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ABSTRACT. This paper proposes two new approaches for the sensitivity analysis of multiobjective design
optimization problems whose performance functions are highly susceptible to small variations in the design
variables and/or design environment parameters. In both methods, the less sensitive design alternatives
are preferred over others during the multiobjective optimization process. While taking the first approach,
the designer chooses the design variable and/or parameter that causes uncertainties. The designer then
associates a robustness index with each design alternative and adds each index as an objective function
in the optimization problem. For the second approach, the designer must know, a priori, the interval of
variation in the design variables or in the design environment parameters, because the designer will be
accepting the interval of variation in the objective functions. The second method does not require any law
of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples

to highlight the contributions of the paper.

Keywords: multiobjective optimization, Pareto-optimal solutions, sensitivity analysis.

1 INTRODUCTION

Many engineering design problems are multiobjective by nature, because they often involve more
than one design objective to be optimized. These design objectives impose potentially conflicting
requirements on the technical and economic performance of a given system. A designer must
formulate an optimization problem with multiple objectives if he/she wishes to study the trade-
offs that exist between these conflicting objectives and to explore their design options.

Multiobjective engineering design problems often have design parameters with uncontrollable
variations due to noise or uncertainties. Such variations can affect outcomes significantly, such
as the performances of objective functions and/or the feasibility of the Pareto optimal solutions.
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A robust optimal solution is as good as possible with regard to the objective functions, and it
offers the lowest possible sensitivity to variations in design variables and design parameters. In
practice, all engineering designs are sensitive to uncertainties that can arise from manufactur-
ing operations, variations in material properties, the operating environment and other reasons.
Moreover, non-robust designs can be expensive to produce or to operate and can fail frequently
in service.

Figure 1 illustrates the solution of a single-objective robust optimization problem. The perfor-
mance function f(x) is minimum when the design variable x is equal to x,,,. However, the
sensitivity of f(x) to variations in x,,; is significant. Indeed, Af,,;, which depicts the range
of variations in f(x) for a given range of variations in x around x,,, is large. On the contrary,
Xrob 18 a local minimum of function f(x), and the sensitivity of f'(x) to variations in x,,p is very
small. Indeed, Af,,p, which depicts the range of variations in f'(x) for a given range of varia-
tions in x around x;.p, is small. In fact, Af.op < Afops. Accordingly, x,p is a good solution
to the single-objective robust optimization problem. In the case of a multiobjective optimization
problem, a robust optimum solution may be located in the neighborhood of the Pareto front. Such
a solution should have as little sensitivity as possible to uncertainties, because it cannot violate
any constraint and/or acceptable known variations in design objectives in the presence of uncer-
tainties. In this context, the purpose of this paper is to define a methodology to help the designer
choose one or several robust optimum solution(s) when he/she must address a multiobjective
robust design optimization problem.

2Afopi

Figure 1 — A robust solution vs. an optimal solution.

First, the authors provide the formulations of a multiobjective optimization problem, a robust
design problem and a multiobjective robust optimization problem. Then, a robustness index
based on the sensitivity first order Jacobian of the objective functions is introduced, and the
Pareto robustness concept is defined to deal with a multiobjective robust optimization problem.
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Then, two illustrative examples highlight the paper’s contributions. Finally, the conclusions are

discussed.
Nomenclature
i X) ith objective function
f(X) vector of objective functions
g;iX) jth inequality constraint function
KKT Karush-Khun-Tucker
Js global sensitivity Jacobian matrix
JIx sensitivity Jacobian matrix related to the design variables
Jp sensitivity Jacobian matrix related to the design parameters
k number of objective functions
m number of inequality constraint functions
n number of decision variables
q number of design parameters
Di ith design parameter
P vector of design parameters
Pinf>Psup  lower and upper bounds of the design parameters
R(v) robustness index associated with the design variables X and the parameters p
S feasible region in the decision space
S sensitivity of the objective function
S diagonal matrix with the singular values in the singular value decomposition
U unitary matrix, expressed in the function space, in the singular value decomposition
v vector joining the design variables X and the parameters p
A\ unitary matrix expressed in the decision space in the singular value decomposition
X; ith decision variable
X; average of the ith decision variable included in the optimal set
decision or design variables vector
X* non-dominated solution of a multiobjective optimization problem
Xinfs Xsup  lower and upper bounds in the decision space
Aj weighting factor for the jth inequality constraint gradient in the K K T condition
Ax;, interval of a known uniformly distributed variation of the ith design variable
Ap;, interval of a known uniformly distributed variation of the ith design parameter
Afi, acceptable variation in the ith objective function due to Av uncertainties
A vector of A j
o; standard deviation for the ith decision variable included in the optimal set
w; weighting factor for the ith objective function gradient in the K K 7' condition
® vector of w;
\% gradient operator
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2 Definitions of problems

In this section, the formulations of (i) a multiobjective optimization problem, (ii) a robust design
problem and (iii) a multiobjective robust optimization problem are given.

2.1 Multiobjective optimization problem

A general multiobjective optimization problem attempts to find the design variables X that opti-
mize a vector objective function f(X) over the feasible design space S. The determination of a
set of non-dominated solutions, the Pareto optimum solutions or non-inferior solutions X* can
achieve a compromise among several objective functions. The problem formulation is defined as

follows:
minimize: f(X) (1a)
subject to: gX) <0, i=12,...m. (1b)
Xinf < X < Xgup (Ic)

where £(X) = [ f1. /2, f3. ..., fk]T : R" — RF, with £;(X) : R” — R as a vector with the
values of objective functions to be minimized. X is the vector that contains the design variables,
also called decision variables, defined in the space R". Xi,r and Xsyp are respectively the lower
and upper bounds of the design variables. g;(X) : R” — R represents the i inequality con-
straint function. Equations (1b) and (1c) define the region of feasible solutions, S, in the decision
variable space. The constraints g; (X) are “less than or equal” functions in view of the fact that
“greater or equal” functions may be converted to the first type if they are multiplied by minus
1. Similarly, the problem deals with the “minimization” of functions f;(X), given that function
“maximization” can be transformed into the former by multiplying it by minus 1.

2.1.1 Pareto optimal solution

The notion of optimum in the context of solving multiobjective optimization problems is known
as “Pareto optimal”. A solution is said to be Pareto optimal if there is no alternative to improving
one objective without worsening at least one other, that is, the feasible point X*S is Pareto optimal
when there is no other feasible point X € S so Vi, j, f;(X) < f; (X*) with strict inequality in at
least one condition, f;(X) < f;(X*).

Due to the conflicting nature of the objective functions, the Pareto optimal solutions are usually
scattered in the region S, a consequence of the solutions being unable to minimize the objective
functions simultaneously. Solving the optimization problem achieves a set of Pareto optimal
solutions defined in the decision space, after which an image of the objective functions, along
with the Pareto front, is calculated over the set of optimal solutions.

In general, solving a multiobjective optimization problem is not as simple as solving any scalar
problem. According to Schaffer (1985), Goldberg (1989) and Deb (2001), evolutionary algo-
rithms are usually best suited to determining the Pareto front.

Pesquisa Operacional, Vol. 32(3), 2012



OSCAR BRITO AUGUSTO, FOUAD BENNIS and STEPHANE CARO D79

2.1.2 Necessary conditions for Pareto optimality

Optimizing the multiobjective problems that are expressed by Eqgs. (la-1c) are of general char-
acter, because the equations represent the problem of single-objective optimization when k£ = 1.
According to Miettinen (1998), as in single-objective optimization problems, the solution X* € S
for the Pareto optimality must satisfy the Karush-Kuhn-Tucker condition, expressed as:

k m
Y o VAXH+ Y XV (X)) =0 (2a)
i=1 j=1
1jgi(X") =0 (2b)
A, >0 (2¢)
k
=0 > w=1 (2d)

where w; is the weighting factor, positive, for the gradient of the ith objective function, calculated
at point X*, V f;(X*). A; represents the weighting factor for the gradient of the jth inequality
constraint function Vg;(X*). It is zero when the associated constraint function is not active, i.e.,
gi(X*) < 0.

It should be emphasized that the set of Egs. (2a) to (2d) form the necessary conditions for X* to
be Pareto optimal.

2.2 Robust design problem

The concept of robust design was first used by Taguchi (1993). He introduced the concept of
parameter design to improve the quality of a product whose manufacturing process involves
significant variability or noise. Robust design aims at minimizing the sensitivity of performance
to variations without controlling the causes of these variations. In the last decades, several authors
contributed to the formulation and the improvement of robust design problems.

To deal with robustness, a set of design parameters p = [ D1, P2, P3s - -+ pq]T should be consid-
ered. Those parameters cannot be adjusted by the designer and are thus uncontrollable, such as
the cost of the steel used in ship construction. The design variables

T
X = [xl,xz,X3, ...xn]
can also be subjected to uncontrollable variations for the reasons of manufacturing errors, wear-

ing or other uncertainties, although their nominal value is fixed.

A general multiobjective robust design optimization problem aims to find the design variables
that optimize a vector objective function, f(X, p), and to minimize its range of variations
Af(X,p) = [Aﬁ, Afr, Afs, ... Afk]T over the feasible design space S. The determination of
a set of non-dominated solutions achieves a compromise among several objective functions that
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consider variations in the design variables and parameters. Calling v/ = [XTpT], the problem
formulation can be defined as follows:

minimize: X, p), (3a)
Af(X, p)

over X = [xl,xz,xg,...x,,]T (3b)

subject to: gX,p)+AgX,p) <0, i=12,...m. (3¢)

Xinf < X < Xqup (3d)

V= AVint <V < V+ Avg (3e)

All sets of equation (3) are general for search robust solutions of multiobjective optimization
problems.

Sundaresan ef al. (1993) developed a procedure that incorporates uncertainties in design vari-
ables and variations in constraints due to these uncertainties. Chase et al. (1996) presented the
direct linearization method for tolerance analyses of 2D and 3D mechanical assemblies. Chen
et al. (1996) studied two broad categories of problems, namely, (i) Type 1 problems, which
minimize variations in performance caused by variations in noise factors (uncontrollable param-
eters), and (ii) Type 2, which minimize variations in performance caused by variations in control
factors (design variables). Ben-Tal and Nemirovski (1998, 2002) proposed a study of convex
optimization problems for which the data, in the present notation p, is not specified exactly.
Instead, the data are known only to belong to a given uncertainty set. They developed models for
uncertain Linear, Conic Quadratic and Semidefinite programming problems. Kalsi et al. (2001)
introduced a technique to reduce the effects of uncertainty and incorporated flexibility in the
design of complex engineering systems involving multiple decision makers. Parkinson (2000)
used a deterministic method of robust design to determine the optimum nominal dimensions of
an assembly in order to improve the assembly quality. Bertsimas ef al. (2004) have proposed
a robust constrained optimization method for linear programming problems where the matrix of
coefficients belongs to a known uncertainty set that is bounded. They have shown that this kind
of problem is still linear programming. Bertsimas and Sim (2004) also focused on linear pro-
gramming problems, seeking to reduce the level of conservatism of the robust solutions in terms
of probabilistic bounds of constraint violations. They have shown that their method retains the
advantages of the linear framework and offers full control over the degree of conservatism for
every constraint. Thus, their method provides a probabilistic guarantee that the robust solution
will be feasible with high probability.

The solutions of the presently proposed methods will always be feasible, and all nominal values
of problem parameters, p, are known. For the first method, described in section 3.1, no additional
information is needed to search the less sensitive solutions under variations of p and eventually
variations in the decision variables X. For the second method, described in the section 3.2, these
variations must be bounded. Both of these methodologies can be incorporated in any nonlinear
multiobjective optimization algorithm.
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In the next section, the authors propose a simplified approach to searching for less sensitive
alternatives when solving multiobjective optimization problems.

3 A SIMPLIFIED MULTIOBJECTIVE ROBUST OPTIMIZATION PROBLEM

Given that a robust optimal solution is as good as possible with regard to the objective functions
and that it is as least sensitive as possible to variations in design variables and design parameters,
this section presents two methods where robust design alternatives are preferred over others
during the multiobjective optimization process.

First, the designer chooses only the design variables and/or design parameters that are subject to
variations. With this information, a Robustness Index is associated with each design alternative.
This index is added as one more function to be optimized. In the second approach, the designer
accepts variations in the performance functions, limited in fixed intervals, knowing a priori the
range of variations in the design variables and in the design parameters.

Assuming that f is of class C? in v, one can expand Eq. (3a) in the neighborhood of the point v
and keep only the linear terms. Then, the following equation can be obtained:

8f = J;8v + e(||8v]2) (4a)
svl = [sXTsp”] (4b)
J, = af/dX (4c)
J, = df/ap (4d)
Iy = [J:d)p] (4e)

where || - || denotes the Euclidian norm operator and e(v) an error function. Jy is the global
sensitivity Jacobian matrix, and it describes the effect of the variations in design variables and
design parameters to the performance functions. §X and dp are the variations in the design
variables and in the design parameters, respectively. J, is the (k x n) sensitivity Jacobian matrix
of f(v) with respect to X, and J, is the (k x g) sensitivity Jacobian matrix of f(v) with respect
to p, respectively. If variations in the design variables are not considered, then J; = J,. If
variations in design parameters are not considered, then J; = J,.

Ignoring the error in Eq. (4a), an approach to a robust solution is defined as one that is as least
sensitive as possible to any variations in the decision variables and design parameters in its neigh-
borhood. Considering Av as a closed normalized unit hyper-sphere centered at point v in the
Euclidean space R"*9, j.e., ||Av|2 = 1, then Jy is a linear application that maps the hyper-
sphere in a hyper-ellipsoid in the normalized function space, centered in f(v) and described by
the variations Af(v) € RF. InF igure 2, three design alternatives are checked for their sensitivity
in the decision variable space. Since the local perturbation in the neighborhood of point A causes
a large modification in the objective values, this alternative may not be as robust as the alternative
B, because the latter does not bring on a large change in objective values, even in the presence of
a local perturbation in its vicinity.

Pesquisa Operacional, Vol. 32(3), 2012



582  MULTIOBJECTIVE ENGINEERING DESIGN OPTIMIZATION PROBLEMS

Suppose that point C in Figure 2 belongs to the Pareto set and that its image is on the Pareto front.
If any constraint function is not active at this point, then the hyper-ellipsoid collapses one of its
axes. Being a Pareto solution, point C satisfies Eq. (2a), and the objective function gradients are
linearly dependent. Consequently, the variations in the performance functions occur only along
the tangent to the Pareto front.

\\-_{’/’_ y
4 ” > / e /
X, [ o
\
\

. >
¢ /i

function space

decision space

Figure 2 — The sensitivity Jacobian matrix transforms a unitary radius ball in the
decision space into an ellipsoid in the function space.

3.1 Robustness index

The geometrical interpretation of Eq. (4a) can help one to define a Robustness Index in order to
qualify a design alternative with regard to its robustness. The sensitivity Jacobian matrix can be
decomposed by means of the singular value decomposition as follows:

s = USVT (5)

where U is a k-by-k orthogonal matrix, S is a k-by-(k + ¢) diagonal matrix with non-negative
real numbers and VT denotes the transposition of V, which is a (n 4 ¢)-by-(k + ¢) orthogonal
matrix. The diagonal entries of S are known as the singular values of Js. The singular value
decomposition is a generalization of the decomposition of the eigenvalues and eigenvectors, and
this decomposition is applied to a square matrix. If A; is an eigenvalue of J¢JT, then the singular
value o; = 4/A;. As a geometrical interpretation, the non-zero singular values, o;, are the lengths
of the semi-axes of the hyper-ellipsoid represented in Figure 2, and the related vectors in U are
the directions of these semi axes in the R¥ space.

Let S be the sensitivity of the objective functions to variations §v. S can be defined as the ratio
of the Euclidean norm of variations in the objective functions, namely ||§f||>, and the Euclidean
norm of variations §v, namely ||§v|>. It turns out that S is bounded by the smallest non-zero
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singular value oy, and the largest singular value o,y of its global sensitivity Jacobian matrix,

Js, namely, 5]
2

= < 6
[ov]y = 7 ©

Omin =
Equation (6) shows that the lower oy is, the lower the upper bound of S will be. Accord-
ingly, the Euclidean norm of Jg, that is, its maximum singular value, can be used as a relevant

Robustness Index:
R(V) = Omax @)

R(v) makes sense if and only if the terms of Jg are normalized, that is, if they have the same unit.
Indeed, the singular values of Jg cannot be compared if their units are different.

To illustrate the use of such a proposition, let us consider the following unconstrained minimiza-
tion problem with two functions defined in R? space:

minimize: f1(x1, x2) = c(=2,2) +¢(2,2) + (0, —2), (8a)
S2(x1, x2) = ¢(0, 0) (8b)
2 2
. _ X1 —a xp—b
with cla,b) =—exp| — < 7 ) - ( 7 ) (8¢)

These two functions are illustrated in Figure 3.

1.4
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Figure 3 — Superimposed plot of exponential functions — f] (x1, xp) and — f>(x1, x2).

To find the non-dominated points, the Pareto dominance concept was applied to 5,000 randomly
generated points over the interval (x1, x3) € [—4, 4]. The approximation of the Pareto set and the
Pareto front are illustrated in Figures 4(a) and 4(b), respectively. In addition, Figure 4(a) shows
the plots for the contours of both functions. The Pareto set is comprised of line segments that
connect the minima of fj(x1, x2) to the minima of f;(xy, x2).
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(a) Non-dominated points in decision space (b) Non-dominated points in function space

Figure 4 — Nominal approximations of the Pareto set and Pareto front for minimization of the exponential
functions f](x1, x2) and f>(x, x2).

To search robust solutions, the authors applied the robust multi-objective optimization procedure
by adding the robustness index, as defined by Eq. (7), as a third objective function. The robust
problem can be written as

minimize: fi(x1,x2) =c(—2,2) +¢(2,2) + ¢(0,—2) and (9a)
S2(x1,x2) = ¢(0,0); and (9b)
S3(x1,x2) = R(x1, X2) = Omax (9¢)

2 2
with  c(a,b) = —exp (— <x12—a) - <x22—b) ) (9d)

The non-dominated points are shown in Figure 5. Clouds of points lie both near the nominal
Pareto set and far away from it. In the specific problem, both functions are nearly flat in those
regions. Accordingly, the robustness indexes for these points are very low, placing them as non-
dominated although their function values are non-optimal compared to those near the nominal
Pareto set.

Given the flat regions in Figure 3, one can conclude that the robustness index, when included
in the multi-objective optimization problem as an additional objective function to be minimized,
permits the location of the less sensitive non-dominated alternatives. Moreover, it naturally dis-
perses the nominal Pareto front of the original problem, causing the decision-making process to
become even more difficult.

To overcome this difficulty, the authors suggest in the next section a complementary approach to
dealing with robustness in multi-objective optimization problems.
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(b) Robust alternatives in the function space
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Ky o0 %
-1 -0.8 0.6 , 0.4 0.2 0
(c) x-y view of the robust alternatives in the function (d) y-z view of the robust alternatives in the function
space space

Figure 5 — Non-dominated alternatives for the multi-objective robust optimization problem of the exponen-
tial functions £ (x1, x2), and f>(x1, xp) and the robustness index R(x1, x3).

3.2 Optimum with acceptable variations in the objective function

To use this approach, the designer should know the bounds of variations in the design variables
and in the design parameters, which are

[8v] = Avy (10)
The designer also accepts a tolerance for the variations in the objective functions, which are
|0f]acc = Afo (11)

but he/she wants to keep all the constraints with consequent variations inside their initial
bounds. For such conditions, the authors propose a robust multiobjective optimization prob-
lem as follows:
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minimize: f(v) (12a)
over X

subject to: gi(v)+ Agi(v) <0, i=1,2,...m. (12b)

|6f(v)| — Afp <0 (12¢)

Xinf < X = Xgup (124)

with [6v| = Avyg (12¢)

By using this approach, one can state the optimization problem with two exponential objective
functions as:

minimize:  fi(x1, x2) = c(=2,2) +¢(2,2) + ¢(0, —2) and (13a)
fa(x1,x2) = ¢(0,0) (13b)
subject to: [8(x1,x2)| — Afio <0 (13¢)
[8/2(x1, x2)| — Afa0 <0 (13d)
A(x1,x2)0 = 0.1 (13e)

. x| —a 2 xp—b 2
with c(a,b) = —exp —< 5 )—( 5 > (139)

where the acceptable function variations are set to 1 percent without loss of generality, and they
include variations in the design variables that are equal to 10 percent of their nominal value.
Figure 6 shows the Pareto optimal solutions plotted in the design space and the Pareto front
approximation obtained by using the random walk over the design space.

Considering the acceptable values used, the robust Pareto front is less performing than the nom-
inal one.

In the classical sensitivity analysis, the problems may have data (p, in the present notation) that
are not specified exactly and are only known to belong to a given uncertainty set.

With the proposed methods, one can approach the engineering design optimization problem
while considering the effects of uncertainty. The idea behind these methods is to consider that
some data relating to engineering problems have variations around their nominal values. More-
over, the problems’ data cannot be implemented exactly even if the data are certain and an optimal
solution X* can be computed exactly.

4 APPLICATIONS

This section presents two engineering examples to demonstrate the proposed multiobjective ro-
bust optimization. The first problem deals with the design of a vibrating platform. This prob-
lem includes six design variables with one being combinatorial; it also has five constraints
and two uncontrollable parameters. This example should highlight the influence of the discrete
variable in the robust search. The second problem deals with the conceptual design of a ship.
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(a) Non-dominated alternatives in the decision space (b) Non-dominated points in the function space

Figure 6 — Non-dominated points for the robust multi-objective optimization problem of the exponential
objective functions f(x1, x2), and f>(x, xp) with A(xq,x2)9 = 0.1 and Afjg = Afyo = 0.01.

It contains six design variables, 21 constraints and three uncontrollable parameters, and it repre-
sents a more realistic problem that naval architects are likely to face.

To solve both problems, one will need a method to find the Pareto front for multiobjective op-
timization problems. The most widespread method in the literature is the genetic algorithm.
Originally proposed by Holland (1975) for applications engaged with control theories, it was
accepted quickly into numerous areas of engineering and science. Coello (2010) maintains an
updated list of publications involving the genetic algorithm.

Many versions of genetic algorithms have served as meta-algorithms in the literature. The one
that appears in this work was adapted from Deb ez al. (2000), which is the Non-dominated Sort-
ing Genetic Algorithm, version II (NSGA II). This version is easy to use and depends on only two
parameters: the number of chromosomes in the population and the number of generations that
this population will evolve. With each evolution, the non-dominated solutions in the population
converge toward the Pareto optimal solutions.

4.1 Problem 1: design of a vibrating platform

To illustrate the proposed robust approach, the authors present the engineering problem adapted
from Gunawan and Azarm (2005).

This problem aims to optimize the design of a platform modeled as a pinned-pinned sandwich
beam with a vibrating motor on top, as shown in Figure 7. The platform has three layers (an
inner layer, two middle layers sandwiching the inner layer and two outer layers sandwiching the
inner and middle layers) of material. The layers must be comprised of three different materials
that are named 4, B and C, and the choice of materials for the layers must be mutually exclu-
sive so that two layers do not use the same material. However, the thickness of some layers
can be null.
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Figure 7 — Engine support platform.

The properties of the materials are shown in Table T1. In this table, p is the mass density, E is
Young’s modulus and c is the material cost per volume. The objectives are to minimize the total
material cost used in such a platform and to maximize its natural frequency by controlling five
sizing variables (continuous) and one combinatorial variable (discrete). The sizing variables are
the width of the platform (b), the length of the beam (L) and the thicknesses of the three layers
(dy, d» and d3). The thicknesses of the middle and outer layers are represented as the difference
between two sizing variables (e.g., the thickness of the middle layer is equal to (dy — dy)).
The combinatorial variable is the choice of materials for the layers (M). Since there are three
possible material types, there are six possibilities for M (starting from the inner layer outward):
{4, B,C}, {4,C, B}, {B, 4, C}, {B,C, 4}, {C, A, B} and {C, B, A}. The platform design is
subjected to five constraints: the maximum weight of the platform and the lower and upper
limits on the thickness of the middle and outer layers. The optimization formulation for this
example is shown in Eq. (14). The notations (o1, p2, p3), (E1, E2, E3) and (cy, ¢2, ¢3) refer to
the density, Young’s modulus and the material cost for the inner, middle and outer layers of the
platform, respectively. The lower and upper bounds for the sizing variables are 0.05 < d; < 0.5,
02<dr<05,02<d3<0.6,035<b<05and3 <L <6.

maximize:  fp = 272—2 % (14a)
minimize: cost = 2bL [cld1 +cr(dr) —dy) + e3(ds — dz)] (14b)
subject to: g1 =ulL —2800<0 (14c)
g =d—dr <0 (144d)

g3=d—d; —0.15<0 (14e)

ga=dy—d3s <0 (14£)
gs=d3—dr,—0.01<0 (14g)

with  El = 23—b[Eld13 + Ex(d3 — d}) + E3(d3 — d3)] (14h)
w=2b[p1d1 + pa(dy — di) + p3(d3 — da) ] (141)
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Table T1 — Properties of the beam materials.

Material A | Material B | Material C
p(kg/m3) 100.0 2770 7780
E(GPa) 1.6 70 200
c(m?) 500.0 1500 800

It is assumed that there are uncontrollable variations in the density of material A (p4) and cost of
material B (cp), and the optimum solutions must be as minimally sensitive as possible to these
variations. Moreover, the designer wants to obtain the robust Pareto solutions to this problem for
the nominal parameter values p4 = 100 kg/m® and cp = 1500 $/m>.

The variations in the parameters affect the two objective functions and the platform weight, and
this effect is incorporated in the constraint function g|. To take into account the feasibility of the
robust search process, the following constraint functions were added.

g6 = |Acost| — Acosty < 0 (15a)
g7 =|Afn|l—=Afng <0 (15b)
g =g1+|Agi1| =0 (15¢)

where, for the sensitivity requirements, the acceptable relative variations in objective functions

A
f”o and Acosty
Jn

o5 Were arbitrarily set in the values shown in Figure 8 with maximum variation

for the parameters of material A defined by % = AC—‘Z‘ = 0.05. The variation related to the
constraints expressed in Eqs. (15a-15¢) were calculated for the extreme points of the interval
composed by the parameter with its variation.

In Figures (8a-8b), the nominal Pareto set of the problem (without the uncontrollable variations)
and the Pareto set obtained using the robust approach are displayed. When the robustness index is
considered as the third objective function, the non-dominated points (square points) are dispersed
over the function space, barely touching the nominal Pareto front. Therefore, the nominal Pareto
front is not robust.

As expected, if the nominal solution is not robust, then different Pareto fronts will be obtained,
because the acceptable variations in objective functions are modified. Table T2 shows the statis-
tics for the results with different levels of these acceptable variations. This table displays some
notable facts. First, in each Pareto set, all alternatives resulted with the same material sequence
order. Second, the material order in the nominal Pareto set is from the cheapest to the most
expensive material as well as from the inner, thicker layer to the external, thinner layer, respec-
tively, which was also expected. Third, the platform cost variation due to maximum variations in
material A is more relevant than the frequency variation, so one can say that the nominal Pareto
front is robust from the point of view of natural frequency. Fourth, the nominal Pareto set has
the platform cost variation at an average value of 4.51 percent with a standard deviation of 0.21
percent, which means that this set will be changed and the nominal Pareto front will be moved
to a less performing region if the acceptable level of cost variations is set to the lower values,
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as shown in Figures (8c-8d). Finally, as long as the order of the material in the platform layers’
cross section is acting as a design variable, the robust Pareto fronts will exhibit the behavior
shown in Figure 8c. The fronts with a relatively small variation in restrictive acceptable cost will

fall in a better region than the fronts with more flexible bounds.
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materials in the layers fixed as {A,C,B}

Figure 8 — Nominal and robust Pareto fronts of the platform design problem.

Table T2 — Statistics for design cases varying Af; /f; and material code as free design variable.

dv — b(m) L(m) dy(m) do(m) d3(m) | Material | ASn/fn(%) | Acost/cost(%)

Al | D op | T o | di oq | & oq | d5 ogy | " AR s | Acost opcon

nominal | 0.35 2% | 3.00 0% | 0.33 29% | 0.35 30% | 0.35 31% 2 0.55 0.48 | 4.51 0.21
1% 0.35 0% | 3.00 0% | 0.17 44% |0.28 17% | 0.28 17% 4 0.00 0.00 | 0.00 0.00
2% 0.35 0% | 3.00 0% | 0.23 56% | 0.30 23% | 0.31 23% 3 0.05 0.06 | 0.80 0.82
3% 0.35 0% | 3.00 0% | 0.18 59% |0.26 17% | 0.27 17% 3 0.08 0.08 | 1.09 0.99
4% 0.35 0% [3.00 0% |0.25 17% |0.28 16% | 0.28 17% 2 0.20 0.02 | 3.99 0.01

*code: 1 = {4, B,C},2={4,C,B},3=(B,A4,C},4={B,C, 4),5={C, 4, B} and 6 = (C, B, A).
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Furthermore, the proposed sensitivity approach is useful for characterizing robust Pareto fronts.
With this approach, one can easily achieve the robust Pareto front. This approach does not require
stochastic treatment for obtaining the variations, and it does not need a probability distribution
for the variations in the design variables and design parameters.

4.2 Problem 2: preliminary design of a bulk carrier

The second application of the developed methodology is the preliminary design of a bulk carrier.
The design of a vessel is not a trivial task. For decades, this problem has been handled in two
ways. Some designers have adjusted a known design so that it meets new requirements, and
others have relied on simplified mathematical models controlled by an optimization algorithm,
which allow them to obtain the optimal solution based on previously established technical or
economic criteria.

This work considers the second alternative with the aid of the mathematical model for designing
bulk carriers, which was developed by Pratyush and Yang (1998) and presented in detail in Au-
gusto et al. (2012) study. The model comprises a set of functions that define the vessel attributes.
These functions constrain the design variables of the objective functions to be optimized as well
as the space of these design variables. These functions characterize the technical and economic
performance of the ship and allow designers to evaluate each design alternative. The economic
performance of the ship refers to its annual unitary transportation cost and its annual transported
cargo, and the technical performance of the ship refers to the functions of the vessel’s design vari-
ables, including length, beam, depth, draft, block coefficient and speed, which are respectively
(L, B, D, T, Cb and V). Pratyush and Yang chose to minimize the annual transportation cost,
maximize the amount of annual cargo and minimize the vessel’s weight. The present work chose
the optimization of the first two with no loss of generality. These two functions are conflicting,
as shown in Figures 9 and 10.

The authors applied the proposed multiobjective robust optimization to the ship’s design in order
to consider the isolated variation in each design variable and in each design parameter for the two
approaches. First, the Robustness Index was added as a third objective function to the original bi-
objective optimization problem. Then, the variations relative to the nominal value of the design
variable and to the design parameter were arbitrarily preset at Ax;, = 1 percent and 5 percent,
respectively, and the consequent variations of the objective functions were limited to Af;, and
arbitrarily set at values ranging from 1 percent to 4 percent relative to their resultant or nominal
values, depending on the case.

Figure 9 displays the results for the robust optimization related to the uncontrollable variations
in each design variable. Each figure displays the nominal (non-robust) Pareto front, the robust
Pareto front considering the Robustness Index as the third objective function to be minimized and
the Pareto front considering different levels of acceptable variations in the objective functions as
an effect of a design variable’s uncontrollable variation around its nominal value.
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Figure 9 — Nominal and robust Pareto fronts for the minimization of transportation cost (C7) and maxi-
mization of annual transported cargo (A¢), allowing isolated variations in the design variables of (L, B, D,

T,Cbh and V).
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Figure 10 shows the results for robust optimization related to variations in the arbitrarily chosen
design parameters, namely round trip, fuel oil price and handling rate, since they can affect
negatively the performance functions, depending on the uncertainties of their nominal values.
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Figure 10 — Nominal and robust Pareto fronts for the minimization of transportation cost (C7T) and maxi-
mization of annual transported cargo (A4C), allowing isolated variations in the design parameters of round
trip, fuel oil price and handling rate.

Each figure shows the nominal (non-robust) Pareto front, the robust Pareto front considering the
Robustness Index as the third objective function to be minimized and the Pareto front considering
different levels of acceptable objective function variations due to an arbitrary parameter variation
interval of Ap;, = 5 percent around the parameter’s nominal value.

From both figures, it can be seen that variations in problem variables and problem parameters
impact the extension and the performance of objective functions. More important is that the
variation with the most impact in the nominal Pareto front is associated with the handling rate
(HR) parameter, according to the results shown in Figure (10d). Due to this parameter, whose
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nominal value is set to 8,000 t/day, the nominal Pareto front is very sensitive. For acceptable
levels of variations in objective functions over the interval Af;, € [1%, 3%], the respective Pareto
fronts practically collapse to a single solution in each respective front. This single solution will
be partially robust if the acceptable levels of variations are higher, namely Af;, = 4 percent,
when compared to those observed in the results obtained with uncontrollable variations in the
design variables and other design parameters.

Therefore, this parameter plays an important role in the design process, because its impact on the
objective functions can degrade drastically the performance of the designed ship.

5 CONCLUSIONS

Most engineering design problems are multiobjective and contain antagonistic objective func-
tions. To solve such problems, many researchers developed methods that helped them to search
for a general solution. They have frequently elected to use evolutionary methods to locate a set of
solutions of multiobjective optimization problems. These algorithms provide a discrete picture
of the Pareto front in the function space.

This paper introduced a new concept of a sensitivity index to perform multiobjective robust
design optimizations, mainly when performance functions are highly sensitive to the variations
in the design variables and in the design parameters.

To introduce the concept, the authors presented formulations of a multiobjective optimization
problem, a robust design problem and a multiobjective robust optimization problem. A robust-
ness index was introduced in order to classify the nominal Pareto front as either non-sensitive
robust or not. This robustness index is based on the singular values of the sensitivity Jacobian
matrix involving the objective functions, and it is considered an additional function to be mini-
mized in the optimization problem. If the nominal Pareto front is not robust, then the new front,
in view of the robustness index, will be scattered in the function space.

In addition, this paper proposed a supplementary method for searching for the robust Pareto
front in instances where the design variables and design parameters have known uncontrollable
variations bounded in single intervals and the designer will accept a range of these variations in
the objective functions. During this search for optimal solutions, the designer constrains varia-
tions in objective functions to the acceptable intervals. The feasibility of the nominal problem is
maintained once the effects of the variations in the constraint functions are considered.

Finally, two examples illustrated the contributions of the paper. First, the proposed method was
applied to the design of an engine support platform, a problem with two objective functions,
six design variables, five constraints and uncontrollable variations in the design parameters of
material cost and material density. Then, a preliminary ship design, a problem with six design
variables, two objective functions and twenty-one constraints, was conducted in a robust condi-
tion considering uncontrollable variations in the design variables and in the design parameters.
The authors concluded that the nominal optimal set is not robust, because one of the ship’s de-
sign parameters (the port handling rate) had a significant impact on the performance of the good
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under design. Given the results of both illustrations, the proposed methodology appears to be a

simple and useful tool for conducting robust engineering designs.
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