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A B S T R A C T

In this paper, we explore the relationship between node nestedness contribution and network
stability in financial networks. We rely on data from the Brazilian interbank market. For each
bank in the network, we computed the individual nestedness contribution (INC), along with
two measures of systemic risk: systemic impact (SI) and systemic vulnerability (SV). The INC is
computed considering the different roles played by the banks: lender and borrower. We found
that borrowing banks with a higher INC would cause more damage to the network if they were
hit by a shock — i.e, they have a higher SI. Moreover, lending banks with a higher INC are
more vulnerable to shocks on the network.

1. Introduction

Nestedness is a hierarchical structure commonly observed in complex networks. In a perfectly nested network, the neighbors
of a node also interact with the nodes with a higher topological measure — usually, the degree. The nodes with many (few)
counterparties are called generalists (specialists). Specialists interact mostly with generalists, and interactions among specialists are
unusual (Bascompte et al., 2003).

A simple illustration of a perfectly nested network is depicted in Fig. 1. We portray a network of banks, labeled as B1, . . . , B6. A
red square means that the bank in the corresponding column is connected to the bank in the corresponding row, in the sense that
both extended loans to at least one firm in common. Looking at the columns (rows), banks have a degree equal to or greater than
that of the banks located at the right (below). The connections of a given bank are also connected to the banks with a higher or
equal degree. For instance, banks 1 and 2 are connected to bank 5, and they are also connected to banks above (or to the left at)
bank 5. The more generalist (specialist) banks correspond to the columns located on the left (right) of the figure.

Nestedness is closely related to some network topological properties.1 Some studies (Jonhson et al., 2013; Abramson et al.,
2011) confirmed that nestedness is significantly correlated with disassortativity. Lee et al. (2016) point out that nestedness is
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Fig. 1. Example of a perfectly nested bank network. The connections of a given bank compose a subset of the connections of the banks with a higher or equal
degree.

a generalization of the core–periphery structure. Payrató-Borras et al. (2019) propose that the most heterogeneous networks in
terms of degree distribution are also the most nested ones. Moreover, nestedness also correlates with properties not captured by
the topological structure of the network. Nestedness minimizes competition and allows for the coexistence of a higher number of
species in ecological networks (Bastolla et al., 2009). Bustos et al. (2012) show nestedness in industrial ecosystems is quite stable,
and hence it predicts the appearance and disappearance of individual industries in each location. The nestedness of world trade
networks plays an important role in predicting countries’ growth trajectories (Tacchella et al., 2012; Cristelli et al., 2017). Finally,
nestedness is used to assess the performance of network reconstruction methods, as is done by Ramadiah et al. (2020) in their study
on the Japanese bank-firm credit network.

Saavedra et al. (2011) follow a slightly different approach from the studies discussed in the previous paragraph. They focus
on how the nodes’ contribution to the network nestedness – rather than the nestedness of the whole network itself, as the above-
mentioned studies – is related to network properties. Assessing an ensemble of flowering plant/insect pollinator networks and a
network of designer and contractor firms in the New York City garment industry, they computed the nodes’ contribution to the
nestedness of the network by randomizing the nodes’ connection (more details in Section 3.1). Next, they calculated the difference
between the persistence of the network – defined as the fraction of remaining nodes at the end of the simulation – with and without
the removal of a given node. They reached two main conclusions. First, the removal of a strong contributor to network nestedness
tends to decrease overall network persistence more than the removal of a weak contributor. Second, strong contributors to nestedness
are the nodes most vulnerable to extinction.

The purpose of this paper is to explore the relationship between node nestedness contribution and network stability in financial
networks.2 Using quarterly information from March 2012 through December 2015 of the Brazilian interbank (IB) market, we apply
the methodology developed by Saavedra et al. (2011) to compute the individual nestedness contribution (INC) of banks. The INC of
a given node is computed by comparing the nestedness of the network when the interactions of this node are randomized. Keeping
the same number of connections, the original links are deleted, and new connections are created. The average nestedness of the
randomized network is computed by performing such randomization as many times as possible (1,000 times, to be precise). The
INC of the node is given by comparing the average nestedness of the randomized network to that of the original network. If the
average nestedness increases (decreases) when the node links are randomized, its INC is positive (negative).

We innovate in this study by computing the INC according to the role played by the bank in the IB network — borrower or
lender. To obtain the lending INC of a given bank, we randomize only its outgoing links – the loans granted by the bank – and
keep its incoming links – the loans received by the bank – fixed. The borrowing INC is computed similarly through the opposite
operation.

After computing the INC of the nodes, we assess the correlation between INC and two systemic risk measures presented
in Alexandre et al. (2021): the systemic impact (SI) and the systemic vulnerability (SV) of the banks. While the former refers to the
loss caused by a shock in the bank to the whole system, the latter measures the loss suffered by the bank in case of a shock in the
system. In order to compute both SI and SV, we consider different levels of shock. Note that, according to Saavedra et al. (2011)
findings, we expect to find a positive relationship between the INC and both SI and SV.

There are two meaningful correlations assessed in our study, in the sense that they involve variables associated with the same role
played by the banks in the IB network (borrower or lender): the correlation between the lending INC and SV and the correlation
between the borrowing INC and SI. Both are positive. Thus, borrowing banks that contribute the most to the nestedness of the
network are those that would cause more damage to the network if they were hit by a shock. Moreover, lending banks with higher

2 Despite nested networks having been discovered (Patterson and Atmar, 1986) and mainly studied in ecology (Bascompte and Jordano, 2013), nestedness
has also been reported in financial (König et al., 2014), as well as in other economic networks (De Benedictis and Tajoli, 2011; Saavedra et al., 2009; Tacchella
et al., 2012).
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Table 1
Summary statistics of the IB network.

Quarter-year N. of banks Density Avg. weighted degreea Avg. net wortha

01–2012 128 0.0843 2747.6 3516.2
02–2012 128 0.0850 2940.7 3598.1
03–2012 130 0.0825 3142.7 3620.7
04–2012 130 0.0802 3257.2 3690.7
01–2013 130 0.0823 3604.7 3609.1
02–2013 128 0.0837 3401.2 3610.6
03–2013 127 0.0796 3474.4 3728.4
04–2013 127 0.0777 3557.1 3840.9
01–2014 130 0.0773 3551.3 3724.5
02–2014 130 0.0773 3433.9 3830.6
03–2014 130 0.0781 3756.4 3908.8
04–2014 129 0.0732 3970.7 3878.8
01–2015 129 0.0757 3966.3 3943.7
02–2015 130 0.0743 3819.8 4071.2
03–2015 128 0.0781 4023.9 4127.6
04–2015 126 0.0792 4111.5 4181.9

a In BRL million.

INC are the most vulnerable to shocks on the network. Therefore, considering these two correlations, the findings of Saavedra et al.
(2011) are corroborated by this study. These results can be explained in light of the determinants of the INC and the systemic
relevance of banks in IB networks.

We extend the analysis performed by Saavedra et al. (2011) in at least three ways. First, this is the first study to apply the
ethodology developed in Saavedra et al. (2011) to financial networks. Second, we assess the relationship between nestedness

ontribution and network stability considering partial shocks. In Saavedra et al. (2011), shocks are complete — i.e., nodes are
emoved. Here, we also consider the case in which nodes lost a fraction of their resources. Third, we disentangle the INC according
o the role played by the node. Specifically, we compute the lending INC and the borrowing INC of the banks. Finally, this study
s related to the literature on the role of topological features in identifying systemically important banks (Alexandre et al., 2021;
artinez-Jaramillo et al., 2014; Kuzubas et al., 2014; Ghanbari et al., 2018).

This paper proceeds as follows. Sections 2 and 3 discuss, respectively, the data set and methodological issues. In Section 4, we
resent the results concerning the correlation between INC and systemic risk. Finally, concluding remarks are presented in Section 5.

. The data set

Using several unique Brazilian databases that comprise supervisory and accounting data, we extract quarterly information from
arch 2012 through December 2015 (16 periods) and build the bank-bank (IB) network.

The IB network comprises all types of unsecured financial instruments registered in the Central Bank of Brazil (BCB).
redit, capital, foreign exchange operations, and money markets are among the main types of financial instruments. Different
ustodian institutions register and control these operations: Cetip3 (private securities), the BCB’s Credit Risk Bureau System – SCR4

(credit-based operations), and the BM&FBOVESPA5 (swaps and options operations).
We compute the net financial exposures taking into account financial conglomerates or individual financial institutions (FIs) that

do not belong to conglomerates (classified as ‘‘b1’’, ‘‘b2’’, or ‘‘b4’’ in the BCB’s classification system6), removing intra-conglomerate
exposures. As the shock to be assessed takes the form of a loss of a given fraction of the bank’s equity, we exclude institutions with
negative equity. FIs’ equity was retrieved from https://www3.bcb.gov.br/ifdata. Some statistics of the IB network are presented in
Table 1.

3 Cetip is a depositary of mainly private fixed income, state and city public securities, and other securities. As a central securities depositary, Cetip processes
he issue, redemption, and custody of securities, as well as, when applicable, the payment of interest and other events related to them. The institutions eligible to
articipate in Cetip include commercial banks, multiple banks, savings banks, investment banks, development banks, brokerage companies, securities distribution
ompanies, goods and future contracts brokerage companies, leasing companies, institutional investors, non-bank financial companies (including investment funds
nd private pension companies) and foreign investors.

4 SCR is a very thorough data set that records every single credit operation within the Brazilian financial system worth 200BRL or above. Up to June 30th,
016, this lower limit was 1,000BRL. Therefore, all the data we assess have been retrieved under this rule. SCR details, among other things, the identification
f the bank, the client, the loan’s time to maturity and the portion of the loan that is overdue, modality of loan, credit origin (earmarked or non-earmarked),
nterest rate, and risk classification of the operation and the client.

5 BM&FBOVESPA is a privately-owned company that was created in 2008 through the integration of the Sao Paulo Stock Exchange (Bolsa de Valores de
ao Paulo) and the Brazilian Mercantile & Futures Exchange (Bolsa de Mercadorias e Futuros). As Brazil’s main intermediary for capital market transactions,
he company develops, implements, and provides systems for trading equities, equity derivatives, fixed-income securities, federal government bonds, financial
erivatives, spot FX, and agricultural commodities. On March 30th, 2017, BM&FBOVESPA and Cetip merged into a new company named B3.

6 See https://www.bcb.gov.br/content/estabilidadefinanceira/scr/scr.data/metodologia.pdf.
3
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Fig. 2. Boxplots at different dates for ⟨𝑁∗
𝑖 ⟩ and 𝜎𝑁∗

𝑖
.

3. Methodology

3.1. Measuring nestedness and INC

In this paper, the measure used to quantify nestedness is the Nestedness metric based on Overlap and Decreasing Fill
(NODF) (Almeida-Neto et al., 2008; Ramadiah et al., 2020).7 The NODF of the network, N, is defined by the following equation:

𝑁 =

∑𝐶
𝑖<𝑗 𝑀𝑖𝑗 +

∑𝑅
𝑖<𝑗 𝑀𝑖𝑗

[

𝐶(𝐶−1)
2

]

+
[

𝑅(𝑅−1)
2

] . (1)

In Eq. (1) above, 𝐶 (𝑅) is the number of nodes of the type displayed in columns (rows). Note that these numbers can differ in
bivariate networks but will necessarily be equal in univariate networks. For every pair of nodes 𝑖 and 𝑗, 𝑀𝑖𝑗 = 0 if 𝑘𝑖 = 𝑘𝑗 , and
𝑀𝑖𝑗 = 𝑛𝑖𝑗∕𝑚𝑖𝑛(𝑘𝑖, 𝑘𝑗 ) otherwise, where 𝑘𝑖 is the number of interactions of node 𝑖, and 𝑛𝑖𝑗 is the number of interactions in common
between 𝑖 and 𝑗. Thus, this is the number of nested interconnections (of both rows and columns) as a fraction of the total number
of interconnections. 𝑁 varies between 0 and 1, where 1 designates a perfectly nested network.

The INC is quantified following the methodology developed by Saavedra et al. (2011). The INC of node 𝑖 is given by the following
equation:

𝑐𝑖 =
(𝑁 − ⟨𝑁∗

𝑖 ⟩)
𝜎𝑁∗

𝑖

, (2)

where 𝑁 is the network’s observed nestedness (NODF), ⟨𝑁∗
𝑖 ⟩ is the average nestedness across a set of random replicates within

which the interactions of node 𝑖 have been randomized, and 𝜎𝑁∗
𝑖

is the standard deviation of 𝑁∗
𝑖 . Fig. 2 depicts the dispersion of

these two variables at different dates.
We randomize the interactions of a node following the null model specified in Bascompte et al. (2003). Similar to Saavedra et al.

(2011), we generate 1,000 random replicates. The randomization of the interactions of a given node 𝑖 works as follows: we cancel
some link between 𝑖 and another node, and then we connect 𝑖 with another node with which 𝑖 does not have a connection. Node 𝑖
is connected to another node 𝑗 with probability8

𝑝𝑖𝑗 =
1
2

(

𝑘𝑖
𝐶

+
𝑘𝑗
𝑅

)

, (3)

supposing 𝑖 is a node of the type displayed in columns (if 𝑖 is a row-type node, 𝑘𝑖 and 𝑘𝑗 are divided by 𝑅 and 𝐶, respectively, in
Eq. (3)). Thus, according to Eq. (3), the rewiring is not random: nodes with a higher degree (as a fraction of the maximum degree)
are more likely to be connected. We innovate in the computation of the INC by considering the different roles a node can play in
a network. In bivariate networks, nodes play only one role. For instance, in a bank-firm credit network, banks are always lenders
and firms, borrowers. However, in univariate, directed networks, our innovation can be quite useful. For example, in IB networks,
all nodes are of the same type (banks), but a given node 𝑖 can be a lender, a borrower, or both. We will compute the lending INC
(𝐼𝑁𝐶𝐿) and the borrowing INC (𝐼𝑁𝐶𝐵). The former is obtained by randomizing only its outgoing links, which represent loans
granted by 𝑖, and keeping its incoming links – loans received by 𝑖 – fixed. The latter is computed similarly through the opposite
operation.

7 There is not a consensus on how nestedness should properly be quantified. For this reason, there are other metrics to measure nestedness being used, such
as the spectral radius (Staniczenko et al., 2013). For more details, see, for instance, Payrató-Borràs et al. (2020) and Mariani et al. (2019), Section 3.1.

8 See Saavedra et al. (2011), esp. Figure 1 and Methods, for details.
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3.2. Systemic risk

Saavedra et al. (2011) show the nodes with higher INC are those whose removal leads to a decrease in network persistence –
efined as the fraction of remaining nodes at the end of the simulation after the removal of a given node –, as well as are the more
ulnerable to extinction. That is, shocks in strong contributors cause more damage to the whole network, and shocks in the network
ffect mostly the strong contributors. To test this hypothesis, we compute the systemic impact and systemic vulnerability – SI and SV,
espectively (Alexandre et al., 2021) – for the banks participating in the Brazilian IB market. We take into consideration various
evels of the initial shock.

Both SI and SV are computed following the differential DebtRank methodology (Bardoscia et al., 2015).9 The exposure network
f the IB market is represented by 𝐀 ∈ 𝑁 ×𝑁 , where N is the number of banks and 𝐴𝑖𝑗 is the asset invested by i in j. At period 0,
e impose an exogenous shock on FI j, reducing its equity by a fraction of 𝜁 . It will cause a subsequent loss 𝐿𝑖𝑗 (1) to its creditors,

ndexed by i, equal to 𝐀𝑖𝑗𝜁 . At period 2, j’s creditors will propagate this loss to their creditors in a similar fashion, and so on.
ormally, we have

𝐿𝑖𝑗 (𝑡) = 𝑚𝑖𝑛
(

𝐴𝑖𝑗 , 𝐿𝑖𝑗 (𝑡 − 1) + 𝐀𝑖𝑗
[𝐿𝑗 (𝑡 − 1) − 𝐿𝑗 (𝑡 − 2)]

𝐸𝑗

)

, (4)

𝐿𝑖(𝑡) = 𝑚𝑖𝑛

(

𝐸𝑖, 𝐿𝑖(𝑡 − 1) +
∑

𝑗
𝐀𝑖𝑗

[𝐿𝑗 (𝑡 − 1) − 𝐿𝑗 (𝑡 − 2)]
𝐸𝑗

)

, (5)

in which 𝑡 ≥ 0, 𝐿𝑖(𝑡) is the aggregate loss suffered by i at t, and 𝐸𝑗 is financial institution (FI) j’s equity. Thus, when an FI j suffers an
additional loss equal to a fraction 𝜁 of its equity, it will impose a loss to its creditors corresponding to 𝜁 times their exposures towards
j. Observe that equity positions and the exposure network are time-invariant, i.e., they are taken as exogenous. The propagation
considers stress differentials rather than stress absolute values (hence the methodology’s name) to avoid double-counting.

Observe 𝐿𝑖𝑗 cannot be greater than 𝐴𝑖𝑗 . It means that j cannot impose to i a loss greater than i’s exposures towards j. When
𝑖𝑗 = 𝐴𝑖𝑗 , j stops imposing losses on i. Moreover, 𝐿𝑖 cannot be greater than 𝐸𝑖, i.e., i’s losses cannot be greater than its equity. When

𝐿𝑖 = 𝐸𝑖, i stops propagating losses to other FIs.
The system converges after a sufficiently large number of periods 𝑇 ≫ 1. Then we have the final matrix of losses 𝐋𝑗,𝜁 ∈ 𝑁 × 1,

where 𝐿𝑖,𝜁
𝑗 is the total loss suffered by agent j after an initial shock of size 𝜁 on agent i. After repeating this process for the other

FIs, we compute our two measures of SR. The systemic impact (SI) of bank i is defined as

𝑆𝐼𝑖𝜁 =

∑

𝑗

[

𝐿𝑖,𝜁
𝑗 − 𝐿𝑖,𝜁

𝑗 (0)
]

∑

𝑗 𝐸𝑗
, (6)

where 𝐿𝑖,𝜁
𝑗 (0) = 𝜁𝐸𝑗 if 𝑗 = 𝑖 and 0 otherwise. The systemic vulnerability (SV) is represented by the following equation:

𝑆𝑉𝑖𝜁 = 1
𝑁

∑

𝑗

𝐿𝑗,𝜁
𝑖 − 𝐿𝑗,𝜁

𝑖 (0)
𝐸𝑖

. (7)

Therefore, 𝑆𝐼𝑖𝜁 measures the fraction of the aggregate FIs’ equity which is lost as a consequence of an initial shock of size 𝜁 at
FI 𝑖’s equity. On the other hand, 𝑆𝑉𝑖𝜁 refers to the average 𝑖’s equity loss when the other FIs are reduced by 𝜁 .

As we are interested only in the losses caused by the contagion, we remove the initial shock from the computation of the SR
measures. Observe we also compute 𝑆𝐼𝑖𝜁 for the FI that suffered the initial shock. Due to network cyclicality, a shock propagated
by a given FI can hit it back. For the same reason, we include the loss imposed by an FI on itself in the calculation of 𝑆𝑉𝑖𝜁 .

. Nestedness and systemic risk

Both SI and SV are computed for each node. We vary the level of the initial shock 𝜁 within the interval [0.1,1] with step 0.1.
inally, we compute the correlation between INC (𝐼𝑁𝐶𝐵 and 𝐼𝑁𝐶𝐿) and systemic risk (SV and SI).

Like the 𝐼𝑁𝐶𝐵 , the systemic impact is a measure exclusive to borrowing banks. A shock on a bank that is not a borrower will not
ause any impact, as it has no creditors to default on. Thus, by definition, non-borrowing banks have a null systemic impact, and
anks with non-null systemic impact are necessarily borrowing banks. Similarly, both the 𝐼𝑁𝐶𝐿 and the systemic vulnerability are
xclusive to lending banks. If a bank is not a lender, no other bank can default on it. Hence, the vulnerability of non-lending banks
s null, and banks with non-null systemic vulnerability are necessarily lending banks. There are correlations between 𝐼𝑁𝐶𝐵 and SV
nd between 𝐼𝑁𝐶𝐿 and SI because there is an overlap between the different roles – lenders and borrowers – played by the banks in
he IB network.10 The 𝐼𝑁𝐶𝐵 of a given bank is explained by the features associated with its role as a borrowing bank, while its SV
s associated with its role as a lending bank. Therefore, discussing the relationship between 𝐼𝑁𝐶𝐵 and SV can be misleading. The
ame can be stated about the relationship between 𝐼𝑁𝐶𝐿 and SI. Thus, we will compute these two more meaningful correlations,
n the sense that both variables are associated with the same role played by the bank in the IB network (lender or borrower): (i)
he correlation between 𝐼𝑁𝐶𝐵 and SI, and (ii) the correlation between 𝐼𝑁𝐶𝐿 and SV.

9 The rest of this subsection strictly follows Alexandre et al. (2021).
10 In our data set, 96% of the lending banks are also borrowers, while 94% of borrowing banks are also lenders.
5
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Fig. 3. Correlation between 𝐼𝑁𝐶𝐿 and SV. The correlation is statistically different from zero for all levels of 𝜁 (𝑝-value < 10−12).

Fig. 4. Correlation between 𝐼𝑁𝐶𝐵 and SI. The correlation is statistically different from zero for all levels of 𝜁 (𝑝-value < 10−12).

Fig. 5. Scatter plot between 𝐼𝑁𝐶𝐵 and SI (left) and between 𝐼𝑁𝐶𝐿 and SV (right) for 𝜁=0.5.

We find that 𝐼𝑁𝐶𝐿 and node vulnerability are positively correlated (Fig. 3). We observe the same correlation between 𝐼𝑁𝐶𝐵
and systemic impact, as can be seen in Fig. 4. The scatter plots in Fig. 5 show these correlations in a more disaggregated manner.
In both cases, the absolute value of the correlation increases with the size of the initial shock. This non-linearity may be mainly
due to the non-linearity of the two measures of systemic risk in relation to the size of the shock, rather than a non-linearity in the
correlation itself. In response to an increase of 𝑥% in the size of the initial shock, systemic risk will increase at a rate greater than
this.
6
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4.1. Interpreting the results

The two correlations computed in this study are positive, corroborating the findings of Saavedra et al. (2011). Thus, the lending
anks that contribute the most to the nestedness of the whole network are also the more vulnerable to shocks on the IB network,
nd the borrowing banks that contribute the most to the nestedness of the whole network are those that would cause more damage
o the entire network if hit by a negative shock.

These results can be explained in light of the determinants of the INC and the systemic relevance of banks in IB networks.
oncerning the correlation between 𝐼𝑁𝐶𝐵 and SI, Alexandre et al. (2023) found that the INC of borrowers in the IB network is

mainly driven (positively) by the weighted in-degree and (negatively) by the weighted out-degree. These variables correspond to
the IB liabilities and assets, respectively. Moreover, according to Alexandre et al. (2021), the correlation between the IB liabilities
(assets) and systemic impact is positive (negative). Thus, borrowing banks with large (small) IB liabilities (assets) have a higher
contribution to the nestedness of the IB network and also a higher systemic impact on it. Regarding the relationship between 𝐼𝑁𝐶𝐿
and SV, the former is mainly driven by the (weighted and unweighted) out-degree (Alexandre et al., 2023). At the same time, these
variables are positively related to systemic vulnerability (Alexandre et al., 2021). Therefore, banks with large out-degrees are more
vulnerable to shocks in the IB market and, at the same time, contribute more to the nestedness of the IB network.11

5. Final considerations

In this study, we assessed the correlation between nestedness and systemic risk in the Brazilian IB market. Considering the
nestedness of the network as measured by the NODF, we calculated the individual nestedness contribution (INC) of the banks,
which is a measure of the bank contribution to the network nestedness. The INC was computed separately for the different roles
played by banks in IB markets, lender and borrower.

We assessed the relationship between INC and systemic risk. We computed the correlation between (i) the borrowing INC and
the systemic impact (SI) – the loss caused in the network by a shock on the node, and (ii) the lending INC and systemic vulnerability
(SV) – the loss suffered by the node due to a shock in the network. While the variables involved in (i) are exclusive to borrowing
banks, the variables in (ii) are exclusive to lending banks. Both correlations are positive. Thus, borrowing banks that contribute
the most to the nestedness of the network are those that would cause more damage to the network if they were hit by a shock.
Moreover, lending banks with higher INC are the most vulnerable to shocks on the network. Furthermore, the absolute value of
these correlations increases with the size of the initial shock.

This paper contributes to the literature on the determinants of the systemic relevance of FIs. Many studies (Alexandre et al.,
2021; Martinez-Jaramillo et al., 2014; Kuzubas et al., 2014; Ghanbari et al., 2018) show that topological features are at least as
important as financial variables in driving the systemic importance of FIs. This paper reinforces the importance of topological
features in predicting the systemic relevance of FIs. We show that a topological variable – the INC – is correlated not only to the
systemic impact but also to the systemic vulnerability of a given FI. Shocks on borrowing banks with higher INC would cause a
higher loss in the whole system. Moreover, shocks in the system would cause more damage to lending banks with a greater INC.
Thus, the inclusion of the INC as a potential explanatory variable would increase the performance of models aiming at predicting
the systemic relevance of FIs. Moreover, the sign of the correlation between INC and both dimensions of FI’s systemic relevance is
the same. This is not always the case for important topological drivers of FI’s systemic importance. For instance, Alexandre et al.
(2021) show that PageRank is the main driver of banks’ systemic impact and is positively correlated to this dimension. However,
the correlation between PageRank and banks’ systemic vulnerability is negative. In turn, the INC is positively correlated to both
systemic impact and systemic vulnerability.

The methodology proposed in this paper provides policymakers with an easier-to-compute measure of FIs’ systemic relevance.
The INC requires only information on the connections between the banks to be computed. On the other hand, the DebtRank also
requires information on the weight of these connections (e.g., the value of the loans) and the banks’ financial statements. A natural
follow-up study of this paper would investigate the INC as a driver of the systemic importance of the banks in a model including
other explanatory variables.
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11 As an additional exercise, we computed the correlation between the total INC – the sum of 𝐼𝑁𝐶𝐿 and 𝐼𝑁𝐶𝐵 – and the measures of systemic risk. Only
the systemic impact correlates positively to the total INC. It means that SV and SI are negatively correlated. In fact, the correlation between SV and SI in our
data set ranges between −0.10 and −0.16, depending on the size of the initial shock. It leads to a stable scenario in case of shocks in the Brazilian IB market.
The banks most likely to damage the system if they suffer losses (high SI) are less likely to get hit by losses suffered by other banks (low SV). A strong positive
correlation between SI and SV could be interpreted as an unstable or explosive scenario, as those banks are more likely to cause losses to the system if they
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are hit by negative (exogenous or endogenous) shocks and are also the banks most likely to be hit by such shocks.
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