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1. Introduction

The most basic objects in differential geometry are smooth functions and vector fields. Associated to 
a smooth manifold M are the commutative algebra of smooth functions C∞(M) and the Lie algebra of 
smooth vector fields 𝔛(M). The Lie derivative defines a Lie algebra and C∞(M)-module isomorphism

ℒ : 𝔛(M) → Der(C∞(M)) , X ↦→ ℒX (1)

from 𝔛(M) to the Lie algebra Der(C∞(M)) of derivations of C∞(M), and the Lie bracket on 𝔛(M) satisfies 
the Leibniz rule

[X, fY ] = (ℒXf)Y + f [X,Y ] . (2)

In this paper we are concerned with a generalisation of these facts from smooth manifolds to differentiable 
stacks. Recall that a differentiable stack is a stack 𝒳 over manifolds admitting a representable epimorphic 
submersion M → 𝒳 from a manifold to 𝒳 . As a consequence, the fibered product M ×𝒳 M ⇉ M with 
the canonical projections has the structure of a Lie groupoid. Different choices of atlas give rise to Morita 
equivalent Lie groupoids, establishing a one-to-one correspondence between equivalence classes of differen
tiable stacks and Morita equivalence classes of Lie groupoids. An immediate observation is that both smooth 
manifolds and orbifolds can be seen as particular instances of differentiable stacks.

Our main result can be summarised as follows; the explicit formulas and further details will be presented 
throughout this section.

Theorem. To each differentiable stack 𝒳 there is an associated differential graded Lie algebra 𝔛•
m(𝒳 ) of 

vector fields on 𝒳 and a differential graded 𝔛•
m(𝒳 )-module C•

m(𝒳 ) of functions on 𝒳 . The zeroth cohomology 
C∞(𝒳 ) := H0(C•

m(𝒳 )) is a commutative algebra and 𝔛•
m(𝒳 ) is a complex of C∞(𝒳 )-modules.
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The cohomology H•(𝔛•
m(𝒳 )) is a graded C∞(𝒳 )-module, and the 𝔛•

m(𝒳 )-module structure on C•
m(𝒳 )

descends to cohomology to define a morphism of graded Lie algebras and of graded C∞(𝒳 )-modules

𝓛 : H•(𝔛•
m(𝒳 )) → Der(C∞(𝒳 )) , x ↦→ 𝓛x

which is the analogue of (1). The graded Lie bracket ⟦, ⟧ on H•(𝔛•
m(𝒳 )) satisfies the graded Leibniz identity

⟦x, fy⟧ = (𝓛xf) y + (−1)|f ||x|f ⟦x, y⟧

for appropriate x, y, f , which is the analogue of (2). Up to an appropriate notion of quasi-isomorphism these 
objects are all independent of the choices involved in the construction and are unchanged if 𝒳 is replaced 
by an equivalent stack 𝒴.

If 𝒳 is isomorphic to a manifold M then 𝔛•
m(𝒳 ) is quasi-isomorphic to 𝔛(M), C•

m(𝒳 ) is quasi-isomorphic 
to C∞(M), and the various module structures are equivalent to the standard ones.

Remark 1.1. Since the algebra of functions C∞(𝒳 ) is concentrated in degree zero, the sign appearing in the 
previous graded Leibniz identity is actually positive. See Definition 2.4.

Remark 1.2. If 𝒳 is proper, i.e. if 𝒳 is equal to the quotient stack M//G associated to a proper Lie groupoid 
G ⇉ M , then the cohomology H•(C•

m(𝒳 )) is equal to C∞(𝒳 ) placed in degree zero. In the non-proper 
setting H•(C•

m(𝒳 )) is a graded algebra and H•(𝔛•
m(𝒳 )) is a graded H•(C•

m(𝒳 ))-module, but the situation 
is more complicated, see §9.4.

Remark 1.3. The differential graded Lie algebra 𝔛•
m(𝒳 ) was constructed independently in work of Berwick

Evans & Lerman [8] and of the second two named authors [28], and the underlying cochain complex of 
C•

m(𝒳 ) is a truncation of the differential groupoid complex introduced in [13]. Our new contributions 
in this work are: establishing the 𝔛•

m(𝒳 )-module structure on C•
m(𝒳 ) and its properties; explaining the 

relation of C•
m(𝒳 ) to other notions of smooth functions on differential stacks; the construction of a certain 

infinitesimal model of these objects and structures, valid whenever certain connectivity assumptions on a 
groupoid presentation are satisfied. We also present several examples throughout the paper.

We can generalise the right hand side of (1). There are a number of equivalent definitions of the algebra 
C∞(𝒳 ) of functions on a differentiable stack 𝒳 , some of which depend on the choice of an atlas M → 𝒳
with associated Lie groupoid G over M . These include:

(i) stack morphisms from 𝒳 to the manifold R,
(ii) global sections of the structure sheaf 𝒪𝒳 of 𝒳 ,
(iii) G-invariant functions on M ,
(iv) morphisms of Lie groupoids from G to the unit Lie groupoid R ⇉ R.

In order to further capture the ``stacky'' nature of 𝒳 , our first main result compares certain extensions 
and variations of these definitions, each of which involves moving from sets to categories or from vector 
spaces to cochain complexes:

(i) The category HomSt(𝒳 , BR) of morphisms from 𝒳 to the classifying stack BR of the Lie group R;
(ii) The total sheaf cohomology H•(𝒪𝒳 ), which carries a natural graded algebra structure [9, §3];
(iii) The differentiable groupoid cochain complex C•

d(G), which carries a natural differential graded algebra 
structure [13, §1.2];
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(iv) The category HomGpd(G,R) of morphisms from G to the Lie groupoid R ⇉ ∗ where R is considered 
as an abelian Lie group.

There are some known relations between these objects: if M is Hausdorff and paracompact then the cohomol
ogy H•

d (G) of C•
d(G) is isomorphic to H•(𝒪𝒳 ) as a graded algebra [9, §3], and the 1-cocycles Z1

d(G) ⊆ C•
d(G), 

which we will denote by C∞
m (G), coincide with the morphisms from G to the Lie group R, which are also 

called multiplicative functions on G [26,20].
To formulate the following Theorem we need two further objects. We denote by C•

m(G) the 2-term 

truncation C∞(M) δ −→ C∞
m (G) of the cochain complex C•

d(G). Associated to C•
m(G) is a category C∞(M)⋉

C∞
m (G) in which the objects are multiplicative functions F ∈ C∞

m (G) and a morphism F → F ′ is identified 
with a function f ∈ C∞(M) such that F ′ = F + δf , see §2.5.

Theorem 1 (= Theorem   4.2). Let G ⇉ M be a Lie groupoid. The following two categories are isomorphic:

a. The category C∞(M) ⋉ C∞
m (G) associated to the 2-term complex C•

m(G).
b. The category HomGpd(G,R) of Lie groupoid morphisms from G to R considered as a Lie groupoid over 

a point.

Additionally, if M is Hausdorff and paracompact then (a) and (b) are equivalent to:

(c) The category HomSt(BG,BR) of morphisms of stacks from BG to BR.

More generally, if 𝒳 is a differentiable stack, M → 𝒳 is an atlas with M Hausdorff and paracompact, and 
G is the associated Lie groupoid over M , then the categories (a) and (b) are equivalent to:

(d) The category HomSt(𝒳 , BR) of morphisms of stacks from 𝒳 to BR.

Remark 1.4. Theorem 1 can be applied to any differentiable stack: if M → 𝒳 is an arbitrary atlas then 
by replacing M with the disjoint union of a suitable open cover if necessary, one can arrange that M is 
Hausdorff and paracompact.

Our second main result involves an action of a certain differential graded Lie algebra 𝔛•
m(G) on the 

complex C•
m(G). In [16] Hepworth defined the category Γ(T𝒳 ) of sections of the tangent stack T𝒳 of a 

differentiable stack 𝒳 and showed that this category is equivalent to the category Γ(TG) of multiplicative 
sections of the tangent groupoid of a Lie groupoid G presenting 𝒳 . It was shown independently by Berwick
Evans & Lerman [8] and by the second two authors [28] that the category Γ(TG) carries a natural structure 
of strict Lie 2-algebra, which, up to a natural notion of equivalence, is independent of the choice of the Lie 
groupoid G.

In terms of differential graded Lie algebras, or dgla’s for short, the results in [8] and [28] show that 
associated to a Lie groupoid G there is a dgla 𝔛•

m(G) concentrated in degrees -1 and 0, and if H is a Lie 
groupoid Morita equivalent to G then the dgla’s 𝔛•

m(G) and 𝔛•
m(H) are quasi-isomorphic. The dgla 𝔛•

m(G)
is constructed using the Lie algebroid of G and the Lie algebra of multiplicative vector fields on G, which 
are vector fields X : G → TG that are Lie groupoid morphisms. See 3.2 for the precise definitions. We note 
that [7] has generalised some of this to multi-vector fields.

Theorem 2 (= Theorems   6.1 and 6.2). The following statements hold.
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a. If G is a Lie groupoid then the map

μ : 𝔛•
m(G) ⊗ C•

m(G) → C•
m(G)

(α,X) ⊗ (f, F ) ↦→ (u∗ℒαrF + ℒXM
f,ℒXF )

defines a left dg-Lie module structure of 𝔛•
m(G) on C•

m(G).
b. If G and H are Morita equivalent Lie groupoids then (𝔛•

m(G), C•
m(G)) and (𝔛•

m(H), C•
m(H)) are quasi

isomorphic objects in the category dglmod.
c. If 𝒳 is a differentiable stack and M → 𝒳 is an atlas then there is an associated object (𝔛•

m(G), C•
m(G))

in dglmod where G is the Lie groupoid associated to M . Up to quasi-isomorphism in dglmod this object 
does not depend on the choice of atlas of 𝒳 .

In Theorem 2, X is a multiplicative vector with associated vector field XM on M , αr is the right-invariant 
vector field associated to the section α of the Lie algebroid of G, f ∈ C∞(M), F ∈ C∞

m (G) is a multiplicative 
function, and u : M → G is the unit map of G. See §6 for the precise definitions. We note that the operator 
u∗ℒαr also appears in [1, §4]. The category dglmod and the notion of quasi-isomorphism therein is defined 
in Definition 2.1.

As a consequence, one has the following. Given a differentiable stack 𝒳 and G a Lie groupoid whose 
classifying stack is isomorphic to 𝒳 , then:

Theorem 3 (= Theorem   7.4). There is an associated a graded Lie-Rinehart algebra

𝔛•(𝒳 ) := H•(𝔛•
m(G))

over the algebra C∞(𝒳 ), whose isomorphism class is independent of the choice of atlas. Also, if 𝒳 is 
equivalent to 𝒴, then 𝔛•(𝒳 ) ∼ = 𝔛•(𝒴) as graded Lie-Rinehart algebras over C∞(𝒳 ).

One can bring Lie theory into the picture by considering a Lie groupoid G with Lie algebroid A. In this 
case, there are a complex 𝔛•

m(A) of infinitesimally multiplicative functions on A (Definition 3.12), as well as 
a dgla 𝔛•

m(A) of derivations of A (Definition 3.14), together with certain module structures introduced in 
Definitions 3.16 and 3.17, respectively. We show that there are Van-Est maps compatible with the module 
structures as in the next result.

Theorem 4 (= Theorem   8.1). The following statements hold:

a. The Van-Est map VE : 𝔛•
m(G) → 𝔛•

m(A) is a morphism of dgla’s.
b. The following diagram is a commutative diagram of morphisms of cochain complexes:

𝔛•
m(G) ⊗ C•

m(G)

VE⊗VE

μ
C•

m(G)

VE

𝔛•
m(A) ⊗ C•

m(A)
μ

C•
m(A)

(3)

c. The vertical arrows (3) are isomorphisms whenever G is source simply connected.

Remark 1.5. Instead of the (differential graded) algebras C•
m(G) and C∞(𝒳 ), one can study the in-general 

noncommutative convolution algebra 𝒜G of G. It is shown in [17] that multiplicative vector fields act as 
derivations on 𝒜G, and this action extends to a morphism of cochain complexes
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C≥1
def(G) → C•(𝒜G,𝒜G)

from a truncation of deformation complex of G to the Hochschild cohomology of 𝒜G, see [17] for further 
details.

The paper is organized as follows. In §2 we present the necessary background in order to state and 
prove our main results. In §3 we recall the complex of multiplicative functions on a Lie groupoid as well 
as the dgla of multiplicative vector fields. We also introduce the infinitesimal version of these objects and 
we show the existence of a Van-Est map relating them. §4 is devoted to the study of several notions of 
functions on differentiable stacks and their relation to the complex of multiplicative functions on a Lie 
groupoid presenting a given stack. In §5 and §6 we introduce and study the module structures appearing in 
the main results explained above. In §7 we show the graded Lie-Rinehart algebra structure on vector fields 
on a differentiable stack. §8 explains the compatibility of the Van-Est maps with the module structures 
introduced in §5 and §6. In §9 we present several examples.
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2. Background and notation

All vector spaces, cochain complexes, algebras and other algebraic structures will be over the real numbers 
R.

By a manifold we will always mean a finite dimensional smooth manifold Hausdorff and paracompact. 
The symbols M and N will always denote manifolds. We denote by C∞(M) the algebra of smooth functions 
on M and by 𝔛(M) the Lie algebra of vector fields on M . The derivative of a smooth map ϕ : M → N is 
denoted by dϕ. The symbols X and Y will always denote vector fields. If ϕ : M → N is a diffeomorphism 
and X ∈ 𝔛(M) then we denote by ϕ∗X the vector field on N defined by y ↦→ dϕ(X(ϕ−1(y))). We note that 
if f ∈ C∞(N) then ϕ∗(ℒϕ∗Xf) = ℒX(ϕ∗f).

2.1. Lie groupoids

For general facts about Lie groupoids see [20], and [23, §5.4] or [24, §2.1&2.5] for the notion of weak 
and Morita equivalence. Unless otherwise stated, the symbol G will always denote a Lie groupoid with 
base M . We denote the structure maps of G by s, t : G → M (source and target), u : M → G (unit), 
m : G2 → G (multiplication) and i : G → G (inversion), where G2 := G×M G is the manifold of composable 
pairs of morphisms in G. If g ∈ G then the associated right and left translations are the diffeomorphisms 
Rg : s−1(t(g)) → s−1(s(g)), h ↦→ hg, and Lg : t−1(s(g)) → t−1(t(g)), h ↦→ gh, respectively.

We denote the strict 2-category of Lie groupoids by Gpd. If G and H are Lie groupoids then the category 
HomGpd(G,H) has objects the Lie groupoid morphisms ϕ : G → H, and arrows ψ : ϕ ⇒ ϕ′ given by smooth 
natural transformations.

2.2. Lie algebroids

For the basics on Lie algebroids see [20] or [23]. We define the Lie algebroid A of the Lie groupoid G
by A := (Ker ds)|M where the restriction to M is via pullback along the unit map u : M → G. (Note 
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that some references define A to be equal to (Ker dt)|M .) The symbols α and β will always denote sections 
of A.

The right-invariant and the left-invariant vector fields on G associated to α ∈ Γ(A) are defined by 
αr(g) = dRg(α(1t(g))) and αl(g) = −dLg(di(α(1s(g)))), respectively. Note that in some references the 
definition of αl differs from ours by a sign. With our convention αl = −i∗αr. The map α ↦→ αr (resp. 
α ↦→ αl) is a vector space isomorphism from Γ(A) to the Lie algebra of right (resp. left) invariant vector 
fields on G and the Lie bracket on Γ(A) is defined such that the first of these maps is a Lie algebra 
isomorphism. The anchor map a : A → TM is the restriction to M of the map dt : Ker ds → t∗TM .

2.3. Differentiable stacks

The main properties of differentiable stacks can be found in [9]. By a stack we always mean a pseudo
functor Man → gpd from the category Man of smooth manifolds to the 2-category gpd of set-theoretic 
groupoids. We denote the bicategory of stacks by St. A differentiable stack 𝒳 is a stack for which there 
exists a representable epimorphic submersion M → 𝒳 from a manifold M to 𝒳 . In this case the manifold 
G := M ×𝒳 M carries a natural Lie groupoid structure over M , 𝒳 is equivalent to the classifying stack BG

of principal G-bundles, and we say that the Lie groupoid G presents 𝒳 . Different atlases lead to Morita 
equivalent Lie groupoids, and more generally two Lie groupoids are Morita equivalent if and only if the 
corresponding classifying stacks are equivalent.

2.4. Differential graded objects

For background material on differential graded Lie algebras see [21, §IV,V]. By complex we will always 
mean cochain complex of real vector spaces, so that all differentials have degree +1. We will use the 
abbreviations ‘dga’ (differential graded algebra), ‘dgla’ (differential graded Lie algebra), and ‘gla’ (graded 
Lie algebra). A gla is a dgla with zero differential. We denote the category of dgla’s by dgla and the 
subcategory of gla’s by gla. We denote by End•(C•) the dgla of graded endomorphisms of a cochain 
complex C•, and by Der•(B•) the dgla of graded derivations of a dga B•.

A differential graded Lie module structure (or just a dgla L•-module for short) over a dgla (L•, [·, ·], ∂)
is a complex (M•, δ) equipped with a degree zero morphism of dgla’s L• → End•(M•), or equivalently a 
degree zero cochain map L• ⊗M• → M•, x⊗ y ↦→ x • y satisfying

δ(x • y) = ∂(x) • y + (−1)|x|x • δ(y), and

[x, x′] • y = x • (x′ • y) − (−1)|x||x
′|x′ • (x • y);

(4)

for all homogeneous elements x, x′ ∈ L• and y ∈ M•. If ϕ : L• → K• is a morphism of dgla’s and M• is 
a K•-module then the pullback module is the L•-module ϕ∗M• with underlying cochain complex M• and 
action x • y := ϕ(x) • y. If L• is a gla then a graded module or dg-module over L• is a differential graded 
module C• for which the differential on C• is equal to zero.

Definition 2.1. The category dglmod has objects given by pairs (L•,M•) where L• is a dgla and M• is 
a L•-module, a morphism (L•,M•) → (L′ •,M ′ •) is a pair (ϕ, ψ), where ϕ : L• → L′ • is a morphism 
of dgla’s and ψ : ϕ∗M ′ → M is a morphism of L•-modules, and the composition of morphisms of given 
componentwise.

A quasi-isomorphism in dglmod is a morphism (ϕ, ψ) in which ϕ is a quasi-isomorphism of dgla’s and ψ is 
a quasi-isomorphism of cochain complexes. A pair of objects (L•,M•) and (L′ •,M ′ •) are quasi-isomorphic 
if they are isomorphic in the category obtained by inverting all quasi-isomorphisms in dglmod.
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Remark 2.2. Suppose that (ϕ, ψ) : (L•,M•) → (L′ •,M ′ •) is a quasi-isomorphism in dglmod. If we identify 
H•(L′ •) with H•(L•) via the isomorphism H(ϕ) then H•(ψ) : H•(M ′ •) → H•(M•) is an isomorphism of 
graded H•(L•)-modules.

Definition 2.3. The category glmod is defined as follows: the objects are pairs (L•,M•) where L• is a gla 
and M• is a graded module over L•, a morphism (L•,M•) → (L′ •,M ′ •) is a pair (ϕ, ψ), where ϕ : L• → L′ •

is a morphism of gla’s and ψ : ϕ∗M ′ → M is a morphism of graded L•-modules, and the composition of 
morphisms of given componentwise.

It follows from Remark 2.2 that there is a natural functor dglmod → glmod mapping objects to their 
cohomology. This functor maps quasi-isomorphisms in dglmod to isomorphisms in glmod.

2.5. 2-term complexes and 2-vector spaces

Every cochain complex C• = C0 δ −→ C1 concentrated in degrees 0 and 1 determines a groupoid C0
⋉C1 ⇉

C1, where a pair (x, y) ∈ C0×C1 is by definition a morphism from y to y+δx, and the composition is given 
by (x′, y′) ◦ (x, y) = (x + x′, y), defined whenever y′ = y + δx. The sets of objects and morphisms are each 
vector spaces, and the structure maps of the category are all linear, so that C0

⋉ C1 is a category internal 
to the category of vector spaces, or a 2-vector space for short. This construction extends in an evident way 
to complexes concentrated in degrees i and i + 1 for some fixed i ∈ Z. Restricting to the i = 0 case the 
assignment

C0 δ −→ C1 ↦→ C0
⋉ C1 ⇉ C1

extends to an equivalence between the (suitably defined) 2-category of 2-term cochain complexes and the 
2-category of 2-vector spaces, see [6, §3] or [14, §2]. (The original reference is [5, Exposé XVIII, §1.4] in 
which 2-vector spaces are called ‘Picard groupoids’.) This can also be seen as a special case of the Dold-Kan 
correspondence [32, §8.4]. Note that there are other unrelated notions of 2-vector spaces, e.g. [18].

2.6. dgla’s, Lie 2-algebras and crossed modules

The equivalence of 2-term complexes and 2-vector spaces described in §2.5 extends to the setting of Lie 
algebras. If L• is a dgla concentrated in degrees -1 and 0 then the 2-vector space L−1

⋉L0 ⇉ L0 associated 
to the underlying complex L−1 → L0 is in a natural way a category internal to the category of Lie algebras 
or strict Lie 2-algebra for short. That is, L0 is a Lie algebra, the vector space L−1×L0 carries the semi-direct 
product Lie bracket defined by the adjoint action of L0 on L1, and the structure maps are all Lie algebra 
homomorphisms.

As shown in [6, Def. 47], 2-term dgla’s are also equivalent to crossed modules of Lie algebras. Concretely, 
a dgla L• concentrated in degrees -1 and 0 defines the crossed module

L−1 δ −→ L0 ad −→ Der(L−1)

where the Lie algebra maps δ and ad are given by the differential of L• and the restriction of the adjoint 
representation, respectively. See [6, §5] for further details.

2.7. Graded Lie-Rinehart algebras

Lie-Rinehart algebras, first introduced in [29], are the algebraic analogues of differential-geometric Lie 
algebroids. Note that in some references Lie-Rinehart algebras are called Lie algebroids, but we will keep 
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separate the terminology to avoid confusion. Differential graded Lie-Rinehart algebras appear in a number 
of references, including [15, §2.2], [27, §2.1], [30, §2], [31]. In this work we will only need a simpler notion of 
a graded Lie-Rinehart algebra over an R-algebra as given in the following definition.

Definition 2.4. A graded Lie-Rinehart algebra over an R-algebra R consists of a graded Lie algebra L•, 
a graded left R-module structure on the underlying graded vector space of L•, and a morphism of both 
gla-modules and graded R-modules a : L• → Der(R). This data must satisfy the graded Leibniz rule

[x, ry] = (a(x)(r)) y + r[x, y] (5)

for every r ∈ R and homogeneous elements x, y ∈ L•.

Remark 2.5. Note that the Leibniz identity in Definition 2.4 does not involve a minus sign of the form 
(−1)|r||x|. Indeed, since the algebra R is concentrated in degree zero, then Der(R) is also concentrated in 
degree zero, hence a Lie algebra.

Definition 2.6. The category gLRalg has object pairs (L•, R) consisting of a graded Lie-Rinehart algebra 
L• over R. A morphism (L•, R) → (L′ •, R′) is a pair (ϕ, ψ) where ψ : R → R′ is a morphism of R-algebras, 
and ϕ : L• → L′ • is both a morphism of graded Lie algebras and a morphism of R-modules. Here, L′ is an 
R-module with the pullback module structure induced by ψ : R → R′.

3. Some 2-term complexes and dgla’s

In this section we define several objects naturally associated to a Lie groupoid G and its Lie algebroid 
A. There are two dgla’s:

• 𝔛•
m(G): the dgla of multiplicative vector fields on G,

• 𝔛•
m(A): the dgla of Lie algebroid derivations of A.

Also there are two cochain complexes, each of them carrying a graded algebra structure on their cohomology:

• C•
m(G): the complex of multiplicative functions on G,

• C•
m(A): the complex of infinitesimal multiplicative functions on A.

We will see several module structures involving these objects, as well as a pair of Van-Est type maps relating 
them. It will also be explained the relation between these objects and others appearing elsewhere in the 
literature.

3.1. The complex C•
m(G) of multiplicative functions

Following [20, §9.8] or [26, §3], a multiplicative function on G is a smooth function F ∈ C∞(G) for which 
F (gh) = F (g) + F (h) for all pairs (g, h) ∈ G2. Equivalently, F : G → R is a morphism of Lie groupoids, 
where the Lie group R is considered as a Lie groupoid over a point. Alternatively, F is a 1-cocycle in the 
complex C•

d(G) computing the differentiable groupoid cohomology H•
d(G) of G [13, §1.2]. Multiplicative 

functions constitute a subspace C∞
m (G) ⊆ C∞(G). If f ∈ C∞(M) then t∗f − s∗f ∈ C∞

m (G).

Definition 3.1. The 2-term cochain complex C•
m(G) is defined as follows: C0

m(G) = C∞(M), C1
m = C∞

m (G), 
Ci

m = 0 for i ̸= 0, 1, and the differential δ : C∞(M) → C∞
m (G) is f ↦→ t∗f − s∗f . The cohomology of C•

m(G)
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carries a graded commutative product given by the restriction to C∞(M)G := Ker δ of the commutative 
product in C∞(M) and by f · [F ] := [(t∗f)F ] for f ∈ C∞(M)G and F ∈ C∞

m (G).

Remark 3.2. The cochain complex C•
m(G) is equal to the 2-term truncation C0

d(G) → Z1
d(G) of C•

d(G). In 
particular,

H0(C•
m(G)) ⊕H1(C•

m(G)) = H0(C•
d(G)) ⊕H1(C•

d(G))

as commutative graded algebras. Note that although C•
d(G) is a dga [13, §1.3], the truncated complex C•

m(G)
only carries a graded algebra structure at the level of cohomology. But if f ∈ C∞(M)G and F ∈ C∞

m (G), 
then we have (t∗f)F ∈ C∞

m (G).

If H → G is a Morita morphism of Lie groupoids then the induced cochain map C•
d(G) → C•

d(H) is a 
quasi-isomorphism [13, Thm. 1]. If G is proper then by [13, Prop. 1], Hi

d(G) = 0 for i ≥ 1, and in particular 
H1(C•

m(G)) = H1
d(G) = 0.

3.2. The dgla 𝔛•
m(G) of multiplicative vector fields

Following [20, §9.8] or [26, §3], a multiplicative vector field is a pair (X,XM ) where X ∈ 𝔛(G) and 
XM ∈ 𝔛(M), which defines a morphism of Lie groupoids G → TG. As a morphism of Lie groupoids (X,XM )
is determined by X, and so we often drop XM from the notation. This is equivalent to the condition that X
is both s and t-related to XM , and that the vector field (X,X) on G2 is pr1, pr2, and m-related to X. The 
vector space 𝔛m(G) of multiplicative vector fields is a Lie subalgebra of 𝔛(G). If X ∈ 𝔛m(G) and α ∈ Γ(A)
then αr − αl ∈ 𝔛m(G), and [X,αr] is right invariant so that [X,αr]|M ∈ Γ(A).

Definition 3.3. The 2-term dgla 𝔛•
m(G) is defined as follows: 𝔛−1

m (G) = Γ(A), 𝔛0
m(G) = 𝔛m(G), 𝔛i

m(G) = 0
for i ̸= −1, 0, the differential ∂ : Γ(A) → 𝔛m(G) is α ↦→ αr − αl, and the graded Lie bracket ⟦·, ·⟧ is given 
by the Lie bracket of multiplicative vector fields and ⟦X,α⟧ = [X,αr]|M for X ∈ 𝔛m(G) and α ∈ Γ(A).

As for any dgla, the cohomology H•(𝔛•
m(G)) inherits a gla structure from the dgla structure on 𝔛•

m(G)
and H0(𝔛m(G)) is a Lie algebra.

Theorem 3.4. ([28,8].) If H is a Lie groupoid Morita equivalent to G then 𝔛•
m(G) and 𝔛•

m(H) are quasi
isomorphic dgla’s. The category

Γ(A) ⋉ 𝔛m(G) ⇉ 𝔛m(G)

associated to 𝔛•
m(G) is isomorphic to the category Γ(TG) of multiplicative sections of the tangent groupoid 

TG so that Γ(TG) carries a natural Lie 2-algebra structure. Also, Γ(TG) is equivalent to the category Γ(T𝒳 )
of sections of the tangent stack T𝒳 where 𝒳 = BG is the classifying stack of G.

Remark 3.5. The definitions of the categories Γ(TG) and Γ(T𝒳 ) can be found in [16, Def. 4.2, 4.3, 4.14] and 
their equivalence as set-theoretic categories is in [16, Thm. 4.15]. Note that in [28] and [8] the language of 
Lie algebra crossed modules and of Lie 2-algebras is used instead of dgla’s, see §2.5 & 2.6 for a dictionary. 
A version of Theorem 3.4 has been generalised to multi-vector fields in [7, Thm. 2.8].

Remark 3.6. The underlying cochain complex of 𝔛•
m(G) is equal to the 2-term truncation of the deformation 

complex C•
def(G) of G shifted by 1, defined in [12, Def. 2.1]. The deformation cohomology of G is denoted 

H•
def(G). In particular,
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H−1(𝔛•
m(G)) ⊕H0(𝔛•

m(G)) = H0
def(G) ⊕H1

def(G)

as graded vector spaces. It is shown in [12, §9] that H•
def(G) is isomorphic to the cohomology of G with 

coefficients in the adjoint representation up to homotopy of G defined in [2]. Additionally, if G is proper 
then Hi

def(G) = 0 for every i ≥ 2, [12, Thm. 6.1].

3.2.1. The left C∞(M)G-module structure on C•
m(G) and H•(C•

m(𝒳 ))
We will show now that the complex 𝔛•

m(G) of vector spaces is actually a complex of C∞(M)G-modules.

Proposition 3.7. Suppose that f ∈ C∞(M)G, α ∈ Γ(A) and X ∈ 𝔛m(G). Then the following hold:

a. (t∗f)X is multiplicative with ((t∗f)X)M = fXM .
b. ∂(fα) = (t∗f)∂(α).

Proof. We start by showing (a). It is clear that (t∗f)X = (s∗f)X is both s and t-related to fXM . If 
(g, h) ∈ G2, with s(g) = t(h) = x ∈ M , then

dm(((s∗f)X)g, ((t∗f)X)h) = f(x)dm(Xg, Xh)

= f(x)Xgh

= ((t∗f)X)gh.

In order to prove (b), we calculate

∂(fα) = (fα)r − (fα)l

= (t∗f)αr − (s∗f)αl

= (t∗f)
(︁
αr − αl

)︁

= (t∗f)∂α,

finishing the proof. □
As a consequence, one has the following module structures.

Definition 3.8. The chain complex 𝔛•
m(G) of vector spaces is a chain complex of left C∞(M)G-modules with 

action defined by

C∞(M)G ⊗ 𝔛•
m(G) → 𝔛•

m(G)

f ⊗ (α,X) ↦→ (fα, (t∗f)X) .

This action descends to cohomology to define a graded C∞(M)G-module structure on H•(𝔛•
m(G)) given by

C∞(M)G ⊗H•(𝔛•
m(G)) → H•(𝔛•

m(G))

f ⊗ ([α], [X]) ↦→ ([fα], [(t∗f)X]) .

3.2.2. The graded module structure of H•(𝔛•
m(G)) over H•(C•

m(G))
The C∞(M)G-module structure on H•(𝔛•

m(G)) defined in Definition 3.8 actually extends to an 
H•(C•

m(G))-module structure. In [12, Lem. 2.5] it is shown that the deformation complex C•
def(G) car

ries a natural right dg-module structure over the dga C•
d(G). This descends to cohomology to define a right 
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graded H•
d (G)-module structure on H•

def(G). Truncating this module structure gives the module structure 
in the following definition.

Definition 3.9. The left graded module structure of H•(𝔛•
m(G)) over H•(C•

m(G))

H•(C•
m(G)) ⊗H•(𝔛•

m(G)) → H•(𝔛•
m(G))

([f ], [F ]) ⊗ ([α], [X]) ↦→ ([f ] · [α], [f ] · [X] + [F ] · [α])

= ([fα], [(t∗f)X] + [Fαr])

is defined as follows:

a. [F ] · [X] = 0
b. [F ] · [α] = [Fαr]
c. [f ] · [X] = [(t∗f)X]
d. [f ] · [α] = [fα]

for F ∈ C∞
m (G), f ∈ C∞(M)G, X ∈ 𝔛m(G) and α ∈ Ker ∂ ⊆ Γ(A).

Remark 3.10. Note that as the graded algebra H•(C•
m(G)) is strictly commutative (as opposed graded com

mutative) the right H•
d (G)-module structure on H•

def(G) defines a left H•(C•
m(G))-structure on H•(𝔛•

m(G))
as in Definition 3.9.

Remark 3.11. Note that the vector field Fαr ∈ 𝔛(G) in Definition 3.9(b) is indeed multiplicative. In fact, 
α ∈ Ker(∂) is equivalent to saying that αr = αl and hence αr is both s and t-projectable to zero. It remains 
to check that (Fαr, Fαr) is m-related to Fαr. For that we use the explicit formula of the multiplication in 
TG as in [20, Thm 1.4.14]. Given composable arrows g, h and local bisections σ : U → G and τ : V → G

with s(g) ∈ U and s(h) ∈ V , then

(Fαr)g • (Fαr)h = dLσ((Fαr)h) + dRτ ((Fαr)g) − dLσdRτd1ds(Fαr)g.

The last term of the right hand side vanishes since αr is s-projectable to zero. Using that αr = αl one easily 
check that

dLσ((Fαr)h) + dRτ ((Fαr)g) = F (h)αl
gh + F (g)αr

gh = F (gh)αr
gh,

where in the last identity we have used that F is multiplicative.

3.3. The complex C•
m(A) of infinitesimal multiplicative functions

We define the vector space C1
m(A) ⊆ Γ(A∗) to be the subspace with elements ω satisfying

ℒa(α)ω(β) − ℒa(β)ω(α) − ω([α, β]) = 0 (6)

for all α, β ∈ Γ(A). In other words ω : A → R is a morphism of Lie algebroids where R is considered as 
an abelian Lie algebra. We think of elements of C1

m(A) as ``infinitesimal multiplicative functions'' on A. If 
f ∈ C∞(M) then dAf ∈ C1

m(A) is defined as dAf(α) := ℒa(α)f .

Definition 3.12. The 2-term complex of infinitesimal multiplicative functions C•
m(A) is defined as follows: 

C0
m(A) = C∞(M), C1

m(A) is as defined above, Ci
m(A) = 0 for i ̸= 0, 1, and the differential is dA : C∞(M) →
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C1
m(A). The cohomology of C•

m(A) carries a graded product given by [f ][f ′] = [ff ′] and [f ][ω] := [fω] for 
f, f ′ ∈ C∞(M) and ω ∈ C1

m(A).

Remark 3.13. The complex C•
m(A) is equal to the 2-term truncation C0(A) → Z1(A) of the Chevalley

Eilenberg complex C•(A) of A, the cohomology of which is denoted H•(A), see [20, §7] or [13, §1.4]. In 
particular,

H0(C•
m(A)) ⊕H1(C•

m(A)) = H0(A) ⊕H1(A)

as graded vector spaces. Note that although C•(A) carries a natural dga structure, C•
m(A) only carries a 

graded algebra structure at the level of cohomology.

3.4. The dgla 𝔛•
m(A) of derivations of A

A Lie algebroid derivation of A is a pair (D,σ(D)) where D ∈ Der(Γ(A)) is a derivation of the Lie algebra 
Γ(A) and σ(D) ∈ 𝔛(M) with D(fα) = (ℒσ(D)f)α + fD(α) and ρ(Dα) = [σ(D), ρ(α)] for all f ∈ C∞(M)
and α ∈ Γ(A) [22, Def. 4.1]. The vector field σ(D), called the symbol of D, is uniquely determined by D
and so we sometimes drop it from the notation. The space of Lie algebroid derivations is a Lie subalgebra 
Der(A) ⊆ Der(Γ(A)) and makes part of a 2-term dgla as explained below.

Definition 3.14. The 2-term dgla 𝔛•
m(A) is defined as follows: 𝔛−1

m (A) = Γ(A), 𝔛0
m = Der(A), 𝔛i

m = 0 for 
i ̸= −1, 0, the differential ad : Γ(A) → Der(A) is α ↦→ ([α,−], a(α)), and the graded Lie bracket is given the 
commutator of Lie algebroid derivations and [(D,σ(D)), α] = D(α) for (D,σ(D)) ∈ Der(A) and α ∈ Γ(A).

Remark 3.15. The dgla 𝔛•
m(A) is the 2-term truncation of the deformation complex C•

def(A) of A shifted by 
1, defined in [11, §2]. The deformation cohomology of A is denoted H•

def(A). The dgla structure on 𝔛•
m(A)

is a restriction of the dgla structure defined in [11] on the shift by 1 of C•
def(A). In particular,

H−1(𝔛•
m(A)) ⊕H0(𝔛•

m(A)) = H0
def(A) ⊕H1

def(A)

as graded vector spaces.

3.4.1. The dgla 𝔛•
m(A)-module structure on C•

m(A)
The deformation complex C•

def(A) is isomorphic to the dgla of graded derivations of the dga C•(A) and 
so C•(A) carries a natural C•

def(A)-module structure [11, §2.5-4.8]. This module structure is compatible 
with the inclusions 𝔛•

m(A) ⊆ C•
def(A) and C•

m(A) ⊆ C•(A), which gives rise to the following.

Definition 3.16. The dgla module structure of C•
m(A) over 𝔛•

m(A) is defined as:

μ : 𝔛•
m(A) ⊗ C•

m(A) → C•
m(A)

(α,D) ⊗ (f, ω) ↦→ (α•ω + D•f,D•ω)

where

a. D•ω = ℒσ(D) ◦ ω − ω ◦D
b. D•f = ℒσ(D)f

c. α•ω = iαω := ω(α)
d. α•f = 0
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for D ∈ Der(A), α ∈ Γ(A), ω ∈ C1
m(A) and f ∈ C∞(M).

In Theorem 6.1 we prove that there is a related dgla module structure of C•
m(G) over 𝔛•

m(G).

3.4.2. The graded module structure of H•(𝔛•
m(A)) over H•(C•

m(A))
The deformation complex C•

def(A) of A is isomorphic to the complex Ω•(A, ad) computing the cohomology 
of the adjoint representation up to homotopy of A [4, Thm. 3.11]. The latter complex is, by definition [4, 
Def. 3.1], a module over the differential graded algebra C•(A). Via the isomorphism C•

def(A) ∼ = Ω•(A, ad)
this module structure descends to cohomology to define a right graded H•(A)-module structure on H•

def(A), 
and then applying appropriate truncations gives the module structure in the following definition.

Definition 3.17. The left graded H•(C•
m(A))-module structure on H•(𝔛•

m(A))

H•(C•
m(A)) ⊗H•(𝔛•

m(A)) → H•(𝔛•
m(A))

([f ], [ω]) ⊗ ([α], [D]) ↦→ ([f ]·[α], [ω]·[α] + [f ]·[D])

is defined as follows:

a. [ω]·[D] = 0
b. [ω]·[α] = [ωα], where ωα := (β ↦→ ω(β) α)
c. [f ]·[D] = [fD]
d. [f ]·[α] = [fα]

for ω ∈ C1
m(A), f ∈ Ker dA = H0(C•

m(A)), D ∈ Der(A) and α ∈ Ker ad = H−1(𝔛•
m(A)).

Remark 3.18. Just as in Remark 3.11, one observes that ωα in Definition 3.17(b) is indeed a Lie algebroid 
derivation of A. If β, β′ ∈ Γ(A) then using the fact that α ∈ Ker ∂ implies that α is central in Γ(A), and 
(6):

[(ωα)(β), β′] + [β, (ωα)(β′)] = [ω(β)α, β′] + [β, ω(β′)α]

= ω(β)[α, β′] + ω(β′)[β, α] + (ℒa(β)
(︁
ω(β′)) − ℒa(β′)(ω(β))

)︁
α

= ω([β, β′])α

= (ωα)([β, β′]),

which shows that ωα is a derivation of the Lie algebra Γ(A). By Definition, ωα is C∞(M)-linear, and so is 
a Lie algebroid derivation with zero symbol.

3.5. Van-Est maps

If F ∈ C∞
m (G) then the function ωF : α ↦→ u∗ℒαr (F ) is an element of C1

m(A). This is just the Lie functor 
mapping a Lie groupoid morphism F : G → R to the corresponding Lie algebroid morphism A → R, where 
in the first case R is considered as a Lie group and in the second as its Lie algebra.

Definition 3.19. The Van-Est map VE : C•
m(G) → C•

m(A) is the morphism of cochain complexes that is the 
identity on C∞(M) and is C1

m(G) → C1
m(A), F ↦→ ωF in degree 1.

By Lie’s theorems for Lie groupoids, VE is injective (resp. an isomorphism) if G is source connected (resp. 
source simply connected). The map VE is the truncation of the Van-Est map C•

d(G) → C•(A) defined in 
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[33], whose associated map on cohomology Hi(G) → Hi(A) is an isomorphism in degrees i ≤ n and injective 
in degree i = n + 1 whenever G is source n-connected [13, Thm. 4].

If X ∈ 𝔛m(G) then the map DX : α ↦→ [X,αr]|M is a derivation of Γ(A) and the pair (DX , XM ) is an 
element of Der(A). This defines a Lie algebra homomorphism from 𝔛m(G) to Der(A) [26, §3], [22, §4].

Definition 3.20. The Van-Est map VE : 𝔛•
m(G) → 𝔛•

m(A) is the morphism of cochain complexes that is the 
identity map on Γ(A) and is 𝔛m(G) → Der(A), X ↦→ DX in degree 0.

The Lie algebra morphism X ↦→ DX and therefore the morphism VE : 𝔛•
m(G) → 𝔛•

m(A) is injective 
(resp. an isomorphism) whenever G is source-connected (resp. source simply connected) [22, Thm. 4.5]. 
Also, up to a shift in degree, the map VE is the truncation of the Van-Est map C•

def(G) → C•
def(A) defined 

in [12, §10] whose associated map on cohomology Hi
def(G) → Hi

def(A) is an isomorphism in degrees i ≤ n−1
whenever G is source n-connected [12, Thm. 10.1], [3, Thm. 4.7].

One easily observes that VE is a morphism of dgla’s. This follows from a standard construction for general 
dgla’s as explained in Remark 3.21 below.

Remark 3.21. Suppose that L• = L−1 ⊕ L0 is a 2-term dgla with differential dL. Then L−1 carries a Lie 
bracket [−,−]L−1 defined by [x, x′]L−1 := [dLx, x′], and L0 acts on this Lie algebra by derivations via 
y ↦→ [y,−] ∈ Der(L−1). These operations define a second dgla L−1 ⊕ Der(L−1) with differential x ↦→ adx, 
and a morphism of dgla’s L−1 ⊕ L0 → L−1 ⊕ Der(L−1).

In the case of the dgla 𝔛•
m(G), the map 𝔛m(G) → Der(Γ(A)), X ↦→ [X,−] lands in the Lie subalgebra 

Der(A) ⊆ Der(Γ(A)) and so one gets a morphism of dgla’s 𝔛•
m(A) → 𝔛•

m(A), which is exactly the map VE
of Definition 3.20.

4. Functions on differentiable stacks

There are several equivalent descriptions of the algebra C∞(𝒳 ) of smooth functions on a differentiable 
stack 𝒳 . These are described in the following proposition.

Proposition 4.1. Let 𝒳 be a differentiable stack, M → 𝒳 an atlas, and G the associated Lie groupoid over 
M . The following commutative algebras are canonically isomorphic:

a. morphisms of stacks HomSt(𝒳 ,R) from 𝒳 to the manifold R.
b. global sections H0(C∞

𝒳 ) of the sheaf of smooth functions on 𝒳 .
c. invariant functions C∞(M)G on M .
d. the degree zero differentiable cohomology H0

d(G) of G.

Proof. See [9, §3]. □
The categories defined below are directly related to the previous algebras.

Theorem 4.2. Let G be a Lie groupoid over M . The following two categories are isomorphic:

a. The category C∞(M) ⋉ C∞
m (G) associated to the 2-term complex C∞(M) δ −→ C∞

m (G).
b. The category HomGpd(G,R) of Lie groupoid homomorphisms from G to R considered as a Lie groupoid 

over a point.

In addition, if M is Hausdorff and paracompact then (a) and (b) are equivalent to:
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(c) The category HomSt(BG,BR) of morphisms of stacks from BG to BR.

More generally, if 𝒳 is a differentiable stack, M → 𝒳 is an atlas with M Hausdorff and paracompact, and 
G is the associated Lie groupoid over M , then the categories (a) and (b) are equivalent to HomSt(𝒳 , BR).

Proof. We first show that the categories (a) and (b) are isomorphic. This can be deduced from [28, Thm. 
3.1], see Remark 4.3 below, but we give a self-contained proof.

The set of objects of the category HomGpd(G,R) is equal to the set C∞
m (G) of multiplicative functions 

on G (see §3.1). A morphism f : F ⇒ F ′ in the category HomGpd(G,R) is smooth natural transformation; 
that is, a smooth function f : M → R such that for each g ∈ G, with s(g) = x and t(g) = y, the following 
square commutes:

F (x)
F (g)

f(x)

F (y)

f(y)

F ′(x)
F ′(g)

F ′(y)

which is equivalent F ′(g) = F (g) + f(y) − f(x). It follows that a morphism f : F ⇒ F ′ is exactly a 
smooth function f ∈ C∞(M) such that F ′ = F + t∗f − s∗f , or F ′ = F + δf . This shows that the map 
(F ′, f, F ) ↦→ f : F ⇒ F ′ is a bijection from the set of morphisms in HomGpd(G,R) to the set of morphisms 
in C∞(M) ⋉ C∞

m (G).
The composition of smooth natural transformations f : F ⇒ F ′ and f ′ : F ′ ⇒ F ′′ is given by (f ◦f ′)(x) =

f(x) + f ′(x), which corresponds exactly to the composition (F ′′, f ′, F ′) ◦ (F ′, f, F ) = (F ′′, f ′ + f, F ) in the 
category C∞(M) ⋉ C∞

m (G).

It remains to show that the categories (a) and (b) are equivalent to HomSt(BG,BR). For any Lie groupoid 
H there is a natural equivalence of categories

HomGPD(G,H) ≃−→ HomSt(BG,BH), (7)

where HomGPD(G,H) is the category of G-H bibundles or Hilsum-Skandalis morphisms, and a natural 
functor

HomGpd(G,H) → HomGPD(G,H) (8)

which maps a morphism of Lie groupoids to the corresponding G-H bibundle; see [19, §3.2-3.3] for fur
ther details. The functor (8) is fully-faithful because natural transformations between morphisms of Lie 
groupoids correspond exactly to isomorphisms between the corresponding bibundles, and by [19, Lem. 3.36] 
the essential image of (8) is the full subcategory of HomGPD(G,H) consisting of bibundles that admit a 
global section.

Combining these facts, it is sufficient to show that if P is a G-R bibundle then the principal R-bundle 
P → M admits a global section. This follows from the assumptions on the topology of the manifold M : 
being Hausdorff and paracompact implies that the sheaf C∞

M of smooth R-valued functions on M is fine 
and therefore the Čech cohomology group Ȟ1(M,C∞

M ) classifying principal R-bundles is zero. □
Remark 4.3. The isomorphism C∞(M) ⋉ C∞

m (G) ≃ HomGpd(G,R) can also be deduced from results in 
[28]. In the category Gpd, morphisms from G to R are equivalent to sections of the projection G×R → G, 
which is a 𝒱ℬ-groupoid over G with core the trivial vector bundle M ×R, see [28] for the terminology. The 
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isomorphism then follows from [28, Thm. 3.1] after identifying the right (resp. left) invariant function fr

(resp. f l) on G associated to f ∈ Γ(M ×R) = C∞(M) with t∗f (resp. s∗f).

5. Some identities

Throughout §5 we use the notation established in §3, and we use f, f ′ to denote elements of C∞(M); 
F, F ′ to denote elements of C∞

m (G); α, β to denote elements of Γ(A); and X,Y to denote elements of 𝔛m(G).

5.1. The operation ‘•’

In order to prove the main results of §6 and §7 we first establish a number of relevant identities satisfied 
by the following operations.

Definition 5.1. We define a canonical degree zero map between dgla’s

𝔛•
m(G) → End•(C•

m(G)),

given by:

a. X • f = ℒXM
f ;

b. X • F = ℒXF ;
c. α • f = 0;
d. α • F = u∗ℒαrF ;

for every X ∈ 𝔛m(G), α ∈ Γ(A), f ∈ C∞(M) and F ∈ C∞
m (G).

Remark 5.2. Note that ℒXF is a multiplicative function whenever X and F are multiplicative because

m∗(ℒXF ) = ℒ(X,X)(m∗F ) = ℒ(X,X)(pr∗1F + pr∗2F ) = pr∗1(ℒXF ) + pr∗2(ℒXF ).

In other words, associated to each multiplicative vector field (resp. section of A) there is a degree zero 
(resp. minus one) endomorphism of the graded vector space C∞(M) ⊕ C∞

m (G) underlying the complex 
C•

m(G) defined as above.

5.2. Derivatives of multiplicative functions

We need the following identities about derivatives of multiplicative functions to prove several results 
about the operation ‘•’ of Definition 5.1.

Lemma 5.3. The following identities hold:

a. ℒαlF = i∗(ℒαrF ).
b. (ℒαrF )(h) = (ℒαrF )(hg) whenever g, h ∈ G with s(h) = t(g).
c. (ℒαlF )(h) = (ℒαlF )(gh) whenever g, h ∈ G with t(h) = s(g).
d. ℒαrF = t∗u∗ℒαrF = t∗u∗ℒαlF .
e. ℒαlF = s∗u∗ℒαlF = s∗u∗ℒαlF .

Proof. (a). Using the fact that i∗F = −F and that i∗αr = −αl, where i∗αr is the pushforward of αr by the 
diffeomorphism i, we have that
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ℒαrF = −ℒαr i∗F

= −i∗(ℒi∗αrF )

= i∗(ℒαlF ).

(b). Suppose that g ∈ G with x = s(g) and y = t(g). First note that as αr is tangent to the fibers of the 
submersion s : G → M it restricts to a vector field αr|s−1(z) on the submanifold s−1(z) for each z ∈ M , 
and the right invariance of αr is equivalent to the condition that (Rg)∗(αr|s−1(y)) = αr|s−1(x). Moreover, 
the value of ℒαrF at h ∈ G with s(h) = z only depends on the restriction of F to s−1(z), that is

(ℒαrF )(h) =
(︂
ℒαr|s−1(z)

(︁
F |s−1(z)

)︁)︂
(h).

Next, it follows from the multiplicativity of F that F |s−1(y) is equal to R∗
g(F |s−1(x)) up to the addition 

of a constant function:

R∗
g(F |s−1(x))(h) = F |s−1(x)(hg)

= F (h) + F (g)

= F |s−1(y)(h) + F (g).

This implies that ℒZR
∗
g(F |s−1(y)) = ℒZ(F |s−1(y)) for any vector field Z on s−1(y).

Combining these two observations and using the fact that αr is right invariant we have that

(ℒαrF )|s−1(y) = ℒαr|s−1(y)
(F |s−1(y))

= ℒαr|s−1(y)
(R∗

g(F |s−1(x)))

= R∗
g

(︂
ℒ(Rg)∗(αr|s−1(y))F |s−1(x)

)︂

= R∗
g

(︂
ℒαr|s−1(x)

F |s−1(x)

)︂

and therefore (ℒαrF )(h) = (ℒαrF )(hg) whenever h ∈ G with s(h) = t(g).
(c). This follows from the same argument as in the proof of (b), but with αr replaced by αl and Rg

replaced by Lg.
(d). Using part (b) we have that

(ℒαrF )(g) = (ℒαrF )(1t(g)g)

= (ℒαrF )(1t(g))

= (t∗u∗ℒαrF )(g)

which proves the first equality. To prove the second equality we use part (a) and the fact that iu = u:

t∗u∗ℒαrF = t∗u∗i∗ℒαlF

= t∗(iu)∗ℒαlF

= t∗u∗ℒαlF.

(e). This follows from part (c) and the same argument as in the proof of (d). □
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We note that the identities in Lemma 5.3 are partly derived from the Cartan calculus in [10, §4.2], where 
multiplicative functions are treated as groupoid (0, 0)-characteristic pairs. For our purposes, Lemma 5.3
(d)&(e) can be restated in terms of Definition 5.1 as follows.

Lemma 5.4 (Derivatives). The following statements hold:

a. ℒαrF = t∗(α • F )
b. ℒαlF = s∗(α • F )

Similarly, the compatibility between the operation • in Definition 5.1 and the involved differential can 
be expressed as follows.

Lemma 5.5 (Differentials). The following identities hold:

a. δ(X • f) = X • δf
b. α • δf = ∂α • f
c. δ(α • F ) = ∂α • F

Proof. (a). This follows from the fact that X is s and t-related to XM .
(b). Using the fact that αr is s-related to zero and t-related to a(α), and that tu = idM , we have that

α • δf = u∗ℒαr t∗f − u∗ℒαrs∗f

= u∗t∗ℒa(α)f

= (tu)∗ℒa(α)f

= ℒa(α)f

= ∂α • f.

(c). Using Lemma 5.3(d) and (e) we have:

δ(α • F ) = t∗u∗ℒαrF − s∗u∗ℒαrF

= ℒαrF − ℒαlF

= ℒαr−αlF

= ℒ∂(α)F

= ∂α • F. □
Finally, recall the Lie structure on 𝔛•

m(G) from Definition 3.3, that ⟦X,Y ⟧ = [X,Y ] and ⟦X,α⟧ =
[X,αr]|M . Hence the operation • in Definition 5.1 is compatible with Lie brackets in the following sense.

Lemma 5.6 (Lie brackets). The following identities hold:

a. ⟦X,Y ⟧ • f = X • (Y • f) − Y • (X • f)
b. ⟦X,Y ⟧ • F = X • (Y • F ) − Y • (X • F )
c. ⟦X,α⟧ • F = X • (α • F ) − α • (X • F ).

Proof. Statements (a) and (b) follow immediately from standard properties of Lie derivatives and the fact 
that ⟦X,Y ⟧ = [X,Y ] and ⟦X,Y ⟧M = [XM , YM ].
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(c). This follows from standard properties of Lie derivatives and the fact that X is u-related to XM :

⟦X,α⟧ • F −X • (α • F ) + α • (X • F ) = (u∗ℒ[X,αr] − ℒXM
u∗ℒαr + u∗ℒαrℒX)F

= (u∗ℒ[X,αr] − u∗ℒXℒαr + u∗ℒαrℒX)F

= u∗(ℒ[X,αr] − ℒXℒαr + ℒαrℒX)F

= u∗(ℒ[X,αr] − [ℒX ,ℒαr ])F

= 0. □
6. The dgla module structure

In this section we use the operation ‘•’ of Definition 5.1 and the identities proven in §5 to construct on 
the cochain complex C•

m(G) the structure of a dg-module over the dgla 𝔛•
m(G). In §6.2 we prove that this 

module structure is Morita invariant in an appropriate sense, and so defines an object on the associated 
stack.

6.1. The module structure

The definitions of α • F , X • f and X • F in Definition 5.1 are linear in each variable and so determine 
linear maps Γ(A) ⊗ C∞

m (G) → C∞(M), 𝔛m(G) ⊗ C∞(M) → C∞(M) and 𝔛m(G) ⊗ C∞
m (G) → C∞

m (G).

Theorem 6.1. The map

μ : 𝔛•
m(G) ⊗ C•

m(G) −→ C•
m(G)

(α,X) ⊗ (f, F ) ↦→ (u∗ℒαrF + ℒXM
f,ℒXF )

= (α • F + X • f,X • F )

makes C•
m(G) into a differential graded module over the dgla 𝔛•

m(G).

Proof. The condition that μ is a chain map, see identities in (4), is equivalent to

δ(x • y) = ∂x • y + (−1)|x|x • δy

for every homogeneous elements x ∈ 𝔛•
m(G) and y ∈ C•

m(G). Indeed, this follows from Lemma 5.5 once 
one takes into account the signs and uses the facts that ∂X = 0, δF = 0 and α • f = 0 for X ∈ 𝔛m(G), 
F ∈ C∞

m (G), f ∈ C∞(G) and α ∈ Γ(A):

δ(X • f) = ∂X • f + X • δf = X • δf by Lemma 5.5 (a)

δ(X • F ) = ∂X • F + X • δF as all terms have degree 2

δ(α • f) = 0 = ∂α • f − α • δf by Lemma 5.5 (b)

δ(α • F ) = ∂α • F − α • δF = ∂α • F by Lemma 5.5 (c).

The condition that the action μ is compatible with the graded Lie brackets on 𝔛•
m(G) is that

[x, x′] • y = x • (x′ • y) − (−1)|x||x
′|x′ • (x • y) (9)

holds for x a homogeneous element of 𝔛•
m(G) and y a homogeneous element of C•

m(G). If α, β ∈ Γ(A) then 
⟦α, β⟧ (−), α • (β−) and β • (α−) are operators of degree -2, thus
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⟦α, β⟧ (y) = 0 = α • (β • y) − (−1)|α||β|β • (α • y)

for any element y ∈ C•
m(G). The remaining cases follow from Lemma 5.6 (a)-(c) and the fact that multi

plicative vector fields have degree zero. □
6.2. Morita invariance and quasi-isomorphisms

Recall from §2.4 the categories dglmod (Definition 2.1) and glmod (Definition 2.3). The module struc
ture of Theorem 6.1 associates to a Lie groupoid G an object (𝔛•

m(G), C•
m(G)) in dglmod. The setup and 

notation in the proof of the following result, as well as the statement itself, will be used a number of times 
in the sequel.

Theorem 6.2. If G and H are Morita equivalent Lie groupoids then (𝔛•
m(G), C•

m(G)) and (𝔛•
m(H), C•

m(H))
are quasi-isomorphic objects in the category dglmod.

Proof. The proof is a combination of results showing the Morita invariance of differentiable cohomology 
[13] and of the dgla 𝔛•

m(G) [28,8]. By a standard argument we can reduce the problem to the case where 
there exists a surjective Morita map ϕ : G → H. Following [28, §7.5] there exists a differential graded 
Lie subalgebra 𝔛•

m(G)ϕ ⊆ 𝔛•
m(G) consisting of sections of the Lie algebroid A of G and multiplicative 

vector fields that are ϕ-projectable. Projecting elements of 𝔛•
m(G)ϕ to the corresponding (uniquely defined) 

elements of 𝔛•
m(H), and the inclusion of 𝔛•

m(G)ϕ in 𝔛•
m(G), define quasi-isomorphisms of dgla’s

𝔛•
m(G) inc←−− 𝔛•

m(G)ϕ ϕ −→ 𝔛•
m(H). (10)

In [28] the object 𝔛•
m(G)ϕ is denoted C•

mult(𝒱)ϕ and the statements are written in terms of crossed modules; 
see §2.6 for a dictionary. Following [13, §1.2], pulling back functions by ϕ defines a quasi-isomorphism from 
C•

d(G) to C•
d(H), which we can truncate to give the quasi-isomorphism ϕ∗ in the diagram

C•
m(G) id −→ C•

m(G) ϕ∗
←− C•

m(H). (11)

We can restrict the 𝔛•
m(G)-module C•

m(G) to 𝔛•
m(G)ϕ to define an object (𝔛•

m(G)ϕ, C•
m(G)) in dglmod. 

We claim that combining (10) and (11) gives a diagram of quasi-isomorphisms in dglmod

(𝔛•
m(G), C•

m(G)) (inc,id) ←−−−− (𝔛•
m(G)ϕ, C•

m(G)) (ϕ,ϕ∗) −−−−→ (𝔛•
m(H), C•

m(H)) (12)

showing that (𝔛•
m(G), C•

m(G)) and (𝔛•
m(H), C•

m(H)) are quasi-isomorphic objects. It is immediate that 
(inc, id) is a morphism in dglmod. That (ϕ, ϕ∗) is a morphism in dglmod follows from basic properties 
of vector fields and smooth maps: if X ∈ 𝔛m(G) is ϕ-projectable to ϕ(X) ∈ 𝔛m(H) then for any function 
F ∈ C∞(H) it holds that

ϕ∗
(︂
ℒϕ(X)F

)︂
= ℒX(ϕ∗F ).

This, and the same identity applied to sections of the Lie algebroid of G, shows that ϕ∗ defines a morphism 
of 𝔛•

m(G) modules ϕ∗ : ϕ∗C•
m(H) → C•

m(G). By the results referenced above the morphisms (inc, id) and 
(ϕ, ϕ∗) are both quasi-isomorphisms. □

As a consequence of Theorem 6.2, one has the following.
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Corollary 6.3. In the setup and notation in the proof of Theorem 6.2. The maps

(H•(𝔛•
m(G)), H•(C•

m(G))) (H(inc),H(id)) ←−−−−−−−−− (H•(𝔛•
m(G))ϕ, H•(C•

m(G)))

and

(H•(𝔛•
m(G))ϕ, H•(C•

m(G))) (H(ϕ),H(ϕ∗)) −−−−−−−−−→ (H•(𝔛•
m(H)), H•(C•

m(H)))

are isomorphisms in the category glmod.

6.3. Quasi-isomorphisms of complexes of C∞(M)G-modules

Recall from Definition 3.8 that 𝔛•
m(G) is a complex of C∞(M)G-modules, with action defined by f ·α = fα

and f ·X = (t∗f)X for f ∈ C∞(M)G, α ∈ Γ(A) and X ∈ 𝔛m(G).

Remark 6.4. If H ⇉ N is a second Lie groupoid and ϕ : G → H is a Morita map covering ϕ0 : M → N then 
ϕ∗ : C•

m(H) → C•
m(G) is a quasi-isomorphism and the map ϕ∗

0 : C∞(N)H → C∞(M)G is an isomorphism 
of algebras. In particular, if f ∈ C∞(M)G then f = ϕ∗

0f
′ for a unique f ′ ∈ C∞(N)H . Via this isomorphism 

any complex of C∞(N)H -modules can be considered as a complex of C∞(M)G-modules.

In the statement of the following two results we follow the setup and notation used in the proof of 
Theorem 6.2. That is, ϕ : G → H is a surjective Morita equivalence and 𝔛•

m(G)ϕ ⊆ 𝔛•
m(G) is the subcomplex 

of ϕ-projectable multiplicative vector fields and sections of A.

Proposition 6.5. Consider C•
m(H) as a complex of C∞(M)G-modules via the algebra isomorphism ϕ∗

0 :
C∞(N)H → C∞(M)G. Then:

a. 𝔛•
m(G)ϕ ⊆ 𝔛•

m(G) is a subcomplex of C∞(M)G-modules.
b. The maps

𝔛•
m(G) inc←−− 𝔛•

m(G)ϕ ϕ −→ 𝔛•
m(H)

are quasi-isomorphisms of complexes of C∞(M)G-modules.

Proof. (a). Suppose that f = ϕ∗
0f

′ is an element of C∞(M)G and X ∈ 𝔛m(G) is projectable to a multi
plicative vector field X ′ on H. Then (t∗f)X is projectable to (t∗f ′)X ′ because if k ∈ C∞(H) then

ℒ(t∗f)X(ϕ∗k) = (t∗f)ℒX(ϕ∗k)

= (t∗ϕ∗
0f

′)ℒX(ϕ∗k)

= (ϕ∗t∗f ′)ℒX(ϕ∗k)

= (ϕ∗t∗f ′)ϕ∗ (ℒX′k)

= ϕ∗ ((t∗f ′) (ℒX′k))

= ϕ∗ (︁ℒ(t∗f ′)X′k
)︁

where in the third equality we have used the fact that ϕ0t = tϕ because ϕ : G → H is a morphism of Lie 
groupoids. Similarly, if α ∈ Γ(A) is projectable to α′ ∈ Γ(B) then fα is projectable to f ′α′ because
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(fα)(x) = ((ϕ∗
0f

′)α) (x) = f ′(ϕ0(x))α(x)

so that

Lie(ϕ) ((fα)(x)) = (f ′α′)(ϕ0(x))

where Lie(ϕ) : A → B is the morphism of Lie algebroids associated to ϕ. It follows that 𝔛•
m(G)ϕ is closed 

under the action of C∞(M)G and so is a subcomplex of C∞(M)G-modules.
(b). By statement (a), 𝔛•

m(G)ϕ is a subcomplex of C∞(M)G-modules and so the inclusion 𝔛•
m(G)ϕ ↪→

𝔛•
m(G) is automatically a morphism of complexes of C∞(M)G-modules. Both this inclusion and the map 

ϕ : 𝔛•
m(G)ϕ → 𝔛•

m(H) are quasi-isomorphisms of complexes of vector spaces by the results referenced in the 
proof of Theorem 6.2. It remains to prove that each component of ϕ is a morphism of C∞(M)G-modules.

With respect to the isomorphism ϕ∗
0 : C∞(N)H → C∞(M)G an element f ∈ C∞(M)G acts on 𝔛•

m(H)
via f ′ ∈ C∞(N)H , where f ′ is the unique element of C∞(N)H satisfying ϕ∗

0f
′ = f . The statement then 

follows from the computations in the proof of part (a):

ϕ(f ·X) = ϕ((t∗f)X)

= (t∗f ′)ϕ(X)

= f ′ · ϕ(X)

= f · ϕ(X),

ϕ(f · α) = ϕ(fα)

= f ′ϕ(α)

= f · ϕ(α). □
Corollary 6.6. Consider C•

m(H) as a complex of C∞(M)G-modules via the algebra isomorphism ϕ∗
0 :

C∞(N)H → C∞(M)G. The maps

H•(𝔛•
m(G)) H(inc) ←−−−− H• (︁(𝔛•

m(G))ϕ
)︁ H(ϕ) −−−→ H•(𝔛•

m(H))

are isomorphisms of graded C∞(M)G-modules.

Combining all the previous results, one gets the following.

Proposition 6.7. If G and H are Morita equivalent Lie groupoids then there is an algebra isomorphism 
C∞(N)H → C∞(M)G with respect to which 𝔛•

m(G) and 𝔛•
m(H) are quasi-isomorphic as complexes of 

C∞(M)G-modules.

6.4. Objects on stacks

The results in §6 and §6.2 can be interpreted in terms of differentiable stacks as follows. Recall from 
Proposition 4.1 that if 𝒳 is a differentiable stack then the algebra C∞(𝒳 ) is intrinsically defined, and is 
isomorphic to C∞(M)G if G ⇉ M is the Lie groupoid associated to an atlas M → 𝒳 .

Theorem 6.8. Let 𝒳 be a differentiable stack and G ⇉ M the Lie groupoid associated to an atlas M → 𝒳 . 
Then, the object

(𝔛•
m(𝒳 ), C•

m(𝒳 )) := (𝔛•
m(G), C•

m(G))

is well defined in the category dglmod and 𝔛•
m(𝒳 ) is a complex of C∞(𝒳 )-modules. Up to quasi

isomorphism these objects are independent of the choice of atlas and unchanged if 𝒳 is replaced by an 
equivalent stack 𝒴.
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Proof. This follows from Theorem 6.2 and Proposition 6.7, and the fact that if M → 𝒳 and N → 𝒳 are 
atlases of 𝒳 , and M ′ → 𝒴 is an atlas of an equivalent stack 𝒴, then the three associated Lie groupoids are 
Morita equivalent. □
7. Cohomology and derivations

In this section we show that the graded Lie algebra H•(𝔛•
m(G)) carries a natural graded Lie-Rinehart 

algebra structure (see Definition 2.4) over the algebra C∞(M)G = H0(C•
m(G)). As a consequence, associated 

to each differentiable stack 𝒳 is a graded Lie-Rinehart algebra over the algebra C∞(𝒳 ), independent up to 
isomorphism of the choice of atlas involved in the construction.

7.1. Some module structures

Recall from Theorem 6.1 that there is a dgla 𝔛•
m(G)-module structure on C•

m(G) given by:

μ : 𝔛•
m(G) ⊗ C•

m(G) → C•
m(G)

(α,X) ⊗ (f, F ) ↦→ (u∗ℒαrF + ℒXM
f,ℒXF ).

The corresponding map on cohomology H(μ) defines a graded H•(𝔛•
m(G))-module structure on H•(C•

m(G)):

H(μ) : H•(𝔛•
m(G)) ⊗H•(C•

m(G)) → H•(C•
m(G)) (13)

([α], [X]) ⊗ ([f ], [F ]) ↦→ ([u∗ℒαrF + ℒXM
f ], [ℒXF ])

where the Künneth theorem has been applied on the left side. The map H(μ) corresponds to a morphism 
of dgla’s:

𝓛 : H•(𝔛•
m(G)) → End•(H•(C•

m(G)) (14)

x ↦→ (y ↦→ H(μ)(x⊗ y)) .

We also have a left graded H•(C•
m(G))-module structure on H•(𝔛•

m(G)) introduced in Definition 3.9:

ρ : H•(C•
m(G)) ⊗H•(𝔛•

m(G)) → H•(𝔛•
m(G)) (15)

([f ], [F ]) ⊗ ([α], [X]) ↦→ ([fα], [Fαr] + [(t∗f)X]) .

Remark 7.1. If G is the unit groupoid M ⇉ M then H•(𝔛•
m(G)) is equal to 𝔛(M), H•(C•

m(G)) coincides 
with C∞(M), 𝓛(X)(f) = ℒXf and ρ(f⊗X) = fX. In other words, the map 𝓛 (14) is just the Lie derivative 
and ρ (15) is the standard C∞(M)-module structure on 𝔛(M). In this case 𝓛 is an isomorphism onto the 
Lie algebra Der(C∞(M)) and the Lie bracket on 𝔛(M) satisfies the Leibniz identity.

The main results in the present section §7 are analogues for more general Lie groupoids and for differen
tiable stacks.

We start by establishing some analogues of the Leibniz rule and proving that under certain conditions 
the image of the morphism of gla’s 𝓛 is contained in the gla Der(H•(C•

m(G))) of graded derivations of the 
graded algebra H•(C•

m(G)). Recall from §3.1 that if G is proper then H•(C•
m(G)) = H0(C•

m(G)), in which 
case the results in this section can be restated with H•(C•

m(G)) in place of H0(C•
m(G)) (or with H•(C•

m(𝒳 ))
in place or C∞(𝒳 ) for 𝒳 the stack corresponding to G). For the non-proper case see §9.4.
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7.2. The graded Lie-Rinehart structure

The dgla 𝔛•
m(G)-module structure on C•

m(G) descends to cohomology to define a gla H•(𝔛•
m(G))-module 

structure on H•(C•
m(G)). The commutative algebra C∞(M)G is the degree zero graded submodule of 

H•(C•
m(G)), so that the restriction map

H•(𝔛•
m(G)) ⊗ C∞(M)G → C∞(M)G

([α], [X]) ⊗ f ↦→ α • f + X • f = ℒXM
f

makes C∞(M)G into a module over the graded Lie algebra H•(𝔛•
m(G)). This module structure determines 

a morphism of graded Lie algebras

𝓛 : H•(𝔛•
m(G)) → Der

(︁
C∞(M)G

)︁
, ([α], [X]) ↦→ ℒXM

(16)

where we have restricted the codomain to the Lie subalgebra Der
(︁
C∞(M)G

)︁
of End

(︁
C∞(M)G

)︁
and ℒXM

is a derivation because it is a Lie derivative. Recall from Definition 3.8 the left C∞(M)G-module structure 
on H•(𝔛•

m(G)) defined by f · [α] = [fα] and f · [X] = [(t∗f)X].

Proposition 7.2. The C∞(M)G-module structure on H•(𝔛•
m(G)) and the morphism of graded Lie algebras 

𝓛 make H•(𝔛•
m(G)) into a graded Lie-Rinehart algebra over C∞(M)G. That is:

a. The map 𝓛 is both a morphism of dgla’s and C∞(M)G-modules,
b. The graded Lie bracket on H•(𝔛•

m(G)) satisfies the graded Leibniz identity.

Proof. We start by proving (a). From equation (16) follows that 𝓛 is a morphism of dgla’s. Suppose that 
f ∈ C∞(M)G and X ∈ 𝔛m(G) is a multiplicative vector field on G. Then (t∗f)X is a multiplicative vector 
field with ((t∗f)X)M = fXM and as derivations of C∞(M)G

ℒ((t∗f)X)M = ℒfXM
= fℒXM

.

This shows that 𝓛 is a morphism of C∞(M)G-modules.
Regarding (b), suppose that f ∈ C∞(M)G, α ∈ Γ(A) is a cocycle and X,Y ∈ 𝔛m(G) are multiplicative 

vector fields. Then

[X, (t∗f)Y ] = ℒX(t∗f)Y + f [X,Y ]

= t∗(ℒXM
f)Y + f [X,Y ]

and

⟦X, fα⟧ = [X, (t∗f)αr]|M
= (ℒX(t∗f)αr + (t∗f)[X,αr]) |M
= (t∗(ℒXM

f)αr + (t∗f)[X,αr]) |M
= (ℒXM

f)α + f ⟦X,α⟧ .

Passing to cohomology then shows that the graded Lie bracket on H•(𝔛•
m(G)) satisfies the graded Leibniz 

identity. □
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Morita invariance and stacks. Using the Morita invariance result of Theorem 6.2 we can prove a similar 
statement for the Lie-Rinehart algebra of Proposition 7.2. For that, we follow the setup and notation in the 
proof of Theorem 6.2, Corollary 6.3 and Corollary 6.6. That is, ϕ : G → H is a surjective Morita equivalence 
and 𝔛•

m(G)ϕ ⊆ 𝔛•
m(G) is the subcomplex of ϕ-projectable multiplicative vector fields and sections of A. 

Identifying C∞(N)H with C∞(M)G via the algebra isomorphism ϕ∗
0 : C∞(N)H → C∞(M)G, one has the 

following result.

Proposition 7.3. The map

H•(𝔛•
m(G)) H(ϕ)◦H(inc)−1 −−−−−−−−−−→ H•(𝔛•

m(H))

is an isomorphism of graded Lie-Rinehart algebras over C∞(M)G.

Proof. By Corollary 6.3 and Corollary 6.6 the maps H(inc) and H(ϕ) are isomorphisms of graded Lie 
algebras and of graded C∞(M)G-modules. After identifying C∞(N)H with C∞(M)G the isomorphisms in 
the category glmod given in Corollary 6.3 show that H(inc) and H(ϕ) are compatible with the actions of 
H•(𝔛•

m(G)) and H•(𝔛•
m(H)) on C∞(M)G. □

Recall from Proposition 4.1 that if 𝒳 is a differentiable stack then the algebra C∞(𝒳 ) is intrinsically 
defined, and is isomorphic to C∞(M)G if G ⇉ M is the Lie groupoid associated to an atlas M → 𝒳 . In 
this setting, the following holds.

Theorem 7.4. There is an associated a graded Lie-Rinehart algebra

𝔛•(𝒳 ) := H•(𝔛•
m(G))

over the algebra C∞(𝒳 ), whose isomorphism class is independent of the choice of atlas, making it a well
defined object in the category of gLRalg. Also, if 𝒳 is equivalent to 𝒴, then 𝔛•(𝒳 ) ∼ = 𝔛•(𝒴) as graded 
Lie-Rinehart algebras over C∞(𝒳 ).

Proof. This follows from Proposition 7.3 and the fact that if M → 𝒳 and N → 𝒳 are atlases of 𝒳 , 
and M ′ → 𝒴 is an atlas of an equivalent stack 𝒴, then the three associated Lie groupoids are Morita 
equivalent. □
Remark 7.5. A natural question is whether or not the morphism

𝔛•(𝒳 ) → Der(C∞(𝒳 )) (17)

is an isomorphism as in the case of a smooth manifold. In §9 we study a number of examples and show 
that in general the answer to this question is no, an obvious obstruction being the possible non-vanishing 
of H−1(𝔛•

m(G)) where G is a Lie groupoid with classifying stack equivalent to 𝒳 .

8. The infinitesimal picture

Let G be a Lie groupoid over M with Lie algebroid A. Given some cochain complex associated to G, a 
Van-Est type map relates such a complex to a complex defined purely in terms of A. This is the case of the 
Van-Est maps VE (Definition 3.20) and VE (Definition 3.19). The following results say that these Van-Est 
maps are also compatible with the module structures μ (Definition 3.16) and μ (Theorem 6.1).
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Theorem 8.1. The following statements hold:

a. The Van-Est map VE : 𝔛•
m(G) → 𝔛•

m(A) is a morphism of dgla’s.
b. The following diagram is a commutative diagram of morphisms of cochain complexes:

𝔛•
m(G) ⊗ C•

m(G)

VE⊗VE

μ
C•

m(G)

VE

𝔛•
m(A) ⊗ C•

m(A)
μ

C•
m(A)

(18)

c. The vertical arrows (18) are isomorphisms whenever G is source simply connected.

Proof. Note that (a) follows directly from Remark 3.21. Regarding (b), the maps VE, VE, μ and μ are 
chain maps by statement (a), Definition 3.19, Definition 3.16 and Theorem 6.1 respectively; it follows that 
VE ⊗ VE is a chain map also. It remains to show that the diagram (18) commutes, which is equivalent to 
the statement that

VE (x • y) = VE(x) •VE(y),

for all simple tensors x⊗ y ∈ 𝔛•
m(G) ⊗C•

m(G) with x and y homogeneous. We deal with the possible cases 
in turn, using the Definitions 3.16, 3.19, 3.20 and 5.1.

If α ∈ Γ(A) and f ∈ C∞(M) then

VE(α • f) − VE(α)•VE(f) = VE(0) − α•f
= 0.

If α ∈ Γ(A) and F ∈ C∞
m (G) then

VE(α • F ) − VE(α)•VE(F ) = VE(u∗ℒαrF ) − α•ωF

= u∗ℒαrF − iαωF

= u∗ℒαrF − u∗ℒαrF

= 0.

If X ∈ 𝔛m(G) and f ∈ C∞(M) then

VE(X • f) − VE(X)•VE(f) = VE(ℒXM
f) −DX•f

= ℒXM
f − ℒXM

f

= 0.

If X ∈ 𝔛m(G) and f ∈ C∞
m (G) then

VE(X • F ) − VE(X)•VE(F ) = VE(ℒXF ) −DX•ωF

= ωℒXF − (ℒX ◦ ωF − ωF ◦DX). (19)

The right hand side of (19) is the section of A∗ given by the map
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α ↦→ ωℒXF (α) − ℒXM
(ωF (α)) + ωF (DX(α))

= u∗(ℒαrℒXF ) − ℒXM
(u∗ℒαrF ) + u∗(ℒ[X,αr]F )

= u∗(ℒαrℒXF ) − u∗(ℒXℒαrF ) + u∗(ℒ[X,αr]F )

= u∗(ℒαrℒXF − ℒXℒαrF + ℒ[X,αr ]F )

= u∗(ℒ[αr,X] − ℒ[αr,X]F )

= 0

where in the second equality we have used the fact that XM is u-related to X, so that u∗ℒX = ℒXM
u∗.

Finally, (c) follows from the fact that the vertical arrows in (18) are isomorphisms whenever G is source 
simply connected follows from the properties of the Van-Est maps discussed in §3.5. □
9. Examples

In this section we give examples and conditions under which the map (17) is an isomorphism.

Example 9.1. Let G = (N ×M N ⇉ N) be the submersion groupoid defined by a surjective submersion 
π : N → M . The corresponding stack 𝒳 is equivalent to the manifold M . Hence the graded Lie-Rinehart 
structure on 𝒳 is equivalent to the standard Lie-Rinehart algebra structure on the base M

ℒ : 𝔛(M) → Der(C∞(M)).

In this case, the map (17) is an isomorphism.

Let G ⇉ M be a proper Lie groupoid with Lie algebroid A. There are well-defined sets Γ(i) := ker(ρ :
Γ(A) → 𝔛(M)) and Γ(ν) := 𝔛(M)/im(ρ). By Theorem 6.1 in [12, §6] one has

H•(𝔛•
m(G)) ≃ Γ(i)inv ⊕ Γ(ν)inv,

where Γ(i)inv is the set of invariant sections by the adjoint action of G, and [V ] ∈ Γ(ν) is invariant if there 
exists X ∈ 𝔛(G) which is both t-projectable and s-projectable to V , see §4 in [12] for more details. On the 
other hand, by Proposition 1 in [13, §2.1] the cohomology of G is concentrated in degree zero, hence

H•(C•
m(G)) = C∞(M)G ⊕ 0.

We will apply this to the next example.

Example 9.2. Let π : T → M be a bundle of tori. This defines a proper Lie groupoid T ⇉ M with both 
source and target maps given by π. By the previous observations we get that the morphism (17) is given by

Γ(A) ⊕ 𝔛(M) → Der(C∞(M)),

where A = ker(Tπ) is a Lie algebroid of T ⇉ M . In particular, if A ̸= 0, then the morphism (17) is not an 
isomorphism.

If G is an étale Lie groupoid then A = 0 and the map (17) is the map

ℒ : 𝔛(M)G → Der(C∞(M)G)
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given by the action of invariant vector fields on invariant functions. The following example shows that even 
for proper and étale groupoids, i.e. those presenting orbifolds, the map (17) is in general not an isomorphism.

Example 9.3. Let Z2 act on R by reflection around zero. Then the orbit space R/Z2 is a global orbifold 
presented by the action groupoid Z2 ⋉ R ⇉ R. The space of invariant functions C∞(R)Z2 consists of all 
even functions, and the space of invariant vector fields 𝔛(R)Z2 consists of all vector fields X = ϕ(x) ∂

∂x

where ϕ(x) is an odd function. It follows from Hadamard’s Lemma that the map D := 1 
x

∂
∂x is a well-defined 

algebra derivation of C∞(R)Z2 . If X is an invariant vector field then ℒX(x2) vanishes at zero, whereas 
D(x2) = 2, and therefore the map (17) 𝔛(R)Z2 → Der(C∞(R)Z2) is not surjective.

The following example was motivated by the work of P. Molino in [25, §2.2]. In the example below we 
show that the map (17) vanishes identically.

Example 9.4 (Molino’s example). Let T 2 = S1 × S1 be the torus with local coordinates (θ0, θ1). Consider 
the foliation ℱ on T 2 determined by the tangent distribution D = span{λ0

∂
∂θ0

+ λ1
∂

∂θ1
| λ1/λ0 ∈ R \Q}. 

Let G ⇉ T 2 be the foliation groupoid whose canonical foliation is ℱ . On the one hand, it is clear that G is 
not a proper groupoid and C∞(T 2)G consists of constant functions, which implies that Der(C∞(T 2)G) = 0. 
On the other hand, by Proposition 3.3 in [12, §3] we have that H•(𝔛•

m(G)) ≃ 0 ⊕ span{−λ1
∂

∂θ0
+ λ0

∂
∂θ1

}. 
Thus, in this case the map (17) is the zero morphism, which is not an isomorphism.

Example 9.5. Let G be a Lie group considered as a Lie groupoid over a point, and BG the classifying stack 
of G. Then H•(𝔛•

m(G)) = 𝔤G ⊕ H1
d(G, 𝔤), C∞(BG) = R, and Der(R) = 0. It follows that the map (17)

is an isomorphism iff 𝔤G = 0 and H1
d(G, 𝔤) = 0. The latter condition holds if G is compact or semi-simple 

with finite fundamental group, but fails in general, e.g. for G = GL2(C). Note that if G is connected then 
𝔤G = Z(𝔤), and if G is moreover simply connected then H1

d(G, 𝔤) = H1(𝔤, 𝔤).

Data availability

Data will be made available on request.
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