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In pseudoisochromatic stimuli the presence of spatial and luminance noise forces the
subject to discriminate the target from the background solely on the basis of chromaticity
difference. Color-blind subjects may show difficulty to identify the target due to the
elimination of borders and brightness clues caused by the luminance and spatial noise.
Few studies have fully described the features of pseudoisochromatic stimuli. Fewer
investigators have focused their studies in the effects of specific pseudoisochromatic
parameters on color discrimination. We used the Cambridge ColorTest (CCT) to investigate
the influence on color discrimination thresholds due to the number of luminance levels
present in the luminance noise. The CCT default has six luminance steps; however, in our
investigation a total of eight different conditions were tested from 2 to 16 luminance steps.
It was found that the CCT provided very robust values for color discrimination thresholds,
which were degraded only for very small number of luminance steps. When the number of
steps was increased, the color discrimination thresholds improved from 2 to 6 luminance
steps and gradually reached a plateau for 10 or more luminance steps. The area of color
discrimination ellipses as a function of luminance steps matches the relative proportion of
ineffective contrasts between mosaic patches as a function of luminance steps, assuming
that contrast becomes ineffective for values 18.6% or less. The lower number of color
and luminance interactions in these conditions could explain the measured increase of
color discrimination thresholds. The primary conclusion from this investigation was that
results from pseudoisochromatic tests should have their parameters described in more
detail. This type of description would allow a better understanding of the results provided,
interpretations, and therefore cross study comparison of results obtained from different
laboratories.

Keywords: pseudoisochromatic stimulus, compound stimulus, color-luminance interaction, Cambridge ColorTest,

color vision, P pathway

INTRODUCTION
Deficiencies in color vision decrease the ability to discriminate
certain colors under specific circumstances. The inability to dis-
criminate colors can result in visual problems in daily life. Full
characterization of color vision deficiency would allow subjects
with decreased color discrimination to potentially conduct neces-
sary adjustments to their visual deficiencies and live a more normal
life. Testing for color vision deficiencies may identify the existence,
type, and severity of defects, providing a basis for the evaluation
of the defect’s impact on personal and professional performance
(Dain, 2004).

Multiple types of visual testing exist that are used to measure the
level of color perception, including pseudoisochromatic plate tests
(Birch, 2001). Pseudoisochromatic plates employ targets broken

into patches of a given chromaticity embedded in a background
of patches of different chromaticity, but the two sets of patches –
those that compose the target and those that compose the back-
ground – vary in size and luminance, to isolate and measure the
subject’s color discrimination performance (Mollon, 2003).

The pseudoisochromatic tests were developed based on the
suggestions of Jakob Stilling (1842–1915) to eliminate the edges
between target and background by breaking the stimulus into a
mosaic with patches of different sizes (spatial noise) and bright-
ness (luminance noise). One major aspect of pseudoisochromatic
stimuli is that the presence of spatial and luminance noise requires
the subject to heavily rely on chromatic signals to differentiate the
target from its background (Mollon and Reffin, 1989; Regan et al.,
1994).
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The first pseudoisochromatic test to become largely used,
named for Shinobu Ishihara (1879–1963), was introduced in the
early 1900s to identify deficiencies in red–green color vision (Hei-
dary and Gharebaghi, 2013). Although the Ishihara test is still
widely used, it failed to properly categorize many defects of color
vision, especially those of tritan category (Aarnisalo, 1979). The
American Optical Hardy-Rand-Rittler (AOHRR) test was pro-
duced in several versions during the mid and late 1900s due to
issues with the saturation of red and green plates. This test dis-
tinguished between protans and deutans with difficulties, because
it did not contain a sufficiently large range of weak and strong
stimuli to correctly identify the specific color vision defect (Walls,
1959). The Standard Pseudoisochromatic Plates (SPP) test is pre-
sented either in a version for congenital visual defects (SPP-C)
or another version for acquired visual defects (SPP-A), but it is
more affected by the duration per test item and viewing distance
than other pseudoisochromatic tests such as the Ishiara test and
the City University Color Vision Test (CUCVT; Somerfield et al.,
1989; Dain, 2004).

Although there is wide use of pseudoisochromatic stimuli in
color vision investigation, few studies have focused on how the
features of the stimuli themselves could influence the visual per-
ception. Most studies focused on the test conditions such as
illuminance of the stimulus plates, viewing distance, and exposure
time (Long et al., 1984; Somerfield et al., 1989). These conditions
have been found to significantly affect individual performance
on visual screening tests. The administration of multiple and/or
different plate tests may require viewing conditions within cer-
tain standards in order to ensure test validity and comparability
(Long et al., 1985). It has been observed that patients with low
visual acuity had a high rate of recognition with utilization of the
Ishihara plates in color discrimination tests (Gordon and Field,
1978). These authors suggested that the elimination of high spa-
tial frequency information, by the low visual acuity, might explain
the better performance of the subjects (Gordon and Field, 1978).
Taylor and Woodhouse showed that blurring could also improve
the recognition and therefore discrimination performance using
pseudoisochromatic plates in deutans (Taylor and Woodhouse,
1979).

Examples of studies that investigated how specific features of
the pseudoisochromatic stimuli could potentially influence visual
perception were those that provided the basis for the develop-
ment of Cambridge Color Test (CCT; Mollon and Reffin, 1989;
Reffin et al., 1991; Regan et al., 1994). Mollon and Reffin (1989)
used pseudoisochromatic stimuli and modulated the target chro-
maticity along several axes of the chromaticity diagram using a
staircase method. The procedure allowed them to estimate several
color discrimination thresholds around a given chromaticity locus
and to plot the corresponding MacAdam ellipse. They observed
that color discrimination ellipses of trichromats and dichromats
corresponded well to the color vision genotype of the subjects.
Normal data for color discrimination using the CCT have been
published by Ventura et al. (2003), Paramei (2012), and Paramei
and Oakley (2014). Other investigatiors have applied similar
paradigms to investigate color discrimination in both children and
non-human primates (Mancuso et al., 2006; Goulart et al., 2008,
2013).

The amount of luminance noise represents an impor-
tant parameter to characterize a pseudoisochromatic stimulus.
Changes in the composition of the luminance noise might influ-
ence the visual perception of the target, because it can change the
interaction of luminance and chromatic information in the visual
scene (Switkes et al., 1988; Ingling and Grigsby, 1990; Logothetis
et al., 1990; Gur and Akri, 1992; Clery et al., 2013). In the cur-
rent study we investigated how the number of luminance levels in
the luminance noise of pseudoisochromatic stimuli influenced the
color discrimination ellipses.

MATERIALS AND METHODS
SUBJECTS
Nine subjects (25.67 ± 3.24 years old) were included in the cur-
rent study. All subjects gave written consent to participate in
the study. This study agreed with the tenets of the Declaration
of Helsinki and it was approved by the Ethical Committee for
Research in Humans, Tropical Medicine Nucleus, Federal Univer-
sity of Pará (Report #570.434) and the IRB at UTHSC. None of
subjects had any history of ophthalmological, neurological, or sys-
temic diseases that could affect visual performance. Verification of
visual function was performed by an ophthalmologist that con-
ducted the following initial examinations: ophthalmoscopic and
retinoscopic exam, slit lamp exam of the eye media, refractive state
measurement, Snellen visual acuity test, and Ishihara plate test.
All subjects were monocularly tested and the eye with the high-
est Snellen visual acuity, based on prior initial ophthalmological
examination, was the eye used for the pseudoisochromatic stimuli
examination. All the subjects were normal regarding the results of
ophthalmological exam, had normal or corrected to 20/20 visual
acuity, and performed with no mistakes in the Ishihara’s plate
test.

STIMULATION
The stimuli were generated in a ViSaGe system (Cambridge
Research System, CRS, Rochester, England, UK) and exhibited
in a 21′′ CRT display with high spatial, temporal, and chro-
matic resolution (1600 × 1200 pixels, 125 Hz, 14 bits, Mitsubishi,
Tokyo, Japan). Luminance and chromaticity were measured and
gamma-correction was performed to calibrate the monitor using
a colorimeter ColorCal (CRS).

We used the CCT software (CCT, CRS) to estimate color dis-
crimination ellipses around coordinates (u′ = 0.1977, v ′ = 0.4689)
of the CIE 1976 Color Space. Each stimulus was comprised of an
assortment of discrete circular patches with their own random
size and luminance. The minimum and maximum luminance val-
ues of the luminance noise were 8 and 18 cd/m2, respectively.
Embedded in this field of spatial and luminance noise there was
a target with the shape of a Landolt’s “C” formed by its own
assortment of patches differing in chromaticity from those of
the background (Regan et al., 1994). Subjects were placed 3.25
meters away from the monitor in a dark room. At this distance,
the Landolt’s “C” gap, outer diameter, and inner diameter mea-
sured 1, 4.3, and 2.2◦ of visual angle, respectively. The stimulus
was shown for 3 sec. The target chromaticity was modulated
along eight chromatic vectors radiating from the background
chromaticity.
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PSYCHOPHYSICAL PROCEDURES
The CCT uses a four-alternative forced choice staircase to esti-
mate color discrimination thresholds along each chromatic vector.
The subject’s task was to identify the orientation of the Lan-
dolt’s “C” gap (up, down, left, or right). The subject’s response
was recorded using a four-button response box (CB6, CRS).
Each correct response resulted in a decrease of the chromatic
vector and an error resulted in an increase of the chromatic
vector.

The determination of the color discrimination ellipse was per-
formed under eight different luminance step conditions: 2, 4,
6, 8, 10, 12, 14, and 16 (Figure 1). The luminance steps refer
to the number of equally spaced luminance levels randomly dis-
tributed in the luminance noise range of the CCT stimulation. For
all participants, eight different stimulus conditions were shown,
each one with a different number of luminance levels in the
luminance noise. For every stimulus condition, we estimated the
color discrimination thresholds along eight different chromatic
axes. The tests were performed twice with sections occurring sep-
arately in three different days. The stimulus conditions testing
always started in the luminance step 2 and ended with luminance
step 16.

DATA ANALYSIS
An ellipse function was fitted to the eight color discrimination
thresholds using the Khachiyan Ellipsoid Method (Khachiyan,
1979) implemented with Matlab R2013a routines (Mathworks,
Natick, MA, USA). We calculated the area, major axis, and
minor axis of the ellipses, and lengths of protan, deutan, and
tritan vectors. These values were taken as parameters to compare

FIGURE 1 | Pseudoisochromatic stimuli used in this work. (A–D) Four
different categories of luminance levels in the luminance noise: 2, 6, 10,
and 16 luminance levels.

color discrimination across different stimulus conditions. Subjects
sequentially repeated the whole test twice and the results were aver-
aged for each subject along the eight vectors. All the results were
analyzed and presented as “grand means” for the group of nine
subjects altogether.

For each subject, data of each parameter were divided by the
maximum value to normalize the results across all testing condi-
tions. The one-way ANOVA followed by Tukey post hoc test was
used to compare the results (α = 0.05).

RESULTS
Figure 2 shows the mean color discrimination ellipses in the
CIE1976 Color Space for test conditions with 2, 6, 10, and 16 lumi-
nance levels in the luminance noise. Visual inspection reveals that
the mean ellipse estimated with two luminance levels in the lumi-
nance noise (Figure 2A) had a larger area than the mean ellipses
estimated with 6, 10, or 16 luminance levels on the luminance
noise (Figures 2B–D).

Figure 3 summarizes all the statistical comparisons between the
parameters for each test condition. All the parameters for ellipses
obtained with two luminance levels in the luminance noise were
larger than those for other seven combinations of luminance levels.
However, statistical significance was reached only in few compar-
isons for one-dimensional parameters. There were no statistically
significant differences for the comparisons between major semi-
axis lengths estimated from the eight-luminance step conditions.

FIGURE 2 | Mean color discrimination ellipses for various degrees of

luminance noise. The data points and bars represent “grand means” and
standard deviations for color discrimination thresholds in the CIE 1976
Color Space from nine subjects. Data points were fitted by ellipses
estimated by using pseudoisochromatic stimuli with 2 (A), 6 (B), 10 (C),
and 16 (D) luminance levels in the luminance noise. The color discrimination
thresholds obtained with two luminance levels in the luminance noise were
higher than in any other conditions (p < 0.05, one-way ANOVA followed by
Tukey post hoc test) and consequently the ellipse in (A) is larger than all
other ellipses.
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FIGURE 3 | Statistical comparisons between the parameters of color

discrimination ellipses for various degrees of luminance noise. (A) Protan
vector length. (B) Deutan vector length. (C) Tritan vector length. (D) Major
semi-axis length. (E) Minor semi-axis length. (F) Ellipse area. Values were
“grand-means” for nine subjects that performed the tests twice and were
averaged for each individual. Generally, all the parameters were larger for
pseudoisochromatic tests performed with two luminance levels in the

luminance noise, but only attained statistical significance level in a few
comparisons for protan vector length [F (7,136) = 2.2, p < 0.05, η2 = 0.69],
deutan vector length [F (7,136) = 2.3, p < 0.05, η2 = 0.7], tritan vector length
[F (7,136) = 2.43, p < 0.05, η2 = 0.71], and minor semi-axis length
[F (7,136) = 2.1, p < 0.05, η2 = 0.77]. For ellipses areas, most of comparisons
were statistically significant. *p < 0.05, one-way ANOVA followed by Tukey
post hoc test.

The comparisons between the minor semi-axis lengths, protan
vector lengths, deutan vector lengths, and tritan vector lengths
resulted in statistically significant differences only in a few cases
identified with asterisks in the plots.

We found that ellipse area was the best parameter that dis-
criminated between different the test conditions. The ellipses
for two luminance levels in the luminance noise had areas
(0.81 ± 0.06) larger than for all other conditions and it was
statistically significant larger [F(7,136) = 3.29, p < 0.05, η2 = 0.69]
in the comparison with ellipses for 6 (0.60 ± 0.15), 8 (0.58 ± 0.12),

10 (0.56 ± 0.14), 14 (0.58 ± 0.18), and 16 (0.60 ± 0.11) luminance
levels in the luminance noise.

DISCUSSION
The luminance noise is an important feature of pseudoisochro-
matic tests. It is used to avoid borders and contrast between
contiguous regions of the stimulus that would base the dis-
crimination between target and background on cues other than
chromatic differences. We found that decreasing the number of
luminance levels composing the luminance noise impaired the
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color discrimination of trichromats, especially for very low num-
bers: two luminance levels resulted in larger ellipse areas; longer
major semi-axes; longer minor semi-axes; and longer protan,
deutan, and tritan vectors. That is, worse color discrimination
thresholds were observed when compared to conditions with more
luminance levels in the luminance noise.

The discrimination between target and background in pseu-
doisochromatic stimuli might be influenced by interaction
between luminance and color information. Natural scenes are
composed of both spatial and temporal mixture of color and
luminance information, raising an interest in determining how
these aspects are processed and discriminated within the visual
system. Some authors suggested that the visual system performs
an independent (orthogonal) and parallel processing of color and
luminance (Livingstone and Hubel, 1987). This is supported by a
scope of psychophysical and physiological data that showing dis-
tinct spatial and temporal properties of both the luminance and
color channels (Wilson and Wilkinson, 2004; Solomon and Lennie,
2007). Others have suggested that the luminance and chromatic
contribution for a perceptual task are summed at higher levels of
the visual cortex (Switkes et al., 1988; Ingling and Grigsby, 1990;
Logothetis et al., 1990; Gur and Akri, 1992).

The luminance and chromatic contrast processing might not be
totally independent and they might in fact exert an influence upon
each other. It is possible that independent processing of luminance
and color information occurs only at the very early stages of the
visual processing; however, it has been shown that many types of
cells in the retina, lateral geniculate nucleus, and V1 respond to
color and luminance contrast with varied degrees of sensitivities
(Kaplan et al., 1988; Lee et al., 1989a,b, 1990, 2011; Johnson et al.,
2001; Horwitz and Albright, 2005; Nassi and Callaway, 2009; Li
et al., 2014).

The color information seems to potentiate the luminance con-
trast perception. Improvement in the spatial contrast sensitivity,
wavelength discrimination, reaction times, and stereo-vision due
the interaction of both chromatic and luminance information
have been previously reported (Ueno and Swanson, 1989; Jordan
et al., 1990; Logothetis et al., 1990; Gur and Akri, 1992). Gur and
Akri (1992) investigated human contrast sensitivity that was esti-
mated by luminance, chromatic, and compound luminance plus
chromatic sinusoidal gratings. They observed that the luminance
contrast sensitivity was enhanced by the addition of color informa-
tion and vice versa. These investigators suggested that there was an
additive mechanism that supported the enhancement of the con-
trast detection. Troscianko et al. (1996) conducted studies on color
discrimination of two achromatopsic subjects using both static
and dynamic (25 Hz) chromatic stimuli with luminance noise.
They observed that subjects had the color discrimination impaired
with static noise, but had normal performance with dynamic noise.
These authors suggested that color discrimination estimated by
static luminance would be relied by a conscious and color oppo-
nent mechanism reflecting probably the activity of both parvo-
and magnocellular pathways. The color discrimination estimated
using dynamic luminance noise would be performed by an uncon-
scious and non-opponent mechanism that could be represented
by the activation of the either the magnocellular or koniocellular
pathways.

FIGURE 4 | Co-variation of the color discrimination ellipse areas and

relative proportion of ineffective contrasts present in the mosaic. (A)

Area of color discrimination ellipses measured with pseudoisochromatic
stimuli bearing progressive number of luminance steps in the luminance
noise. Data points represent grand means (nine subjects, two
measurements averaged for each individual) and were fitted with a power
function. (B) Relative proportion of ineffective contrasts present in the
mosaic of pseudoisochromatic stimuli as a function of number of
luminance steps in the luminance noise. From top to bottom, the different
groups of data points represent different values of Weber contrast
threshold, and they were also fitted with power functions. Contrast
threshold equal to 0.186 was fitted with a power function with the same
exponent as the one for ellipses areas illustrated in (A). (C) Data points for
relative proportion of ineffective contrasts in the mosaic of
pseudoisochromatic stimuli were vertically adjusted to fit the data points
for color discrimination ellipse areas. The two sets of data points were
connected with spline functions. (see text for further details).
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The current study, the number of possible combinations of
luminance contrasts between two neighbor circular patches in the
pseudoisochromatic stimuli varied according to the number of
luminance steps. In the pseudoisochromatic stimuli of this study,
two neighboring circular patches could vary from presenting the
same luminance levels (0 contrast) to presenting the minimum and
maximum luminance levels for that particular condition (highest
contrast). In this study, the highest contrast was obtained between
patches with 8 and 18 cd/m2 (Weber’s contrast = 0.55). The higher
the number of luminance levels in the noise, the higher the num-
ber of possible luminance contrasts between two circular patches
within the mosaic.

It was hypothesized in the current study that not all possible
luminance contrasts present within the mosaic could affect chro-
matic detection in the same amount and would explain the change
in color discrimination threshold as a function of number of lumi-
nance steps in the luminance noise (Figure 4A). Low luminance
contrasts do not have the same effect as high luminance contrasts
to increase target chromatic integration since low contrasts may
contribute little to the luminance noise. In order to find which
luminance contrast could be the minimally effective contrast to
modulate target integration, we estimated the relative proportion
of ineffective luminance contrasts, present in each stimulus condi-
tion, assuming different contrast thresholds (Figure 4B). A Weber
contrast threshold of 0.186 generates a relative proportion of inef-
fective contrasts, present in the mosaic, as a function of number of
luminance steps in the luminance noise, which matches the color
discrimination threshold as a function of number of luminance
steps in the luminance noise (Figure 4C).

A Weber luminance contrast threshold equal to 0.186 is rela-
tively high compared to the peak of human luminance contrast
sensitivity, but it is compatible with a pathway of low luminance
contrast sensitivity, such as the P cell pathway. P cell pathway
could be an adequate candidate to integrate luminance contrast
information and color contrast information in the perception of
pseudoisochromatic stimuli, such as those used in the current
study, since P cells are very sensitive to color contrast and relatively
insensitive to luminance contrast (Kaplan and Shapley, 1986; Lee
et al., 1989a,b, 1990, 2011).

CONCLUSION
The CCT is a robust color discrimination test, since the values it
provides for color discrimination thresholds are relatively insensi-
tive to luminance noise. We suggest that stimulus conditions with
six or more luminance levels would be more appropriate to test
and characterize vision disabilities with pseudoisochromatic stim-
uli such the one used in the CCT. A pathway with high chromatic
contrast sensitivity and low luminance contrast sensitivity seems
to mediate the subject response to CCT. Pseudoisochromatic tests
should have all the parameters fully described to allow for better
interpretation of the results they provide and a more straight-
forward comparison of obtained results in different laboratories
under different conditions.
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Evidence has accumulated that rod activation under mesopic and scotopic light levels alters
visual perception and performance. Here we review the most recent developments in the
measurement of rod and cone contributions to mesopic color perception and temporal
processing, with a focus on data measured using a four-primary photostimulator method
that independently controls rod and cone excitations. We discuss the findings in the
context of rod inputs to the three primary retinogeniculate pathways to understand rod
contributions to mesopic vision. Additionally, we present evidence that hue perception is
possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
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INTRODUCTION
The visual system is responsive to continual changes in the spec-
tral, spatial, and temporal properties of the illuminant across ∼10
log units of dynamic range (Hood and Finkelstein, 1986). This
is accomplished, in part, by switching operations between two
photoreceptor classes in the retina, rods and cones, which have
partially overlapping operating light ranges. Under high illumi-
nations, rods are in saturation and photopic vision (Maxwell,
1860; Helmholtz, 1924; Hurvich and Jameson, 1957; Hering, 1964;
DeValois and DeValois, 1993) is initiated by the outputs of three
cone photoreceptor classes (L-, M-, and S-cones) with overlap-
ping spectral sensitivities (Smith and Pokorny, 1975) to provide
trichromatic color perception. With intermediate, mesopic illu-
minations when rods gradually become sensitive and cones are
still active, there are subtle changes and a reduction in both the
perceptual quality and gamut of perceivable colors (Nagel, 1924).
Under dim, scotopic illuminations, only rods are active and color
perception is still possible by different physiological computations
than the trichromatic system (Pokorny et al., 2006, 2008; Elliott
and Cao, 2013).

Photoreceptor outputs are transmitted from retina to brain for
image forming vision via three major classes of retinal ganglion
cells in primates that process distinct aspects of visual informa-
tion (Dacey, 2000; Kaplan, 2004; Lee et al., 2010). The first class,
known as parasol ganglion cells, project to the magnocellular (MC)
layer of the LGN. The parasol ganglion cells display ON-center,

OFF-surround antagonistic receptive field structures, with L- and
M-cones contributing to both the centers and surrounds (spatial
opponency; Rodieck, 1991). There are two subtypes of parasol
ganglion cells based on the sign of the center response, includ-
ing +(L+M) for ON-center cells and −(L+M) for OFF-center
cells. The MC-pathway is believed to the physiological substrate
of the luminous efficiency function (Lennie et al., 1993). The sec-
ond class, known as midget ganglion cells, receives differential
L- and M-cone inputs in the receptive field center and surround.
There are four subtypes of midget ganglion cells, depending on
the type and sign of cone input in the center, including +L/−M
(ON response to L-cone input but OFF-response to M-cone input
in the center), –L/+M, +M/−L, and −M/+L. The surround of
midget ganglion cells, however, can receive mixed inputs from
both L- and M-cones instead of only one type of cone input
(Lee et al., 2012). Therefore midget ganglion cells display both
“spatial opponency” and “chromatic opponency” to signal both
spatial and chromatic (red–green) information. The notion that
spatial and chromatic information is conveyed by two separate
channels (“two-channel hypothesis” proposed by Rodieck, 1991)
has now been dismissed. The midget ganglion cells project to
the parvocellular (PC) layer in the LGN and mediate the “red–
green” chromatic opponency signal and spatial acuity. The third
class, known as small bistratified ganglion cells, has a spatially co-
extensive center and surround receptive field structure that receives
excitatory S-cone input and inhibitory L+M input. These cells
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