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the fields of the model. The solitons radiate very little and appear to be stable. These
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1 Introduction

Solitons play a very important role in the study of non-linear phenomena because often

they arise in the mathematical description of the behaviour of some physical systems.

Many properties of solitons are associated with the integrability of the mathematical

models in which they arise. In such cases solitons are described as localised classical field

configurations of the model that propagate without dissipation and dispersion. Moreover,

when two such solitons are scattered they do not destroy each other but come out of their

interaction region essentially unscathed. The only lasting effect of the scattering is a shift

in their positions relative to the values they would have had, had they not encountered

each other. The usual explanation of this behaviour involves the integrability of the model

and associated with it existence of an infinite number of conserved quantities. These

conservation laws dramatically constrain the soliton dynamics. The integrable theories

are, however, very special as they possess highly non-trivial hidden symmetries. So, even

small perturbations of these theories can destroy these symmetries and it is important to

check whether any of these properties still hold when the underlying mathematical models

are nonintegrable. Afterall, one would expect some ‘continuity’ of the properties as one

introduces small (or not so small) perturbations.

We have looked at this problem and recently we have found that some non-integrable

field theories in (1+1) dimensions, present properties similar to those of exactly integrable

theories [1–5]. They have soliton-like field configurations that behave in a scattering process

in a way which is very similar to true solitons. We have also shown that such theories

possess an infinite number of quantities which are not exactly time-independent but are,

however, asymptotically conserved. By that we mean that the values of these quantities

change during their scattering process, and at times change a lot, but after the scattering,

they return, to the values they have had before it. This is an interesting property since

from the point of view of the scattering what matters are the asymptotic states, and so

a theory in which solitons behave like this looks a bit as an effectively integrable theory.

For these reasons we have named this phenomenon quasi-integrability. The mechanisms

responsible for this behaviour are not properly understood yet, but we believe that this

behaviour will play an important role in the study of many non-linear phenomena. Since

integrable theories are rare and, in general, do not describe realistic physical phenomena,

the quasi-integrable theories may play a significant role in the description of more realistic

physical processes.

Most of the models we studied so far [1–8] involved (1+1)-dimensional theories of either

one real scalar field φ subjected to a potential which is a deformation of the Sine-Gordon

potential or a complex field which satisfied a modified non-linear Schrödinger equation or

equation of the modified Bullough-Dodd model. The original models were integrable and

the deformation of their potentials made them non-integrable.

Here we decided to extend our investigations to systems with more fields and so we

have had a look at the SU(N) Toda models and their deformations. All such undeformed

models are integrable and the lowest of them (N = 2) is, in fact, the Sine-Gordon model in

disguise. So, in this paper we report results of our study of the next model in this family

of models, namely, of the SU(3) one.
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The paper is organized as follows. In section 2, we present this model and discuss some

of its properties and in particular its symmetries. We also suggest a possible deformation

of the model which possesses most of these symmetries. The following section discusses

various properties of both the undeformed and deformed models such as their quasi-zero

curvature conditions and the resulting quasi-conserved quantities. Section 4 discusses how

the fields of these models change when one Lorentz transforms them and when they lead

to charge conservation. We also present the explicit expression for the anomaly terms —

which control the situation when the charges are only asymptotically conserved (which

corresponds to our ideas of quasi-integrability). In section 5 we discuss the well known

soliton solutions of the undeformed model paying particular attention to the solutions which

describe static solitons. In section 6 we discuss the interplay between parity and dynamics.

The following two sections describe the numerical procedure used by us for checking

some of these claims and present the results of our numerical investigations. In fact all

our results were obtained using the 4th order Runge-Kutta method to simulate the time

dependence of field configurations. First we performed such numerical evolutions of field

configurations for which we had analytical expressions. This not only checked our numerical

schemes but also demonstrated that the soliton solutions of the un-deformed SU(3) model

were really stable, with respect to small numerically induced, perturbations. Then we

looked at the deformed models for various values of the deformation and for solitons at

rest. We followed these studies by looking at solitons moving towards each other at various

speeds. In section 8 we present some of our conclusions.

2 The model

In this paper we consider field theories in (1 + 1)-dimensional Minkowski space-time for

two complex scalar fields φa, a = 1, 2, defined by the Lagrangian

L =
1

12

[
(∂µφ1)2 + (∂µφ2)2 − ∂µφ1 ∂

µφ2

]
− V (φ1 , φ2) =

1

24

(
∂µ~φ

)2
− V, (2.1)

where we have introduced the vector

~φ = ~α1 φ1 + ~α2 φ2 (2.2)

and where ~α1 and ~α2 are the simple roots of SU(3), with α1 · α2 = −1, and α2
1 = α2

2 = 2.

The corresponding Euler-Lagrange equations are given by

1

12

[
∂2
t
~φ− ∂2

x
~φ
]

= −~∇φ V, (2.3)

where ~∇φ is the gradient in φ-space. In terms of the components fields φa one gets

∂+∂−φ1 = 2
δ V

δ φ1
+
δ V

δ φ2
,

∂+∂−φ2 = 2
δ V

δ φ2
+
δ V

δ φ1
. (2.4)
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Here we have introduced the light-cone coordinates (with the speed of light set to unity)

x± = x± t, ∂± =
1

2
(∂x ± ∂t) , ∂+∂− = −1

4

(
∂2
t − ∂2

x

)
. (2.5)

The integrable SU(3) Affine Toda model corresponds to the potential

VToda = −1

3

[
ei(2φ1−φ2) + ei(2φ2−φ1) + e−i(φ1+φ2) − 3

]
= −1

3

[
ei ~α1·~φ + ei ~α2·~φ + ei ~α0·~φ − 3

]
, (2.6)

where ~α0 = −~α1 − ~α2 (see (2.2)).

In this paper we consider deformations of the integrable Affine Toda model, such that

we keep the kinetic term in (2.1) unchanged, but take the potential to be of the form

V~v = −1

3

[
ei ~v1·

~φ + ei ~v2·
~φ + ei ~v0·

~φ − 3
]
, (2.7)

where ~φ is still given by (2.2), and ~vj , j = 0, 1, 2, are vectors in the root space of the

SU(3) Lie algebra, which are deformations of the roots ~αj . The choice of the vectors ~vj is

restricted by some conditions which we will discuss below.

The Hamiltonian density and energy associated to (2.1) are given respectively by

H =
1

24

[(
∂t~φ
)2

+
(
∂x~φ

)2
]

+ V, E =

∫ ∞
−∞

dxH. (2.8)

Since the fields are complex, so are the Hamiltonian density and energy. Therefore, such

models do not possess vacua solutions that minimize the energy. However, in order for the

energy to be conserved in time, it is necessary to require that the flows of momenta at both

ends of spatial infinity are equal, i.e. that

dE

d t
=

1

12
∂x~φ · ∂t~φ |x=∞

x=−∞= 0. (2.9)

For the solutions which we consider in this paper this condition is satisfied as space and

time derivatives of the fields vanish at spatial infinity. For static configurations there is a

further point to take into account. It is well known that for theories of the type we are

considering the quantity

E =
1

24

(
∂x~φ

)2
− V (2.10)

is independent of x for static solutions of the equations of motion, i.e. d E
d x = 0. This

corresponds to the energy of a mechanical problem of a particle moving in φ-space in an

inverted potential with x playing the role of time. Therefore, for static solutions for which

the space derivatives of the fields vanish at spatial infinity one finds that the conservation

of E in x, implies that

V
(
~φ(+)

)
= V

(
~φ(−)

)
, (2.11)
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where ~φ(±) are the asymptotic values of the fields at spatial infinity, i.e. ~φ → ~φ(±), as

x→ ±∞. For the deformed potentials (2.7) the condition (2.11) becomes

2∑
j=0

ei ~vj ·
~φ(+) =

2∑
j=0

ei ~vj ·
~φ(−) . (2.12)

However, for the static equations (2.3) to be satisfied at spatial infinity one requires that

2∑
j=0

~vj e
i ~vj ·~φ(±) = 0. (2.13)

This imposes conditions on vectors ~vi.

Let us restrict our interest to the cases where ~v1 and ~v2 are linearly independent and

consider the dual basis ~wa, such that ~wa · ~vb = δab, a, b = 1, 2. Then, taking the scalar

product of (2.13) with ~wa one finds that

ei ~v1·
~φ(±) + ~w1 · ~v0 e

i ~v0·~φ(±) = 0, ei ~v2·
~φ(±) + ~w2 · ~v0 e

i ~v0·~φ(±) = 0. (2.14)

Next we note that we have to discard the cases where ~v0 is orthogonal either to ~w1 or

~w2, since (2.14) would imply that the imaginary part of ~φ(±) had to diverge, and so the

derivatives of the fields would not vanish asymptotically at spatial infinity as we have

assumed. One then concludes from (2.14) that

ei ~v1·
~φ(±)

~w1 · ~v0
=
ei ~v2·

~φ(±)

~w2 · ~v0
= −ei ~v0·~φ(±) . (2.15)

Using (2.15) one can conclude that (2.12) implies that

[1− (~w1 + ~w2) · ~v0] ei ~vj ·(
~φ(+)−~φ(−)) = [1− (~w1 + ~w2) · ~v0] , j = 0, 1, 2. (2.16)

Thus we have two possibilities. Either

(~w1 + ~w2) · ~v0 = 1 and so ~v0 = β ~v1 + (1− β) ~v2 (β real) (2.17)

or

ei ~vj ·(
~φ(+)−~φ(−)) = 1, j = 0, 1, 2. (2.18)

However, we are really interested in theories that can be deformed away from the Affine

Toda model in a continuous manner. If one takes (~w1 + ~w2) ·~v0 = 1 then there is no way of

having ~vj , j = 0, 1, 2, as close as possible to ~αj . So we shall discard the possibility (2.17).

The second case (2.18) implies that the difference of the asymptotic values of the fields has

to live on a dual lattice, i.e.

~φ(+) − ~φ(−) = 2π (m1 ~w1 +m2 ~w2) , m1 , m2 ≡ integers. (2.19)

In addition we have to take ~v0 as

~v0 = n1 ~v1 + n2 ~v2, n1 , n2 ≡ integers. (2.20)

– 5 –
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Let us restrict our attention to deformations that preserve, as much as possible, the

symmetries of the Affine Toda model. For instance, the undeformed model (2.6) is invari-

ant under the exchange φ1 ↔ φ2. In addition, for the solutions which satisfy either the

condition φ2 = −φ∗1, or φa = −φ∗a, a = 1, 2, the energy becomes real. So, in order to keep

such symmetries and the reality conditions for the energy, we consider in this paper the

following deformation:

~v1 =

(
1− ε

3

)
~α1 −

2

3
ε ~α2,

~v2 = −2

3
ε ~α1 +

(
1− ε

3

)
~α2, (2.21)

~v0 = − (~v1 + ~v2) = − (1− ε) (~α1 + ~α2)

with ε being a real parameter. Note that this corresponds to taking n1 = n2 = −1

in (2.20) and so ~v0 is expressed in terms of ~vi like α0 in terms of ~αi. It then follows that

~v1 · ~α1 = ~v2 · ~α2 = 2, and ~v1 · ~α2 = ~v2 · ~α1 = − (1 + ε). In addition, one finds that

~v2
1 = ~v2

2 = 2

(
1 +

ε2

3

)
, ~v1 · ~v2 = −

(
1 + 2 ε− ε2

3

)
. (2.22)

With such a choice, the potential (2.7) becomes

Vε = −1

3

[
ei[2φ1−(1+ε)φ2] + ei[2φ2−(1+ε)φ1] + e−i(1−ε)[φ1+φ2] − 3

]
. (2.23)

Note that the vectors ~va, a = 1, 2, correspond to the deformations of the simple roots ~αa
of SU(3) which modify the angle between them, and rescale their lengths equally, as shown

in (2.22). The dual basis associated to the choice (2.21) is given by

~w1 =
2 ~α1 + (1 + ε) ~α2

(3 + ε) (1− ε)
, ~w2 =

2 ~α2 + (1 + ε) ~α1

(3 + ε) (1− ε)
. (2.24)

Using (2.2) and (2.24) one finds that the condition (2.19) becomes

φ
(+)
1 − φ(−)

1 = 2π

[
2m1 + (1 + ε) m2

(3 + ε) (1− ε)

]
, φ

(+)
2 − φ(−)

2 = 2π

[
2m2 + (1 + ε) m1

(3 + ε) (1− ε)

]
.

(2.25)

As we have remarked above, a given solution satisfying the condition φ2 = −φ∗1, has real

energy. Therefore, for such static solutions one needs m1 = −m2, and so

φ
(+)
1 − φ(−)

1 = −
[
φ

(+)
2 − φ(−)

2

]
=

2πm1

(3 + ε)
. (2.26)

At the same time we observe that a solution satisfying the condition φa = −φ∗a, a = 1, 2,

also has real energy, and a static solution of this kind can only exist when m1 = m2 = 0.
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3 The quasi-zero curvature condition

To discuss integrability of the model we introduce the Lax potentials as

A+ = − (V + v0) b1 + i

[
δ V

δ φ1

(
E0
α1
− E1

−α3

)
+
δ V

δ φ2

(
E0
α2
− E1

−α3

)]
,

A− = b−1 − i
2∑

a=1

∂−φaH
0
αa
, (3.1)

with v0 being a constant, and

b1 = E0
α1

+ E0
α2

+ E1
−α3

, b−1 = E0
−α1

+ E0
−α2

+ E−1
α3

(3.2)

with Hn
αa

, a = 1, 2, and En±αs
, s = 1, 2, 3, n ∈ ZZ, being the Chevalley basis of the SU(3)

loop algebra described in appendix A.

The curvature of such potentials takes the form

F+− = ∂+A− − ∂−A+ + [A+ , A− ]

= −i
[
∂+∂−φ1 − 2

δ V

δ φ1
− δ V

δ φ2

]
H0
α1

(3.3)

−i
[
∂+∂−φ2 − 2

δ V

δ φ2
− δ V

δ φ1

]
H0
α2
− i

2∑
a=1

Xa F
a
1

with

F 1
1 = E0

α1
+ ωE0

α2
+ ω2E1

−α3
, F 2

1 = E0
α1

+ ω2E0
α2

+ ωE1
−α3

. (3.4)

Here ω is a cubic root of unity other than unity itself, i.e. ω3 = 1 and ω 6= 1, and so

1 + ω + ω2 = 0. In addition, we have

X1 =
1

3
[(1− ω) ∂−φ1W1 (ω)− ω (1− ω) ∂−φ2W2 (ω)] ,

X2 =
1

3

[(
1− ω2

)
∂−φ1W1

(
ω2
)

+ ω (1− ω) ∂−φ2W2

(
ω2
)]
, (3.5)

where

W1 (ω) =
δ2 V

δφ2
1

− ω δ2 V

δφ1 δ φ2
+ i ω2 δ V

δφ1
− i ω δ V

δφ2
+
(
1− ω2

)
(V + v0) ,

W2 (ω) =
δ2 V

δφ2
2

− ω2 δ2 V

δφ1 δ φ2
− i ω2 δ V

δφ1
+ i ω

δ V

δφ2
+ (1− ω) (V + v0) . (3.6)

Note that, as Wa, a = 1, 2, are functions of ω, in the calculation of X2 one has to interchange

ω ↔ ω2 in the expressions for Wa given above.

The coefficients of H0
αa

, a = 1, 2, in (3.3) are exactly the equations of motion (2.4) of the

deformed models we are considering, and so they vanish when evaluated on the solutions of

such models. In order for the curvature F+− to vanish one needs the anomalies Xa, a = 1, 2

to vanish, and so one has to choose potentials that satisfy the four equations, Wa (ω) =

– 7 –
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Wa

(
ω2
)

= 0, for a = 1, 2. If one takes an ansatz of the form V ∼ [exp (i γa φa)− v0], then

these four equations become four algebraic equations for the unknowns γ1 and γ2. One can

check that the only possible solutions are three choices:

(γ1 , γ2) = (2 , −1) ; (−1 , 2) or (−1 , −1) (3.7)

and so any linear combination of the form V = q1 e
i (2φ1−φ2)+q2 e

i (−φ1+2φ2)+q0 e
i (−φ1−φ2)−

µ0, leads to the vanishing of the anomalies, and so to an exactly integrable field theory. The

Affine Toda model, corresponding to all qj 6= 0, j = 0, 1, 2, and the so-called Conformal

Toda model corresponding to q0 = 0, are examples of such integrable models.

3.1 The quasi-conserved quantities

In order to calculate the quasi-conserved quantities for the theories (2.1) we employ a

modified version of the technique widely used in integrable field theories [9–12]. This

procedure is called the abelianization procedure because it consists of gauge transforming

the Lax potentials into an infinite abelian sub-algebra of the SU(3) loop algebra. In our

case, due to the fact that the potentials (3.1) are not really flat, we are able to gauge

transform only one component of (3.1) into the abelian sub-algebra. The main ingredient

of the technique relies upon the fact that the generator b−1 introduced in (3.2), is a semi-

simple element of the SU(3) loop algebra G. By this we mean that the kernel and image

of the adjoint action of b−1 have no intersection and G splits into the vector space sum of

kernel and image, i.e.

G = Ker + Im ; [ b−1 , Ker ] = 0 ; Im = [ b−1 , G ] ; Ker ∩ Im = 0. (3.8)

The second important ingredient of the technique is an integer gradation of the SU(3) loop

algebra G, such that

G =

∞⊕
n=−∞

Gn ; [D , Gn ] = nGn ; [Gn , Gm ] ⊂ Gn+m ; n , m ∈ ZZ. (3.9)

The relevant gradation for our case is the so-called principal gradation performed by the

grading operator

D = H0
α1

+H0
α2

+ 3λ
d

dλ
, (3.10)

where H0
αa

, a = 1, 2, are the generators of the Chevalley basis of the Cartan sub-algebra of

G, and λ is the so-called spectral parameter of the loop algebra (see appendix A for details).

The calculations become simpler if one uses a special basis for G, described in ap-

pendix A, where the generators of the kernel are denoted as b3n±1, n ∈ ZZ, and the gen-

erators of the image as F an , n ∈ ZZ, a = 1, 2, and they have well defined grades w.r.t.

D, i.e.

[D , b3n±1 ] = (3n± 1) b3n±1 ; [D , F an ] = nF an . (3.11)

In terms of such a basis the Lax potentials (3.1) become (see appendix A for the definition

of the new basis)

A− = b−1 − i
2∑

a=1

∂−ϕa F
a
0 ; A+ = − (V + v0) b1 +

i

3

[
δ V

δ ϕ1
F 2

1 +
δ V

δ ϕ2
F 1

1

]
, (3.12)

– 8 –
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where we have redefined the fields as

2∑
a=1

φaH
0
αa

=

2∑
a=1

ϕa F
a
0 → (ϕ1 , ϕ2) =

1

3

(
φ1 + ω2 φ2 , φ1 + ω φ2

)
(3.13)

Next we perform a gauge transformation with a group element which is an exponenti-

ation of the positive grade elements of the image of the adjoint action of b−1, i.e.

Aµ → aµ = g Aµ g
−1 − ∂µg g−1 ; with g = exp

( ∞∑
n=1

Fn

)
; and Fn =

2∑
a=1

ζ(n)
a F an .

(3.14)

We first consider the a−-component of the transformed Lax potential, and split it into the

eigensubspaces of the grading operator (3.10) as a− =
∑∞

n=−1A
(n)
− , with

[
D , A(n)

−

]
=

nA(n)
− . We then get that

A(−1)
− = b−1,

A(0)
− = − [ b−1 , F1 ]− i

2∑
a=1

∂−ϕa F
a
0 , (3.15)

A(1)
− = − [ b−1 , F2 ]− i

2∑
a=1

∂−ϕa [F1 , F
a
0 ] +

1

2!
[F1 , [F1 , b−1 ] ]− ∂−F1,

...

A(n+1)
− = − [ b−1 , Fn ] + . . .

One can now choose the parameters ζ
(n)
a in Fn, order by order in the grade decomposition,

to cancel the image component of a−. Indeed, if one takes

ζ(1)
a = i ∂−ϕa, a = 1, 2 (3.16)

one can check that the components of A(0)
− in the direction of F a0 are cancelled, and so

A(0)
− = 0. Note that the element Fn, of grade n, first appears in the grade expansion in the

component A(n+1)
− of grade n + 1. Since the image subspaces are always two dimensional

for any grade n, one can choose the parameters ζ
(n)
a in Fn recursively, to cancel the image

component of A(n+1)
− . In addition, note that ζ

(n)
a is a polynomial in x−-derivatives of the

fields ϕa, and each term of such polynomials contains precisely n x−-derivatives. Note also

that in such a recursive process of canceling the image components of A(n+1)
− we do not

use the equations of motion. Thus we find that the a−-component of the transformed Lax

potential becomes

a− = b−1 +
∞∑

M≥1

a
(M)
− bM ; M ≡ 3n± 1, n ∈ ZZ. (3.17)

Note that this procedure has used up all freedom of the choice of parameters ζ
(n)
a . So

what can we say about the transformed a+-component of the Lax potentials? Well, we
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can restrict our attention to fields which satisfy the equations of motion and use them, or

equivalently the quasi-zero curvature condition to determine its form. The curvature F+−,

given in (3.3), gets transformed into

∂+a− − ∂−a+ + [ a+ , a− ] = −i
2∑

a=1

Xa g F
a
1 g
−1, (3.18)

where in the last equality we have imposed the equations of motion (2.4) (see (3.3)). Since

the group element g is an exponentiation of generators of strictly positive grades, it follows

that g F a1 g
−1 has also strictly positive grades only, and so we can split it into its image

and kernel components as

g F a1 g
−1 = F a1 +

∞∑
M≥2

α(M,a) bM +

∞∑
n=2

2∑
b=1

β
(n,a)
b F bn ; M ≡ 3n± 1; n ∈ ZZ. (3.19)

From (3.12) we observe that A+ has grade one components only, and so a+ has strictly

positive grades only. Thus the split of a+ into its image and kernel components gives us:

a+ =

∞∑
M≥1

a
(M)
+ bM +

∞∑
n=1

2∑
a=1

a
(n,a)
+ F an . (3.20)

Next we put (3.17), (3.20) and (3.19) into (3.18), and find that the kernel component

leads to

∂+a
(1)
− − ∂−a

(1)
+ = 0, (3.21)

∂+a
(M)
− − ∂−a(M)

+ = −i
2∑

a=1

Xa α
(M,a) ; M ≡ 3n± 1 ≥ 2 n ∈ ZZ

and the image component of (3.18) leads to

∞∑
n=1

2∑
a=1

a
(n,a)
+ [ b−1 , F

a
n ] = −

∞∑
n=1

2∑
a=1

∂−a
(n,a)
+ F an −

∞∑
n=1

2∑
a=1

∞∑
M≥1

a
(M)
− a

(n,a)
+ [ bM , F an ]

+i

2∑
a=1

Xa F
a
1 + i

∞∑
n=2

2∑
a,b=1

Xa β
(n,a)
b F bn. (3.22)

Note that the r.h.s. of (3.22) does not have components of zero grade but the l.h.s. does.

Therefore one concludes that a
(1,a)
+ = 0. For exactly integrable field theories for which the

anomalies Xa vanish, one can conclude that the r.h.s. of (3.22) does not have a component

of grade one, if a
(1,a)
+ = 0. Thus the l.h.s. would not have one too, and so one must have

that a
(2,a)
+ = 0. Continuing such a process one observes that the zero curvature condition

implies that the a+-component of the Lax potential is also transformed into the abelian

kernel generated by bM . In addition, for integrable theories Xa vanish and so one gets

that the r.h.s. of (3.21) also vanishes for any M . For non-integrable field theories where

the anomalies Xa do not vanish, none of this happens. However, the fact that a+ is not
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transformed into the kernel does not affect (3.21), and so we can get quasi-conservation

laws as we explain next.

From (2.5) we see that the x and t components of the Lax potentials are ax = a+ +a−
and at = a+ − a−. So we introduce the charges

Q(M) =

∫ ∞
−∞

dx a(M)
x ; M ≡ 3n± 1 ≥ 1 ; n ∈ ZZ. (3.23)

By imposing appropriate boundary conditions at spatial infinity on the at component of

the Lax potential one gets from (3.21) that

dQ(1)

d t
= 0, (3.24)

dQ(M)

d t
= −2 i

∫ ∞
−∞

dx

2∑
a=1

α(M,a)Xa, M ≡ 3n± 1 ≥ 2 ; n ∈ ZZ.

From (3.12) and (3.20) one observes that a
(1)
+ = − (V + v0), and so it turns out that a

(1)
x

is a linear combination of the energy and momentum densities. This explains the origin of

the conservation of the charge Q(1), given in (3.24), even for the non-integrable case.

In our numerical simulations we have studied the behaviour of the charge Q(2), and so

the important quantities for evaluating the anomalies are then

α(2,1) = i
(
ω − ω2

)
∂−ϕ2, and α(2,2) = −i

(
ω − ω2

)
∂−ϕ1. (3.25)

Choosing v0 = −1 in (3.6), it follows that quantities Xa, a = 1, 2, given in (3.5), evaluated

for the potential (2.23), become

X
(ε)
1 =

ε

3
(1− ω)

[
ei[2φ1−(1+ε)φ2]

(
ω ∂−φ1 + ω2

(
1− ε

3
ω2

)
∂−φ2

)
+ ei[2φ2−(1+ε)φ1]

(
−ω2

(
1− ε

3
ω

)
∂−φ1 − ∂−φ2

)
(3.26)

+ e−i(1−ε)[φ1+φ2]

(
−
(

1− ε

3
(1− ω)

)
∂−φ1 + ω

(
1− ε

3

(
1− ω2

))
∂−φ2

)]
and

X
(ε)
2 =

ε

3
(1− ω)

[
ei[2φ1−(1+ε)φ2]

(
−ω ∂−φ1 −

(
1− ε

3
ω

)
∂−φ2

)
+ ei[2φ2−(1+ε)φ1]

((
1− ε

3
ω2

)
∂−φ1 + ω2 ∂−φ2

)
(3.27)

+ e−i(1−ε)[φ1+φ2]

(
ω2

(
1− ε

3

(
1− ω2

))
∂−φ1 − ω

(
1− ε

3
(1− ω)

)
∂−φ2

)]
.

Using (3.25) and (3.13) we then find that

2∑
a=1

α(2,a)X(ε)
a = − i ε

9

[[
6 (∂−φ1)2−(3−ε) (∂−φ2)2−2 (3+ε) ∂−φ1∂−φ2

]
ei[2φ1−(1+ε)φ2]

+
[
(3− ε) (∂−φ1)2 − 6 (∂−φ2)2 + 2 (3 + ε) ∂−φ1∂−φ2

]
ei[2φ2−(1+ε)φ1]

+ 3 (1− ε)
[
(∂−φ1)2 − (∂−φ2)2

]
e−i(1−ε)[φ1+φ2]

]
. (3.28)
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We have also investigated the quasi-conservation of the second charge which satisfies

(see (3.24))

dQ(2)

d t
= −i 2

∫ ∞
−∞

dxα(2,a)X(ε)
a ≡ β(2). (3.29)

Thus using (3.28) we find that the total anomaly is given by

β(2) = −2

9
ε

∫ ∞
−∞

dx
[[

6 (∂−φ1)2−(3−ε) (∂−φ2)2−2 (3+ε) ∂−φ1∂−φ2

]
ei[2φ1−(1+ε)φ2]

+
[
(3− ε) (∂−φ1)2 − 6 (∂−φ2)2 + 2 (3 + ε) ∂−φ1∂−φ2

]
ei[2φ2−(1+ε)φ1]

+ 3 (1− ε)
[
(∂−φ1)2 − (∂−φ2)2

]
e−i(1−ε)[φ1+φ2]

]
. (3.30)

4 The Lorentz transformation and the charge conservation

Consider the Lorentz transformation in (1 + 1)-dimensions (see (2.5))

Λ : x± → e∓λ x± or x→ x− v t√
1− v2

, t→ t− v x√
1− v2

(4.1)

with λ being the rapidity, related to the velocity v by v = tanhλ. Note that the Lax po-

tentials (3.1), or equivalently (3.12), do not transform as vectors under the Lorentz trans-

formation (4.1). The Lorentz group in (1 + 1)-dimensions is a non-compact one-parameter

group, namely SO(1, 1). Consider also an internal one-parameter group generated by the

grading operator D, defined in (3.10), and acting on the loop algebra SU(3) as an auto-

morphism, i.e.

Σ : T → Σ (T ) = eλD T e−λD, Σ
([
T , T ′

])
=
[

Σ (T ) , Σ
(
T ′
) ]
. (4.2)

The structure of the Lax potentials (3.12) is such that they transform as vectors under

the diagonal subgroup, i.e. (the fields φa, or equivalently ϕa, are scalars under the Lorentz

group (4.1))

Ω (A±) = e±λA±, where Ω ≡ Λ Σ. (4.3)

In consequence, the curvature is invariant under such a diagonal subgroup, and so is the

anomalous term appearing in (3.3), i.e.

Ω (F+−) = F+−, Ω

(
2∑

a=1

Xa F
a
1

)
=

2∑
a=1

Xa F
a
1 . (4.4)

Let us now analyse how the transformed Lax potentials a±, transform under Ω. First we

consider a− and we look at the second line of (3.15) and observe that

Ω

(
2∑

a=1

∂−ϕa F
a
0

)
= e−λ

2∑
a=1

∂−ϕa F
a
0 . (4.5)

However, asA(0)
− = 0, this expression has to be cancelled by the transforms of [ b−1 , F1 ]

and of b−1 and so we see that it must be that

Ω (F1) = F1 (4.6)
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since Ω (b−1) = e−λ b−1. Indeed, one observes from (3.16) that Ω
(
ζ

(1)
a

)
= e−λ ζ

(1)
a , and

so we find that Ω (F a1 ) = eλ F a1 . This demonstrates the validity of (4.6). Looking at

the terms in the next lines of (3.15) and using (4.6) we observe that, under the action

of Ω, the last three terms of the third line of (3.15) get multiplied by e−λ. Thus, in

order for the term [ b−1 , F2 ] to cancel the image part of these three terms one needs that

Ω ([ b−1 , F2 ]) = e−λ [ b−1 , F2 ]. Consequently, it must be that

Ω (F2) = F2. (4.7)

Continuing this process recursively, order by order in the grades, one concludes that all Fn
have to be invariant under Ω, and so the group element g of the gauge transformation (3.14),

i.e. satisfies

Ω (g) = g. (4.8)

In consequence the transformed Lax potentials a± transform as vectors under the diagonal

Lorentz subgroup in the same way as A±, i.e. they satisfy

Ω (a±) = e±λ a±. (4.9)

Moreover, one of the consequences of the fact that all Fn’s are invariant under Ω, is

that from (3.14) we see that Ω
(
ζ

(n)
a

)
= e−nλ ζ

(n)
a . Since the parameters ζ

(n)
a were so chosen

that the a−-component of the Lax operator is gauge transformed into the kernel of the

adjoint action of b−1, it follows that it depends only on x−-derivatives of the fields, and not

of their x+-derivatives. So, from its transformation under Ω, we see that each parameter

ζ
(n)
a of the gauge transformation has to be a polynomial in the derivatives of the fields with

all of its terms containing only n x−-derivatives. Moreover, from (4.8) it then follows that

Ω
(
g F a1 g

−1
)

= eλ g F a1 g
−1, and so each term on the r.h.s. of (3.19) under the action of Ω

gets multiplied by eλ. Since Ω (bM ) = eM λ bM , this then implies that

Ω
(
α(M,a)

)
= e(−M+1)λ α(M,a) ; M ≡ 3n± 1 ≥ 2; n ∈ ZZ. (4.10)

From (3.19) we then see that α(M,a) is a function of the parameters ζ
(n)
a , and so

depends only on the x−-derivatives of the fields. Therefore, each term in α(M,a) has to

contain exactly (M − 1) x−-derivatives of the fields. Looking at (3.25) we note that α(2,a)

is indeed linear in the x−-derivative. Then from (4.4) and the fact that Ω (F a1 ) = eλ F a1 , it

follows that Ω (Xa) = e−λXa. In consequence, we have demonstrated that the anomalies

of the charges, appearing in (3.24), satisfy

Ω

(
dt

∫ ∞
−∞

dx

2∑
a=1

α(M,a)Xa

)
= e−M λ dt

∫ ∞
−∞

dx

2∑
a=1

α(M,a)Xa. (4.11)

This observation proves a very important property of the charges Q(M). Consider a

solution of the equations of motion (2.4) which is in the form of a traveling wave, i.e.

φa = φa (x− v t). By a Lorentz transformation one can go to the rest frame of such a

solution where it is time-independent. Clearly, the charges Q(M) evaluated on such a static
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solution, should be time independent and so the anomalies appearing on the r.h.s. of the

second equation in (3.24) should vanish. But, from (4.11) it follows that, if the anomalies

vanish in one reference frame, they vanish also in in any other reference frame connected

by a Lorentz transformation. Thus, we conclude that all the charges Q(M), for any M

in the infinite set of them defined in (3.23), are exactly conserved for any traveling wave

solution and, in particular, they are conserved for the one-soliton type solutions. That

is a highly non-trivial result since the densities of the anomalies, namely
∑2

a=1 α
(M,a)Xa,

do not vanish in general when evaluated on a traveling wave solution. It is their integral

over the whole one-dimensional space that has to vanish. Note also that for finite energy

solutions of the equations of motion the space and time derivatives of the fields have to

vanish at spatial infinity. In consequence, the α(M,a) and Xa expressions have to vanish

at spatial infinity, since as we have seen above, they are polynomials in the x−-derivatives

of the fields (see (3.5)). So, for any one-soliton solution the densities of the anomalies∑2
a=1 α

(M,a)Xa, are localized in space, and their space integral vanishes. One possible

reason for the vanishing of such an integral is that the densities of the anomalies are odd

functions of x, in the rest frame of the traveling wave solution. We have verified that this is

exactly what happens for the one-soliton solutions of the theories (2.1) with potentials given

by (2.23). In section 8 we explain how the one-solitons of such theories can be constructed

numerically. One can then evaluate the anomalies on such solutions numerically. In figure 1

we plot the real and imaginary parts of the density of the anomaly β(2), given in (3.30), as

functions of x, in the rest frame of the one-soliton. The value shown there is for ε = 0.0005.

Note that the complex density of the anomaly is indeed an odd function of x (the imaginary

part is essentially zero; its infinitesimal values are numerical artifacts).

We have not understood yet the phenomenon of the cancellation of the anomalies.

However, the conservation of the infinite set of charges for traveling wave solutions is

clear from the argument based on the Lorentz transformation given above. In the case of

traveling wave solutions like one-solitons this argument implies that the anomalies have

to vanish irrespective of their densities being odd functions of x or not. For the case of

two-soliton solutions (moving with different velocities) we have found that in all examples

where the anomalies cancel, there is a space-time parity transformation playing a role. It

would be interesting to investigate if there is a relation between the roles of the space parity

in the case of one-solitons and the space-time parity in the case of two-solitons. In the next

section we discuss the role of the space-time parity in the cancellation of the anomalies.

4.1 The parity transformation and charge conservation

The properties of field configurations, specially those describing one and two soliton solu-

tions, under space-time parity transformations do seem to play a role in the vanishing of

‘total’ anomalies, i.e. when the anomalies are integrated not only over space but also over

time. Consider a space-time parity transformation given by

P :
(
x̃ , t̃

)
→
(
−x̃ , −t̃

)
; x̃ = x− x∆ ; t̃ = t− t∆, (4.12)

where x∆ and t∆ are constants depending on the parameters of the solution under con-

sideration. Let us look at the solutions of the equations of motion such that the fields,
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Figure 1. The real (a) and imaginary parts (b) of the density of the anomaly β(2), given in (3.30),

as functions of x, in the rest frame of the one-soliton. ε = 0.0005.

evaluated on them, behave as follows under this parity transformation:

P (φ1) = φ2 + c2, P (φ2) = φ1 + c1, (4.13)

where c1 and c2 are constants. In addition, we are interested in potentials that are invariant

under the parity, i.e.

P (V (φ1 , φ2)) = V (φ1 , φ2) . (4.14)

Note that (4.12) and (4.13) imply that

P (∂µφ1) = −∂µφ2, P (∂µφ2) = −∂µφ1, (4.15)

where ∂µ stands for the space-time derivatives, and

P (δφ1) = δφ2, P (δφ2) = δφ1, (4.16)

where δ stands for the functional variations of the fields.

Using (4.14) and (4.16) we find from (3.6) that

P : W1 (ω)↔W2

(
ω2
)
, W2 (ω)↔W1

(
ω2
)
. (4.17)

Then, (4.15) and (3.5), give us that

P (X1) = −ω2X2, P (X2) = −ωX1. (4.18)

Next we check how the quantities α(M,a) and the anomaly densities transform under

this parity transformation. To determine this we need to use another automorphism of the

SU(3) loop algebra which involves the following order two outer automorphism of the finite

simple SU(3) Lie algebra (σ2 = 1)

σ (Hα1) = Hα2 ; σ (E±α1) = −E±α2 ; σ (E±α3) = −E±α3 . (4.19)
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One can check that (4.19) is indeed an automorphism of the algebra SU(3) given in (A.1).

This automorphism is insensitive to the value of the λ parameter of the loop algebra, and

so we find that (see appendix A)

σ (b3n±1) = −b3n±1,

σ
(
F 1

3n

)
= ω F 2

3n, σ
(
F 2

3n

)
= ω2 F 1

3n,

σ
(
F 1

3n+1

)
= −ω F 2

3n+1, σ
(
F 2

3n+1

)
= −ω2 F 1

3n+1,

σ
(
F 1

3n−1

)
= −ω F 2

3n−1, σ
(
F 2

3n−1

)
= −ω2 F 1

3n−1. (4.20)

Next we consider the combined action of the space-time parity P and this automorphism σ

S ≡ P σ. (4.21)

From (3.13) and (4.15) we see that

P (∂µϕ1) = −ω2 ∂µϕ2 ; and P (∂µϕ2) = −ω ∂µϕ1. (4.22)

Thus (4.20) gives us:

S

(
2∑

a=1

∂−ϕa F
a
0

)
= −

2∑
a=1

∂−ϕa F
a
0 . (4.23)

Then applying (1 + S) to both sides of the second equation in (3.15) we get

(1 + S)A(0)
− = − [ b−1 , (1− S)F1 ] . (4.24)

Let us recall that the procedure in (3.15) involved choosing the group element g and so

also the Fn’s in such a way that the new Lax potential a− was transformed into the kernel

of the adjoint action of b−1. Hence, as a result of this procedure A(0)
− belongs to the kernel.

But since σ, and so S, maps kernel into kernel (see (4.20)), we note that the l.h.s. of (4.24)

belongs to the kernel. However, since the r.h.s. of (4.24) is the commutator of b−1 with

something, it belongs to the image of the adjoint action of b−1. Since image and kernel do

not possess common elements (see (3.8)), then both sides of (4.24) have to vanish. Also,

since σ, and so S, maps image into image (see (4.20)), it follows that (1− S)F1 belongs

to the image, and so it cannot commute with b−1. Thus it must be that

(1 + S)A(0)
− = 0 ; (1− S)F1 = 0. (4.25)

Then applying (1 + S) to both sides of the third equation in (3.15) we find

(1 + S)A(1)
− = − [ b−1 , (1− S)F2 ] . (4.26)

Using very similar arguments to those presented above one can also conclude that

(1 + S)A(1)
− = 0 ; (1− S)F2 = 0. (4.27)

Continuing this process recursively, order by order in the grade expansion of a−, one

concludes that all Fn’s are invariant under S and so that

S (g) = g. (4.28)
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Next, using (4.20) and (4.28) one finds that

S
(
g F 1

1 g
−1
)

= −ω g F 2
1 g
−1 ; S

(
g F 2

1 g
−1
)

= −ω2 g F 1
1 g
−1. (4.29)

Then from (3.19), (4.20), (4.21) and (4.29) one also finds that

P
(
α(M,1)

)
= ω α(M,2) ; P

(
α(M,2)

)
= ω2 α(M,1) ; M = 3n± 1; n ∈ ZZ. (4.30)

In consequence, (4.18) allows us to conclude that

P

(
2∑

a=1

α(M,a)Xa

)
= −

2∑
a=1

α(M,a)Xa. (4.31)

Thus we have demonstrated that the anomaly densities are odd under our parity

transformation. This implies that if we integrate them on a rectangle with centre at

(x , t) = (x∆ , t∆), (see (4.12)), they vanish, i.e.∫ t̃0

−t̃0
dt

∫ x̃0

−x̃0
dx

2∑
a=1

α(M,a)Xa = 0. (4.32)

Finally, taking x̃0 → ∞, we find from (3.24) that the charges satisfy the mirror type

symmetry

Q(M)
(
t̃0
)

= Q(M)
(
−t̃0
)

; M ≡ 3n± 1 ≥ 2 ; n ∈ ZZ. (4.33)

So, if one considers the scattering of two one-soliton fields (which make a two-soliton

solution satisfying (4.13) and (4.14)), the values of the infinite number of charges Q(M)

do vary in time, but after the scattering they all return to the values they had before the

scattering. Since in a scattering process what matters are the asymptotic states, we see

that the properties of such scatterings resemble those of an integrable theory, and that is

why we call such theories quasi-integrable.

5 The exact soliton solutions of the integrable Affine Toda Models

The exact soliton solutions for the Affine Toda theories (AT) can be constructed by a

variety of methods, all of which are based in one way or another on the zero curvature

condition or the Lax-Zakharov-Shabat equation [13, 14]. Among the several methods

that have been used to study such theories, we have the inverse scattering method [15],

Bäcklund transformations [16], the dressing transformation method [17–25], the solitonic

specialization [26] of the Leznov-Saveliev solution [27], the direct Hirota method [28, 29],

and others (see [30] for a more complete account). The soliton solutions for the SU(N)

Affine Toda field theories were first constructed by Hollowood [31] using the Hirota method.

The generalization of the construction to AT models associated to other algebras were

presented in [32–36] using the Hirota method, and in [26, 37–39] using the Leznov-Saveliev

method and the representation theory of Kac-Moody algebras based on vertex operators.

The Hirota method is perhaps the most efficient procedure for constructing explicit

analytical soliton solutions. However, it does not provide a way of finding the so-called tau-

functions which are crucial for the Hirota method. Such functions can however be easily
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found using the dressing transformation method and the representation theory of Kac-

Moody algebras based on vertex operators [38, 39]. Therefore, the most efficient method

for constructing soliton solutions is perhaps a hybrid procedure based on the dressing

transformation and the Hirota methods as explained in [40, 41]. An additional advantage

is that this procedure can be easily adapted to be carried out with the help a computer

package for algebraic manipulations. In fact, the magic of the Hirota method, which

produces exact solutions by truncations of a formal series expansion, can be understood

through the nilpotency of vertex operators in highest weight representations of the Kac-

Moody algebras. In such representations the central element of these algebras cannot

vanish, and so the Lax potentials, like the ones given in (3.1), have to live in the full Kac-

Moody algebra and not only in the loop algebra. This requires the extension of the AT

models to the so-called Conformal Affine Toda models (CAT) by the introduction of one

extra field (or two if one wants conformal symmetry). Such an extension explains the need

for one extra tau-function for the Hirota method to work, as compared to the number of

fields of the AT models (see [33] for details). Therefore, for an AT model associated to a

Kac-Moody algebra Ĝ, affine to a finite simple Lie algebra G, of rank r, there are r+ 1 tau-

functions τj , j = 0, 1, . . . r, satisfying coupled partial differential equations, the so-called

Hirota’s equations. These equations are quadratic, cubic or quartic, in the tau-functions,

depending on the connectivity of the Cartan matrix of Ĝ (see [33] for details). Then an

N -soliton solution is obtained through the Hirota ansatz for the tau-functions

τj = δ
(0)
j + κ

N∑
k=1

δ
(1)
j,(k) e

Γ(zk) + κ2
N∑

k,l=1

δ
(2)
j,(k,l) e

Γ(zk)+Γ(zl) + . . . j = 0, 1, . . . r, (5.1)

where δ
(0)
j are constants corresponding to the values of the tau-functions on a vacuum

solution of the theory. The other constants δ
(1)
j,(k), δ

(2)
j,(k,l), etc are obtained, recursively, from

the expansion the Hirota equation in powers of κ. In the expression above the Γ function

stands for

Γ (zk) = mk

(
zk x+ +

x−
zk

)
+ ξk = 2mk ηk

(x− vk t)√
1− v2

k

+ ξk, (5.2)

where zk = ηk e
−αk and vk = tanhαk, with αk real and ηk = ±1. So, vk is the velocity

and αk is the rapidity of the soliton k. The parameters ξk fix the positions of the solitons

at t = 0, but in some cases they can even be taken to be complex. The square of the

parameter mk, and the first order vectors δ(1)’s, are determined from the first order (in κ)

Hirota’s equations, which lead to the eigenvalue problem [33]

Lijδ
(1)
j,(k) = m2

k δ
(1)
i,(k). (5.3)

Here Lij = lψi Kij , Kij are elements of the extended Cartan matrix of the affine Kac-Moody

algebra Ĝ, and lψi are positive integers appearing in the expansion of the highest co-root

ψ/ψ2, in terms of the simple co-roots αa/α
2
a, of G, i.e. ψ/ψ2 =

∑r
a=1 l

ψ
a αa/α

2
a, and lψ0 = 1.

Moreover, the parameters mk label, together with the topological charges, the species of

the soliton solutions, and they also fix the masses of the one-soliton solutions. Note that
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the Hirota method fixes the moduli of mk, through (5.3), but not their sign. In fact, the

sign of Γ (zk) can be changed by flipping either the sign of zk or of mk, and this changes

the sign of the topological charge of the solitons. So, such a flip of the signs turns a soliton

of a given species into an anti-soliton of the same species and vice-versa. The higher order

vectors δ(n)’s are determined, recursively, through the expansion of the Hirota equations

in powers of κ [33–35].

The solitons have in general short range non-trivial interactions, but there is an inter-

esting situation, first observed in [33], where the existence multi-soliton solutions, which

are at rest with respect to each other was first pointed out and which, consequently, do

not have static interactions. Such solutions are more easily constructed by considering the

Hirota ansatz for one-soliton solution given by

τj = δ
(0)
j + κ δ

(1)
j eΓ(z) + κ2 δ

(2)
j e2 Γ(z) + . . . j = 0, 1, . . . r (5.4)

with δ
(0)
j as before, δ

(1)
j being determined by (5.3), and Γ (z) being given by (5.2).

The phenomenon of the existence of static multi-soliton configurations occurs whenever

a given eigenvalue of the matrix Lij is degenerate. In general such degeneracy is related to a

symmetry of the Dynkin diagram of G, but it can also be an accidental degeneracy. If a given

eigenvalue of Lij is degenerate, the vector δ
(1)
j , associated to that solution, can be taken

as a generic linear combination of the degenerate eigenvectors. This situation introduces

new parameters into the solutions which can make the Hirota expansion truncate at higher

orders. If one takes all but one such parameters to be zero one gets a one-soliton solution.

However, by taking them different from zero one gets solutions which can be interpreted

as multi-soliton solutions in which solitons are at rest with respect to each other. So, there

are no static interactions among them which would have set them to move. There can

be, however, interactions depending on their relative velocities. The number of solitons

in a given static multi-soliton solution is equal to the degree of the degeneracy of the

corresponding eigenvalue m2
k (see (5.3)). The details of such construction can be found

in [33], and the results can be summarized as follows: associated to the symmetries of the

Dynkin diagrams one has static two-soliton solutions for the AT models associated to the

algebras SU(N), SO(2N) (N a positive integer) and E6, and static three-soliton solution

for the SO(8) AT model. Associated to accidental degeneracies one has static two-soliton

solutions in the AT models associated to the algebras SO(6N + 2) and SO(6N + 1) (N a

positive integer).

The list however does not end there. The higher order vectors δ(n)’s are determined

by algebraic equations of the form [33](
Lij − n2 λ δij

)
δ

(n)
j = V

(n−1)
i , (5.5)

where λ is an eigenvalue of Lij , and V
(n−1)
j is a vector made out of the vectors δ(m)’s with

m < n. Therefore, if the matrix Lij has two eigenvectors λ and λ′, such that λ′−n2 λ = 0,

then one can add to δ
(n)
j a term proportional to the eigenvector associated to λ′. This

brings an extra parameter into the solution which makes the Hirota expansion truncate at

higher orders, and so gives the solution the character of a static multi-soliton configuration.
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The cases where such a behaviour had occured, were first discussed in [33] through a

theorem which involves Galois theory in its proof, and they corresponded to the algebras

SU(6N) and Sp(3N) (N a positive integer). Therefore the AT models associated to the

algebras Sp(3N) present static two-soliton solutions, and those associated to SU(6N) can

be described as representing static three-soliton solutions, since two of the solitons come

from the degeneracy of any SU(N) associated to the symmetry of its Dynkin diagram.

Finally we would like to point out that static two-soliton solutions can be constructed

out of solitons and anti-solitons of the same species. As we have mentioned above solitons

and anti-solitons of the same species are associated to the same eigenvalue m2
k of Lij , since

they correspond to opposite choices of the signs of mk (not determined by (5.3)). Therefore

one can have in (5.1) the same eigenvector δ(1) associated to two exponentials of Γ’s with

opposite signs, i.e. the Hirota tau-functions are given by:

τj = δ
(0)
j + κ δ

(1)
j

(
eΓ(z) + e−Γ(z)

)
+ κ2 δ

(2)
j + . . . j = 0, 1, . . . r. (5.6)

Since the velocity is solely determined by z, there is a rest frame where such a solution can

be made static.

The phenomenon of static multi-soliton solutions which was first observed in [33],

has been also explored further in some papers, in particular in those dealing with the

construction of multi-soliton solutions of the AT models [34, 35, 42]. More recently, the

behaviour of the energy density of such static multi-soliton solutions has been studied in

the case of SU(N) AT models by one of us [43].

5.1 The solitons of the SU(3) Affine Toda model

Here we discuss the exact soliton solutions of the integrable SU(3) affine Toda model, which

corresponds to the theory (2.1) with potential being given by (2.6). According to (2.4) the

Euler-Lagrange equations for such a theory are given by

∂+∂−φ1 = −i
[
ei(2φ1−φ2) − e−i(φ1+φ2)

]
,

∂+∂−φ2 = −i
[
ei(2φ2−φ1) − e−i(φ1+φ2)

]
. (5.7)

For the case of the SU(3) affine Toda model the Hirota tau-functions τj , j = 0, 1, 2,

are defined by the following field transformation

φa = i ln
τa
τ0
, a = 1, 2. (5.8)

When one substitutes (5.8) into (5.7) one gets two equations for three tau-functions. How-

ever, as mentioned above one needs the conformal affine extension of the model to get the

Hirota’s equation for the tau-functions and so these tau-functions must satisfy:

τj∂+∂−τj − ∂+τj ∂−τj = τ2
j − τj−1 τj+1, j = 0, 1, 2; τj+3 = τj . (5.9)

One can easily check that any solution of (5.9), by substitution into (5.8), leads to a

solution of (5.7).
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For the case of SU(3) we have that the positive integers lψi introduced below (5.3) are

all equal to unity. Therefore, the matrix Lij is the same as the extended Cartan matrix of

SU(3) and is given by

L =

 2 −1 −1

−1 2 −1

−1 −1 2

 . (5.10)

Its eigenvalues are 0 and 3, with 3 being doubly degenerate. The zero eigenvalue leads

to solutions traveling with the speed of light and do not correspond to solitons. We then

have two species of one-solitons associated to the degenerate eigenvalue m2
k = 3, and they

can lead to static two-soliton solutions as explained above (see [33]). Therefore, from (5.2)

we have

Γ (zk) =
√

3

(
zk x+ +

x−
zk

)
+ ξk = 2

√
3 ηk

(
x− vk t− x

(k)
0

)√
1− v2

k

, (5.11)

where we have introduced x
(k)
0 as ξk = − 2

√
3 ηk

x
(k)
0√

1−v2k
. Note that τj = 1, j = 0, 1, 2,

solves the Hirota equation (5.9) and corresponds, in fact, to a vacuum solution. Therefore,

using the Hirota ansatz (5.4) with δ
(0)
j = 1 one obtains two one-soliton solutions (of two

different species). The one-soliton solution of the species-1 is given by: τ0

τ1

τ2

 =

 1

1

1

+

 1

ω

ω2

 eΓ(z), (5.12)

and the one-soliton solution of the species-2 is τ0

τ1

τ2

 =

 1

1

1

+

 1

ω2

ω

 eΓ(z) (5.13)

with Γ (z) given by (5.11), and where ω is a cubic root of unity, different from unity itself.

So we take

ω = ei 2π/3, 1 + ω + ω2 = 0. (5.14)

From (2.6) and (2.8) we find that the Hamiltonian for the SU(3) AT model is given by

HToda =
1

24

[(
∂t~φ
)2

+
(
∂x~φ

)2
]
− 1

3

[
ei ~α1·~φ + ei ~α2·~φ + ei ~α0·~φ − 3

]
, (5.15)

where ~φ is defined in (2.2). Therefore, the discrete transformations:

~φ→ ~φ+ 2π ~µ (5.16)

are symmetries of the Hamiltonian, if ~µ · ~α ∈ ZZ for any root ~α of SU(3). The vectors ~µ

are called co-weights of the algebra, and they form the co-weight lattice. Such a lattice
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describes the degenerate vacua of the theory and gives rise to topological solitons. Indeed,

the topological current is defined as

~jµ = − 1

2π
εµν ∂

ν~φ (5.17)

and
~Qtop. =

∫ ∞
−∞

dx~j0 =
1

2π

[
~φ (∞)− ~φ (−∞)

]
. (5.18)

One can check that the topological charges of the species-1 and species-2 one-solitons, given

by (5.8) and (5.12) or (5.13) are given, respectively, by

~Q
(1)
top. = −η 1

3
(~α1 + 2 ~α2) = −η ~λ2 (5.19)

and
~Q

(2)
top. = −η 1

3
(2 ~α1 + ~α2) = −η ~λ1, (5.20)

where η = ±1 is the sign introduced in (5.11). Moreover, λa, a = 1, 2 are the fundamental

weights of SU(3), and we have normalized the roots as α2
a = 2. Note that the one-soliton

solutions (5.12) and (5.13) are such that

τ∗1 = τ2, τ∗0 = τ0. (5.21)

Therefore from (5.8) and (2.2) we see that

φ∗1 = −φ2 and so ~φ∗ = − (~α1 φ2 + ~α2 φ1) . (5.22)

Thus the complex conjugation of ~φ amounts to a sign flip and the interchange ~α1 ↔
~α2. In consequence, the Hamiltonian (5.15) is real when evaluated on the one-soliton

solutions (5.12) or (5.13).

Using the Hirota ansatz (5.1) one can construct also two-soliton solutions for the

SU(3) AT model by solving the Hirota equations (5.9) recursively as explained above. By

combining the two species of one-solitons one gets three types of two-soliton solutions. The

species-11 two-soliton solution is given by τ0

τ1

τ2

 =

 1

1

1

+

 1

ω

ω2

 eΓ(z1) +

 1

ω

ω2

 eΓ(z2) +

 1

ω2

ω

 eΓ(z1)+Γ(z2)+∆11 . (5.23)

The species-22 two-soliton solution is τ0

τ1

τ2

 =

 1

1

1

+

 1

ω2

ω

 eΓ(z1) +

 1

ω2

ω

 eΓ(z2) +

 1

ω

ω2

 eΓ(z1)+Γ(z2)+∆11 . (5.24)

The species-12 two-soliton solution is given by: τ0

τ1

τ2

 =

 1

1

1

+

 1

ω

ω2

 eΓ(z1) +

 1

ω2

ω

 eΓ(z2) +

 1

1

1

 eΓ(z1)+Γ(z2)+∆12 , (5.25)
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where Γ (zk) is given in (5.11), and the quantities ∆11 and ∆12 are given by

e∆11 =


4 sinh2

(
α2−α1

2

)
4 cosh2

(
α2−α1

2

)
− 1

if η1 η2 = 1

4 cosh2
(
α2−α1

2

)
4 sinh2

(
α2−α1

2

)
+ 1

if η1 η2 = −1

(5.26)

and

e∆12 =


4 sinh2

(
α2−α1

2

)
+ 1

4 cosh2
(
α2−α1

2

) if η1 η2 = 1

4 cosh2
(
α2−α1

2

)
− 1

4 sinh2
(
α2−α1

2

) if η1 η2 = −1

. (5.27)

In these expressions αa, a = 1, 2, are the rapidities introduced in (5.2), and related to the

velocities by va = tanhαa. Note that the two-soliton solutions (5.23), (5.24) and (5.25) sat-

isfy the conditions (5.21) and (5.22), and so the Hamiltonian (5.15) is real when evaluated

on them.

As explained in [33] and mentioned above, whenever the matrix Lij has degenerate

eigenvalues one can construct static multi-soliton solutions. The eigenvalue 3 of the matrix

(5.10) is doubly degenerate and so we can obtain a static two-soliton solution. Such a

solution is obtained using the Hirota one-soliton ansatz (5.4) and it is given by

 τ0

τ1

τ2

 =

 1

1

1

+


 1

ω

ω2

 y1 +

 1

ω2

ω

 y2

 eΓ(z) +

 1

1

1

 y1 y2

4
e2 Γ(z), (5.28)

where y1 and y2 are the free parameters used in the expression of δ
(1)
j which is a linear

combination of the degenerate eigenvectors of (5.10). Similarly, this solution could have

been obtained from the two-soliton solution (5.25) by setting v1 = v2 (or equivalently

α1 = α2) and η1 = η2. Note that the parameters ya, a = 1, 2, can be absorbed into the

exponential as yae
Γ(z) = eΓ(z)+x

(a)
0 , and so they are related to the positions of each one-

soliton forming the static two-soliton solution. In fact (5.28) is a particular case of the

static two-soliton solution for SU(N) AT models given in eq. (4.13) of [33].

As we have explained in (5.6) one can easily obtain static two-soliton solutions by

combining soliton and anti-soliton of the same species. For the species-1 solitons we get

the solution τ0

τ1

τ2

 =

 1

1

1

+

 1

ω

ω2

 (
a1 e

2
√

3
(x−v t)√

1−v2 + a2 e
−2
√

3
(x−v t)√

1−v2

)
+

 1

ω2

ω

 4 a1 a2

(5.29)
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and for the species-2 one gets the solution τ0

τ1

τ2

 =

 1

1

1

+

 1

ω2

ω

 (
a1 e

2
√

3
(x−v t)√

1−v2 + a2 e
−2
√

3
(x−v t)√

1−v2

)
+

 1

ω

ω2

 4 a1 a2.

(5.30)

The solutions (5.29) and (5.30) can be obtained from the two-soliton solutions (5.23)

and (5.24) respectively, by setting v1 = v2 = v, η1 = −η2 = 1, and absorbing the pa-

rameters ξa, a = 1, 2 (see (5.2)) into the definition of aa, a = 1, 2.

5.2 The parity properties

In our discussions of quasi-integrability in [3, 4] we have tried to relate it to the parity

properties of the field configurations. So let us briefly discuss here such properties of our

two-soliton configurations even though our un-deformed model is fully integrable. We will

later use these results when we consider the deformed models.

To consider the parity properties we define the following quantities:

X+ ≡
1

2
[Γ (z1) + Γ (z2) + ∆] , X− ≡

1

2
[Γ (z1)− Γ (z2)] , ∆ ≡ ∆11 or ∆12 (5.31)

with Γ (zk) defined in (5.2) and ∆11 and ∆12 defined in (5.26) and (5.27), respectively. We

then consider the following parity transformation

P : (X+ , X−)→ (−X+ , −X−) . (5.32)

The two-soliton solution (5.23) can be rewritten as τ0

τ1

τ2

 = eX+


 1

1

1

 e−X+ +

 1

ω2

ω

 eX+ + e−∆11/2

 1

ω

ω2

 (
eX− + e−X−

) . (5.33)

Thus, under our parity transformation, we have

P :
τ1

τ0
→ ω2 τ2

τ0
,

τ2

τ0
→ ω

τ1

τ0
, (5.34)

which implies that

P : φ1 → φ2 −
4π

3
, φ2 → φ1 −

2π

3
. (5.35)

The two-soliton solution (5.24) can be rewritten as τ0

τ1

τ2

 = eX+


 1

1

1

 e−X+ +

 1

ω

ω2

 eX+ + e−∆11/2

 1

ω2

ω

 (
eX− + e−X−

) . (5.36)

In this case we see that under our parity transformation we have

P :
τ1

τ0
→ ω

τ2

τ0
,

τ2

τ0
→ ω2 τ1

τ0
, (5.37)
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which implies that

P : φ1 → φ2 −
2π

3
, φ2 → φ1 −

4π

3
. (5.38)

The most interesting, ‘mixed one’, two-soliton solution (5.25) can be rewritten as τ0

τ1

τ2

 = eX+


 1

1

1

(eX+ +e−X+
)
+e−∆12/2


 1

ω

ω2

 eX− +

 1

ω2

ω

 e−X−


 . (5.39)

In this case, we have very interesting transformations properties of the fields under our

parity operation as we have

P :
τ1

τ0
→ τ2

τ0
,

τ2

τ0
→ τ1

τ0
, (5.40)

which implies that

P : φ1 → φ2, φ2 → φ1. (5.41)

The two-solitons (5.23), (5.24) and (5.25) are solutions of the SU(3) Affine Toda model

which is an integrable field theory possessing an infinite number of conserved quantites.

However, it is worth noting that these solutions satisfy the property (4.13) (see (5.35), (5.38)

and (5.41)), and that the Toda potential (2.6) satisfies (4.14). Therefore, the properties of

the SU(3) Affine Toda model support our criteria for quasi-integrability. We will show in

our numerical simulations that such quasi-integrability properties are preserved by some

special deformations of the SU(3) Affine Toda model.

6 The interplay between dynamics and CPT parity

As we have seen, the parity properties of a given two-soliton solution are crucial for the

vanishing of the integrated anomalies, and so also for the asymptotic conservation of the

charges. In section 5.2 we have shown that the exact two-soliton solutions of the integrable

SU(3) Affine Toda theory possess the desired parity properties. When we deform this theory

the two-soliton solutions cannot be easily constructed analytically, even in a perturbative

power series in the deformation parameter ε. Therefore, we do not have much control over

what happens to the parity properties of the deformed solutions, and so we have to study

these solutions numerically. The experience we have gained through all the models we have

studied so far, shows that if an exact two-soliton solution of the integrable theory presents

the desired parity properties, the corresponding deformed two-soliton solution also presents

asymptotically conserved charges, thus indicating that it preserves the parity properties.

Note that it is not easy to check the parity of the deformed solution numerically; only

the conservation or not of the charges can be checked. We do not understand why the

deformed solution seems to preserve the parity properties, and certainly there is much still

to be understood by studying the dynamics of the quasi-integrable solutions.

Here we present an argument that gives a hint for future investigations, and is, in fact,

a modified version of the argument we have used in our previous papers [1–5] by performing
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a perturbative expansion in the deformation parameter ε. The present argument does not

rely on such a perturbative expansion.

Let us consider a wide class of deformed theories defined by the potential (2.7) and

with ~v0 given by (2.20). So, this is a much more general class than we consider in detail

in this paper (they are defined by the potential (2.23)). The equations of motion (2.4) for

this general class of theories can be rewritten as

∂+∂−~φ = −i ~F , (6.1)

where ~φ is defined in (2.2), and where we have also introduced the quantity

~F = ~v1 e
i ~v1·~φ + ~v2 e

i ~v2·~φ + ~v0 e
i ~v0·~φ. (6.2)

Instead of considering just the space-time parity transformation P , introduced

in (4.12), let us combine it with the complex conjugation operation C, and so consider

a CPT transformation P̃ ≡ C P . We can then split the fields into their eigen-components

under P̃ as
~φ(±) =

1

2

(
1± P̃

)
~φ. (6.3)

Analogously, we can split the equations of motion (6.1) into eigen-components under P̃ as

∂+∂−~φ
(±) = − i

2

(
~F ∓ P̃

(
~F
))

(6.4)

with

P̃
(
~F
)

= ~v1 e
i ~v1·(~φ(−)−~φ(+)) + ~v2 e

i ~v2·(~φ(−)−~φ(+)) + ~v0 e
i ~v0·(~φ(−)−~φ(+)) (6.5)

and so

∂+∂−~φ
(±) = − i

2

[
~v1 e

i ~v1·~φ
(

1∓ e−i 2~v1·~φ(+)
)

+ ~v2 e
i ~v2·~φ

(
1∓ e−i 2~v2·~φ(+)

)
+ ~v0 e

i ~v0·~φ
(

1∓
(
e−i 2~v1·

~φ(+)
)n1

(
e−i 2~v2·

~φ(+)
)n2
)]
, (6.6)

where n1 and n2 are defined in (2.20).

We can draw some important conclusions from these formulas:

1. The following transformations are symmetries of the equations of motion (6.1)

~φ(±) → ~φ(±) + π
(
k

(±)
1 ~w1 + k

(±)
2 ~w2

)
(6.7)

with k
(±)
a , a = 1, 2, being integers, (k

(+)
a + k

(−)
a ) being even integers, and where ~wa

are defined below (2.13), i.e. ~wa · ~vb = δab, a, b = 1, 2. Note however, that after such

a transformation ~φ(−) may cease to be an eigenstate of CPT since we are adding to

it a constant real vector.

2. The model admits constant solutions for ~φ(+) of the form

~φ(+) = π (m1 ~w1 +m2 ~w2) , ma integers. (6.8)

When ma, a = 1, 2, are even integers, then ~φ(−) satisfies the same equation of mo-

tion as ~φ.
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3. The model admits constant solutions for ~φ(−), only for the cases where (n1 + n2) is

odd, and in such cases the solution for ~φ(+) has to be constant as well, and then takes

the form

~φ(+) =
π

2
[(2m1 + 1) ~w1 + (2m2 + 1) ~w2] ma integers (6.9)

In other words, there are no non-trivial solutions of the model for which ~φ(−) is

constant, and so, all non-trivial solutions possess a non-trivial ~φ(−)-component.

The exact two-soliton solutions of the integrable SU(3) Affine Toda theory satisfy the

property (5.22) and so from (5.35), (5.38) and (5.41) we see that they transform under

CPT as

P̃
(
~φ
)

= −~φ− 2π
(
l1 ~λ1 + l2 ~λ2

)
, (6.10)

where (l1 , l2) = (1 , 0) for two-soliton solutions of species-11, (l1 , l2) = (0 , 1) for species-

22, and (l1 , l2) = (0 , 0) for species-12. Here, ~λa, a = 1, 2, are the fundamental weights of

SU(3) satisfying ~αa ·~λb = δab, a, b = 1, 2. Therefore, the CPT parity eigen-components are

given by
~φ(−) = ~φ+ π

(
l1 ~λ1 + l2 ~λ2

)
, ~φ(+) = −π

(
l1 ~λ1 + l2 ~λ2

)
. (6.11)

and so, indeed the ~φ(+)-component is trivial for such exact two-soliton solutions.

The consequences of all these facts, for the concept of quasi-integrability, are not fully

clear to us yet. However, they hint at a conclusion that, perhaps, the dynamics of the

deformed and un-deformed models favours the ~φ(+)-component to be trivial. As we have

seen in our analysis of the previous sections, the ~φ(−)-component is the one with the desired

properties for the cancelation of the integrated anomalies, and so also for the asymptotic

conservation of the charges. Our numerical simulations, which we discuss in section 7,

support these views. There is certainly a lot to be explored further and understood better

on the role of parities in the concept of quasi-integrability.

7 Numerical support

7.1 General comments

In this and next section we present and discuss the numerical support for our results of

the previous sections.

First we concentrate our attention on the undeformed models, i.e. the integrable SU(3)

AT model, and then we discuss the results for the deformed model defined by the equa-

tions (2.4) corresponding to the potential (2.23). For the numerical work and to study the

time evolutions we had to solve the equations of motion which are given by

∂−∂+φ1 = − i
3

[
(3− ε) ei[2φ1−(1+ε)φ2] − 2 ε ei[2φ2−(1+ε)φ1] − 3 (1− ε) e−i(1−ε)[φ1+φ2]

]
,

∂−∂+φ2 = − i
3

[
−2 ε ei[2φ1−(1+ε)φ2] + (3− ε) ei[2φ2−(1+ε)φ1] − 3 (1− ε) e−i(1−ε)[φ1+φ2]

]
.

(7.1)
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Note that if we put ε = 0 we recover the equations of the undeformed model i.e. equa-

tions (5.7). As these equations involve second order time derivatives of fields φi we treat

them as a Cauchy problem and so to find their solutions we need initial values of the fields

φi and the appropriate boundary conditions that the fields have to satisfy.

Of course, for ε = 0 we have the analytical forms of the full solutions (described in

section 5.1) and so we can test our numerical methods and procedures by comparing the

numerically determined solutions to the analytical ones.

7.2 Numerical procedures

Our numerical simulations were performed using the 4th order Runge-Kutta method of

simulating time evolution. As in [3] we experimented with various grid sizes and numbers

of points and most of our simulations were performed on lattices of 40001 lattice points

with lattice spacing of 0.0006 (so they covered the region of (-12.0, 12.0)). The time step

dt was 0.0002. At the edges of the grid (i.e. for 11.90 < |x| < 12.00) we absorbed the waves

reaching this region (by decreasing progressively the time change of the magnitude of the

fields there).

To perform planned numerical simulations we needed initial field configurations but

unfortunately, as mentioned above, we did not have their analytical form except for ε = 0

(i.e. in the undeformed case). So we determined them numerically. Thus we did not have

their exact form but our initial numerically determined configurations, we believe, were

sufficiently close to the exact configurations so that we could trust all our results.

The procedure we adopted to determine these intial configurations was similar to the

one used in [5]. First we constructed approximate static one soliton field configurations.

To do this we used static (5.12) configurations which we multiplied by a factor µ = 3
3+ε

(see (2.26)) so that they satisfied the new boundary conditions. Then, using an incredi-

bly small time step (dt = 1.0 ∗ 10−7) we evolved these configurations using the diffusive

equations, which were like the proper equations of motion in which the second order time

derivatives were replaced by the first order ones. This was achieved by using the equations

given by (7.1) in which ∂+∂− was replaced by 1
4(∂2

x − ∂τ ) where τ is an auxiliary diffusive

‘time’. This replacement had the effect of making the configuration move towards the

one that solved the static equations of motion. We evolved such configurations until their

energy did not change much (in practice this was the accuracy to within 0.01% and the

fields were essentially τ independent). We then used such almost exact one soliton config-

urations to construct two soliton fields (static and non-static configurations) by exploring

their symmetries and sewing the fields together at x = 0 (i.e. by putting each soliton at

±x0). For the non-static fields we used Lorentz symmetry of the model to determine the

time dependence of the one soliton fields by calculating ∂tφi from the value of the ∂xφi of

the static fields.

To be absolutely certain that this was a good procedure we compared this way of

obtaining the initial conditions of the moving solitons to their exact expressions for the

un-deformed model. When we evolved configurations from the initial conditions derived

both ways — we could see no difference in the properties of fields at later times.
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Figure 2. The real (a) and imaginary parts (b) of the field φ1 for a typical one soliton solution.

Then with the initial conditions so obtained we performed many simulations for various

values of ε. In these simulations we absorbed the energy at the boundaries. In consequence,

the total energy was not conserved but the only energy which was absorbed was the energy

of the radiation waves which reached the boundaries. Hence the total remaining energy

was effectively the energy of the field configurations which we wanted to study. In fact, in

most of the simulations the energy loss was extremely small showing that our model was

really almost integrable; i.e. that the ideas of quasi-integrability are quite sound.

8 Numerical results

8.1 Undeformed model

First we present our results for the un-deformed model i.e. for the model with ε = 0.

Our first set of plots shows one soliton configurations. In figure 2 we present the plots

of φ1. The two plots show the real and imaginary parts of φ1. The plots of φ2 are very

similar except that its phase rotates differently. This similarity comes from the symmetry

of the field configurations mentioned earlier. Note that the plots of the real parts of φi
look very similar to those for the Sine-Gordon solitons.

As we said earlier the model possesses also two different classes of two soliton solutions.

They are shown in figure 3. The plot in figure 3a shows the real part of φ1 of the first

class (‘the mixed’ one), while figure 3b shows the configuration of the second class (‘of the

two of the same’ one). Because of the symmetry φ1 = −(φ2)? we see that in both cases

Re(φ2) = −Re(φ1) and the imaginary parts are the same.

8.2 General comments

Our method of generating the initial conditions by reflecting one soliton fields (when soli-

tons ended up being far apart) gave essentially the same results as the method of taking
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Figure 3. The real parts of fields φ1 for the two classes of two soliton solutions; a) the solitons

of the ‘mixed class’, b) the solitons of the ‘two of the same’, and c) the energy density of these

solutions.

them from the exact solutions. The results of the simulations were essentially the same;

moreover, they very closely followed the analytic expressions. Hence, the method was very

reliable, at least, for ε = 0 and we hope it was also reliable for ε 6= 0 where we do not have

any analytical solutions to compare our results to.

It is interesting to observe that the energy of all our solutions was real. This, as

stated before, can be checked for the exact solutions (when this reality is guaranteed by

symmetries) but this was also true in all our simulations, which somehow preserved these

symmetries. In fact, this reality was also true for the energy density.

Our simulations have also established the stability of the two soliton systems. Of

course, numerical simulations introduce some small perturbations but these perturbations
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did not lead to any instabilities. In some ways, these numerical errors were extremely small

and random and so canceled each other on average. In part, this was probably due to extra

symmetries which the simulations preserved.

8.3 Deformed model

As we have said earlier various deformations are possible and could be considered. However,

we have looked mainly at the deformation given by the potential (2.23), where ε took both

positive or negative values. This deformation preserves many symmetries of the original

Toda system and so is very likely to lead to quasi-integrability. Indeed, like the Toda

potential (2.6), the potential (2.23) is invariant under the interchange φ1 ↔ φ2. Moreover,

if φ∗1 = −φ2 the energies of the underformed and deformed models are real.

As explained in section 7.2, the deformed one-soliton solution was obtained through

a diffusive relaxation method using the exact one-soliton solution (5.12) of the integrable

SU(3) AT model, as a seed. Note that if one had used as a seed, the exact one-soliton solu-

tion (5.13) of the other species, the result would have been the same as taking the previous

result and interchanging φ1 ↔ φ2. In addition, due to the boundary condition (2.26), if one

has the configuration of φ1 for a deformed one-soliton, one can obtain the configuration for

φ2 just by flipping the sign of the φ1-configuration. Therefore, the deformed two-soliton

solutions associated to the exact two-soliton solutions of species-11 and species-22, given

in (5.23) and (5.24) respectively, are related by the interchange φ1 ↔ φ2, and so the nu-

merical simulations are essentially the same. Therefore, we treat them as just one case

which we refer to as two of the same type. On the other hand, the deformed two-soliton

solution associated to (5.25) we call a mixed case.

8.3.1 Results — static cases — the ‘mixed case’

Here we discuss our results corresponding to the case of two solitons of the mixed case

(ie those described by φ1 and φ2 whose real parts are shown in figure 3a. First, we have

looked at the static case. When the solitons were too far away from each other they did not

interact and they did not move. In figure 4 we produce plots of energy densities obtained

for ε = 0.01 at two values of time (t = 0 and t = 1000.0) The solitons were initially placed

at ±6 and it is clear that at t = 1000 they are still there thus we see that the solitons were

initially too far apart to move.

So we started the simulations with the solitons initially placed closer together. One

soliton was placed at x = −1.5 and the other one at x = 1.5. Our results can be summarised

as follows. All the plots give the trajectory of one soliton (the one placed initially at

x = −1.5, the other one followed a similar trajectory — reflected in x = 0):

• The two solitons for ε = 0 appear to be stable and they do not move significantly.

• For ε > 0 we observe repulsion.

• For ε < 0 we observe attraction followed by repulsion resulting in interesting

oscillations.

In figure 5 we present a plot of ‘the motion’ of our x < 0 soliton for ε = 0.0. We note

essentially no motion, as to be expected from the analytical results. The small ‘motion’
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Figure 4. Energy densities of a simulation for ε = 0.01 (a) at t = 0 (b) t = 1000.0.
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Figure 5. Trajectory of the soliton placed initially at x = −1.5 seen for ε = 0.0.

corresponds to the movement by only two lattice steps in t = 3000 units of time and it is

very likely a numerical artifact (we did not take the exact analytical solution but a field

obtained by ‘sewing up’ two one soliton expressions). In figure 6 we present trajectories

of solitons for three simulations with negative ε and in figure 7 two simulations for ε > 0.

All these figures clearly support our claims made above. Note that for negative values

of ε the frequency of oscillations increases with the increase of |ε|, and in fact, as can be

seen from figure 6b the oscillations gradually generate a small (numerical) instability which

later destabilises the process. Moreover, in all oscillations the solitons come close together

and then bounce back. Looking at the plots of the energy density of the solitons we find

that in all these simulations the solitons never come closer than rmin ∼ 0.5 + 0.5 = 1.0, so

it would appear that they never come on top of each other (before they bounce back). This
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Figure 6. Trajectiories of x < 0 soliton seen in simulations for (a) ε = −0.001 (b) ε = −0.01 and

(c) ε = −0.003.

is further supported by the fact that the fields φ1 and φ2 look the same at all times (i.e.

during the oscillations). We have tried to see what happens when we start with the fields

initially further apart or for more negative values of ε. In all the cases looked by us the

solitons moved down to about the same minimal distance between them and then bounced

back; the only difference was the period of oscillations which increased with the decrease

of the magnitude of ε and/or the increase of the initial separation between the solitons.

Can they ever come on top of each other (i.e. can rmin get smaller or even become

zero)? This is difficult to assess for static solitons as we would have to start with solitons

much closer together but this would introduce small perturbations due to our procedure

of ‘sewing’ two solitons together. The only way to study this would involve starting with

solitons moving towards each other. This will be discussed in the next subsection.
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Figure 7. Trajectiories of x < 0 soliton seen in simulations for (a) ε = 0.001 and (b) ε = 0.005.

Before we do this let us say a few words about the anomalies. Of course, the ε = 0

case has no anomalies so here we present the anomalies, i.e. expressions only for β(2) (3.30)

for ε 6= 0. In figure 8 we present the plots of the anomalies seen in two simulations for

ε < 0. We clearly see that the imaginary parts of anomalies are negligible and that the

real parts vary (and change when the solitons are close together) but then return to their

original values. This is very much in agreement what we would expect based on the ideas

of quasi-integrability. In figure 9 we present similar plots of the anomaly seen in simulation

for ε = 0.001 (its trajectory is shown in figure 7a). Clearly, the anomaly is again essentially

real and its (real) value is very small indeed (smaller by more than two orders of magnitude

from its value for negative values of ε — this is of course, associated with the fact that

solitons repel and never get very close to each other). In fact, the anomaly oscillates a

little and then decreases further as the solitons move further away from each other.

8.4 Non-static cases

We have also performed many interesting simulations for various values of ε, velocity and

initial positions of solitons. Here we discuss the two-soliton fields of the mixed case, and

in the next section the other case.

When we sent the solitons towards each other two things could happen — solitons

could reflect with or without a ‘flip’. Here, by a ‘flip’ we denote the situation in which

the two fields φ1 and φ2 swapped their shapes after the scattering. This ‘swapping’ refers

only to their real parts as the imaginary parts stay the same. In figure 10 we present the

plots of the real parts of fields when we had a reflection, and in figure 11 the similar plots

for the case when the fields performed the ‘flip’. We can try to relate this ‘flipping’ to

the issue of the solitons coming on top of each other or not, which we alluded to in the

previous subsection. In fact, all the case of the ‘flipping’ corresponded to the cases when

the solitons got on top of each other. We have verified this in all the cases. We observed
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Figure 8. Real (a), (c) and Imaginary parts (b), (d) of anomalies β(2) seen in simulations for

ε = −0.001 and ε = −0.01.

this by looking at the trajectories of solitons and comparing the plots of each field and

the energy densities at all relevant values of time. We have performed our simulations for

many cases and in figure 12a we present the plots of the trajectory of one soliton seen

in the simulation of ε = −0.001 started with solitons initially at ±6.00 and moving with

velocity v = 0.1 towards each other. We note that the trajectory reaches x = 0 when the

solitons are on top of each other, at which time the energy density is very localised (and in

fact possesses small negative contributions) and then the field configuration of the solitons

‘flips’ (basically the fields φ1 and φ2 get swapped). From then onwards the trajectories

become a bit irregular and a bit steeper.

What about the anomalies? Our simulations showed that they were always very small

and were essentially real. In figure 13 and 14 we present plots of the anomalies for the two
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Figure 9. Real (a) and Imaginary part (b) of the anomaly β(2) seen in the simulation for ε = 0.001.

simulations shown in figure 10 and 11. We see that in the ‘unflipped’ case the anomaly

does not change as much as in the ‘flipped’ one and so this case is more reliable.

8.5 The other class of 2 solitonic solutions

Next we present the results for the solitons from the other class, i.e. the one corresponding

to figure 3b (two of the same type). In this case we always have a repulsion so below we

present the results of only a few simulations.

8.5.1 Static case

We have performed several simulations (for several values of ε). The results are very similar

so here we present 3 plots of the position of one soliton, initially placed at x = −1.5 (with

the other soliton placed ast 1.5), for 3 values of ε. The results are shown in figure 15. We

note that the repulsion increases with ε.

8.5.2 Solitons sent towards each other

We have also performed the simulations of solitons sent towards each other with various

values of velocity. In each case we observed the repulsion (although with the increased

velocity the solitons managed to get closer to each other). In figure 16 we present the

plots of the trajectories of solitons (sent with velocity v = 0.1 towards each other) seen

in simulations performed for several values of ε. As before, we plot the trajectory of one

of the solitons and the other one moves symmetrically around x = 0. We do not see

much difference in behaviour between all 4 plots. In figure 17 we present the plots of the

anomalies seen in the simulations described in the previous figure (as all of them are very

similar we plot the anomalies for only ε = −0.01 and ε = 0.5). Again, like in the first case

we see that the anomalies are essentially real (the imaginary parts are negligible) and the
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Figure 10. Real parts of φ1 as three values of t seen in a simulation started with v = 0.06 for

ε = −0.01. (a), (b), (c) correspond to, respectively, t =0, 40 and 80.

anomalies are very small (even smaller in this case). Of course, this is due to the fact that

the solitons never get very close to each other.

8.5.3 Further comments about our procedure

So far, in all above calculations, we have constructed the approximate (initial) two-soliton

configurations by ‘gluing’ two one-soliton ones. However, as we have two fields φ1 and φ2

we have more possibilities for performing such a construction.

For one soliton in the undeformed Toda model the fields φ1 and φ2 are related to each

other by the symmetry mentioned in section 2. For two solitons we can construct the

initial φi fields by ‘gluing’ two one-soliton φ1 fields into a two-soliton φ1 field and doing the

same for φ2 fields or by taking the second one-soliton field by replacing φ1 and φ2. Both
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Figure 11. Real parts of φ1 as three values of t seen in a simulation started with v = 0.06 for

ε = 0.01. (a), (b), (c) correspond to, respectively, t =0, 40 and 80.

resemble the undeformed exact two-soliton fields and so at first sight both procedures can

be expected to give essentially the same configurations which would then be expected to

evolve in the same way (whether the initial configurations started them at rest or at a

velocity towards each other).

In fact, in the discussion in the previous section the initial fields were constructed using

the first approach (two φ1’s being used to construct a new φ1 and similarly for φ2).

We have performed simulations using the second method of construction (using both

φ1 and φ2 fields to construct each of two soliton φi fields) and the results were always the

same. So our expectations were correct.
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Figure 12. The case of ε = −0.001. Initial velocity =0.1. (a) The trajectory of one soliton, (b)

the real part of the field φ1 at t = 59.00 (c) The energy density of the total configuration at t = 59.

The other soliton behaves in a symmetrically opposite way relative to x = 0.

8.6 Further general numerical comments

Let us point out that the energy is very well conserved in all our simulations (and it

always remains real). In figure 18a and 18b we present plots of the total energy seen in

two simulations corresponding to figure 6a and figure 11. In the first simulation we see

essentially no change in energy, the second one shows that after the scattering the solitons,

which have already transformed themselves into new solitonic states, the new solitons

radiate a little. A plot of the trajectory of one soliton seen in this scattering and the

resultant transformation is also shown in this figure (18c). Note that such transformations

do take place in all scattering for ε 6= 0. A similar scattering but for a negative epsilon

is shown in figure 11. For ε = 0 the ‘flip’ can also take place but it does not lead to the
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Figure 13. Real (a) and imaginary (b) parts of the anomaly β(2) seen in the simulation for ε = 0.01.
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Figure 14. Real (a) and imaginary (b) parts of the anomaly β(2) seen in the simulation for

ε = −0.01.

transformation of the soliton. These transformations are very interesting and we hope to

study them further.

Related to these transformations are the oscillations described before and shown in

figure 6. They are only seen when ε < 0 and when the solitons are initially placed close

enough. For positive ε, solitons placed at rest repel, for ε = 0 remain at rest, and for

ε < 0 their forces are more complicated leading to the observed oscillations. The number

of oscillations depends crucially on the value of ε < 0. The larger the value of the |ε| the

larger the frequency of the oscillations. Our solitons were initially placed at ±1.5 and they

oscilled between this value and ±0.5. When we changed the initial value from ±1.5 to
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Figure 15. Trajectories of one soliton (started at rest) for (a) ε = −0.1, (b) ε = 0.1 and (c) ε = 0.5.

The other soliton behaves in a symmetrically opposite way relative to x = 0.

±1.4 there was no change of the closest approach but this should be investigated further.

However, this requires a lot of extra work so we leave it as one the things to do in future.

Our results suggest that for ε < 0 there may exist a bound state of two solitons but the

fact that during the oscillation there does not seem to be any radiation being emitted

shows that the problem may be a bit more complicated and so it also deserves further

investigation.

Finally a few more words about the anomalies, which have always been real (the

imaginary values are clearly numerical artifacts). In the earlier part of the text we talked

about the importance of using the integrated over time anomalies but we have not their

plots yet. So in figure 19a. we present the time integrated anomaly for the oscillation

presented in figures 6a and 8a. We have looked in detail at the oscillations and they are
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Figure 16. Trajectories of one soliton for (a) ε = −0.01, (b) ε = 0.0, (c) ε = 0.1 and (d) ε = 0.5.

not numerical artifacts, This had been checked by performing the simulations with different

values of dt etc. The plot shows very clearly that the anomaly, on average does not change

much. In figure 19b we have presented the integrated anomaly for the case described in

figure 9. We note an initial small change followed by the stability. This, is of course, due

to the fact that the initial solitons were too close to each other but in any case the change

was extremely small. Incidentally, all our plots of anomaly should be multiplied by ε and

in the case of integrated anomaly also multiplied by 0.1 ε. The reason for dropping these

factors was due us to not wanting to have too small numbers in our plots.

The integrated anomalies for the moving soliton cases can be got from looking at plots

in figures 13, 14 and 17 and summing the values in the plot. However to help the reader

we present in figure 20 the corresponding plots.

All three plots show very small values (if one takes into account the factor of 0.1ε).

The easiest to describe and the most reliable numerically is figure 20a. This is the case

that corresponds to the no-flip scattering and our results do demonstrate that there is a
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Figure 17. Anomalies β(2) seen during the scatterings of solitons for (a), (b) real and imaginary

parts for ε = −0.01 and (c) and (d) the same for for ε = 0.5.

change of the anomaly, though very small. This was seen in all other cases describing

no-flip simulations when during the scattering the solitons never came closer than ∼ 0.5

to each other. The actual values of the ‘flip’ case described in figure 20b are somewhat

unreliable; they are clearly small but the anomaly described already in figure 13 has very

spiky behaviour and so our results can have some numerical errors. The same can be said

about figure 20c (describing a typical scattering of two solitons of the same class). Though

we believe in the basic features of our results the actual numerical values may not be very

reliable. We feel that these aspects of the scatterings have to be studied further. This may

involve calculating the conserved or quasi-conserved quantities directly and not through the

additional anomalies, as when the solitons are extremely close the fields become very spiky

and so may generate numerical errors. This, together with the other things mentioned

above has to be postponed to further work.
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Figure 18. Time dependence of energy in the scatterings seen in figure 6a (a) and figure 11 (b).

Figure (c) shows the plot of one soliton seen in scattering of figure 11.

9 Conclusions

In this paper we have discussed, in some detail, the results of our studies of the SU(3)

Toda model in (1+1) dimensions and some of its deformations. First we looked at the

undeformed model and studied some of its finite energy solutions. There were several

of them, they all had real energy and all these solutions were stable. This was checked

by performing numerical simulations and comparing the results of these simulations with

explicit analytical solutions (numerical simulations introduce small perturbations and so

could be used to study their stabilities).

In our studies we looked at one and two soliton configurations. Amongst the solutions

of the model there was one in which solitons remained at rest (i.e. the attractive and

repulsive forces between them cancelled). This cancellation of forces is very reminiscent of
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Figure 19. Time integrated anomalies corresponding to the simulations described in figure 6a and

in figure 9, respectively.

what is seen in systems of monopoles in (2+1) dimensions and suggests the existence of a

BPS condition which, so far, we have not yet been able to find.

We have also perturbed the models by introducing a small perturbation. The pertur-

bation we have considered corresponded to the change of the angle between the root vectors

of the root lattice. This changed the form of the potential V (φ1, φ2) and it also changed

the values of the vacua of the model. The perturbation made the model non-integrable and

so we used it to see how its results fitted with our ideas on quasi-integrability. Of course

to do this we needed our perturbations to be small. In our work we have looked only at

perturbations described by ε and we varied ε between -0.1 and +0.5.

We have performed many such simulations concentrating our attention on studying

the scattering behaviour of two solitons. However to do this we needed one or two soliton

field configurations which we did not have. So, first of all, we determined numerically

one soliton configurations. This was done, as described in sections 6 and 7, by taking

one soliton configurations of the unperturbed (i.e. ε = 0) model and then perturbing

them, so that the fields satisfied new boundary conditions, and then evolving them via a

diffusive equation. Having determined the solutions of this equation (for various values of

ε) we then constructed initial configurations for our simulations by ‘tying’ two one soliton

configurations and, when we wanted to have moving solutions, boosting the solitons towards

each other. Such a procedure was successfully used in, say, [5] and we have tested it on the

undeformed model (i.e. with ε = 0). In the ε 6= 0 case the results of numerical evolutions

of such static one soliton solutions were extremely close to the analytical solutions of the

undeformed model (they were almost indistinguishable). Hence, at least for small ε, we

are confident of our results.

Then we have performed many simulations with the solitons initially at rest. First we

looked at the case describing two solitons of the mixed case. In this case we have found
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Figure 20. Time integrated anomalies of the simulation described in figures 14, 13 and 17 shown

as figures (a), (b) and (c) respectively.

that for ε > 0 the solitons repel while for ε < 0 they attract and, of course, as knew

originally, when ε = 0, the forces cancel and the configuration is static. The attractive case

was found to be more interesting, as after the initial attraction, when the solitons got very

close together, they started to repel and so the system oscillated. During the oscillations

the field configurations always looked the same. The energy was well conserved and the

anomalies were very small.

Next we looked at the similar initial configurations but, this time, with the solitons

initially moving towards each other with small velocities. For very small velocities nothing

was very different; at larger velocities the solitons could come ‘on top of each other’. In such

cases, afterwards, the fields φ1 and φ2 ‘swapped’ their form, and afterwards, the solitons

moved away from each other (we had a genuine ‘passing through each other’). For this to

be the case we needed two fields, as then the rising field of one soliton in φ1 ended up in
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field φ2 and vice-versa. This was observed in all cases for all values of ε (for sufficiently

large velocities).

The results of our simulations bring out also an additional difference between ε = 0

and ε 6= 0. In the ε = 0 case the solitons after their scattering are the same as before

the scattering. In the ε 6= 0 the solitons come out of the interaction region a little altered

(in fact they oscillate and they move faster). This can be seen from figure 12a where the

soliton after the scattering moves faster. This suggests to us that the ε 6= 0 models may

have additional moving two-soliton solutions, but whether or not this is really the case,

would require further studies.

We have also looked at the solitons of the second class and in all their cases the

solitons always repelled. In all the scatterings, that we have looked at (even for solitons

sent towards each other with some velocity), the solitons always repelled at some short

distances. And this was true for all values of ε and, by this behaviour, the scattering

recalled very closely the scattering of solitons in the Sine-Gordon model (unmodified or

modified [1]). The anomaly also changed little. Thus, we note that our results, in addition

to making some interesting observations about the properties of solitons of the unmodified

SU(3) Toda model, also provide further support for the concept of quasi-integrability (as

all the anomaly effects in the modified models were always very small). Moreover, our

results have also indicated that the static solutions of the unmodified model changed as

one introduced our perturbations. For positive values of ε the solitons repelled and for

negative values of ε they got modified to interesting oscillating fields.
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A The SU(3) loop algebra

The six roots of the finite simple Lie algebra SU(3) are given by ±~α1, ±~α2, and ±~α3 =

± (~α1 + ~α2), satisfying ~α1 · ~α2 = −1, and where we use the normalization ~α2
a = 2, a = 1, 2,

and so ~α2
3 = 2. The 8 generators of the algebra in the Chevalley basis are the Cartan

subalgebra generators Hαa , a = 1, 2, and the step operators E±αs , s = 1, 2, 3, which satisfy

the commutation relations:

[Hαa , Hαb
] =0 a, b = 1, 2; (A.1)

[Hα1 , E±α1 ] =± 2E±α1 ; [Hα1 , E±α2 ] =∓ E±α2 ; [Hα1 , E±α3 ] =± E±α3 ;

[Hα2 , E±α1 ] =∓ E±α1 ; [Hα2 , E±α2 ] =± 2E±α2 ; [Hα2 , E±α3 ] =± E±α3 ;

[Eα1 , E−α1 ] =Hα1 ; [Eα2 , E−α2 ] =Hα2 ; [Eα3 , E−α3 ] =Hα1 +Hα2 ;

[Eα1 , Eα2 ] =Eα3 ; [Eα1 , E−α3 ] =− E−α2 ; [Eα2 , E−α3 ] =E−α1 ;

[E−α1 , E−α2 ] =− E−α3 ; [E−α1 , Eα3 ] =Eα2 ; [E−α2 , Eα3 ] =− Eα1 ;
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with all the remaining commutators vanishing. In the triplet representation of SU(3) the

matrices satisfying (A.1) are given by

Hα1 =

 1 0 0

0 −1 0

0 0 0

 ; Hα2 =

 0 0 0

0 1 0

0 0 −1

 ; (A.2)

Eα1 =

 0 1 0

0 0 0

0 0 0

 ; Eα2 =

 0 0 0

0 0 1

0 0 0

 ; Eα3 =

 0 0 1

0 0 0

0 0 0


and E−αs = E†αs . The generators of the infinite dimensional loop algebra associated to

SU(3) are obtained by multiplying the SU(3) generators by powers of a complex parameter

λ as

Hn
αa
≡ λnHαa ; a = 1, 2, En±αs

≡ λnE±αs ; s = 1, 2, 3 (A.3)

with n being an integer. The commutation relations for the loop algebra are obtained from

(A.1) by using the fact that the effect of λ is just multiplicative, i.e. if
[
T , T̄

]
= T̃ , then[

Tm , T̄n
]

= T̃m+n, with T , T̄ and T̃ being elements of the finite simple SU(3) algebra.

The relevant basis appearing in the definition of the Lax potentials (see (3.2) and (3.4))

and also in the construction of the quasi-conserved charges in section 3.1 are given by (using

the triplet matrix representation of SU(3))

b3n+1 = Enα1
+ Enα2

+ En+1
−α3

= λn

 0 1 0

0 0 1

λ 0 0

 ;

b3n−1 = En−α1
+ En−α2

+ En−1
α3

= λn

 0 0 1
λ

1 0 0

0 1 0

 ;

F 1
3n+1 = Enα1

+ ωEn
α2

+ ω2En+1
−α3

= λn

 0 1 0

0 0 ω

λω2 0 0

 ; (A.4)

F 1
3n =

(
1− ω2

)
Hn
α1

+
(
ω − ω2

)
Hn
α2

= λn

 1− ω2 0 0

0 −1 + ω 0

0 0 −ω + ω2

 ;

F 1
3n−1 = En−α1

+ ωEn
−α2

+ ω2En−1
α3

= λn

 0 0 ω2

λ

1 0 0

0 ω 0

 ;

F 2
3n+1 = Enα1

+ ω2Enα2
+ ωEn+1

−α3
= λn

 0 1 0

0 0 ω2

λω 0 0

 ;
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F 2
3n = (1− ω) Hn

α1
+
(
ω2 − ω

)
Hn
α2

= λn

 1− ω 0 0

0 −1 + ω2 0

0 0 −ω2 + ω

 ;

F 2
3n−1 = En−α1

+ ω2En−α2
+ ωEn−1

α3
= λn

 0 0 ω
λ

1 0 0

0 ω2 0

 ;

where ω is a cubic root of unity different from unity itself, i.e.

ω3 = 1; 1 + ω + ω2 = 0; ω 6= 1. (A.5)

The commutation relations of the loop algebra in such a basis can be easily obtained from

their matrix construction given in (A.4).
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