Área: ELE

Paper-based microfluidic device for chloride quantification in isotonic drinks using inkjet-printed silver electrodes

Ariel Dayan (PG),* Lauro A. Pradela-Filho (PQ), Thiago R.L.C. Paixão (PQ) dayan.ariel@usp.br

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-900, São Paulo-SP, Brazil.

Palavras Chave: Paper microfluidics, Flow injection analysis, Potentiometric analysis, Ion selective electrode, Coconut water.

Highlights

A paper-based microfluidic device (μ PAD) allowed continuous analyses. Thirty injections were conducted in a single μ PAD. Coconut waters and rehydration drinks were analyzed with the μ PADs.

Resumo/Abstract

Chloride (Cl⁻) represents 70% of the body's anion content and is involved in many cell processes. The deficit or excess of Cl⁻ can result in health problems, such as early renal failure¹. This work aims to develop an affordable and easy-to-manufacture μ PAD for Cl⁻ quantification in isotonic drinks. The proposed μ PAD is inspired by Flow Injection Analysis (FIA) system. To fabricate this system (Figure 1A), a PMMA plate and filter paper substrate were cut with a laser cutter. Silver electrodes were inkjet-printed with a Dimatix printer². Before use, the indicator electrode was modified with ClO₄⁻, converting the Ag to AgCl, which results in an Ion selective electrode (ISE) for chloride³. μ PAD optimization involved evaluating reservoir volumes, flow path size, injection position and volume, paper type, and PMMA thickness. Calibration curves (0.1–10 mmol L⁻¹) were obtained by increasing and decreasing Cl⁻ concentrations (Figure 1B), showing a linear response (Figure 1C) according to the Nernst equation (E ν s. log of the concentration). Next, commercial coconut waters and rehydration drinks were analyzed with the μ PAD, yielding chloride concentrations consistent with literature⁴ for the coconut water and close to the reported by the manufacturer for the other sample. Therefore, the proposed μ PAD showed promising results for accurately quantifying chloride content in drink samples.

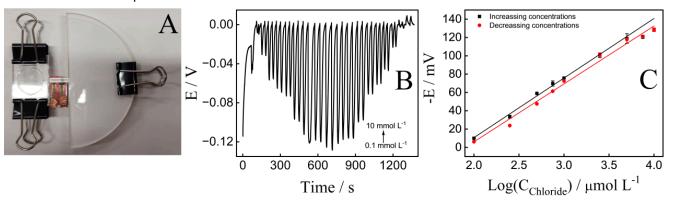


Figure 1 – A) Image of the μPAD, B) Chronopotentiomogram, and C) Analytical curves for chloride.

- 1. K. Berend, et al., Med., 2012, 23, 203-211.
- 2. L. A. Pradela-Filho, et al., Adv. Mater. Technol., 2023, 2201729.
- 3. A. Moya, et al., Anal. Chem., 2019, 91, 15539-15546.
- 4. E. M. Richter, et al., J. Braz. Chem. Soc., 2005, 16.

Agradecimentos/Acknowledgments

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (PROEX 88887.925954/2023-00) and

São Paulo Research Foundation - FAPESP (2021/00205-8, 2022/11346-4 and 2018/08782-1).

48ª Reunião Anual da Sociedade Brasileira de Química: "Emergências Climáticas? A Química Age e Reage!"