N
N

N

HAL

open science

Guidelines for Boosting Long-Lasting FLOSS
Contributors
David Tadokoro, Rafael Passos, Paulo Meirelles

» To cite this version:

David Tadokoro, Rafael Passos, Paulo Meirelles. Guidelines for Boosting Long-Lasting FLOSS Con-
tributors. DebConf25, IRISA, Jul 2025, Brest, France. pp.6. hal-05334509

HAL Id: hal-05334509
https://hal.science/hal-05334509v1
Submitted on 28 Oct 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-05334509v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Guidelines for Boosting Long-Lasting
FLOSS Contributors

David Tadokoro
University of Sao Paulo, Brazil
davidbtadokoro@usp.br

Abstract—FLOSS (Free/Libre and Open Source Software)
development is a validated approach to producing cutting-edge
software solutions used by governments, companies, and society
at large. At the core of all FLOSS projects are communities
composed primarily of developers who evolve and maintain the
software while devising rules for the development process. A
common problem is the renewal and/or scaling of the workforce,
which is not about encouraging waves of new and sporadic
contributors but about fostering long-lasting ones that can have a
more profound impact on the project. This work presents guide-
lines for mentoring trainees to build skills and gain experience
essential to becoming valuable assets in most FLOSS ecosystems.
Beyond a reasonable software development background, previous
experience in FLOSS development is not a requirement. These
guidelines are a product of a four-month university course where
students had to (1) learn the fundamentals of Linux kernel
development and send patches to a subsystem, (2) contribute
to supporting tools to the GNU/Linux ecosystem, (3) experience
software packaging in the context of Debian, and finally (4)
contribute to a chosen FLOSS project. The method reproduces
the natural way a “self-taught” contributor would enter a FLOSS
ecosystem (heavily inspired by how Debian does it), though in
a more focused and immersive environment. Through on-site
workshops, accessible and knowledgeable mentors, and close and
constant monitoring, we simulated a smaller FLOSS commu-
nity where trainees (inexperienced contributors) learned from
mentors (maintainers); we argue that this simulated community
can be more efficient than a real one as feedback is faster
and more adapted to each contributor, and concepts can be
abstracted and simplified for easier absorption. Our results show
that the method fostered (1) developers who are more confident
in contributing to any FLOSS project and going beyond the
one-time contributions and (2) the enhancement of fundamental
hard skills (like Git and Web/email-based contribution models)
and soft skills (like communication and feedback assimilation)
for any FLOSS project. Even though deep technical knowledge
becomes mandatory for every contributor in a specific project,
we claim that implementing the proposed guidelines can quickly
nurture tens of developers with a solid base for becoming long-
lasting contributors to FLOSS projects.

I. INTRODUCTION

FLOSS (Free/Libre and Open Source Software projects,
more often than not, rely on a community of developers
composed of people who contribute to the project by sub-
mitting code changes, reporting/testing bugs, and the like,
called contributors and developers who maintain the project
by reviewing and integrating code changes, defining the devel-
opment direction, and so on, called maintainers. In this sense,

Uhttps://gnu.org/philosophy/floss-and-foss.html

Rafael Passos
University of Sdo Paulo, Brazil
rafael @rcpassos.me

Paulo Meirelles
University of Sao Paulo, Brazil
paulormm@ime.usp.br

every FLOSS project sustainability depends on the renewal
of its workforce through new contributors that arrive in the
project, known as newcomers.

Extensive work has been done to investigate the entry barrier
of newcomers into the FLOSS ecosystem. Steinmacher et
al. [1], using a model of entry barriers, inspected how to
increase the perceived self-efficacy of newcomers in their first
contributions, covering the motivation and confidence aspect
of newcomers. In two studies, Balali et al. [2], [3] analyze
mentoring as an educational approach to introduce newcomers
to FLOSS, focusing on mentors’ and mentees’ pain points and
challenges while presenting strategies to alleviate them. More
recent research works [4], [S] look to how recommended tasks
for newcomers, usually called Good First Issues, can promote
new contributors and strategies for doing so.

Nonetheless, these works remain at the stage of one-time
contributors—those who make only a single, usually low-
impact contribution. Such contributions are often simple and
demand more time from maintainers to guide newcomers
than they offer in return. Meaningful impact arises only
when newcomers continue contributing and move beyond one-
time contributions. Furthermore, while valuable for improving
newcomer onboarding, these studies address only specific,
isolated aspects of the FLOSS contributor journey.

To help filling the described gap, this work presents guide-
lines that can be used to train developers to become long-
lasting contributors to most FLOSS projects by equipping
them with the necessary skills and experience. The guidelines
were designed for a multi-month mentorship program that
emerged from a university course focused on training students
in FLOSS development with strong ties to the Linux kernel
project and its ecosystem.

With close support from multiple mentors, regular on-site
workshops, rich teaching materials, and lightweight monito-
ring mechanisms, we simulate a FLOSS community centered
on contributors capable of quickly grooming many developers
into solid assets for FLOSS. In this respect, the guidelines offer
a novel approach to boosting long-lasting FLOSS contributors.

The remainder of the text is structured as follows: Section [[I]
describes the training experience of the university course and
the methods used to collect and analyze data; Section
displays the results obtained and discusses how they inform us
regarding the effectiveness of the guidelines and its limitations;
Section presents the training guidelines succinctly and

https://gnu.org/philosophy/floss-and-foss.html

directly for easy reference; and Section |V|concludes this work
with opportunities for future research.

II. MATERIALS AND METHODS

This section describes the resources utilized in the training
experience, the approach used, and the methods employed to
collect and analyze data.

A. Resources Utilized

Physical and human resources, teaching materials, and
monitoring mechanisms were required to conduct the train-
ing. Traditional talks and on-site workshops were central,
necessitating a weekly venue with a capacity of thirty par-
ticipants, equipped with tables and high-bandwidth Internet,
that supported both lectures and group activities. There were
three mentors and a group of 27 trainee developers. Teaching
materials, such as presentations, tutorials, and reference ma-
terials, were produced or provided by mentors throughout the
training. Lastly, simple mechanisms to monitor progress were
implemented, such as constant logging of activities and quick
presentations from trainees.

B. Training Approach

We implemented the training in a four-month university
course involving 21 undergraduate and 6 graduate students
from diverse academic backgrounds. The description of the
training approach is presented independently of this specific
context as much as possible to increase its reproducibility.
Our approach aimed to immerse trainees in diverse FLOSS
development models and communities. The program used the
Linux kernel and Debian projects as case studies and was
structured into four phases:

a) Phase 1 — Linux kernel development: The trainees
began by doing tutorial to learn the fundamentals of Linux
development, like environment setup, developer workflows,
and device driver anatomy, all in the context of a specific sub-
system. This phase concluded with guided patch submissions,
where trainees first sent patches to mentors for validation
before sending them as real contributions to Linux.

b) Phase 2 — Linux supporting project: After experienc-
ing Linux development, the trainees moved from the email-
based model to a web-based project that supports the Linux
ecosystem; for that, we chose the kworkflow tool [6].

¢) Phase 3 — Debian packaging: While keeping in the
Linux ecosystem, the trainees moved to Debian packaging, a
layer more palpable and closer to users than the Linux kernel
and supporting tools.

d) Phase 4 — Independent FLOSS Contributions: Finally,
the trainees selected FLOSS projects and contributed indepen-
dently.

Classes, expository sessions, and workshops were held
throughout the training on-site. Our approach simulated real
community dynamics, with mentors acting as maintainers
who guided and instructed trainees and occasionally reviewed
their contributions. Close mentor-trainee interaction enabled

Zhttps:/flusp.ime.usp.br/kernel

efficient and adaptive feedback. During the first three phases,
contribution suggestions were carefully curated to ensure they
were accessible to beginners yet substantive, avoiding trivial
tasks to foster meaningful learning.

C. Data Collection and Analysis

To evaluate the effectiveness of the training approach, we
gathered qualitative data from three sources:

a) Trainees Blog Posts: The trainees documented their
progress throughout the phases and related activities via blog
posts, simulating developer board logs.

b) End-of-Training Survey: A 47-question survey col-
lected trainees’ demographics, perceptions of learning out-
comes, and course structure feedback. Questions used Likert
scales, yes/no, and open formats.

c) Mentor Interviews: Interviews captured mentors’ ob-
servations about the training process and trainees’ develop-
ment.

Survey data was aggregated and categorized (positive, neu-
tral, negative) for key questions. Blog posts and interviews
were analyzed qualitatively to identify recurring patterns and
insights.

III. RESULTS AND DISCUSSION

This section shows the data analysis core results and dis-
cusses how they corroborate the training guidelines effective-
ness.

A. Key Findings

The training approach successfully shifted the trainees’
perceptions and built foundational skills for contributing to
FLOSS projects despite many trainees having no prior contri-
bution experience. Some highlights that showcase this are:

a) Changing Perceptions and Confidence: While most
trainees were familiar with the concept of FLOSS, only a
quarter had contributed before. By the end of the training,
around 75% reported feeling more capable and confident to
contribute to any FLOSS project, showing a clear sign of
evolution.

b) Technical Growth: Initial struggles with command-
line tools and Linux environments were common but were
gradually overcome. 90% of trainees felt their Git proficiency
improved, and 85% recognized it as an essential skill for any
FLOSS contributor. Hands-on experience with both email and
web-based workflows made trainees more aware and familiar
with the core concepts of FLOSS development.

c) Mentorship and Workshops: Mentorship and on-site
workshops were pivotal. Over 85% of trainees cited these as
critical for their learning and evolution as FLOSS contrib-
utors. With the close support of mentors, many transitioned
from dependency to autonomy during the training experience,
managing to contribute to real projects and accomplish the
remaining tasks with minimal guidance by the end.

All trainees made (at least) four contributions to four
different FLOSS projects within a relatively short period,
providing them with a broad overview of FLOSS development

https://flusp.ime.usp.br/kernel

models. Rather than simply repeating the role of a one-time
contributor, trainees were required to refine both their hard and
soft contributor skills to produce meaningful contributions and
complete the training activities.

Starting with Linux development was certainly a shock
for most trainees; nevertheless, it proved beneficial in the
long term, as it encouraged independent problem-solving and
deepened their understanding of core FLOSS workflows and
dynamics.

Well-designed teaching materials were essential to the suc-
cess of the training, as, on the one hand, many of the hurdles
and blockers reported were attributed to issues in the tutorials,
while, on the other hand, most of the knowledge was conveyed
to the trainees through these materials.

Biggest strengths in how the course was presented

Mentors support 85.0%

Workshops 80.0%

Flexibility to choose
second project

Lesson plan 30.0%

Blogging activities 30.0%

Lectures about the
first phase projects

Other

0 20 40 60 80 100
Percentage of responses (%)

Fig. 1. Bar plot of the course strengths according to trainees.

Figure[I] gives an overview of the university course strengths
according to the trainees’ perspective, enforcing the impor-
tance of close mentoring and workshop sessions.

B. Limitations

Some limitations of the study methods may affect their
validity and applicability. The student-professor dynamic of a
university course, which is tied to grades, can introduce bias in
the trainees’ level of dedication. Students may feel motivated
to invest more effort but may do only the minimum required to
complete the course. Nonetheless, motivation is a key factor in
becoming a long-term FLOSS contributor and this work does
not aim to analyze that aspect in depth.

Conversely, the guidelines are closely tied to the Linux
ecosystem. Even though the results suggest that this case
study choice produced positive outcomes, a different set of
FLOSS projects might prove more effective or lead to different
(yet still valuable) outcomes. From the authors’ perspective,
a variation of the guidelines focused solely on the Debian
project, exploring its diverse development contexts thoroughly,
should be considered.

Finally, although this work focuses on common charac-
teristics of FLOSS projects, each project has its technical
particularities, including specific technologies and domain
knowledge. These aspects must be addressed at some point

in a contributor’s journey into a particular project, but the
guidelines do not cover them.

IV. GUIDELINES FOR BOOSTING LONG-LASTING
CONTRIBUTORS

This section presents practical guidelines to mentor and
train individuals into confident, autonomous, and enduring
contributors to FLOSS projects, based on the methodology
used in a four-month university course.

A. Resources Required

Implementing the guidelines relies on a minimal but de-
liberate set of physical, human, and informational resources.
These are summarized in Table [

TABLE I
RESOURCES REQUIRED FOR TRAINING LONG-LASTING FLOSS
CONTRIBUTORS
Resource Type Description

Physical Space A weekly-available room with capacity for
twenty to thirty people, tables for group

work, and high-bandwidth Internet access.

Mentors Personnel experienced in FLOSS to guide
and support trainees. Mentors should also
be capable of reviewing contributions. Ide-
ally, one mentor per ten trainees.

Trainees Developers with basic programming expe-

rience and Git knowledge; prior FLOSS
experience is not required.

Tutorials, presentations, and reference doc-
umentation provided and maintained by
mentors.

Lightweight mechanisms such as weekly
deliverables and short in-person presenta-
tions to track progress.

Teaching Materials

Monitoring Tools

B. Training Structure and Phases

The training follows a progressive, immersive structure that
exposes trainees to different FLOSS development ecosystems
and models. To support this progression, it is divided into
sequential phases, though some overlap may occur (e.g.,
continuing a contribution from a previous phase). Each phase
develops technical (hard) and interpersonal (soft) skills, grad-
ually strengthening autonomy and community engagement.

We do not prescribe a fixed duration, but we recommend
targeting programs lasting three months to one academic
semester. This time frame allows concepts to be absorbed
and experiences to develop without overloading the trainees
while still being short enough to maintain engagement. In
this respect, we suggest the following phases structure and
approximate durations.

a) Initial Phase (two months): This phase fosters dis-
cipline and autonomy while introducing the trainees to key
FLOSS concepts, such as the nature of contributions, how
to submit them, and how to engage in the review process.
We recommend using an email-based development model, like
that of the Linux kernel or Git to familiarize participants with
this less intuitive workflow. This model exposes the trainees
to real-world contributor practices: generating and sending

patches, receiving email feedback, interpreting inline reviews,
and more. If opting for the Linux kernel, we suggest focusing
on a single subsystem with an active, welcoming community
and, ideally, a veteran willing to support the program. The
phase should conclude with trainees submitting contributions
first to mentors for simulated review and feedback, followed by
official submission to maintainers and the broader community.

b) Independent Contributions Phase (two months): Fol-
lowing the structured initial phase, the trainees should ap-
ply their skills independently to a different FLOSS project.
By “independent”, we mean without mentors curating tasks,
reviewing contributions in advance, or selecting the project.
However, mentors should continue offering general support
through teaching materials, workshops, and availability for
guidance. While projects need not be predefined, mentors
should validate the suitability of selected projects. Preparing a
list of recommendations is encouraged. The only requirement
is that projects must be web-based (e.g., hosted on GitHub or
GitLab).

c¢) Complementary Short Phase (two weeks): A brief
experience (ideally self-contained in two workshop sessions)
can further enrich trainees’ understanding of FLOSS. This
phase should focus on a single project or community, offering
a deep dive without heavy technical demands. We strongly
recommend Debian packaging for this purpose, as it allows
the trainees to perform straightforward tasks while gaining a
broad view of the ecosystem with minimal overhead.

We recommend implementing the program through weekly
four-hour sessions, with a twenty-minute break after the first
two hours. While these hours can be split across two days,
our experience shows that a single session maintains trainee
engagement and avoids context-switching overhead. Sessions
should occur on-site and include workshops, lectures, and
other teaching dynamics as needed by mentors. Naturally,
tasks will extend beyond these sessions, as trainees must study
materials and plan, produce, and revise their contributions.

C. Monitoring Recommendations

To ensure consistent progress while promoting autonomy,
mentors should implement monitoring mechanisms tailored
to the specific environment. Nevertheless, we present the
following recommendations:

o Self-Progress Logging: Trainees maintain blogs or logs

documenting their work, reflections, and blockers.

« Initial Phase Reviews: All contributions in the initial
phase should be reviewed internally before public sub-
mission.

¢ Periodic Check-ins: Using a short seven-minute pitch
format, trainees give monthly presentations on their
progress.

« Soft Tracking in Workshops: During on-site workshops,
mentors unobtrusively monitor trainees to identify who is
more advanced and who may be struggling.

D. Important Notes

Several aspects are critical for successfully boosting long-
lasting contributors:

o Challenge Early, Not Late: Starting with a technically
demanding project such as the Linux kernel, although
intimidating, accelerates learning and builds resilience.

« Prioritize Mentorship: Close, in-person mentorship is
pivotal for simulating a high-feedback FLOSS environ-
ment, which accelerates learning compared to typical
asynchronous online communities.

o Curate Tasks: Contributions must be carefully selected,
challenging enough to stimulate growth but accessible
enough for beginners to engage meaningfully.

e Focus on Core Skills: Emphasize broadly applicable
skills such as Git proficiency, email and web-based col-
laboration, communication, and community etiquette.

o Simulate the Community: Workshops and mentorship
should recreate the interpersonal dynamics of FLOSS
communities while enhancing clarity and feedback.

V. CONCLUSION

Acknowledging the lack of investigation into methods for
boosting long-lasting FLOSS contributors beyond one-time
contributions, this study introduces a bold training approach
to address this gap. The approach is presented as a set of
guidelines and emerged from a four-month university expe-
rience. Results indicate that implementing these guidelines
can (1) increase trainees’ confidence in contributing to any
FLOSS project and (2) enhance both hard and soft skills that
are fundamental and widely applicable across most, if not all,
FLOSS projects. The analysis of results also highlighted the
importance of close support from mentors and physical prox-
imity to both peers and mentors through on-site workshops,
which simulate a FLOSS community, although it is one more
centered on the contributor’s needs.

Future work involves testing guideline variations, particu-
larly with different sets of FLOSS projects. A version focused
solely on the Debian project is especially promising given
its significance in the FLOSS ecosystem, detailed workflow
documentation, and a community that is open and welcoming
to newcomers. Additionally, repeating the experience while
expanding survey data could provide deeper insights for re-
fining the guidelines and better assessing their impact and
limitations. Key data points include: trainees’ self-assessment
of hard skills (e.g., Git and CLI tools) before and after training;
trainee demographics (e.g., age and language proficiency); and
whether and how trainees continued contributing to FLOSS,
while taking care to avoid panel bias, since those who continue
may be more likely to respond.

REPRODUCIBILITY AND DATA AVAILABILITY

The study presented here is based on a work in progress, so
we will only make available the subset of the data collected
necessary for reproducing the results presented in Section [[TI}
The subset and other artifacts are stored in this Zenodo

reposito

3https://doi.org/10.5281/zenodo. 15699908

https://doi.org/10.5281/zenodo.15699908

ACKNOWLEDGMENT

This study was financed, in part, by CAPES (Finance Code

001), the University of Sdo Paulo - USP (Proc. 22.1.9345.1.2),
the Sao Paulo Research Foundation - FAPESP and the Sao
Paulo State Data Analysis System Foundation - SEADE (Proc.
2023/18026-8), Brazil.

(1]

(2]

[3]

(4]

(5]

(6]

REFERENCES

1. Steinmacher, I. Wiese, T. U. Conte, and M. A. Gerosa, “Increasing the
self-efficacy of newcomers to open source software projects,” in 2015
29th Brazilian Symposium on Software Engineering, 2015, pp. 160-169.
S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A.
Gerosa, “Newcomers’ barriers. . . is that all? an analysis of mentors’
and newcomers’ barriers in o0ss projects,” Comput. Supported Coop.
Work, vol. 27, no. 3-6, p. 679-714, Dec. 2018. [Online]. Available:
https://doi.org/10.1007/s10606-018-9310-8

S. Balali, U. Annamalai, H. S. Padala, B. Trinkenreich, M. A. Gerosa,
I. Steinmacher, and A. Sarma, “Recommending tasks to newcomers in
oss projects: How do mentors handle it?” in Proceedings of the 16th
International Symposium on Open Collaboration, ser. OpenSym ’20.
New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3412569.3412571

X. Tan, Y. Chen, H. Wu, M. Zhou, and L. Zhang, “Is it enough to
recommend tasks to newcomers? understanding mentoring on good first
issues,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 653-664.

W. Xiao, H. He, W. Xu, X. Tan, J. Dong, and M. Zhou, “Recommending
good first issues in github oss projects,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 1830-1842. [Online]. Available: |https://doi.org/10.1145/3510003.
3510196

Siqueira, Rodrigo and Tavares, Matheus, “Kwork-
flow,” 2025, archived in Software Heritage:
swh:1:dir:90dc41328¢09271597eb1{4f47d8adc2e972a5bb.

https://doi.org/10.1007/s10606-018-9310-8
https://doi.org/10.1145/3412569.3412571
https://doi.org/10.1145/3510003.3510196
https://doi.org/10.1145/3510003.3510196

	Introduction
	Materials and Methods
	Resources Utilized
	Training Approach
	Data Collection and Analysis

	Results and Discussion
	Key Findings
	Limitations

	Guidelines for Boosting Long-Lasting Contributors
	Resources Required
	Training Structure and Phases
	Monitoring Recommendations
	Important Notes

	Conclusion
	References

