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1. Introduction

The most basic objects in differential geometry are smooth functions and vector fields. Associated to
a smooth manifold M are the commutative algebra of smooth functions C°°(M) and the Lie algebra of
smooth vector fields X(M). The Lie derivative defines a Lie algebra and C°°(M)-module isomorphism

L :X(M) — Der(C®(M)), X — Lx (1)

from X (M) to the Lie algebra Der(C*°(M)) of derivations of C*° (M), and the Lie bracket on X(M) satisfies
the Leibniz rule

(X, fY] = (Lx /)Y + fIX,Y]. (2)

In this paper we are concerned with a generalisation of these facts from smooth manifolds to differentiable
stacks. Recall that a differentiable stack is a stack X over manifolds admitting a representable epimorphic
submersion M — X from a manifold to X. As a consequence, the fibered product M xy M = M with
the canonical projections has the structure of a Lie groupoid. Different choices of atlas give rise to Morita
equivalent Lie groupoids, establishing a one-to-one correspondence between equivalence classes of differen-
tiable stacks and Morita equivalence classes of Lie groupoids. An immediate observation is that both smooth
manifolds and orbifolds can be seen as particular instances of differentiable stacks.

Our main result can be summarised as follows; the explicit formulas and further details will be presented
throughout this section.

Theorem. To each differentiable stack X there is an associated differential graded Lie algebra X2, (X) of
vector fields on X and a differential graded X2,(X)-module C2, (X) of functions on X. The zeroth cohomology
C>(X) := H°(C2,(X)) is a commutative algebra and X2,(X) is a complex of C(X)-modules.
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The cohomology H®*(X?,(X)) is a graded C*(X)-module, and the X2, (X)-module structure on Cp, (X)
descends to cohomology to define a morphism of graded Lie algebras and of graded C*°(X)-modules

L:H*(%;,(X)) = Der(C®(X)), z— L,
which is the analogue of (1). The graded Lie bracket [,] on H®(X2,(X)) satisfies the graded Leibniz identity

[z, fy] = (Lo f)y + (1)1 f [z, 4]

for appropriate z,y, f, which is the analogue of (2). Up to an appropriate notion of quasi-isomorphism these
objects are all independent of the choices involved in the construction and are unchanged if X is replaced
by an equivalent stack Y.

If X is isomorphic to a manifold M then X29,(X) is quasi-isomorphic to X(M), C,(X) is quasi-isomorphic
to C(M), and the various module structures are equivalent to the standard ones.

Remark 1.1. Since the algebra of functions C*°(X) is concentrated in degree zero, the sign appearing in the
previous graded Leibniz identity is actually positive. See Definition 2.4.

Remark 1.2. If X is proper, i.e. if X is equal to the quotient stack M//G associated to a proper Lie groupoid
G = M, then the cohomology H*(Cs (X)) is equal to C°(X) placed in degree zero. In the non-proper
setting H*(Cn, (X)) is a graded algebra and H® (X, (X)) is a graded H*(Cp, (X))-module, but the situation
is more complicated, see §9.4.

Remark 1.3. The differential graded Lie algebra X3, (X) was constructed independently in work of Berwick-
Evans & Lerman [8] and of the second two named authors [28], and the underlying cochain complex of
Cy.(X) is a truncation of the differential groupoid complex introduced in [13]. Our new contributions
in this work are: establishing the X?, (X)-module structure on Cp (X) and its properties; explaining the
relation of C? (X) to other notions of smooth functions on differential stacks; the construction of a certain
infinitesimal model of these objects and structures, valid whenever certain connectivity assumptions on a
groupoid presentation are satisfied. We also present several examples throughout the paper.

We can generalise the right hand side of (1). There are a number of equivalent definitions of the algebra
C>*(X) of functions on a differentiable stack X', some of which depend on the choice of an atlas M — X
with associated Lie groupoid G over M. These include:

(i) stack morphisms from X to the manifold R,
(i)
)
)

(iii
(iv) morphisms of Lie groupoids from G to the unit Lie groupoid R = R.

global sections of the structure sheaf Oy of X,
G-invariant functions on M,

In order to further capture the “stacky” nature of X, our first main result compares certain extensions
and variations of these definitions, each of which involves moving from sets to categories or from vector
spaces to cochain complezes:

(i) The category Homgy (X, BR) of morphisms from X to the classifying stack BR of the Lie group R;
(ii) The total sheaf cohomology H®(Ox), which carries a natural graded algebra structure [9, §3];
(iif) The differentiable groupoid cochain complex C§(G), which carries a natural differential graded algebra
structure [13, §1.2];
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(iv) The category Homgpd (G, R) of morphisms from G to the Lie groupoid R =2 * where R is considered
as an abelian Lie group.

There are some known relations between these objects: if M is Hausdorff and paracompact then the cohomol-
ogy H$(G) of C3(G) is isomorphic to H*(Ox) as a graded algebra [9, §3], and the 1-cocycles Z}(G) C C3(G),
which we will denote by C°(G), coincide with the morphisms from G to the Lie group R, which are also
called multiplicative functions on G [26,20].

To formulate the following Theorem we need two further objects. We denote by Cp,(G) the 2-term
truncation C'*° (M) LN C22(G) of the cochain complex C§(G). Associated to Cp,(G) is a category C*° (M) x
C2(G) in which the objects are multiplicative functions F' € C2°(G) and a morphism F — F’ is identified
with a function f € C°°(M) such that F' = F 4+ 6 f, see §2.5.

Theorem 1 (= Theorem J.2). Let G = M be a Lie groupoid. The following two categories are isomorphic:

a. The category C™ (M) x C°(G) associated to the 2-term complex Cp,(G).
b. The category Homgpd (G, R) of Lie groupoid morphisms from G to R considered as a Lie groupoid over
a point.

Additionally, if M is Hausdorff and paracompact then (2) and (b) are equivalent to:
(¢) The category Homgy (BG, BR) of morphisms of stacks from BG to BR.

More generally, if X is a differentiable stack, M — X is an atlas with M Hausdorff and paracompact, and
G is the associated Lie groupoid over M, then the categories (a) and (b) are equivalent to:

(d) The category Homgt (X, BR) of morphisms of stacks from X to BR.

Remark 1.4. Theorem 1 can be applied to any differentiable stack: if M — X is an arbitrary atlas then
by replacing M with the disjoint union of a suitable open cover if necessary, one can arrange that M is
Hausdorff and paracompact.

Our second main result involves an action of a certain differential graded Lie algebra X9, (G) on the
complex C2 (G). In [16] Hepworth defined the category I'(T'X) of sections of the tangent stack TX of a
differentiable stack X and showed that this category is equivalent to the category I'(TG) of multiplicative
sections of the tangent groupoid of a Lie groupoid G presenting X'. It was shown independently by Berwick-
Evans & Lerman [8] and by the second two authors [28] that the category I'(T'G) carries a natural structure
of strict Lie 2-algebra, which, up to a natural notion of equivalence, is independent of the choice of the Lie
groupoid G.

In terms of differential graded Lie algebras, or dgla’s for short, the results in [8] and [28] show that
associated to a Lie groupoid G there is a dgla X2 (G) concentrated in degrees -1 and 0, and if H is a Lie
groupoid Morita equivalent to G then the dgla’s X?,(G) and X9, (H) are quasi-isomorphic. The dgla X3, (G)
is constructed using the Lie algebroid of G and the Lie algebra of multiplicative vector fields on G, which
are vector fields X : G — T'G that are Lie groupoid morphisms. See 3.2 for the precise definitions. We note
that [7] has generalised some of this to multi-vector fields.

Theorem 2 (= Theorems 0.1 and 6.2). The following statements hold.
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a. If G is a Lie groupoid then the map

e X5,(G) @ CF(G) = O, (G)
(., X) @ (f, F) = (W Lar F + Lx,, [, LxF)

defines a left dg-Lie module structure of X2, (G) on Cp(G).

b. If G and H are Morita equivalent Lie groupoids then (X3,(G),Ca (G)) and (X3,(H),Cp, (H)) are quasi-
isomorphic objects in the category dglmod.

c. If X is a differentiable stack and M — X is an atlas then there is an associated object (X?,(G), Cr (G))
in dglmod where G is the Lie groupoid associated to M. Up to quasi-isomorphism in dglmod this object
does not depend on the choice of atlas of X.

In Theorem 2, X is a multiplicative vector with associated vector field X; on M, o is the right-invariant
vector field associated to the section a of the Lie algebroid of G, f € C*(M), F € C2°(G) is a multiplicative
function, and v : M — G is the unit map of G. See §6 for the precise definitions. We note that the operator
u* L, also appears in [1, §4]. The category dglmod and the notion of quasi-isomorphism therein is defined
in Definition 2.1.

As a consequence, one has the following. Given a differentiable stack X and G a Lie groupoid whose
classifying stack is isomorphic to X, then:

Theorem 3 (= Theorem 7./). There is an associated a graded Lie-Rinehart algebra
X*(X) = H*(X3,(G))

over the algebra C*°(X), whose isomorphism class is independent of the choice of atlas. Also, if X is
equivalent to Y, then X*(X) = X*()) as graded Lie-Rinehart algebras over C(X).

One can bring Lie theory into the picture by considering a Lie groupoid G with Lie algebroid A. In this
case, there are a complex X, (A) of infinitesimally multiplicative functions on A (Definition 3.12), as well as
a dgla X? (A) of derivations of A (Definition 3.14), together with certain module structures introduced in
Definitions 3.16 and 3.17, respectively. We show that there are Van-Est maps compatible with the module
structures as in the next result.

Theorem 4 (= Theorem 8.1). The following statements hold:

a. The Van-Est map VE : X3 (G) — X3,(A) is a morphism of dgla’s.
b. The following diagram is a commutative diagram of morphisms of cochain complexes:

x3,(G) ® Cn(G) ——= Cn,(@) (3)

o] l

X5,(4) © O3 (4) — Ca(4)

=
=

c. The vertical arrows (3) are isomorphisms whenever G is source simply connected.

Remark 1.5. Instead of the (differential graded) algebras C#,(G) and C*°(X), one can study the in-general
noncommutative convolution algebra Ag of G. It is shown in [17] that multiplicative vector fields act as
derivations on Ag, and this action extends to a morphism of cochain complexes
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CLH@) = C*(Ag, Ac)

from a truncation of deformation complex of G to the Hochschild cohomology of Ag, see [17] for further
details.

The paper is organized as follows. In §2 we present the necessary background in order to state and
prove our main results. In §3 we recall the complex of multiplicative functions on a Lie groupoid as well
as the dgla of multiplicative vector fields. We also introduce the infinitesimal version of these objects and
we show the existence of a Van-Est map relating them. §4 is devoted to the study of several notions of
functions on differentiable stacks and their relation to the complex of multiplicative functions on a Lie
groupoid presenting a given stack. In §5 and §6 we introduce and study the module structures appearing in
the main results explained above. In §7 we show the graded Lie-Rinehart algebra structure on vector fields
on a differentiable stack. §8 explains the compatibility of the Van-Est maps with the module structures
introduced in §5 and §6. In §9 we present several examples.

1.1. Acknowledgements

C. Ortiz thanks the Newcastle University for the hospitality while part of this work was being done.
The research of C. Ortiz was partially supported by the National Council of Research and Development
CNPq-Brazil, Bolsa de Produtividade em Pesquisa Grant 315502/2020-7 and by Grant 2016/01630-6 Sao
Paulo Research Foundation - FAPESP.

2. Background and notation

All vector spaces, cochain complexes, algebras and other algebraic structures will be over the real numbers
R.

By a manifold we will always mean a finite dimensional smooth manifold Hausdorff and paracompact.
The symbols M and N will always denote manifolds. We denote by C*°(M) the algebra of smooth functions
on M and by X(M) the Lie algebra of vector fields on M. The derivative of a smooth map ¢ : M — N is
denoted by d¢. The symbols X and Y will always denote vector fields. If ¢ : M — N is a diffeomorphism
and X € X(M) then we denote by ¢, X the vector field on N defined by y — do(X (¢~ 1(y))). We note that
if £ € O%(N) then ¢*(Lo.xf) = Lx (6" f)-

2.1. Lie groupoids

For general facts about Lie groupoids see [20], and [23, §5.4] or [24, §2.1&2.5] for the notion of weak
and Morita equivalence. Unless otherwise stated, the symbol G will always denote a Lie groupoid with
base M. We denote the structure maps of G by s,t : G — M (source and target), v : M — G (unit),
m : Ga — G (multiplication) and ¢ : G — G (inversion), where G5 := G X G is the manifold of composable
pairs of morphisms in G. If ¢ € G then the associated right and left translations are the diffeomorphisms
Ry :s7(t(g)) — s~ (s(g)), h — hg, and Ly : t~*(s(g)) = t~*(t(g)), h — gh, respectively.

We denote the strict 2-category of Lie groupoids by Gpd. If G and H are Lie groupoids then the category
Homegpda (G, H) has objects the Lie groupoid morphisms ¢ : G — H, and arrows ¢ : ¢ = ¢’ given by smooth
natural transformations.

2.2. Lie algebroids

For the basics on Lie algebroids see [20] or [23]. We define the Lie algebroid A of the Lie groupoid G
by A := (Kerds)|ys where the restriction to M is via pullback along the unit map u : M — G. (Note
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that some references define A to be equal to (Kerdt)|as.) The symbols a and S will always denote sections
of A.

The right-invariant and the left-invariant vector fields on G associated to a € T'(A) are defined by
a’(g) = dRg(a(lyy))) and o'(g) = —dLgy(di(a(ls)))), respectively. Note that in some references the
definition of o! differs from ours by a sign. With our convention o! = —i,a”. The map a — a” (resp.
a +— a!) is a vector space isomorphism from I'(A) to the Lie algebra of right (resp. left) invariant vector
fields on G and the Lie bracket on I'(A) is defined such that the first of these maps is a Lie algebra

isomorphism. The anchor map a : A — T'M is the restriction to M of the map dt : Kerds — t*TM.
2.3. Differentiable stacks

The main properties of differentiable stacks can be found in [9]. By a stack we always mean a pseudo-
functor Man — gpd from the category Man of smooth manifolds to the 2-category gpd of set-theoretic
groupoids. We denote the bicategory of stacks by St. A differentiable stack X is a stack for which there
exists a representable epimorphic submersion M — X from a manifold M to X. In this case the manifold
G := M X x M carries a natural Lie groupoid structure over M, X is equivalent to the classifying stack BG
of principal G-bundles, and we say that the Lie groupoid G presents X. Different atlases lead to Morita
equivalent Lie groupoids, and more generally two Lie groupoids are Morita equivalent if and only if the
corresponding classifying stacks are equivalent.

2.4. Differential graded objects

For background material on differential graded Lie algebras see [21, §IV,V]. By complex we will always
mean cochain complex of real vector spaces, so that all differentials have degree +1. We will use the
abbreviations ‘dga’ (differential graded algebra), ‘dgla’ (differential graded Lie algebra), and ‘gla’ (graded
Lie algebra). A gla is a dgla with zero differential. We denote the category of dgla’s by dgla and the
subcategory of gla’s by gla. We denote by End®(C*®) the dgla of graded endomorphisms of a cochain
complex C*®, and by Der®(B*®) the dgla of graded derivations of a dga B®.

A differential graded Lie module structure (or just a dgla L*®-module for short) over a dgla (L*,[,],0)
is a complex (M*,d) equipped with a degree zero morphism of dgla’s L®* — End®(M?*), or equivalently a
degree zero cochain map L®* @ M*®* — M*®, x ® y — x e y satisfying

S(zey)=0(x)ey+(—1)"lzed(y), and
(4)

[.Z',x/} ey==xe (x/ ° y) — (—1)|‘T”£l|x' ° (3;' ° y);

for all homogeneous elements x,2’ € L* and y € M®. If ¢ : L* — K* is a morphism of dgla’s and M*® is
a K*®-module then the pullback module is the L*-module ¢*M*® with underlying cochain complex M*® and
action x e y := ¢(x) e y. If L* is a gla then a graded module or dg-module over L® is a differential graded
module C*® for which the differential on C'® is equal to zero.

Definition 2.1. The category dglmod has objects given by pairs (L®, M*®) where L*® is a dgla and M?* is
a L*-module, a morphism (L®, M*®) — (L'®,M’®) is a pair (¢,), where ¢ : L* — L’® is a morphism
of dgla’s and ¢ : ¢*M’ — M is a morphism of L®*-modules, and the composition of morphisms of given
componentwise.

A quasi-isomorphism in dglmod is a morphism (¢, ¢) in which ¢ is a quasi-isomorphism of dgla’s and ¥ is
a quasi-isomorphism of cochain complexes. A pair of objects (L®, M*®) and (L'®, M’'*®) are quasi-isomorphic
if they are isomorphic in the category obtained by inverting all quasi-isomorphisms in dglmod.
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Remark 2.2. Suppose that (¢, ) : (L®, M®) — (L'®, M'®) is a quasi-isomorphism in dglmod. If we identify
He*(L'*) with H®(L®) via the isomorphism H(¢) then H®(¢) : H*(M'®) — H*(M?*) is an isomorphism of
graded H*®(L®)-modules.

Definition 2.3. The category glmod is defined as follows: the objects are pairs (L®, M®) where L® is a gla
and M* is a graded module over L®, a morphism (L®, M*®) — (L'®, M'*®) is a pair (¢, ), where ¢ : L* — L'*®
is a morphism of gla’s and 1 : ¢* M’ — M is a morphism of graded L®-modules, and the composition of
morphisms of given componentwise.

It follows from Remark 2.2 that there is a natural functor dglmod — glmod mapping objects to their
cohomology. This functor maps quasi-isomorphisms in dglmod to isomorphisms in glmod.

2.5. 2-term complexes and 2-vector spaces

Every cochain complex C* = C° 9 O concentrated in degrees 0 and 1 determines a groupoid C°x C! =
C1, where a pair (z,y) € C° x C* is by definition a morphism from ¥ to y+ dz, and the composition is given
by (2/,y') o (x,y) = (x + 2',y), defined whenever ¢y = y 4 dx. The sets of objects and morphisms are each
vector spaces, and the structure maps of the category are all linear, so that C° x C! is a category internal
to the category of vector spaces, or a 2-vector space for short. This construction extends in an evident way
to complexes concentrated in degrees ¢ and ¢ + 1 for some fixed ¢ € Z. Restricting to the ¢ = 0 case the
assignment

o NI LINYG VT o LI oL

extends to an equivalence between the (suitably defined) 2-category of 2-term cochain complexes and the
2-category of 2-vector spaces, see [6, §3] or [14, §2]. (The original reference is [5, Exposé XVIII, §1.4] in
which 2-vector spaces are called ‘Picard groupoids’) This can also be seen as a special case of the Dold-Kan
correspondence [32, §8.4]. Note that there are other unrelated notions of 2-vector spaces, e.g. [18].

2.6. dgla’s, Lie 2-algebras and crossed modules

The equivalence of 2-term complexes and 2-vector spaces described in §2.5 extends to the setting of Lie
algebras. If L*® is a dgla concentrated in degrees -1 and 0 then the 2-vector space L~! x L = L associated
to the underlying complex L~! — L? is in a natural way a category internal to the category of Lie algebras
or strict Lie 2-algebra for short. That is, L° is a Lie algebra, the vector space L~! x L? carries the semi-direct
product Lie bracket defined by the adjoint action of L° on L', and the structure maps are all Lie algebra
homomorphisms.

As shown in [6, Def. 47], 2-term dgla’s are also equivalent to crossed modules of Lie algebras. Concretely,
a dgla L® concentrated in degrees -1 and 0 defines the crossed module

L2 10 2 Der(L )

where the Lie algebra maps § and ad are given by the differential of L® and the restriction of the adjoint
representation, respectively. See [6, §5] for further details.

2.7. Graded Lie-Rinehart algebras

Lie-Rinehart algebras, first introduced in [29], are the algebraic analogues of differential-geometric Lie
algebroids. Note that in some references Lie-Rinehart algebras are called Lie algebroids, but we will keep
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separate the terminology to avoid confusion. Differential graded Lie-Rinehart algebras appear in a number
of references, including [15, §2.2], [27, §2.1], [30, §2], [31]. In this work we will only need a simpler notion of
a graded Lie-Rinehart algebra over an R-algebra as given in the following definition.

Definition 2.4. A graded Lie-Rinehart algebra over an R-algebra R consists of a graded Lie algebra L°,
a graded left R-module structure on the underlying graded vector space of L®, and a morphism of both
gla-modules and graded R-modules a : L* — Der(R). This data must satisfy the graded Leibniz rule

[z,ry] = (a(z)(r)) y + [z, y] ()
for every r € R and homogeneous elements x,y € L°®.

Remark 2.5. Note that the Leibniz identity in Definition 2.4 does not involve a minus sign of the form
(—=1)I7l1#l Indeed, since the algebra R is concentrated in degree zero, then Der(R) is also concentrated in
degree zero, hence a Lie algebra.

Definition 2.6. The category gLRalg has object pairs (L®, R) consisting of a graded Lie-Rinehart algebra
L* over R. A morphism (L*, R) — (L'®, R) is a pair (¢,v) where ¢ : R — R’ is a morphism of R-algebras,
and ¢ : L* — L’* is both a morphism of graded Lie algebras and a morphism of R-modules. Here, L’ is an
R-module with the pullback module structure induced by % : R — R'.

3. Some 2-term complexes and dgla’s

In this section we define several objects naturally associated to a Lie groupoid G and its Lie algebroid
A. There are two dgla’s:

o X (G): the dgla of multiplicative vector fields on G,
o X (A): the dgla of Lie algebroid derivations of A.

Also there are two cochain complexes, each of them carrying a graded algebra structure on their cohomology:

o C? (G): the complex of multiplicative functions on G,
o C2 (A): the complex of infinitesimal multiplicative functions on A.

We will see several module structures involving these objects, as well as a pair of Van-Est type maps relating
them. It will also be explained the relation between these objects and others appearing elsewhere in the
literature.

3.1. The complex C2.(G) of multiplicative functions

Following [20, §9.8] or [26, §3], a multiplicative function on G is a smooth function F € C°°(G) for which
F(gh) = F(g) + F(h) for all pairs (g,h) € Go. Equivalently, F' : G — R is a morphism of Lie groupoids,
where the Lie group R is considered as a Lie groupoid over a point. Alternatively, F' is a 1-cocycle in the
complex C3(G) computing the differentiable groupoid cohomology H3(G) of G [13, §1.2]. Multiplicative
functions constitute a subspace C°(G) C C°(G). If f € C*°(M) then t*f — s*f € C2(G).

* (G) is defined as follows: CO (G) = C°(M), C}, = C=(G),
Ci, =0 fori#0,1, and the differential § : C°°(M) — C°(G) is f — t* f — s* f. The cohomology of C®,(G)

Definition 3.1. The 2-term cochain complex C?
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carries a graded commutative product given by the restriction to C°°(M)% := Ker § of the commutative
product in C>®(M) and by f - [F] := [(t*f)F] for f € C>(M)% and F € C(G).

Remark 3.2. The cochain complex C%,(G) is equal to the 2-term truncation CY(G) — Z}(G) of C$(G). In
particular,

H°(C3,(G)) & H'(C},.(G)) = HY(C3(G)) & H' (C3(G))

as commutative graded algebras. Note that although C3(G) is a dga [13, §1.3], the truncated complex C», (G)
only carries a graded algebra structure at the level of cohomology. But if f € C*°(M)% and F € C°(G),
then we have (t*f)F € C2(G).

If H — G is a Morita morphism of Lie groupoids then the induced cochain map C3(G) — C3(H) is a
quasi-isomorphism [13, Thm. 1]. If G is proper then by [13, Prop. 1], Hi(G) = 0 for i > 1, and in particular
HY(C}.(G)) = Hy(G) = 0.

3.2. The dgla X2,(G) of multiplicative vector fields

Following [20, §9.8] or [26, §3], a multiplicative vector field is a pair (X, Xps) where X € X(G) and
X € X(M), which defines a morphism of Lie groupoids G — T'G. As a morphism of Lie groupoids (X, X /)
is determined by X, and so we often drop X, from the notation. This is equivalent to the condition that X
is both s and ¢-related to Xy, and that the vector field (X, X) on Go is pry, pry, and m-related to X. The
vector space X,,(G) of multiplicative vector fields is a Lie subalgebra of X(G). If X € X,,,(G) and o € T'(A)
then a” — ol € X,,(G), and [X, a"] is right invariant so that [X,a"]|ys € T(A).

Definition 3.3. The 2-term dgla X2, (G) is defined as follows: X,,1(G) = T'(A), X0 (G) = X,,(G), X! (G) =0
for i # —1,0, the differential 9 : ['(A) — X,,,(G) is @ + a” — !, and the graded Lie bracket [-,-] is given
by the Lie bracket of multiplicative vector fields and [X, o] = [X,a"]|y for X € X,,(G) and o € T'(A).

As for any dgla, the cohomology H®(X? (G)) inherits a gla structure from the dgla structure on X?,(G)
and HY(X,,(G)) is a Lie algebra.

Theorem 3.4. ([28,8].) If H is a Lie groupoid Morita equivalent to G then X2, (G) and X2, (H) are quasi-
isomorphic dgla’s. The category

T(A) X X (G) = Xn(G)

associated to X2, (G) is isomorphic to the category T'(T'G) of multiplicative sections of the tangent groupoid
TG so that T'(TQG) carries a natural Lie 2-algebra structure. Also, T'(T'G) is equivalent to the category T'(TX)
of sections of the tangent stack TX where X = BG is the classifying stack of G.

Remark 3.5. The definitions of the categories I'(T'G) and I'(TX) can be found in [16, Def. 4.2, 4.3, 4.14] and
their equivalence as set-theoretic categories is in [16, Thm. 4.15]. Note that in [28] and [8] the language of
Lie algebra crossed modules and of Lie 2-algebras is used instead of dgla’s, see §2.5 & 2.6 for a dictionary.
A version of Theorem 3.4 has been generalised to multi-vector fields in [7, Thm. 2.8].

Remark 3.6. The underlying cochain complex of X2 (G) is equal to the 2-term truncation of the deformation
complex C3,¢(G) of G shifted by 1, defined in [12, Def. 2.1]. The deformation cohomology of G is denoted
Hj3 ¢ (G). In particular,
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H™H(X7,(G)) © HY(X3,(G)) = Hes(G) ® Hyer(G)

as graded vector spaces. It is shown in [12, §9] that H3.;(G) is isomorphic to the cohomology of G with
coefficients in the adjoint representation up to homotopy of G defined in [2]. Additionally, if G is proper
then H ;(G) = 0 for every i > 2, [12, Thm. 6.1].

3.2.1. The left C>=(M)%-module structure on C3,(G) and H®*(C?2, (X))
We will show now that the complex X8, (G) of vector spaces is actually a complex of C>°(M)%-modules.

Proposition 3.7. Suppose that f € C*(M)%, a € T'(A) and X € X,,(G). Then the following hold:

a. (t* )X is multiplicative with ((t* /) X))y = fX -
b. 0(fa) = (t* F)O(0).

Proof. We start by showing (a). It is clear that (t*f)X = (s*f)X is both s and t-related to fXp. If
(9,h) € Go, with s(g) = t(h) = x € M, then

dm(((s*f)X)g, (t" ) X)n) = f(x)dm(Xg, Xp)
= f(x)Xgh
= ((t*f)X)gh-

In order to prove (b), we calculate

finishing the proof. O
As a consequence, one has the following module structures.

Definition 3.8. The chain complex X2, (G) of vector spaces is a chain complex of left C>°(M)%-modules with
action defined by
C(M)C ® %7,(G) = X7,(G)
fe(e, X) = (fo, () X).
This action descends to cohomology to define a graded C°°(M)%-module structure on H*(X2,(G)) given by
C%(M)® ® H*(X3,(G)) — H*(X7,(G))
fe (o, [X]) = ([fal, (£ £)X]) .

3.2.2. The graded module structure of H*(X2,(G)) over H*(C2, (G))

The C*®(M)%module structure on H®(X? (G)) defined in Definition 3.8 actually extends to an
H*(Cp (G))-module structure. In [12, Lem. 2.5] it is shown that the deformation complex C3.(G) car-
ries a natural right dg-module structure over the dga C3(G). This descends to cohomology to define a right
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graded HJ(G)-module structure on Hj ((G). Truncating this module structure gives the module structure
in the following definition.

Definition 3.9. The left graded module structure of H*(X?,(G)) over H*(Cy,(G))

H*(C,(G)) @ H*(X7,(G)) = H*(X7,(G))
(AL ED @ (o, [XT) = (ST - [ed, [f] - [X] + [F] - [a])
= ([fo], [(t" ))X] + [Fa'])

is defined as follows:

a. [F]-[X]=0
b. [F]-[a] = [Fa"]
c. [f]-[X]=[t"f)X]
d. [f]-[a] = [fo]

Remark 3.10. Note that as the graded algebra H*(Cp,(G)) is strictly commutative (as opposed graded com-
mutative) the right Hj(G)-module structure on H3.;(G) defines a left H*(Cy,(G))-structure on H*(X?,(G))
as in Definition 3.9.

Remark 3.11. Note that the vector field Fa” € X(G) in Definition 3.9(b) is indeed multiplicative. In fact,
a € Ker(9) is equivalent to saying that o” = a! and hence a" is both s and t-projectable to zero. It remains
to check that (Fa", Fa") is m-related to Fa". For that we use the explicit formula of the multiplication in
TG as in [20, Thm 1.4.14]. Given composable arrows g, h and local bisections ¢ : U - Gand 7: V — G
with s(g) € U and s(h) € V, then

(Fa")g e (Fa"), =dLs((Fa")) +dR,((Fa")y) — dL,dR,dlds(Fa"),.

The last term of the right hand side vanishes since o is s-projectable to zero. Using that o” = a! one easily
check that
AL,((Fa")y) + dR,((Fa'),) = F(ha, + F(g)a, = Flgh)ay,
where in the last identity we have used that F' is multiplicative.
3.8. The complex C?,(A) of infinitesimal multiplicative functions
We define the vector space C} (A) C T'(A*) to be the subspace with elements w satisfying
La(a)w(B) = La(gyw(a) —w([a, 5]) =0 (6)

for all a, 8 € T'(A). In other words w : A — R is a morphism of Lie algebroids where R is considered as
an abelian Lie algebra. We think of elements of C},(A) as “infinitesimal multiplicative functions” on A. If
f€C®(M) then daf € C},(A) is defined as da f(a) := L) f-

Definition 3.12. The 2-term complex of infinitesimal multiplicative functions C5,(A) is defined as follows:
CY (A) = C®(M), C} (A) is as defined above, C? (A) = 0 for i # 0,1, and the differential is d : C*°(M) —
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C}L (A). The cohomology of C%,(A) carries a graded product given by [f][f'] = [ff'] and [f][w] := [fw] for
f,f € C®(M) and w € CL (A).

Remark 3.13. The complex C%,(A) is equal to the 2-term truncation C°(A4) — Z'(A) of the Chevalley-
FEilenberg complex C*(A) of A, the cohomology of which is denoted H*(A), see [20, §7] or [13, §1.4]. In
particular,

HY(C},(A) & H'(C},(A)) = H*(A) & H' (4)

as graded vector spaces. Note that although C*(A) carries a natural dga structure, C,(A) only carries a
graded algebra structure at the level of cohomology.

3.4. The dgla X2,(A) of derivations of A

A Lie algebroid derivation of Ais a pair (D, o (D)) where D € Der(I'(A)) is a derivation of the Lie algebra
I'(A) and o(D) € X(M) with D(fa) = (Lo(p)yf)a+ fD(a) and p(Da) = [o(D), p(a)] for all f € C*(M)
and a € T'(A) [22, Def. 4.1]. The vector field o(D), called the symbol of D, is uniquely determined by D
and so we sometimes drop it from the notation. The space of Lie algebroid derivations is a Lie subalgebra
Der(A) C Der(I'(A)) and makes part of a 2-term dgla as explained below.

Definition 3.14. The 2-term dgla X?,(A) is defined as follows: X,,}(A) = I'(A), X% = Der(A), X!, = 0 for

m

i # —1,0, the differential ad : T'(A) — Der(A4) is a — ([a, —], a(x)), and the graded Lie bracket is given the
commutator of Lie algebroid derivations and [(D,c(D)),a] = D(«) for (D,o(D)) € Der(A) and a € T'(A).

Remark 3.15. The dgla X3, (A) is the 2-term truncation of the deformation complex C3.(A) of A shifted by
1, defined in [11, §2]. The deformation cohomology of A is denoted H3,;(A). The dgla structure on X9, (A)
is a restriction of the dgla structure defined in [11] on the shift by 1 of C3.:(A). In particular,

H™H(2X3,(A)) & HO(X3,(A)) = Her(A) ® Hyor(A)
as graded vector spaces.

3.4.1. The dgla X?,(A)-module structure on Cp,(A)

The deformation complex C3.¢(A) is isomorphic to the dgla of graded derivations of the dga C*(A) and
so C*(A) carries a natural C3.;(A)-module structure [11, §2.5-4.8]. This module structure is compatible
with the inclusions X3, (A4) C C3.;(A) and Cp, (A) C C*(A), which gives rise to the following.

Definition 3.16. The dgla module structure of C2,(A) over X2 (A) is defined as:

i X5,(A4) @ CF(A) = CFL(A)
(o, D) ® (f,w) — (adw + Dsf, Dew)

where

a. Dew =L, pyow—woD
b. Def = EU(D)f

C. odw = jw = w(a)

d. aef =0
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for D € Der(A4), a € T'(A), w € CL(A) and f € C>(M).
In Theorem 6.1 we prove that there is a related dgla module structure of Cp, (G) over X2, (G).

3.4.2. The graded module structure of H*(X?2,(A)) over H*(Cp,(A))

The deformation complex C3.(A) of A is isomorphic to the complex 2°(A, ad) computing the cohomology
of the adjoint representation up to homotopy of A [4, Thm. 3.11]. The latter complex is, by definition [4,
Def. 3.1], a module over the differential graded algebra C*(A). Via the isomorphism C3(A4) = Q°(A4, ad)
this module structure descends to cohomology to define a right graded H*(A)-module structure on H3 (A),
and then applying appropriate truncations gives the module structure in the following definition.

Definition 3.17. The left graded H*(Cp,(A))-module structure on H* (X3, (A))

H. (C.

m

(/] w]) @ (lal, [D]) = ([fFlal, Wl + [fI[D])

(A4) @ H*(X7,(A)) — H*(X5,(4))

m

is defined as follows:

a. W] [D] =0

b. [w][a] = [wa], where wa := (8 — w(f) @)
c. [fFD]=[fD]

d. [fFle] = [fa]

for w e CL(A), f € Kerdya = H°(C2,(A)), D € Der(A) and « € Kerad = H=1(X2,(A)).

Remark 3.18. Just as in Remark 3.11, one observes that wa in Definition 3.17(b) is indeed a Lie algebroid
derivation of A. If 3,3 € T'(A) then using the fact that o € Ker d implies that « is central in T'(A), and

(6):

w(B)a, 8]+ [B,w(B)e]

w(B)la, BT+ w(B)1B, a] + (Lag) (W(B) = Lan (w(B))) a
w(([B, B e

= (wa)([8, 8)),

[(we)(B), B'] + [B, (wer) (B")]

which shows that wa is a derivation of the Lie algebra I'(A). By Definition, wa is C*° (M )-linear, and so is
a Lie algebroid derivation with zero symbol.

3.5. Van-Est maps

If F € C2°(G) then the function wr : a +— u* Ly (F) is an element of C}, (A). This is just the Lie functor
mapping a Lie groupoid morphism F': G — R to the corresponding Lie algebroid morphism A — R, where
in the first case R is considered as a Lie group and in the second as its Lie algebra.

Definition 3.19. The Van-Est map VE : C%,(G) — C#,(A) is the morphism of cochain complexes that is the
identity on C*°(M) and is C},(G) — CL (A), F +— wp in degree 1.

By Lie’s theorems for Lie groupoids, VE is injective (resp. an isomorphism) if G is source connected (resp.
source simply connected). The map VE is the truncation of the Van-Est map C$(G) — C*(A) defined in
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[33], whose associated map on cohomology H*(G) — H®(A) is an isomorphism in degrees i < n and injective
in degree i = n + 1 whenever G is source n-connected [13, Thm. 4].

If X € X,,,(G) then the map Dx : a — [X,a"]|ar is a derivation of I'(A) and the pair (Dx, X)) is an
element of Der(A). This defines a Lie algebra homomorphism from %¥,,(G) to Der(A4) [26, §3], [22, §4].

Definition 3.20. The Van-Est map VE : X2 (G) — X?,(A) is the morphism of cochain complexes that is the
identity map on I'(A) and is X,,(G) — Der(A), X — Dx in degree 0.

The Lie algebra morphism X +— Dx and therefore the morphism VE : X2 (G) — X,

».(A) is injective
(resp. an isomorphism) whenever G is source-connected (resp. source simply connected) [22, Thm. 4.5].
Also, up to a shift in degree, the map VE is the truncation of the Van-Est map C3.(G) — C3.¢(A) defined
in [12, §10] whose associated map on cohomology H{ (G) — Hi(A) is an isomorphism in degrees i < n—1
whenever G is source n-connected [12, Thm. 10.1], [3, Thm. 4.7].

One easily observes that VE is a morphism of dgla’s. This follows from a standard construction for general

dgla’s as explained in Remark 3.21 below.

Remark 3.21. Suppose that L®* = L™! @ L is a 2-term dgla with differential d;. Then L~! carries a Lie
bracket [—, —];-1 defined by [z,2'],-1 := [dpz,2'], and LY acts on this Lie algebra by derivations via
y — [y, —] € Der(L™1). These operations define a second dgla L~! & Der(L~!) with differential z — ad,,
and a morphism of dgla’s L™1 @ L° — L=! & Der(L1).

In the case of the dgla X?, (G), the map X,,(G) — Der(I'(A)), X — [X, —] lands in the Lie subalgebra
Der(A) C Der(I'(A)) and so one gets a morphism of dgla’s X9, (A) — X?,(A4), which is exactly the map VE
of Definition 3.20.

4. Functions on differentiable stacks

There are several equivalent descriptions of the algebra C*°(X) of smooth functions on a differentiable
stack X. These are described in the following proposition.

Proposition 4.1. Let X be a differentiable stack, M — X an atlas, and G the associated Lie groupoid over
M. The following commutative algebras are canonically isomorphic:

morphisms of stacks Homgt (X, R) from X to the manifold R.
global sections H°(CS) of the sheaf of smooth functions on X.
invariant functions C*(M)% on M.

the degree zero differentiable cohomology HI(G) of G.

& O &R

Proof. See [9, §3]. O
The categories defined below are directly related to the previous algebras.

Theorem 4.2. Let G be a Lie groupoid over M. The following two categories are isomorphic:

a. The category C(M) x C°(G) associated to the 2-term complex C*°(M) LN C2(@Q).
b. The category Homapa(G,R) of Lie groupoid homomorphisms from G to R considered as a Lie groupoid
over a point.

In addition, if M is Hausdorff and paracompact then (a) and (b) are equivalent to:
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(¢) The category Homgs(BG, BR) of morphisms of stacks from BG to BR.

More generally, if X is a differentiable stack, M — X is an atlas with M Hausdorff and paracompact, and
G is the associated Lie groupoid over M, then the categories (a) and (b) are equivalent to Homge (X, BR).

Proof. We first show that the categories (a) and (b) are isomorphic. This can be deduced from [28, Thm.
3.1], see Remark 4.3 below, but we give a self-contained proof.

The set of objects of the category Homgpa (G, R) is equal to the set Coo(G) of multiplicative functions
on G (see §3.1). A morphism f : F = F’ in the category Homgpa (G, R) is smooth natural transformation;
that is, a smooth function f : M — R such that for each g € G, with s(g) = z and ¢(g) = y, the following
square commutes:

F
ac)iFy)

f(w)l lf(y)

Fla) = F'(y)

which is equivalent F'(g) = F(g) + f(y) — f(x). It follows that a morphism f : F = F’ is exactly a
smooth function f € C°°(M) such that F/ = F +t*f — s*f, or F/ = F + §f. This shows that the map
(F',f,F)— f: F = F'is a bijection from the set of morphisms in Homgpd (G, R) to the set of morphisms
in C®(M) x C2(G).

The composition of smooth natural transformations f : F = F" and f': F' = F" is given by (fo f')(x) =
f(z) + f'(x), which corresponds exactly to the composition (F”, f', F') o (F', f,F) = (F", f' + f, F) in the
category C°(M) x C2(G).

It remains to show that the categories (a) and (b) are equivalent to Homgt(BG, BR). For any Lie groupoid
H there is a natural equivalence of categories

Homegpp (G, H) = Homs(BG, BH), (7)

where Homgpp (G, H) is the category of G-H bibundles or Hilsum-Skandalis morphisms, and a natural
functor

HomGpd (G, H) — HOInGPD (G, H) (8)

which maps a morphism of Lie groupoids to the corresponding G-H bibundle; see [19, §3.2-3.3] for fur-
ther details. The functor (8) is fully-faithful because natural transformations between morphisms of Lie
groupoids correspond exactly to isomorphisms between the corresponding bibundles, and by [19, Lem. 3.306]
the essential image of (8) is the full subcategory of Homgpp (G, H) consisting of bibundles that admit a
global section.

Combining these facts, it is sufficient to show that if P is a G-R bibundle then the principal R-bundle
P — M admits a global section. This follows from the assumptions on the topology of the manifold M:
being Hausdorff and paracompact implies that the sheaf C'}? of smooth R-valued functions on M is fine
and therefore the Cech cohomology group H! (M, C%3) classifying principal R-bundles is zero. O

Remark 4.3. The isomorphism C*(M) x C®(G) ~ Homgpd(G,R) can also be deduced from results in
[28]. In the category Gpd, morphisms from G to R are equivalent to sections of the projection G x R — G,
which is a VB-groupoid over G with core the trivial vector bundle M x R, see [28] for the terminology. The
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isomorphism then follows from [28, Thm. 3.1] after identifying the right (resp. left) invariant function f"
(resp. f!) on G associated to f € T'(M x R) = C>(M) with t*f (resp. s* f).

5. Some identities

Throughout §5 we use the notation established in §3, and we use f, ' to denote elements of C°(M);
F, F’ to denote elements of C°(G); a, S to denote elements of I'(A4); and X, Y to denote elements of X,,(G).

5.1. The operation ‘e’

In order to prove the main results of §6 and §7 we first establish a number of relevant identities satisfied
by the following operations.

Definition 5.1. We define a canonical degree zero map between dgla’s

X,(G) = End*(C7,(G)),

given by:

a. Xeof=~Lx,[;
b. X e FF=LxF;
c. ae f=0;

d. ae F=u"L,F;

for every X € X,,(G), a € T'(4), f € C®(M) and F € C2(G).
Remark 5.2. Note that £x F' is a multiplicative function whenever X and F' are multiplicative because

In other words, associated to each multiplicative vector field (resp. section of A) there is a degree zero
(resp. minus one) endomorphism of the graded vector space C°(M) & C9(G) underlying the complex
C?.(GQ) defined as above.

5.2. Derivatives of multiplicative functions

We need the following identities about derivatives of multiplicative functions to prove several results
about the operation ‘e’ of Definition 5.1.

Lemma 5.3. The following identities hold:

Lot F = i*(Lar F).

(LorF)(h) = (Lor F)(hg) whenever g,h € G with s(h) = t(g).
(L F)(h) = (Lo F)(gh) whenever g, h € G with t(h) = s(g).
Lo F =t*v*Lor F =t"u* L F.
LoF=s"WL,F=suL,F.

o RO =R

Proof. (a). Using the fact that i* F = —F and that i,a” = —a!, where i,a" is the pushforward of a” by the
diffeomorphism 4, we have that
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ﬁarF - —Eari*F
=—1"(Ls,ar F)
=" (L F).
(b). Suppose that g € G with = s(g) and y = t(g). First note that as " is tangent to the fibers of the
submersion s : G — M it restricts to a vector field a”|;-1(,) on the submanifold s~!(2) for each z € M,

and the right invariance of a” is equivalent to the condition that (R,).(a”|s-1(y)) = @"|s-1(z). Moreover,
the value of L, F at h € G with s(h) = z only depends on the restriction of F' to s~1(z), that is

(Lar F)(R) = (Lari, 1) (Flii2)) ().

Next, it follows from the multiplicativity of F’ that F'[,-1(,) is equal to R (F|s-1(,)) up to the addition
of a constant function:

RZ(F|S*1(1))(h) = F|s*1(ac)(hg)
— F(i) + F(g)
= Fls-1)(h) + F(9)-

This implies that £z R} (F|s-1(y)) = Lz(F|s-1(,)) for any vector field Z on s~ (y).
Combining these two observations and using the fact that o” is right invariant we have that

(LarF)ls-15) = Lar ) (Fla-1)
= Lo 1 (RY(Flo 1))
=Ry (C(Rg»(ar|_g_1<y)>F|s—1<m>)
= Ry (Larl, 1 Fliro))

and therefore (Lo F)(h) = (Lo F)(hg) whenever h € G with s(h) = t(g).

(c). This follows from the same argument as in the proof of (b), but with a” replaced by o' and R,
replaced by Ly,.

(d). Using part (b) we have that

(LarF)(g) = (Lar F)(1y(g)9)
= (Lar F)(1yy))
= (t"u"Lar F)(g)

which proves the first equality. To prove the second equality we use part (a) and the fact that iu = u:

t'w Lo F =t"ui* L F
=t*(iu)* L F
= t*u*ﬁazF.

(e). This follows from part (c¢) and the same argument as in the proof of (d). O
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We note that the identities in Lemma 5.3 are partly derived from the Cartan calculus in [10, §4.2], where
multiplicative functions are treated as groupoid (0,0)-characteristic pairs. For our purposes, Lemma 5.3
(d)&(e) can be restated in terms of Definition 5.1 as follows.

Lemma 5.4 (Derivatives). The following statements hold:

Similarly, the compatibility between the operation e in Definition 5.1 and the involved differential can
be expressed as follows.

Lemma 5.5 (Differentials). The following identities hold:

a. §(Xef)=Xeif
b. vedf=0aef
c. 6(aeF)=0aeF

Proof. (a). This follows from the fact that X is s and t-related to X .
(b). Using the fact that o” is s-related to zero and ¢-related to a(«), and that tu = idps, we have that

aedf =uLort"f —uLors™f
= ut" Loga)f
= (tu)" Lo(a) f
= Lao)f
=0dae f.

(¢). Using Lemma 5.3(d) and (e) we have:

d(ao F)=t'u"LoF —s"u"Lor F
= LarF - LalF

Finally, recall the Lie structure on X! (G) from Definition 3.3, that [X,Y] = [X,Y] and [X,a] =
[X, @"]|a- Hence the operation e in Definition 5.1 is compatible with Lie brackets in the following sense.

Lemma 5.6 (Lie brackets). The following identities hold:

a. [X,YJef=Xe(Yeof)—Ye(Xef)
b. [X,;)YJeF=Xe(YeF)—Ye(XeF)
c. [X,a] e F=Xe(aeF)—ae(XeF).

Proof. Statements (a) and (b) follow immediately from standard properties of Lie derivatives and the fact
that [X,Y] = [X,Y] and [X,YT],, = [Xar, Yar].
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(c). This follows from standard properties of Lie derivatives and the fact that X is u-related to X;:

[X,a] e F — X e(aeF)+ae(XeF)=(uLixa)— Lxy,u Lo +u LorLx)F
= (U Lix,ar) —u LxLor +u"Lor Lx)F
= w*(Lix.ar] — LxLar + LorLx)F
=u"(Lix,ar) — [Lx, Lar])F

=0. O

6. The dgla module structure

In this section we use the operation ‘e’ of Definition 5.1 and the identities proven in §5 to construct on

the cochain complex C%,(G) the structure of a dg-module over the dgla X2 (G). In §6.2 we prove that this

module structure is Morita invariant in an appropriate sense, and so defines an object on the associated

stack.

6.1. The module structure

The definitions of @ F'; X e f and X e F' in Definition 5.1 are linear in each variable and so determine

linear maps I'(A) ® C2(G) — C®° (M), X,(G) @ C® (M) — C>®(M) and %,,(G) ® CX(G) — C2(G).
Theorem 6.1. The map

1 X0(G) © C3(G) — C(G)
(avX)®(f7F)’_> <U*£a’"F+£XMf7£XF)
=(adeF+Xeof XeoF)

makes Co,(G) into a differential graded module over the dgla X3, (G).
Proof. The condition that u is a chain map, see identities in (4), is equivalent to

Saey)=0zey+(—1)lzedy

for every homogeneous elements z € X2 (G) and y € Cp, (G). Indeed, this follows from Lemma 5.5 once
one takes into account the signs and uses the facts that 90X = 0, F = 0 and ae f = 0 for X € X,,(G),

FeCx(G), feC®(G) and a € T'(A):

d(Xef)=0Xeof+Xedf=Xeif by Lemma 5.5 (a)
J(XeF)=0XeF +XejF as all terms have degree 2
S(aof)=0=0aef—aedf by Lemma 5.5 (b)
d(aeF)=0aeF —aedlF =0aeF by Lemma 5.5 (c).

The condition that the action y is compatible with the graded Lie brackets on X?,(G) is that

w2/ ey =z e (' oy) — (~1)1*12 o (z 0 y)

holds for = a homogeneous element of X9, (G) and y a homogeneous element of C2,(G). If a, 8 € T'(A) then

[er, B] (=), x @ (B—) and S5 e (a—) are operators of degree -2, thus
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[, Bl (y) =0=ae(Bey) — (~1)F3e (aey)

for any element y € Cp,(G). The remaining cases follow from Lemma 5.6 (a)-(c) and the fact that multi-
plicative vector fields have degree zero. O

6.2. Morita invariance and quasi-isomorphisms

Recall from §2.4 the categories dglmod (Definition 2.1) and glmod (Definition 2.3). The module struc-
ture of Theorem 6.1 associates to a Lie groupoid G an object (X?,(G),Cr,(G)) in dglmod. The setup and
notation in the proof of the following result, as well as the statement itself, will be used a number of times
in the sequel.

Theorem 6.2. If G and H are Morita equivalent Lie groupoids then (X3, (G),Cn(G)) and (X2,(H),Cy,(H))
are quasi-isomorphic objects in the category dglmod.

Proof. The proof is a combination of results showing the Morita invariance of differentiable cohomology
[13] and of the dgla X?,(G) [28,8]. By a standard argument we can reduce the problem to the case where
there exists a surjective Morita map ¢ : G — H. Following [28, §7.5] there exists a differential graded
Lie subalgebra X2, (G)? C X2 (G) consisting of sections of the Lie algebroid A of G and multiplicative
vector fields that are ¢-projectable. Projecting elements of X, (G)? to the corresponding (uniquely defined)
elements of X?, (H), and the inclusion of X2,(G)? in X8,(G), define quasi-isomorphisms of dgla’s

xS (@) & x0 (@) D x (H). (10)

In [28] the object X2, (G)? is denoted C® ;. (V)? and the statements are written in terms of crossed modules;
see §2.6 for a dictionary. Following [13, §1.2], pulling back functions by ¢ defines a quasi-isomorphism from
C3(G) to C3(H), which we can truncate to give the quasi-isomorphism ¢* in the diagram

C*(G) 9 o0 (@) <L oo (H). (11)

We can restrict the X2 (G)-module C%,(G) to X2,(G)? to define an object (X2, (G)%, C2,(G)) in dglmod.
We claim that combining (10) and (11) gives a diagram of quasi-isomorphisms in dglmod

(9.0%)

L2 (xn,(6)%. Cn0) H (), o) -

(X7,(G), C.(G))
showing that (X2, (G),C» (G)) and (X2,(H),Cp,(H)) are quasi-isomorphic objects. It is immediate that
(inc,id) is a morphism in dglmod. That (¢, $*) is a morphism in dglmod follows from basic properties

of vector fields and smooth maps: if X € X,,,(G) is ¢-projectable to ¢(X) € X,,(H) then for any function
F € C*(H) it holds that

0" (Lo F) = Lx(6"F).

This, and the same identity applied to sections of the Lie algebroid of GG, shows that ¢* defines a morphism
of X2 (G) modules ¢* : ¢*C2 (H) — C2, (G). By the results referenced above the morphisms (inc,id) and
(6, ¢*) are both quasi-isomorphisms. O

As a consequence of Theorem 6.2, one has the following,.
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Corollary 6.3. In the setup and notation in the proof of Theorem 6.2. The maps

(H (inc),H (id))

(H*(X5,(G)), H*(C7,(G))) (H*(X5,(G))*, H*(C},(G)))

and

(H(¢),H(¢"))

(H*(X3,(G))?, H*(C},.(G))) (H*(X7,(H)), H*(C7,(H)))

are isomorphisms in the category glmod.
6.3. Quasi-isomorphisms of complezes of C*°(M)%-modules

Recall from Definition 3.8 that X8, (G) is a complex of C°°(M)%-modules, with action defined by f-a = fa
and f- X = (t*f)X for f € C®°(M)%, a €T(A) and X € X,,(G).

Remark 6.4. If H = N is a second Lie groupoid and ¢ : G — H is a Morita map covering ¢g : M — N then
¢* : C2(H) — C2.(Q) is a quasi-isomorphism and the map ¢ : C*(N)# — C>(M)% is an isomorphism
of algebras. In particular, if f € C*°(M)% then f = ¢} f' for a unique f’ € C°°(N). Via this isomorphism
any complex of C°°(N)-modules can be considered as a complex of C°°(M)%-modules.

In the statement of the following two results we follow the setup and notation used in the proof of
Theorem 6.2. That is, ¢ : G — H is a surjective Morita equivalence and X2, (G)? C X2, (G) is the subcomplex
of ¢-projectable multiplicative vector fields and sections of A.

Proposition 6.5. Consider C% (H) as a compler of C>(M)%
C®(N)H — C>(M)%. Then:

-modules via the algebra isomorphism @f :

a. X2 (G)? C X2.(Q) is a subcomplex of C*°(M)%-modules.
b. The maps
x5,(G) &2 x5,(G)* 5 x3,(H)
are quasi-isomorphisms of complexes of C°°(M)%-modules.

Proof. (a). Suppose that f = ¢ff’ is an element of C*°(M)¢ and X € X,,(G) is projectable to a multi-
plicative vector field X’ on H. Then (¢*f)X is projectable to (t* f/) X’ because if k € C°°(H) then

Lx(¢"k)
NLx(¢"k)
f)Lx(¢k)

e (Lx:k)

Lipyx(0*k) =

¢o
t*

(& f
(t*
= (o7
= (o7
¢ (" f") (Lx/k))
= ¢ (Lapxrk)

where in the third equality we have used the fact that ¢gt = t¢ because ¢ : G — H is a morphism of Lie
groupoids. Similarly, if a € T'(A) is projectable to o’ € I'(B) then f« is projectable to f'a’ because
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(fa)(z) = ((¢6./")) (z) = ['(do(x))x(x)

so that

Lie(¢) ((fa)(x)) = (f'a’)(do(x))

where Lie(¢) : A — B is the morphism of Lie algebroids associated to ¢. It follows that X2,(G)? is closed
under the action of C*°(M)% and so is a subcomplex of C°°(M)%-modules.

(b). By statement (a), X2, (G)? is a subcomplex of C>(M)%-modules and so the inclusion X8, (G)? —
X2, (G) is automatically a morphism of complexes of C°°(M)%-modules. Both this inclusion and the map
¢ : X2 (G)? — X2 (H) are quasi-isomorphisms of complexes of vector spaces by the results referenced in the
proof of Theorem 6.2. It remains to prove that each component of ¢ is a morphism of C'°>°(M)%-modules.

With respect to the isomorphism ¢ : C°(N)# — C>(M)% an element f € C°°(M) acts on X2, (H)
via f/ € C°(N)H where f’ is the unique element of C°°(N) satisfying ¢§f’ = f. The statement then
follows from the computations in the proof of part (a):

3(f - X) = B((E F)X) 3 - o) = B(fa)
— ( )3(X) -
— 73 et
LX), — 3. o

Corollary 6.6. Consider C® (H) as a compler of C°°(M)%-modules via the algebra isomorphism ¢} :
C®(N)YH — C>(M)¥. The maps

o /e H (inc) . ° H($) o e
H*(X7,(G)) ¢ H* ((X7,(G))?) —— H*(X},(H))
are isomorphisms of graded C°°(M)%-modules.
Combining all the previous results, one gets the following.
Proposition 6.7. If G and H are Morita equivalent Lie groupoids then there is an algebra isomorphism
C®(N)H — C>(M) with respect to which X2, (G) and X8, (H) are quasi-isomorphic as complexes of
C> (M) -modules.

6.4. Objects on stacks

The results in §6 and §6.2 can be interpreted in terms of differentiable stacks as follows. Recall from
Proposition 4.1 that if X is a differentiable stack then the algebra C°°(X) is intrinsically defined, and is
isomorphic to C>(M)% if G = M is the Lie groupoid associated to an atlas M — X.

Theorem 6.8. Let X' be a differentiable stack and G = M the Lie groupoid associated to an atlas M — X.
Then, the object

(X7, (X), O, (X)) := (X7,(G), O (G))

is well defined in the category dglmod and X9,(X) is a complex of C°°(X)-modules. Up to quasi-
isomorphism these objects are independent of the choice of atlas and unchanged if X is replaced by an
equivalent stack ).
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Proof. This follows from Theorem 6.2 and Proposition 6.7, and the fact that if M — X and N — X are
atlases of X', and M’ — ) is an atlas of an equivalent stack )/, then the three associated Lie groupoids are
Morita equivalent. O

7. Cohomology and derivations

In this section we show that the graded Lie algebra H®(X?, (G)) carries a natural graded Lie-Rinehart
algebra structure (see Definition 2.4) over the algebra C>(M)% = H°(C®,(G)). As a consequence, associated
to each differentiable stack X is a graded Lie-Rinehart algebra over the algebra C°°(X), independent up to
isomorphism of the choice of atlas involved in the construction.

7.1. Some module structures
Recall from Theorem 6.1 that there is a dgla X7 (G)-module structure on Cy,(G) given by:

e X5,(G) @ CF(G) = G (G)
(avX) ® (va) = (U*'Ca""F"‘»CXMwaXF)'

The corresponding map on cohomology H () defines a graded H*(X?,(G))-module structure on H*(Cp (G)):

H(p) - H*(X5,(G) ® H*(CF,(G)) — H*(CF,(G)) (13)
([, [X]) @ ([f], [F]) = ([u" Lar F' + Lx,, f1, [Ex F])

where the Kiinneth theorem has been applied on the left side. The map H () corresponds to a morphism
of dgla’s:
L:H* (X}

m

(G)) — End*(H*(C},(G)) (14)
= (y— H(p)(z@y)).

We also have a left graded H*(Cp,(G))-module structure on H*(X?, (G)) introduced in Definition 3.9:

p: H*(CR(G)) @ H*(X7,(G)) — H*(X5,(G)) (15)
(AL 1FD) @ ([od, [X]) = ([fal, [Fa'] + [(#7 ) X]) -

Remark 7.1. If G is the unit groupoid M = M then H*(X?,(G)) is equal to X(M), H*(Cp,(G)) coincides
with C*° (M), L(X)(f) = Lx f and p(f®X) = fX. In other words, the map £ (14) is just the Lie derivative
and p (15) is the standard C°°(M)-module structure on X(M). In this case £ is an isomorphism onto the
Lie algebra Der(C>°(M)) and the Lie bracket on X(M) satisfies the Leibniz identity.

The main results in the present section §7 are analogues for more general Lie groupoids and for differen-
tiable stacks.

We start by establishing some analogues of the Leibniz rule and proving that under certain conditions
the image of the morphism of gla’s £ is contained in the gla Der(H*(Cp,(G))) of graded derivations of the
graded algebra H®*(C®,(G)). Recall from §3.1 that if G is proper then H*(C®,(G)) = H°(C2,(G)), in which
case the results in this section can be restated with H®*(C®,(G)) in place of H°(C?,(G)) (or with H*(C3,(X))
in place or C*°(X) for X the stack corresponding to G). For the non-proper case see §9.4.
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7.2. The graded Lie-Rinehart structure

The dgla X?, (G)-module structure on C2,(G) descends to cohomology to define a gla H*(X?,(G))-module
structure on H*®(C® (G)). The commutative algebra C>°(M)% is the degree zero graded submodule of
H*(Cp,(G)), so that the restriction map

H*(%,(G)) © C%(M)© — (M)
(o, [XD@frraef+Xef=Lx,[f

makes C°°(M)% into a module over the graded Lie algebra H*(X?, (G)). This module structure determines
a morphism of graded Lie algebras

L:H* (X3, (G)) = Der (C*(M)°), ([o], [X]) = Lx,, (16)

where we have restricted the codomain to the Lie subalgebra Der (C°(M)“) of End (C>°(M)%) and Lx,,
is a derivation because it is a Lie derivative. Recall from Definition 3.8 the left C°°(M)%-module structure
on H*(X?,(G)) defined by f - [a] = [fa] and f - [X] = [(t*f)X].

Proposition 7.2. The C*(M)%-module structure on H®*(X2,(G)) and the morphism of graded Lie algebras
L make H®*(X2,(Q)) into a graded Lie-Rinehart algebra over C>°(M). That is:

a. The map L is both a morphism of dgla’s and C> (M) -modules,

b. The graded Lie bracket on H*(X? (G)) satisfies the graded Leibniz identity.

Proof. We start by proving (a). From equation (16) follows that £ is a morphism of dgla’s. Suppose that
feC®(M)% and X € X,,(G) is a multiplicative vector field on G. Then (t*f)X is a multiplicative vector
field with ((¢*f)X)a = fXar and as derivations of C*°(M)¢

Lo p)xy = Lrxu = [Lxy-

This shows that £ is a morphism of C*°(M)%-modules.
Regarding (b), suppose that f € C®(M)%, a € T'(A) is a cocycle and X,Y € X,,(G) are multiplicative
vector fields. Then

(X, (t*f)Y] = Lx (" [)Y + [[X,Y]
=t"(Lx, [)Y + fIX,Y]

and

[X, fol = [X, (" f)a"]|m

(Lx(E*fa” + (" HIX, ") [m
(" (Lxy fla" + )X, a"]) [m
(Lxu o+ fI1X o]

Passing to cohomology then shows that the graded Lie bracket on H*(X?, (G)) satisfies the graded Leibniz
identity. O
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Morita invariance and stacks. Using the Morita invariance result of Theorem 6.2 we can prove a similar
statement for the Lie-Rinehart algebra of Proposition 7.2. For that, we follow the setup and notation in the
proof of Theorem 6.2, Corollary 6.3 and Corollary 6.6. That is, ¢ : G — H is a surjective Morita equivalence
and X2, (G)? C X2 (G) is the subcomplex of ¢-projectable multiplicative vector fields and sections of A.
Identifying C>(N)H with C°°(M)% via the algebra isomorphism ¢ : C°(N)# — C°°(M)%, one has the
following result.

Proposition 7.3. The map

H(¢$)oH (inc) !

H*(X7,(G)) H*(X5,(H))

is an isomorphism of graded Lie-Rinehart algebras over C>(M)C.

Proof. By Corollary 6.3 and Corollary 6.6 the maps H(inc) and H(¢) are isomorphisms of graded Lie
algebras and of graded C°°(M)%-modules. After identifying C°°(N) with C°°(M)% the isomorphisms in

the category glmod given in Corollary 6.3 show that H (inc) and H(¢) are compatible with the actions of
H*(X2,(G)) and H*(X2,(H)) on C*(M)%¢. O

Recall from Proposition 4.1 that if X' is a differentiable stack then the algebra C'*°(X) is intrinsically
defined, and is isomorphic to C>°(M)¢ if G = M is the Lie groupoid associated to an atlas M — X. In
this setting, the following holds.

Theorem 7.4. There is an associated a graded Lie-Rinehart algebra
X*(X) = H*(X3,(G))

over the algebra C*(X), whose isomorphism class is independent of the choice of atlas, making it a well-
defined object in the category of gLRalg. Also, if X is equivalent to ), then X*(X) = X*()) as graded
Lie-Rinehart algebras over C*°(X).

Proof. This follows from Proposition 7.3 and the fact that if M — X and N — X are atlases of X,
and M’ — Y is an atlas of an equivalent stack ), then the three associated Lie groupoids are Morita
equivalent. 0O

Remark 7.5. A natural question is whether or not the morphism
X*(X) — Der(C*™ (X)) (17)

is an isomorphism as in the case of a smooth manifold. In §9 we study a number of examples and show
that in general the answer to this question is no, an obvious obstruction being the possible non-vanishing
of H1(X2,(G)) where G is a Lie groupoid with classifying stack equivalent to X'

8. The infinitesimal picture

Let G be a Lie groupoid over M with Lie algebroid A. Given some cochain complex associated to G, a
Van-Est type map relates such a complex to a complex defined purely in terms of A. This is the case of the
Van-Est maps VE (Definition 3.20) and VE (Definition 3.19). The following results say that these Van-Est
maps are also compatible with the module structures 7 (Definition 3.16) and p (Theorem 6.1).
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Theorem 8.1. The following statements hold:

a. The Van-Est map VE : X3 (G) — X3, (A) is a morphism of dgla’s.
b. The following diagram is a commutative diagram of morphisms of cochain complexes:

x3,(G) ® On(G) —— Cn,(@) (18)

.y |

X5,(4) @ C3,(4) — C3(4)

=
=

c. The vertical arrows (18) are isomorphisms whenever G is source simply connected.

Proof. Note that (a) follows directly from Remark 3.21. Regarding (b), the maps VE, VE, 7 and p are
chain maps by statement (a), Definition 3.19, Definition 3.16 and Theorem 6.1 respectively; it follows that
VE ® VE is a chain map also. It remains to show that the diagram (18) commutes, which is equivalent to
the statement that

VE (z e y) = VE(z) e VE(y),

for all simple tensors z ® y € X2,(G) ® C» (G) with 2 and y homogeneous. We deal with the possible cases
in turn, using the Definitions 3.16, 3.19, 3.20 and 5.1.
If aeT'(A) and f € C®°(M) then

VE(a e f) — VE(a)sVE(f) = VE(0) — asf
=0.

If a €eT'(A) and F' € C°(G) then

VE(a e F) — VE(a)sVE(F) = VE(u* Ly F) — adwp
= ULy F — iqwr
= ULy F — Lo F
=0.

If X € X,,,(G) and f € C°>°(M) then

VE(X e f) = VE(X)SVE(f) = VE(Lx,, f) — Dx®f
=Lxyf —Lxuf
= 0.

If X € X,,(G) and f € C(G) then

VE(X o F) — VE(X)sVE(F) = VE(LxF) — Dxewr

=weyr— (Lx owp —wpoDx). (19)

The right hand side of (19) is the section of A* given by the map
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o= wey (@) = Lx, (wr(e)) + wr(Dx (a))
4" (Lar LxF) — Loy (0 Lar F) + 0 (Lix.ari F)
= U (LarLx F) —u"(Lx Lo F) + 0" (Lix,an F)
= U (Lar LxF — Lx Lor F + Lix or)F)
=u"(Liar,x] = Liar,x1F)

where in the second equality we have used the fact that X, is u-related to X, so that v*Lx = Lx,,u*.
Finally, (¢) follows from the fact that the vertical arrows in (18) are isomorphisms whenever G is source
simply connected follows from the properties of the Van-Est maps discussed in §3.5. O

9. Examples
In this section we give examples and conditions under which the map (17) is an isomorphism.
Example 9.1. Let G = (N x3 N = N) be the submersion groupoid defined by a surjective submersion
m: N — M. The corresponding stack X is equivalent to the manifold M. Hence the graded Lie-Rinehart
structure on X is equivalent to the standard Lie-Rinehart algebra structure on the base M
L:X(M)— Der(C*(M)).
In this case, the map (17) is an isomorphism.

Let G == M be a proper Lie groupoid with Lie algebroid A. There are well-defined sets I'(i) := ker(p :
I'(A) — X(M)) and I'(v) := X(M)/im(p). By Theorem 6.1 in [12, §6] one has

H*(X5,(G)) ~T({)™ @ T(v)™,
where T'(1)" is the set of invariant sections by the adjoint action of G, and [V] € T'(v) is invariant if there
exists X € X(G) which is both t-projectable and s-projectable to V, see §4 in [12] for more details. On the
other hand, by Proposition 1 in [13, §2.1] the cohomology of G is concentrated in degree zero, hence
H*(C2,(GQ)) = C>=(M)% @ 0.
We will apply this to the next example.

Example 9.2. Let 7 : T — M be a bundle of tori. This defines a proper Lie groupoid T = M with both
source and target maps given by 7. By the previous observations we get that the morphism (17) is given by

I'(A) ® X(M) — Der(C*(M)),

where A = ker(T'w) is a Lie algebroid of T = M. In particular, if A # 0, then the morphism (17) is not an
isomorphism.

If G is an étale Lie groupoid then A = 0 and the map (17) is the map

L : X(M)C — Der(C™(M)%)
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given by the action of invariant vector fields on invariant functions. The following example shows that even
for proper and étale groupoids, i.e. those presenting orbifolds, the map (17) is in general not an isomorphism.

Example 9.3. Let Zy act on R by reflection around zero. Then the orbit space R/Zs is a global orbifold
presented by the action groupoid Zs x R = R. The space of invariant functions C*°(R)%2 consists of all

even functions, and the space of invariant vector fields X(R)%2 consists of all vector fields X = qb(x)%

where ¢(z) is an odd function. It follows from Hadamard’s Lemma that the map D := %% is a well-defined

algebra derivation of C*°(R)%2. If X is an invariant vector field then Lx(z?) vanishes at zero, whereas
D(x?) = 2, and therefore the map (17) X(R)%2 — Der(C>(R)%2) is not surjective.

The following example was motivated by the work of P. Molino in [25, §2.2]. In the example below we
show that the map (17) vanishes identically.

Example 9.4 (Molino’s evample). Let T? = S! x S be the torus with local coordinates (g, 6;). Consider
the foliation F on T? determined by the tangent distribution D = span{)\oa%O + )‘16%1 | A1/X0 € R\ Q}.
Let G = T2 be the foliation groupoid whose canonical foliation is 7. On the one hand, it is clear that G is
not a proper groupoid and C*°(T?2)% consists of constant functions, which implies that Der(C>(T?2)%) = 0.
On the other hand, by Proposition 3.3 in [12, §3] we have that H*(X?,(G)) ~0& spam{f)\la‘%0 + /\08%1}.
Thus, in this case the map (17) is the zero morphism, which is not an isomorphism.

Example 9.5. Let G be a Lie group considered as a Lie groupoid over a point, and BG the classifying stack
of G. Then H*(X:,(G)) = g% ® H}(G,g), C*(BG) = R, and Der(R) = 0. It follows that the map (17)
is an isomorphism iff g¢ = 0 and H 1(G,g) = 0. The latter condition holds if G is compact or semi-simple
with finite fundamental group, but fails in general, e.g. for G = GLy(C). Note that if G is connected then
g% = Z(g), and if G is moreover simply connected then H}(G,g) = H'(g, g).

Data availability
Data will be made available on request.
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