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The salient feature of both classical and quantum gravity is its universal and attractive character.
However, less is known about the behavior and build-up of quantum correlations when quantum systems
interact via graviton exchange. In this work, we show that quantum correlations can remain strongly
suppressed for certain choices of parameters even when considering two adjacent quantum systems in
delocalized states. Using the framework of linearized quantum gravity with post-Newtonian contributions,
we find that there are special values of delocalization where gravitationally induced entanglement drops to
negligible values, albeit nonvanishing. We find a pronounced cancellation point far from the Planck scale,
where the system tends toward classicalization. In addition, we show that quantum correlations begin to
reemerge for large and tiny delocalizations due to Heisenberg’s uncertainty principle and the universal
coupling of gravity to the energy-momentum tensor, forming a valley of gravitational entanglement.
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I. INTRODUCTION

The coupling of classical gravity to the stress-energy
tensor has been probed in numerous experiments and
has withstood the test of time in all astronomical
observations [1]. One of its most distinguishing conse-
quences is the universal and attractive character of the
induced gravitational matter-matter interaction. Such
behavior is manifest by looking at Newton’s 1/r potential,
but persists also when including post-Newtonian (PN)
corrections depending on the particle momenta [2–6].
The same universal and attractive behavior is also a

feature of an effective field theory of quantum gravity [4],
where the gravitational field is not real-valued but rather
operator-valued [7–10]. Such a quantum interaction can
generate nonclassical correlations between quantum sys-
tems with no classical analogue, making it ideal for testing
genuinely quantum aspects. This observation was critical in
conceiving a protocol to test the quantum nature of gravity
using two massive particles [11,12].1 This protocol, known
as the quantum gravity-induced entanglement of masses
(QGEM), is in this regard akin to Bell’s original idea of

testing quantum correlations between two spatially sepa-
rated systems [14,15].
According to the local operations and classical communi-

cation (LOCC) principle [16], entanglement can only be
generated byostensibly quantum interactionsbetween the test
particles. Hence, only if gravity is a quantum entity will it
generate an entangled state of the twomasses [11,17].Within
the context of an effective field theory of quantum gravity the
gravitational interaction is being mediated by the massless
spin-2 graviton, see [4,7–10,17–24], for a textbook, see [25].
Theoretical works and feasibility studies about the

QGEM proposal have mainly focused on the static regime
where the momenta of the particles (i.e., the PN correc-
tions) are neglected in the gravitational interaction. In the
static Newtonian limit, the interaction is in position, and the
spatial delocalizations of the quantum states control entan-
glement generation. Generally speaking, increasing the
spatial delocalizationΔx will increase the overall generated
entanglement. Based on the intuition from the static
Newtonian limit, decreasing the spatial delocalization Δx
would suggest that the generated entanglement is bound to
decrease. We will show that this is not the case and that this
naive picture breaks down when the PN corrections are
included in the analysis [26].
In this paper, we will show that the generated entangle-

ment in general increases for both very small and very large
spatial delocalizations Δx. This observation is, in a way,
simple, and it follows directly from Heisenberg’s uncer-
tainty principle [27] and the universal coupling of gravity to
energy [28]. The generated entanglement entropy, quanti-
fying the degree of entanglement, scales as a function ofΔx

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

1The results of Ref. [11] were already known earlier, see [13].
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for large spatial delocalizations and as a function of Δp ∝
ℏ=Δx for small spatial delocalizations. We will illustrate
this result using a toy setup of two harmonic oscillators
interacting gravitationally for the initial state of the product
of ground states.
There is also an unexpected twist in the story. We find

small pockets in the parameter space of Δx—far from the
Planck scale—where the entanglement is strongly sup-
pressed. This decrease is pronounced when the dominant
0PN and 1PN terms entering in the generation of quantum
correlations cancel each other’s contributions. The explan-
ation lies in the opposite sign of the two-mode squeezing
parameter induced by the 0PN and 1PN couplings. We
show that this behavior persists, and can be controlled, by
varying the degree of squeezing of the initial states. We
conclude by arguing that analogous cancellations of quan-
tum correlations, where the system tends toward classic-
alization, should appear also in any other quantum
mechanical theory of gravity.

II. QUANTUM GRAVITATIONAL POTENTIAL
AND HARMONIC OSCILLATORS

We consider the simple 1D toy model of two identical
harmonic oscillators, A and B, characterized by the massm
and angular frequency ωm, oscillating along the x-axis. We
will assume that the centres of the two harmonic traps are
separated by a distance d, and the two particles interact
only gravitationally. Using Gupta’s framework of linear-
ized quantum gravity [18,19] and perturbation theory, we
can then obtain the gravitational matter-matter potential up
to order 2PN [7] (see also [8–10])

Ĥgrav ¼ −
Gm2

jr̂A − r̂Bj
−
Gð3p̂2

A − 8p̂Ap̂B þ 3p̂2
BÞ

2c2jr̂A − r̂Bj

þ Gð5p̂4
A − 18p̂2

Ap̂
2
B þ 5p̂4

BÞ
8c4m2jr̂A − r̂Bj

; ð1Þ

where c (G) denotes the speed of light (the gravitational
constant). Here, wewill implicitly assume that the momenta
are sufficiently small such that higher order terms, i.e., the
terms ∝ p̂n

j p̂
n0
k (with j; k ¼ A, B and nþ n0 > 4), can be

neglected. Higher order terms would only modify the
quantitative results for relativistic momenta without affect-
ing the features in the regime where the velocities are small
compared to the speed of light [i.e., we neglect terms beyond
Oðc−4Þ]. To keep the expressions short, we also implicitly
assume the convention that unsymmetrized expressions
(e.g., x̂ p̂) are to be interpreted in the symmetrized ordering
(e.g., ðx̂ p̂þp̂ x̂Þ=2).
Post-Newtonian corrections have, of course, been ana-

lyzed extensively in previous works in the center of
momentum frame [2,3,5,6,29]. If we set p̂≡ p̂A ¼ −p̂B,
and denote r̂≡ jr̂A − r̂Bj, we recover from Eq. (1) the
known result in the literature

Ĥgrav ¼ −
Gm2

r̂
− 7

Gp̂2

c2r̂
−

Gp̂4

c4m2r̂
: ð2Þ

In other words, Eq. (1) can be seen as the adaptation of
Eq. (2) to the specific case of two quantum harmonic
oscillators. Generalizations to more particles, e.g., four
harmonic oscillators, forming pairs of particles and detec-
tors [30], modified gravity scenarios such as in the case of a
massive graviton [10], fat graviton with nonlocal inter-
action [9,31], or a dilaton-graviton combination [32], can
also be analyzed using similar methods.
We now suppose that the two trap centres are located at

�d=2 and write r̂A ¼ −d=2þ x̂A, and r̂B ¼ d=2þ x̂B. The
operators x̂A and x̂B denote small displacements from the
equilibrium position, while the corresponding conjugate
momenta are given by p̂A and p̂B, respectively. The
Hamiltonian of the two harmonic oscillators is given by

Ĥmatter ¼
p̂2
A

2m
þ p̂2

B

2m
þmω2

m

2
x̂2A þmω2

m

2
x̂2B; ð3Þ

where ωm and m denote the harmonic frequency and mass,
respectively (assumed for simplicity to be the same for the
two harmonic oscillators). For later convenience, we
introduce the mode decompositions

x̂A ¼ δxðâþ â†Þ; x̂B ¼ δxðb̂þ b̂†Þ; ð4Þ

p̂A ¼ iδpðâ†− âÞ; p̂B ¼ iδpðb̂†− b̂Þ; ð5Þ

where â; b̂ (â†; b̂†) denote the annihilation (creation)

operators, and δx ¼
ffiffiffiffiffiffiffiffiffi
ℏ

2mωm

q
, δp ¼

ffiffiffiffiffiffiffiffiffi
ℏmωm

2

q
are the position,

momentum zero-point-motions, respectively.
Here, we will be interested in the phenomenology of the

gravitational potential in Eq. (1) up to the quartic order in
the operators ∝ ÔiÔjÔkÔl (with Ôi;j;k;l ¼ x̂A; x̂B; p̂A; p̂B)
corresponding to small position and momentum fluctua-
tions. Taylor expanding Eq. (1) around the equilibrium
positions and considering small fluctuations, we find the
following Hamiltonian:

Ĥgrav ¼ −
Gm2

d
þ ĤA þ ĤB þ ĤAB; ð6Þ

where the first term only produces a global phase, and ĤA

and ĤB depend only on the operators of particle A and B,
respectively. The leading order cross-coupling terms
between the two particles are given by

ĤAB ¼ Gm2

d

�
2x̂Ax̂B
d2

þ 4p̂Ap̂B

m2c2
−
9p̂2

Ap̂
2
B

4m4c4

�
; ð7Þ

where the 0PN, 1PN, and 2PN contributions appear from
left to right, respectively.
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While the leading order gravitational force arises from
the terms ĤA and ĤB (as these terms contain the uniform
gravitational fields affecting the motion of the individual
particle), the leading order contribution for entanglement
generation arises from the cross-couplings in ĤAB [33].
This is already hinting that the generation of gravitationally
induced entanglement might be hiding some surprises.

III. GRAVITATIONAL ENTANGLEMENT
ENTROPY

In this section we illustrate how the gravitational
entanglement entropy depends on the delocalization using
simple first order perturbation theory. We assume that the
initial state is a product of the two ground states

jψ ii ¼ j0iAj0iB; ð8Þ

which is perturbed by the gravitational interaction Ĥgrav in
Eq. (6). We can always decompose the perturbed state
vector in the number basis

jψABi ¼
1ffiffiffiffiffi
N

p
X
n;N

CnN jnijNi; ð9Þ

where CnN denote the coefficients (with C00 ¼ 1), N ¼P
n;N jCnN j2 is the normalization, and jni, jNi denote the

number states of the two harmonic oscillators. In particular,
the coefficients appearing in Eq. (9) can be computed using

CnN ¼ hnjhNjĤABj0ij0i
2E0 − En − EN

; ð10Þ

where E0 and En, EN denote the energy of the ground state
j0i and of the excited states jni, jNi, respectively (we recall
that for a harmonic oscillator, we have Ej ¼ E0 þ ℏωjwith
j denoting the occupation number).
We will quantify the degree of entanglement using

the von Neumann entanglement entropy given by S ¼
−tr½ρA ln ρA�, where ρA ¼ trB½ρAB� is the reduced density
matrix of subsystem A, and ρAB ¼ jψABihψABj is the total
density matrix of the system (see Appendix A for a short
review on the entanglement entropy). Using Eqs. (7)–(10)
find a simple formula for the steady-state entanglement
entropy

S ≈ −
�
Gm
c2d

−
Gm

2d3ω2
m

�
2

log

��
Gm
c2d

−
Gm

2d3ω2
m

�
2
�

−
81G2ω2

mℏ2

1024c8d2
log

�
81G2ω2

mℏ2

1024c8d2

�
; ð11Þ

which is plotted in Fig. 1 (see Appendix B for the detailed
derivation). The first line of Eq. (11) captures the rightmost
part of the plot (from the 0PN x̂Ax̂B coupling) as well as
the plateau (from the 1PN p̂Ap̂B coupling). The rightmost

part of the plot in Fig. 1 is capturedby the 2PNcontribution in
the second line ofEq. (11) arising from the coupling∝ p̂2

Ap̂
2
B.

We find that the entanglement entropy grows for very
large and very small positions delocalizations Δx given by
the zero-point-motion. For large Δx the entanglement
entropy grows as a consequence of the 0PN static position
couplings arising from the familiar 1/r potential, while
for small Δx the momentum delocalization Δp ∼ ℏ=Δx
becomes large, and the post-Newtonian momentum cou-
plings start increasing the entanglement entropy. In other
words, the landscape of entanglement entropy as a function
of delocalizations Δx or Δp forms a valley. This can be

FIG. 1. Entanglement entropy S as a function of the spatial
delocalizationΔx (bottom) or the momentum delocalizationΔp ¼
ℏ=Δx (top). We have expressed the spatial (momentum) super-
position in units of the Planck length (momentum) given
by xP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
(pP ≡ ℏ=xP). The behavior on the right is

determined by the static contribution ∝ x̂Ax̂B. The plateau in the
middle is determined by the nonstatic 1PN contribution ∝ p̂Ap̂B.
The dominant static and the nonstatic couplings cancel each other’s
contribution to the entanglement entropy at

ffiffiffi
2

p
dωm ∼ c, and we

observe that the entanglement entropy S drops to negligible values
(the three pronounced dips indicated by the arrow). We note that
these dips of quantum correlations indicate a classicalization of the
system and that they occur far from the Planck length xp. Finally, as
we approach relativistic velocities (corresponding to large mo-
mentum superposition sizes on the left side of the figure), we find
that higher-order momentum contributions become important.
Here we have plotted the contribution from the term ∝ p̂2

Ap̂
2
B

arising at orderOð1=c4Þ. We plot the curves for different values of
the trap distance d. Note that the qualitative behavior remains the
same in all three cases,with the location of the dip shifting to the left
(right) for smaller (larger) values of d as expected (i.e., larger
distances weaken the position couplings, hence requiring larger
spatial superposition sizes). The entanglement entropy is expressed
in units of the entanglement entropy when we set the spatial
superposition to that of the Planck length, i.e.,Sp ¼ SðΔx ¼ xPÞ ¼
−ðGmc2dÞ2 logððGmc2dÞ2Þ which is achieved on the plateau.
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seen as a consequence of Heisenberg’s minimum uncer-
tainty relation ΔpΔx ¼ ℏ=2 and the universal coupling of
gravity to all forms of energy.
In addition, Fig. 1 reveals unexpected dips in entangle-

ment entropy, which appear far the Planck length. These
dips arise because of the cancellation between the 0PN and
1PN terms in the first line of Eq. (11) corresponding to the
couplings ∝ x̂Ax̂B and ∝ p̂Ap̂B, respectively. The first line
vanishes when the product of the harmonic frequency, ωm,
and of the distance between the two traps, d, becomes
comparable to the speed of light, i.e.,

ffiffiffi
2

p
ωmd ¼ c. In this

case, the position and momentum delocalizations are given

by Δx ¼
ffiffiffiffiffi
ℏd
mc

q
=

ffiffiffi
24

p
and Δp ¼

ffiffiffiffiffiffiffi
ℏmc
d

q
=

ffiffiffi
24

p
, respectively. At

this point, the two adimensional parameters governing the
0PN and 1PN match, i.e., Δx=d ¼ ffiffiffi

2
p

Δp=ðmcÞ.
The adimensional parameters however only explain that

the 0PN and 1PN contributions are of equal magnitude
without revealing the origin of the cancellation. As we will
see in the next section, this cancellation arises from the
opposite sign of the two-mode squeezing (TMS) character
of the position and momentum couplings.

IV. DIPS OF GRAVITATIONAL
ENTANGLEMENT

In this section we look closer at the unexpected dips of
gravitational entanglement uncovered in the previous
section. We restrict the analysis only to the leading order
terms identified in the previous section as its origin, i.e.,

ĤAB ¼ 2Gm2

d3
x̂Ax̂B þ 4G

c2d
p̂Ap̂B: ð12Þ

Using Eqs. (4) and (5) in Eq. (12) we then find

ĤAB ¼ ℏg−ðâ b̂þâ†b̂†|fflfflfflfflfflffl{zfflfflfflfflfflffl}
TMS

Þ þ ℏgþðâb̂† þ â†b̂|fflfflfflfflfflffl{zfflfflfflfflfflffl}
BS

Þ; ð13Þ

where the coupling rates are

g− ¼ gx − gp; gþ ¼ gx þ gp; ð14Þ

gx ¼
Gm
d3ωm

; gp ¼ 2Gmωm

c2d
; ð15Þ

and TMS (BS) labels the two-mode squeezing (beam-
splitter) contribution (for an introduction on quantum optics
transformations see for example [34,35]).
For an initial product of ground states j0ij0i the BS part

of the Hamiltonian has no effect, while the TMS-induced
change depends on the PN order: at 0PN we have the
couplingþgx, while at 1PN we have the coupling −gp. The
explanation for the dips in Fig. 1 thus lies in the opposite
sign of the TMS transformation arising from the position
and momentum couplings of gravity. When gx ¼ gp the

0PN and 1PN contributions to TMS cancel, i.e., g− ¼ 0,
and we find a dip.
The observed cancellation point persists even if we

consider the initial state to be the product of two single-
mode-squeezed-vacuum (SMSV) states which have
enhanced position or momentum delocalizations
given by

Δx¼ δxe−r; Δp¼ δper; ð16Þ

respectively [with δx and δp denoting the zero-point-
motions defined below Eq. (5)]. Such states are not energy
eigenstates, and hence, we have to take into account their
time-evolution in the harmonic traps (see derivation in
Appendix C). In Fig. 2 we show how the maximum
achieved entanglement entropy changes by varying the
degree of squeezing r of the initial state. We note that by
tuning the mechanical frequency ωm [and hence the
couplings gx, gp in Eq. (14)] we can also shift to profile
horizontally and increase its depth. The location of the dip
is now determined by the condition gxe−2r ¼ gpe2r, which
depends on the squeezing parameter r as expected.

FIG. 2. The maximum entanglement value achieved during the
time evolution starting with a product of two single-mode-
squeezed-vacuum (SMSV) states as a function of the spatial
delocalization Δx ¼ δxe−r (bottom axis) and momentum delo-
calization Δp ¼ δper (top axis). By setting ωm ¼ ω0 ≡
c=ð ffiffiffi

2
p

dÞ we find the case of equal couplings gx ¼ gp ¼ g0 ≡ffiffiffi
2

p
Gm=ðc2dÞ (green line). We also consider the case ωm ¼ 4ω0

producing the couplings 4gx ¼ gp=4 ¼ g0 (orange line), and the
case ωm ¼ ω0=4 producing the coupling gx=4 ¼ 4gp ¼ g0 (black
line). The entanglement entropy is normalized to the maximum
value of the green line to ease the comparison. We note that both
the horizontal location and the depth can be changed by tuning
the couplings gx, gp using the mechanical frequency ωm. At the
location of the dips the system tends toward classicalization as
there is a strong suppression of quantum correlations.
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V. DISCUSSION

In this work, we have discussed entanglement gener-
ation within the context of a linearized quantum gravity
with post-Newtonian (PN) momentum contributions. We
have considered a simple toy model of two nearby
harmonic oscillators and computed the entanglement
entropy arising from their gravitational interaction. We
uncovered a surprising interplay between the Heisenberg’s
uncertainty relation, the quantum squeezing character of
gravity, and the generation of nonclassical correlations
when 1PN and 2PN contributions are taken into account.
Other effects, such as gravitational radiation [36] and
radiation reaction [37], could however provide significant
channels for loss of coherence at relativistic speeds when
higher order PN effects become important. We leave a
systematic exploration of the balance between gravitation-
ally induced entanglement and decoherence at different PN
orders for future work.
In summary, we found that the entanglement entropy

drops to negligible values when the 0PN contribution
and the 1PN are of the same magnitude, i.e., when
Δx=d ∼ Δp=ðmcÞ, where m is the mass of each harmonic
oscillator, and d denotes the distance between the two trap
centers. Although the classical gravitational force is
universally attractive, the generation of gravitationally
induced entanglement can be suppressed to negligible
values for specific states. As this will remain true within
any theory that recovers the predictions of perturbative
quantum gravity, such states could provide a method to
distinguish perturbative quantum gravity from other
classes of gravitational theories, such as a scalar-tensor
theory with different PN contributions. While this work
does not answer questions of experimental feasibility, it
nonetheless uncovers experimentally defining features of
infrared quantum gravity. The entanglement dips provide a
distinct signature of classicalization, showing how quan-
tum correlations can become suppressed in a fully quantum
mechanical framework.
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APPENDIX A: BRIEF OVERVIEW
OF ENTANGLEMENT ENTROPY FORMULAS

The von Neumann entanglement entropy is given by

S ¼ −tr½ρA ln ρA�; ðA1Þ

where ρA ¼ trB½ρAB� is the reduced density matrix of
subsystem A, ρAB ¼ jψABihψABj is the total density matrix
of the system. The same form of the expression would be
obtained by tracing over system A by formally exchanging
the subsystems A and B, i.e., S ¼ −tr½ρB ln ρB� and
ρB ¼ trA½ρAB�. The general expression in Eq. (A1) can
be however rewritten in a more convenient way for the two
cases we analyse in Secs. III and IV.
In Sec. III, we will suppose that the initial state is the

product of the ground states of two harmonic oscillators,
i.e., j0ij0i and use time-independent perturbation theory.
Using the Schmidt decomposition of the state in Eq. (9) it
can be shown that the entanglement entropy from Eq. (A1)
reduces to

S ¼ −
X
j

jαjj2 log ½jαjj2�; ðA2Þ

where αj are the Schmidt coefficients. The Schmidt
decomposition can, in general, be performed using the
linear algebra technique of singular value decomposition
(SVD) [38]. However, we will be primarily interested in
the states of the form

P
j αjjjijji (with jji denoting the

number states), where one can readily read off the Schmidt
coefficients αj.
In Sec. IV, we will be interested in Gaussian states and

their time-evolution. The formula for the entanglement
entropy simplifies to [39–43]

S ¼ −f ln f þ ð1þ fÞð1þ ln fÞ; ðA3Þ

where fðtÞ is the symplectic eigenvalue of the single-mode
covariance matrix of subsystem A given by

fðtÞ ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hx̂2Aihp̂2

Ai − hx̂Ap̂A þ p̂Ax̂Ai2
q

−
1

2
: ðA4Þ

Also, the formula in Eq. (A3) remains valid if we formally
replace the quantities related to subsystem Awith the ones
for subsystem B in Eq. (A4) (i.e., we compute the
symplectic eigenvalue of the single mode covariance matrix
of subsystem B).

APPENDIX B: LIST OF EXPANSION
COEFFICIENTS UP TO QUARTIC ORDER
IN THE OPERATORS AND UP TO 2PN

From Eq. (1) we find that the cross-coupling terms
between the two particles are given by
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ΔĤAB ¼
Gm2

d3

�
2x̂Ax̂Bþ3

ðx̂2Ax̂B− x̂Ax̂2BÞ
d

þ4x̂3Ax̂B−6x̂2Ax̂
2
Bþ4x̂Ax̂3B

d2

�

þ G
c2d

�
4p̂Ap̂B

�
1þ x̂A− x̂B

d
þðx̂A− x̂BÞ2

d2

�

þ3p̂2
A

2

�
x̂B
d
þ2x̂Ax̂B− x̂2B

d2

�

þ3p̂2
B

2

�
x̂A
d
þ2x̂Ax̂B− x̂2A

d2

��
−

9G
4c4m2d

p̂2
Ap̂

2
B;

ðB1Þ

where the first two lines contain the static limit 0PN
contribution, lines three to five contain the 1PN contribu-
tion and the last term corresponds to the 2PN contribution.
While the leading order gravitational force arises from the
terms ĤA and ĤB (as these terms contain the uniform
gravitational fields affecting the motion of the individual
particle), the leading order contribution for entanglement
generation arises from the cross-couplings in ĤAB.
In Table I, we have listed the couplings from Eq. (7) and

applied Eq. (10) to obtain the nonzero expansion coefficient
CnN for n;N > 0 (the coefficients C0N and Cn0 will not
contribute to the entanglement at first order in perturbation
theory and are left out of the computation). The resulting
entanglement entropy computed using Eq. (A2) as a

TABLE I. List of all gravitational couplings up to quartic order in operators and up to order 2PN (first three columns). Using first-order
perturbation theory in Eq. (10) we obtain the 25 nonzero coefficients CnN in columns four to nine (the coefficients C0N and Cn0 will not
contribute to the entanglement at first order in perturbation theory and are left out of the table [33]). The local dip feature in the
generation of entanglement occurs as a result of the cancellation arising from the terms ∝ x̂Ax̂B and ∝ p̂Ap̂B. As discussed in the main
text, this is a result of the different signs of the induced two-mode-squeezing (TMS) transformation from the leading order 0PN and 1PN
terms with the hint in the different sign of the corresponding C11 coefficients. We note that additional cancellations occur in every
column; we see that the CnN coefficients in all columns have both positive and negative values. The broad valley feature can be
understood directly from the couplings. On the one hand, for large-position delocalization Δx the 0PN term ∝ x̂Ax̂B generates a rapid
increase of the entanglement entropy with increasing Δx, and, on the other hand, for large momentum delocalization Δp (i.e., tiny
spatial delocalization) the term ∝ p̂2

Ap̂
2
B also produces a fast growth of the entanglement entropy with increasing Δp. In other words,

entanglement entropy as function of position delocalization is loosely speaking “U” shaped, forming a valley of entanglement.

Order Coefficient Coupling

Nonzero coefficients CnN from first-order perturbation theory

C11 C21 C12 C31 C13 C22

0PN 2Gm2

d3
x̂Ax̂B − Gm

2d3ω2
m

3Gm2

d4
x̂2Ax̂B − Gmδxffiffi

2
p

d4ω2
m

− 3Gm2

d4
x̂Ax̂2B

Gmδxffiffi
2

p
d4ω2

m

4Gm2

d5
x̂3Ax̂B − 3Gℏ

2d5ω3
m

−
ffiffi
6

p
Gℏ

4d5ω3
m

− 6Gm2

d5
x̂2Ax̂

2
B

3Gℏ
4d5ω3

m

4Gm2

d5
x̂Ax̂3B − 3Gℏ

2d5ω3
m

−
ffiffi
6

p
Gℏ

4d5ω3
m

1PN 4G
c2d

p̂Ap̂B
Gm
c2d

4G
c2d2

p̂Ap̂Bx̂A 2
ffiffi
2

p
Gmδx

3c2d2

− 4G
c2d2

p̂Ap̂Bx̂B − 2
ffiffi
2

p
Gmδx

3c2d2
4G
c2d3

p̂Ap̂Bx̂2A
Gℏ

2c2d3ωm

ffiffi
6

p
Gℏ

4c2d3ωm

− 8G
c2d3

p̂Ap̂Bx̂Ax̂B − Gℏ
c2d3ωm

4G
c2d3

p̂Ap̂Bx̂2B
Gℏ

2c2d3ωm

ffiffi
6

p
Gℏ

4c2d3ωm
3G

2c2d2
p̂2
Ax̂B

ffiffi
2

p
Gmδx

4c2d2

− 3G
2c2d3

p̂2
Ax̂

2
B − 3Gℏ

16c2d3ωm
3G
c2d3

p̂2
Ax̂Ax̂B − 3Gℏ

8c2d3ωm

3
ffiffi
6

p
Gℏ

16c2d2ωm
3G

2c2d2
p̂2
Bx̂A

ffiffi
2

p
Gmδx

4c2d2

− 3G
2c2d2

p̂2
Bx̂

2
A − 3Gℏ

16c2d3ωm
3G
c2d3

p̂2
Bx̂Bx̂A − 3Gℏ

8c2d3ωm

3
ffiffi
6

p
Gℏ

16c2d2ωm

2PN − 9G
4c4m2d p̂2

Ap̂
2
B

9Gℏωm

32c4d
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function of position delocalization Δx≡ δx (bottom axis)
and momentum delocalizationΔp≡ δp ¼ ℏ=Δx (top axis)
is plotted in Fig. 1.
We can, however, capture both qualitatively and quanti-

tatively the entanglement entropy shown in Fig. 1 by
considering only three couplings from Table I. In the
rightmost part of the figure, the momentum couplings
(1PN and 2PN effects) are negligible as the momentum
delocalization Δp is tiny compared to mc, and hence
dominated by the position 0PN couplings. Furthermore, if
the size of the delocalization Δx is also small compared to
the distance between the traps d, then we can further
neglect the cubic and quartic couplings, leaving us with the
coupling ∝ x̂Ax̂B. The intermediate plateau is captured by
the 1PN coupling ∝ p̂Ap̂B as the ratio Δx=d becomes tiny,
and Δp becomes non-negligible compared to mc. Finally,
the leftmost part of the figure is dominated by the 2PN
coupling ∝ p̂2

Ap̂
2
B, and eventually by higher order PN

corrections as we would further increase Δp. By making
such simplifications, the perturbed state can be written as

jψABi ≈
1

N
½j0ij0i − C11j1ij1i − C22j2ij2i�; ðB2Þ

where j0i, j1i, j2i denote the number states, andN denotes
the overall normalization. To compute the entanglement
entropy in Eq. (11), we can now readily use Eq. (A2),
where we can make the further approximationN ≈ 1 as we
have C00 ≈ 1 and C11; C22 ≪ 1 (while the terms C2

11; C
2
22

appearing in N would only contribute higher order
corrections).
Let us briefly comment how to see the entanglement dip

from Table I. We first recall that the TMS operator can be

written in the form dSðξÞ ¼ expð−iðξ�â b̂þξâ†b̂†ÞÞ, where
the TMS generator is ∝ ξ�â b̂þξâ†b̂†. From Eq. (10) we
immediately find

CnN ∝ hnjhNjĤABj0ij0i∝�hnjhNjâ†b̂†þ â b̂ j0ij0i; ðB3Þ

with the plus (minus) sign corresponding to the0PNcoupling
x̂Ax̂B (1PN coupling p̂Ap̂B). In otherwords, the 0PNposition
couplingwould like to squeezewith TMSparameter ξ ¼ þ1
while the 1PNmomentum coupling would like to squeeze in
the opposite directionwithTMSparameter ξ ¼ −1. The 0PN
and 1PN two-mode squeezing contributions cancel when
Δx=d ¼ ffiffiffi

2
p

Δp=ðmcÞ. Summing the two contributions, we
find a total squeezing parameter ξ ¼ 0 and a suppression of
the gravitationally induced entanglement. The reason for the
entanglement suppression thus lies in the opposite sign of the
two-mode squeezing (TMS) parameter at the leading order
0PN and 1PN gravitational interaction.

APPENDIX C: DERIVATION OF THE
TIME-DEPENDENT ENTANGLEMENT ENTROPY

Here, we further explore the dip in entanglement gen-
eration by considering the initial state to be the product of
two single-mode-squeezed-vacuum (SMSV) states

jψ ii ¼ jriAjriB; ðC1Þ

where r∈Re is the SMSV squeezing parameter. The single
mode squeezed state is given by

jri ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
cosh r

p
X∞
n¼0

ðtanh rÞn
ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
2nn!

j2ni; ðC2Þ

where jni denotes the number state of the considered
harmonic oscillator. The state in Eq. (C2) has enhanced
position or momentum delocalization is given by

Δx¼ δxe−r; Δp¼ δper; ðC3Þ

respectively [with δx and δp denoting the zero-point-
motions defined below Eq. (5)]. Such states are not energy
eigenstates, and hence, we have to take into account their
time-evolution in the harmonic traps. However, as the
initial state in Eq. (C1) is Gaussian, and the interaction
in Eq. (12) is quadratic in the operators, the state will
remain Gaussian also at any later time.
The Heisenberg equations of motion for the modes of the

harmonic oscillators evolve as [44]

âðtÞ ¼ c0ðtÞâþ cþðtÞb̂þ c−ðtÞb̂†; ðC4Þ

b̂ðtÞ ¼ c0ðtÞb̂ − cþðtÞâ − c−ðtÞâ†; ðC5Þ

where â≡ âð0Þ, b̂≡ b̂ð0Þ. The time-dependent coeffi-
cients are given by [44]

c0ðtÞ ¼ cosðωetÞ − i
ωm

ωe
sinðωetÞ; ðC6Þ

c�ðtÞ ¼ g�
ωm

ωe
sinðωetÞ; ðC7Þ

where we have defined the effective frequency ωe ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ g2þ − g2−

p
. We can now readily compute the time

dependency of the entanglement entropy. Inserting
Eq. (C4) in Eq. (A4) we find that the problem reduces
to evaluating the expectation values of the initial state in
Eq. (C1). In particular, to complete the analysis, we use the
following expectation values [34,35]:

hâ âi ¼ hb̂ b̂i ¼ − sinhðrÞ coshðrÞ; ðC8Þ

hâ†â†i ¼ hb̂†b̂†i ¼ − sinhðrÞ coshðrÞ; ðC9Þ
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hââ†i ¼ hb̂b̂†i ¼ cosh2ðrÞ; ðC10Þ

hâ†âi ¼ hb̂†b̂i ¼ sinh2ðrÞ; ðC11Þ

where the expectation values are computed with respect to
the SMSV state in Eq. (C2).
Inserting Eq. (A4) in Eq. (A3), and neglecting higher

order terms in gx;p=ωm, we eventually find the formula for
the time-dependent entanglement entropy SðtÞ

SðtÞ≈−
AðtÞ
2ω2

m
sin2ðωmtÞ

�
ln

�
AðtÞ
2ω2

m
sin2ðωmtÞ

�
−1

�
: ðC12Þ

where

AðtÞ ¼ g2p − 4gpgx þ g2x þ ðg2p þ g2xÞ cosð2ωmtÞ
þ 2ðg2pe4r þ g2xe−4rÞsin2ðωmtÞ: ðC13Þ

We analyze the temporal behavior of Eq. (C12) in Fig. 3.
We first find that the behavior remains qualitatively similar
as we change the frequency ωm. The entanglement entropy
SðtÞ has the maximum at ωmt ¼ π=2 in all cases. Setting

ωmt ¼ π=2 we find that the maximum entanglement
increases both for r < 0 (i.e., spatial delocalization
Δx > δx) as well as for r > 0 (momentum delocalization
Δp > δp). This is not surprising as a squeezed state breaks
the symmetry of the ground state, leaving it more exposed
to TMS with either positive or negative values.
The generated entanglement becomes negligible when

the condition A ¼ 0 is met [at t ¼ π=ð2ωmÞ]. In this case
we are in an entanglement dip, such that SðtÞ ¼ 0 ∀ t, as
can be noted by computing the limit of Eq. (C12)

lim
A→0

SðtÞ ¼ 0: ðC14Þ

In particular, if we set t ¼ π=ð2ωmÞ in Eq. (C13), and
impose A ¼ 0, we find the simple condition for the location
of the dip

gxe−2r ¼ gpe2r: ðC15Þ

If we set r ¼ 0 in Eq. (C15) we recover the condition
gx ¼ gp emerging at the level of the Hamiltonian in
Eqs. (13) and (14) as highlighted in the main text. In other
words, the squeezing effectively changes the quadratic
position and momentum couplings resulting in the modi-
fied condition for the dip. We observe the shifted dip
location according to Eq. (C15) in Fig. 2.
To summarize, the 0PN position coupling x̂Ax̂B and the

1PN momentum coupling p̂Ap̂B induce two-mode squeez-
ing (TMS) with an opposite sign of the squeezing parameter
ξ. The 0PN and 1PN coupling are a source of TMS with
squeezing parameter ξ ¼ þ1 and ξ ¼ −1, which would
individually generate TMSentangled states. However, when
the two effects combine, they cancel, resulting in a strong
suppression of gravitationally induced entanglement.
As a safety check, we consider the casewhere the position

and momentum coupling match such that g− ¼ gx − gp
vanishes, and we would thus expect a strong suppression of
entanglement generation. We define

ω0 ≡ c=ð
ffiffiffi
2

p
dÞ; g0 ≡

ffiffiffi
2

p
Gm=ðc2dÞ; ðC16Þ

and find that when ωm ¼ ω0 we have equal couplings
gx ¼ gp ¼ g0. Using this symmetric coupling regime, we
find from Eq. (C13) a simplified expression.

AðtÞ ≈ 8g20sinh
2ð2rÞsin2ðωmtÞ: ðC17Þ

Setting ωmt ¼ π=2 and taking the limit r → 0 in Eq. (C12)
with AðtÞ from Eq. (C17) we recover that the entanglement
entropy vanishes (case corresponding to the dip found in
Fig. 1 for the ground state).

FIG. 3. Entanglement entropy S as a function of time t for
different values of the couplings gx, gp defined in Eq. (14) (which
scale as a function of the harmonic frequency ωm). The SMSV
squeezing parameter is set to r ¼ −3 corresponding to initial
position squeezing Δx ¼ δxe−r and momentum delocalization
Δp ¼ δper. By setting ωm ¼ ω0 ≡ c=ð ffiffiffi

2
p

dÞ we find the case of
equal couplings gx ¼ gp ¼ g0 ≡

ffiffiffi
2

p
Gm=ðc2dÞ (green line). We

also consider the case ωm ¼ 4ω0 producing the couplings 4gx ¼
gp=4 ¼ g0 (orange line), and the case ωm ¼ ω0=4 producing the
coupling gx=4 ¼ 4gp ¼ g0 (black line). In all cases, the maxi-
mum entanglement is generated at ωmt ¼ π=2. The entanglement
entropy is normalized to the maximum value Smax of the green
curve to ease the comparison with Fig. 2.
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