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Abstract. The consideration of soil-strueture interaction in the structural analysis of

buildings can be very important in some situations, as the case of buildings on shallow

foundations. Therefore, a building can be better represented as a

superstructure/substructure/soil massif system. The superstrueture can be modelled with bar
elements. The substrueture should be modelled in order to guarantee the interaction among

the parts of the system. For the soil, a practical mathematical model for daily application

should be used. This model should also represent the soil satisfactorily, since this médium is

quite heterogeneous. A. special element of rigid footing based on the Boundary Element

Method has been adopted to represent the substrueture together with the soil massif. Its

formulation has been improved for a better representation of the soil, including the existence

of a rigid layer in the massi.f Therefore, the real importance of the rigid layer consideration
can be verified by means of a numerical example.
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1 INTRODUCTION

The consideration of the soil-strueture interaction in the structural analysis of buildings can
be very impoitant in some situations, as the case of buildings on shallow foundations. In order
to verify the real influence of that consideration on the effort and displacement results, it is
necessary that the constmetion modelling represents the reality well.

Therefore, a buüding can be better represented as a superstructure-substructure-soil massif
System, as shown in the scheme of Figure 1. The parts of the system should be well modeUed

so that the results of the analysis are dose to reahty.
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Figure 1 Superstrueture-substrueture-soU massif system.

Using the Finite Element Method, the superstrueture can be modelled with bar elements,

with stx degrees of freedom at each end. The inffastructure should be modelled in order to

guarantee the interaction among the parts of the system. For the soil, a practical mathematical
model for daily application should be used. This model should also represent the soü

satisfactorily, since this médium is quite heterogeneous.
Therefore, a special element of rigid footing has been adopted to represent the

infrastrueture together with the foundation soil. That element is based on the Boundary

Element Method and has been developed by Ramalho*. Its formulation has been improved for
a better representation of the soil, including the existence of a rigid layer in the massif. Not

rarely, a layer with such characteristic might be found in soU, at a certain depth, for the
apphed load levei. For example, it can be rock or a much-compacted soil.

The aim of this paper is to present the modification implemented in the "rigid footing"
element formulation and to verify the real importance of the consideration of a rigid layer in
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soil by means of a numerical example. Effort has been made in order to produce satisfactory
results avoiding harming the practicality of the element.

2 IMPLEMENTATION

In the element formulation, the soil was originally considered a continuum semi-infmite,

linear elastic, isotropic and homogeneous médium. A domain such as the soü taken as a semi-

infmite space leads to greater settlements, since there would not be resistance to vertical

displacements at any point in the médium. The modification consists of defming the depth of

a rigid surface, which is the upper surface of the rigid layer. Since it is an adaptation of an
existing program, that surface is supposed to be horizontal.

With such purpose, an artifice proposed by Steinbrenner^ has been applied, which is
described below:

When a vertical load is applied to the flat boundary of a continuum semi-infinite, isotropic,
homogeneous and elastic domain, the variation of the induced displacements of the points in

the line of action of the resultant with the depth can be represented in the diagram of Figure 2.
The curve tends to zero at an infmite distance of the point of application
displacement configuration corresponds to Boussinesq’s solution^, which can be considered
as a simplification of Mindlin’s solution'*, when the load is applied to the boundary. In this
study, Mindlin’s solution, whose formulation was in the program, has been adopted.

of the force. This

settlement

/

\
\

/
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u

Figure 2 Settlement-depth curve for a continuum, semi-infinite, isotropic, homogeneous,
elastic médium.

If there is a rigid layer at a certain depth in the massif, the displacement of the point in its
surface should be zero. Thus, Steinbrenner proposed to impose the null value to the settlement
of that point, and to recalculate the displacements at the other points of the médium. For each

point, the previously calculated displacement ought to be reduced by the prior determined

settlement of the point in the rigid surface right above it. A scheme is shown in Figure 3.
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Figure 3 Settlement recalculation aceording to Stembrenner’s artífice.

For a better understanding of the accomplished modification, a brief introduetion to the

fundamental Solutions of the three-dimensional problem is presented next.

2.1 Three-dimensional elastic problem

Defining a body Í2 + F, in which is a three-dimensional region and F is its bounding
contour, consider that it is filled with an elastic, linear and isotropic material, characterised by

its Young’s modulus (E) and its Poisson’s ratio (v). In this case, the equations of equUibrium
aceording to the theory of elasticity, in index notation, can be written as foUows:

a,,+b,=0

where Oy is stress components and b, is body forces.
The stress-strain relationship aceording to Hooke’s law is given by:

(1)

(2)

where: ey is strains;
ôy is the Kronecker delta, which is equal to zero if i j and to 1 if i = j;

X and G are, respectively, Lamé’s constant and the modulus of elasticity in shear,

defmed by:
vE

X =
(l + v)(l-2v)

E
G =

2(1+ v)

The relations among strains and displacements (Ui) are expressed by:

1 (
£ii = —(Ui

ij 2' ’
(3)
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Finally, for the entire defmition of the elastic problem, the boundary conditions at a point

Q € r must be determined:

(4)Ui(Q) = ü,(Q)

Pi(Q) = Pi(Q) (5)

where Uj and pi are displacements and surface forces defined at the boundary.

Adequate manipulation of equations (1) to (3) leads to the differential equations of the
elastic problem in terms of displacements or Navier’s equations, whose solution allows the

calculation of all important parameters for the case of a three-dimensional domain:

U::: +—b- =0
G ^

1
(6)U:. +

J.U >.U
l-2v

2.2 Mindlin’s fundamental solution

To formulate the integral equations of the elastic problem the use of a fundamental solution

of the differential equation (6) becomes necessary. Consider points s and ^ in a domain Q*,

which contains Q. This solution may be physically understood as responses in ç to the

application of concentrated forces Fj* at s.

Different Solutions are given for each domain with different boundary conditions.
Therefore, there is Kelvin’s solution for an infmite elastic solid, Mindlin’s solution for a semi-

infmite domain and Boussmesq’s solution, which can be considered as a singular case of

Mindlin’s, when loads are appüed to the bounding surface.
In this study, Mindlin’s fundamental solution has been used. It includes all situations

covered by Boussinesq. This solution is obtained from Navier’s equation:

11

•,+-A(s,q)F;=0

In the mathematical formulation of the prior equation, the body forces have been

substituted by the expression:

(7)U::: + U,
Jdl

l-2v

b;(q) = A(s,q)F;(s) (8)

where A(s,q), Dirac’s delta, is so defmed:

A(s,q) = 0 if

A(s,q) = oo \f s = q

JvA(s,q)dV = l

Representing the displacements Ui* of point q due to the appüed forces at s gives:

u*(q) = U;(s,q)Fj'(s) (9)
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where in array Uji*, the first index corresponds to the unit load direction, and the second index

corresponds to the displacement component, as shown in Figure 4. The surface forces are not
mentioned here, as they are not used.

U33*

A X3 II *

U,13

q. VXa
> 1

/r

U.,*
/ 11

/V
' U,

S * •5*
1

1

311

Figure 4 Fundamental displacement matrix components.

Arranged in an array, the fundamental displacement matrix of the three-dimensional

problem becomes:

u;, u:^ u*

u;(s,q)= u;, u; u;

13

(10)23

u: u:u: 3331 32

Next, the expressions of each component above are presented, as they had been determined
by Mindlin for a semi-infinite, elastic, linear, homogeneous and isotropic domain. Point s,

where loads are applied at, is an internai point of the domain located at a depth C from the

bounding surface, aceording to the outline of Figure 5.
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Figure 5 Mindlm’s semi-infmite space. (a) Plane X1X2 view. (b) Plane X2X3 view.

(c) Perspective.
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3r3^ 4(l-v)(l-2v)3-4v 1
+ —+U’22=KJ (15)1-1- +

R' R' R(R + r3)R + R3r

081.7



Osvaldo G. Holanda Jr., Mareio A. Ramalho, and Márcio R- S. Corrêa

= —U’— U|3u: (16)23

r

r' R'

U* = —U’U32~ U3,

3-4v ^ 8(l-v)^-(3-4v) ^ r3^ , (3-4v)R3'-2CZ _ ÓCZRj

6CZR3 4(l-v)(l-2v)

R' ■ R(R + R3)
U;,.= -K,r, (17)

(18)

u;3=k, (19)
R' R'Rr

1 + v
where: Kj =

87iE(1-v)

fi =Xi(q)-Xi(s)

Ri =Xi(q)-Xi(s')

^_|X3(s)-X3(s-)
2

Z = |X3(s'')-X3(q)

2.3 Subroutine introduced

The necessary modification of the rigid footing element has been effectively made

including a new subroutine. Its function is to calculate the settlement value at the rigid layer

upper surface depth and to reduce it from the footing vertexes determined settlements.

Applying equation (9) to vertical displacements, the recalculation may be mathematically
explained.

u;(q) = U;3(s,q)F;(s)

Let r be a point at the rigid surface located in the same vertical line as q:

u;(r) = u;3(s,r)F;(s)

(20)

(21)

Simply reducing the settlement at r from the settlement at q:

u;(q) = u;(q)-u;(r)recaiculated

= 0*3(5,q)Fj*(s)-U;3(s,r)F;(s)

= [U;3(s,q)-U;3(s,r)]F;(s)

U3(q) recaiculated

u^q) recaiculated

Finally, it results in:
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= U;3(s,q)-U;3(s,r)U;3(s,q)

It is worth noticing again that Steinbrenner’s artifice is only suitable for settlements. That

is the reason to use only displacements in direction 3, defined as vertical.

(22)rec^-uUied

3 RIGID LAYERINFLUENCE

To verify the real importance of considering a rigid layer in soü, a 21-storey building has

been taken as an example. It has been submitted to two different analyses considering soil-
strueture interaction: fu-st with a semi-infmite soil massif and then with a rigid surface located

at 15 m of depth.

By compaiing the results, it has been possible to observe that all nodal vertical

displacements have been reduced when considering the rigid layer existence. At the strueture
base that reduetion ranged ffom -18,16% to -36,69% of the previously determined value for
semi-infmite soil. At the burlding top, the vertical displacements have been reduced within a
range from -10,68% to -28,38%.

Vertical reactions at column bases have also been modified characterising effort

redistribution. As a general behaviour, loads have been transferred from columns tending to

present greater settlements to the neighbouring ones. Although those changes have oceurred,
they were not significant.

Considerable changes oceurred in bending moment values of almost all columns.

Percentage differences ranged between -70,86% and 75,11%. Only columns P13, P14, P15
and PI6 have not presented significant differences.

The same could be noticed in the beams efforts. Percentage differences ranged between -

93,53% and 120,53% for bending moment and between -95,56% and 73,40% for shear force.

Changes have not been important only in beams VI1 and V12.

4 CONCLUSION

Considering a rigid layer existence at 15 m of depth in soil massif for the analysed

strueture, it was observed that all settlements were reduced, reaching percentage differences

up to -36,67%. Bending moments in columns and beams and shear forces in beams have also

presented very . significant changes. Among all verified parameters, only vertical reactions at
column bases did not changed considerably.

Therefore, the changes were, generaUy, very significant. This fact leads to the conclusion

that the rigid layer location in the soü massif plays an important role in soU-strueture
interaction process, and should be included in such analyses.
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