firstly to the Aria
facility for purification and then to LNGS for storage and final operation.
The current baseline design is to ship the UAr in high-pressure gas cylinders
that are organized into skids capable of containing ~2 t of UAr each. The
following steps are foreseen:

1. Storage of UAr at Urania: three skids will be filled before starting
transportation. Considering the time required to fill one, exposures of
8, 16 and 24 days have been assumed for each skid. At the Urania
site, the UAr will always be on surface while being processed and once
in the skids. The correction factors to the sea level fluxes of cosmic
neutrons, protons and muons evaluated for Urania location in Colorado
(see Sec. 5.2) have been included in this step.

2. Trip from Urania to a shipping port: a container with the three skids
will transport the UAr from Urania to Houston, TX (USA), by road.
An exposure of 7 days has been considered. To take into account the
different altitude during the trip, the average between the maximal
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(from Urania altitude) and minimal (at sea level) expected activity has
been calculated.

3. Trip overseas to Europe: 60 days of exposure at sea level have been
conservatively assumed for the trip by boat from Houston to Cagliari.
An additional exposure of 7 days is foreseen for custom clearing and
the trip from Cagliari to the Aria location.

In total, 16 months are required for completing the extraction and
transportation of all the necessary UAr from Urania to Italy.

4. Processing and storage of UAr at Aria: once in Sardinia, the skids will
be stored near Aria and the UAr will be accumulated for processing.
At a purification rate of 1 ton per day, an expected exposure of 60 days
to process two batches of 60 t each has been considered. Underground
storage at a depth of at least some tens of m.w.e. would be ideal and
it is assumed here but, if not possible, an almost linear increase of
2.6 uBq/kg in the activity of 3?Ar is estimated per month of additional
exposure at sea level.

5. Trip from Aria to LNGS: 10 days of exposure at sea level have been
considered for this trip by sea. It is expected to ship 12 t at a time
using six skids.

6. Storage at LNGS: skids will be stored underground as they arrive.

Under these assumptions, the total time from the beginning of production
at Urania to the end of processing at Aria is 614 days.

Taking into account this exposure history, the induced activity by each
cosmic ray component has been computed for each exposure step (at Urania,
trip in US, overseas, at Aria and trip in Italy) from Eq. 1. Tables 6 and
7 show separately each contribution for **Ar and 37Ar and for *H, respec-
tively. Contributions from different cosmic ray components are assumed to
be independent to derive uncertainties in total activity. The decrease of the
activities induced at each step during the rest of the whole process is neg-
ligible for 3*Ar and small for *H, due to their long half-lives, but extremely
relevant for 37Ar; it is accounted for in the final activities reported in Tables
6 and 7.

For both *Ar and 3"Ar, cosmogenic neutrons are responsible of most
of the induced activity. Under the assumed conditions, the relative contri-
butions to the final ®*Ar activity of each exposure step are the following:
Urania, 34.4%; US trip, 9.0%; overseas trip, 27.7%; at Aria, 24.8%; and Italy
trip, 4.1%. The exposure at Urania gives the largest contribution, followed
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by that of the overseas trip and at Aria. For 3"Ar, having a much shorter
half-life, the last exposure during the Italy trip is dominant, producing 55%
of the final activity. Concerning *H, the final activity in Table 7 would ap-
ply if no purification procedures were considered; however, if a 100% efficient
removal of H was achieved in Aria, only the activity in the last step for expo-
sure in Italy would be produced. Table 8 summarizes the expected activities
once all the UAr is at LNGS. From values in Table 6, the final estimated
activity of 39Ar is (20.742.8) uBq/kg; this equals 2.8% of measured activity
in DarkSide-50. For 37Ar, the effect of cooling is very important and the
expected activity when all the UAr is at LNGS is (103+£14) xBq/kg. From
values in Table 7 for ®H, an activity of (2.9740.94) uBq/kg is expected at
that time considering only activation after ideal purification in Aria; with no
purification, it would be around 25 times higher.

Uncertainties quoted for activities in Tables 6 and 7 come from those of
production rates, reproduced in the same tables. Concerning the correction
factors of sea level cosmic ray fluxes for exposure at Urania, it has been
checked that considering a description different to that applied in Sec. 5.2
produces very similar results; correction factors computed from EXPACS
spectra in the energy range relevant for activation (1 MeV to 10 GeV) are
f = 6.09 for neutrons, f = 7.60 for protons and f = 1.61 for muons, giving a
small decrease in the final activities: 1.0% for **Ar, no change for 3"Ar and
1.5% for 3H with no purification. On the other hand, unexpected events can
produce relevant deviations from the baseline exposure conditions and their
effect on the activation yields has been assessed. Doubling the exposure
at Urania would increase the final 3°Ar activity from (20.742.8) uBq/kg
to (27.7£3.9) uBq/kg, which would be 3.8% of the DarkSide-50 activity.
Exposure at Aria has been evaluated for the moment considering just the
processing time, but activation produced in the periods before and after the
processing should be added if storage is made above ground; to produce an
additional 10% of the measured activity in DarkSide-50 (which was deter-
mined with an uncertainty of 14%), 28 months of additional exposure would
be required, which is well above the period of 16 months needed for the ex-
traction of the whole amount of UAr needed. It can be concluded that there
is enough contingency in the plan for production, storage and shipping of
the UAr so that cosmogenic 3°Ar activity does not endanger DarkSide-20k
sensitivity.
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6. Expected counting rates in DarkSide-20k

The rates from the estimated cosmogenic activity of products in UAr,
under the assumed exposure conditions, are also shown in Table 8. Induced
39Ar due to the whole exposure from Urania to LNGS would add a rate of
(1.0340.14) Hz for the TPC. The contribution of 3" Ar (being (5.15+0.68) Hz
if data taking started just immediately after the arrival of all the UAr at
LNGS) will decay very quickly. Comparing these numbers with the total
B and < rates presented in Sec. 2.2, it can be concluded that cosmogenic
activity does not produce a problematic increase of the TPC and Veto rates.

7. Conclusions

For DarkSide-20k, material cosmogenic activation is a source of 3/+ back-
ground and it has been quantified for LAr and other materials used in large
amounts from realistic exposure conditions in order to assess the contribu-
tion to the counting rates and decide if additional exposure restrictions are
necessary. The main results are summarized in Table 8.
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Table 7: Calculation of the expected induced activity in kg~ d=! of H by cosmic neutrons
in the UAr of the DarkSide-20k detector, for the production rate R estimated in this work
and the assumed exposure times (see text), considering no purification procedure. Different
rows show separate contributions by exposure steps. Row labelled as “Final” presents the
sum of final activities from all exposure steps including properly their decays.

SH

R (atoms/kg/day) 168+53
Urania 2.66+0.84
USs 0.67+0.21
Overseas 1.734+0.54
Aria 1.5540.49
Italy 0.259+0.082
Final 6.5+2.1
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For copper and stainless steel components, activation yields of isotopes
with relevant half-lives (like **Mn, *’Co and °Co) have been computed from
the measured production rates at sea level at Ref. [38]. In copper, even
for 10 y of exposure to cosmic rays, estimated activities are below 0.5 Bq.
In stainless steel, hundreds of Bq are expected for some isotopes for just
1 y exposure; the contribution to the counting rate of ER-like events in the
TPC from **Mn activity induced in steel components has been found to be
negligible in comparison to the estimated total rate from /7 backgrounds.
This avoids restricting the surface residency time.

A total of 120 t of UAr depleted in 3°Ar must be extracted and processed
for filling the TPC and inner veto of DarkSide-20k. The possible induced ac-
tivity on surface, from the extraction at Urania to the storage at LNGS, has
been analyzed not only for 3*Ar but also for 3Ar and 3H. Production rates
from Ref. [35], based on a neutron irradiation experiment, have been con-
sidered for the Ar isotopes while for ?H an estimate of the production rate
by cosmic neutrons made in this work obtaining (168+53) atoms/kg/day
has been used. The estimated cosmogenic activity of 3*Ar when all the UAr
arrives to LNGS, (20.7£2.8) uBq/kg for the assumed exposure history, is
considered acceptable as it is just 2.8% of the residual activity measured
in DarkSide-50 for UAr of the same source and would add ~1 Hz to the
counting rate of the TPC. The quantified effect of some uncertain steps in
the procedure of UAr production shows that there is enough contingency.
Contributions from the induced activity of 3"Ar and *H are not problematic
thanks to short half-life and purification, respectively. The results of this
study of the cosmogenic activation of UAr will be useful to set exposure limi-
tations for the procurement of the large amounts of radiopure UAr necessary
in future LAr projects.
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