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Abstract: Insect pest infestations can vary due to spatial differences in microclimates
and food availability within agroecosystems. Covariates can reflect these environmental
conditions. This study tested whether using environmental covariates in two-phase sam-
ple optimization improved the spatial predictions for soybean insect pests. During the
2021–2022 crop season, insect pest samples were collected at 50 georeferenced points in a
commercial soybean field in Brazil, alongside data on environmental covariates such as
vegetation indices, soil properties, terrain topography, and distances from riparian areas.
Three covariates were selected using correlation and principal component analysis (PCA).
In the 2022–2023 crop season, sample designs were optimized using the iterative algorithm
optimization of sample configurations using spatial simulated annealing (SPSANN) us-
ing the selected covariates, resulting in two optimized designs that were compared to a
regular grid. Data from the three sampling designs comprising 50 points were evaluated
using geostatistical methods, regression analysis (pest abundance), and classification (pest
presence or absence) via the random forest algorithm. The data showed no spatial depen-
dence, making using geostatistical interpolators inappropriate. However, a multi-objective
optimized sampling design, tailored to refine configurations for identifying and estimating
variograms and spatial trends essential for spatial interpolation, produced the most accu-
rate predictions. Therefore, a two-phase sample optimization with prior in situ selection of
environmental covariates improves pest predictions in agricultural systems, contributing
to more efficient and sustainable agricultural management.

Keywords: ecology; precision agriculture; remote sensing; site-specific management; inte-
grated pest management

1. Introduction
The absence of efficient pest monitoring methods limits the implementation of site-

specific management practices in agriculture. Visual scouting is the most common pro-
cedure for sampling low-mobility insects such as caterpillars and stink bug nymphs in
annual crops. However, visual scouting is costly and challenging for large areas. Due
to the limitations of scouting methods, pest control is traditionally based on the average
infestation levels or prophylactic insecticide use throughout the area. This increases the
production costs, reduces the quality of agricultural products, and causes environmen-
tal contamination.
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Integrated pest management (IPM) and precision agriculture (PA) offer alternatives
to traditional pest monitoring and prophylactic insecticide use. IPM, based on ecological
principles, is a set of management strategies that propose monitoring the pest population
levels to prevent them from reaching limits that could economically damage agricultural
production [1,2]. In PA, using tools for the monitoring, mapping, and site-specific management
(SSM) of various factors influencing agricultural production, such as soil conditions, pest
populations, and irrigation needs, promotes resource efficiency, contributing to agroecosystem
sustainability [3–5]. In the context of PA, research has explored sample optimization and digital
soil mapping. These strategies use auxiliary variables (covariates) to guide soil sampling
and mapping, improving the cost-effectiveness and accuracy of spatial estimates [6,7]. For
example, topography, climatic factors, vegetation indices, and the soil parent material serve as
covariates for mapping the soil chemical and physical properties [7,8].

Similar to soil, pest distribution can exhibit significant spatial and temporal variability
within agricultural areas [9]. As ectothermic organisms, the body temperature of insects
is regulated by the environmental temperature [10,11], making temperature one of the
most influential variables in their development and life cycle, and has profound ecological,
physiological, and molecular effects on these organisms [12]. Microclimate variables not
only influence the distribution, abundance, and diversity of insects, but also directly impact
primary production and the availability of their food resources [13,14]. Consequently,
insects inhabit climatic zones promoting rapid development, high reproduction rates, and
low mortality [15]. Thus, understanding the ecology of insects in agroecosystems is crucial
for effective monitoring and management.

Research into the spatial distribution of insects in response to microclimate variability
often faces significant challenges due to difficulties in obtaining high-resolution microclimate
data and the limitations of meteorological satellite data, which usually lack the spatial resolu-
tion required for crop-level studies [16,17]. However, the temperature variability can vary due
to environmental covariates. For example, temperature varies due to vegetation heterogeneity,
soil [18], wind, cloud cover [16], and terrain topography [19]. Additionally, riparian areas (i.e.,
regions adjacent to water resources such as rivers and lakes) are zones of high biodiversity.
They influence soil and air moisture, impact local temperature, and affect the abundance of
beneficial and non-beneficial insects [20–22]. This study, therefore, posits that these environ-
mental covariates in agricultural areas can be proxies for temperature variability and food
availability for insects, enabling inferences regarding insect pest infestations. Understanding
how these covariates relate to insect abundance or presence can also support the development
of optimized sampling strategies and spatial predictions for insect populations.

A single-phase optimized sampling plan that assumes correlations between covariates
based on knowledge acquired in other areas may compromise the selection of covariates and
the sample optimization results [23]. To enhance reliability, a two-phase sampling optimization
can be employed. The first phase characterizes the relationship between the covariates and
the target variable, while the second phase optimizes the sampling plan using the selected
covariates [7]. Thus, this study tested whether using environmental covariates in two-phase
sample optimization improved the spatial predictions for soybean insect pests.

2. Materials and Methods
This study presented sampling optimization and spatial prediction approaches for

soybean insect pests using environmental covariates (Figure 1). Optimized sampling
was divided into two phases. In the first phase, during the 2021–2022 crop season, the
relationships between environmental covariates and insects were explored, which allowed
the most relevant covariates to be selected for the next phase. In the second phase, during
the 2022–2023 crop season, the selected covariates were used in a sampling optimization
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algorithm to define the best locations to sample insect pests. This process resulted in two
optimized sampling designs that were then compared to a regular grid. The three sampling
designs were assessed using geostatistical methods, regression analyses, and classification
through the random forest algorithm to predict pest spatial distributions. The prediction
performances were evaluated based on modeling metrics, validation with external data,
and the quality of the resulting spatial maps.
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Figure 1. Diagram of the two-phase sample optimization research using environmental covariates.

2.1. Experimental Area

Research was conducted in two soybean cultivation plots totaling 26 hectares, managed
under crop rotation with sorghum or oats in the fall, located in the Cosmópolis municipality
(22◦41′56′′ S and 47◦10′32′′ W), São Paulo state, Brazil (Figure 2). According to Köppen,
the area’s climate is classified as tropical with hot summers (Cfa), with an average annual
temperature of approximately 20 ◦C and an average annual precipitation of 1600 mm [24]. Its
terrain is gently undulated. The soil is predominantly classified as clayey red latosol.
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2.2. Crop Management

In the 2021–2022 crop season, the cultivar used was M5917 IPRO, with an indetermi-
nate growth habit, sown on 23 November 2021. In the 2022–2023 crop season, the cultivars
NS5933 IPRO and Coliseu 631X65 RSF I2X, both also with indeterminate growth habits,
were sown on 5 November 2022. Crop management followed traditional farm protocols.
During the 2021–2022 crop season, insecticides were applied across the entire area upon pest
detection through visual scouting. In the 2022–2023 crop season, fungicides, herbicides, and
insecticides were applied 15 days after plant emergence, with treatments repeated at 15-day
intervals. In both crop seasons, a broad-spectrum insecticide composed of pyrethroid and
carbamate was used, which is recommended for controlling Anticarsia gemmatalis (Hübner,
1818) (Lepidoptera: Noctuidae), Chrysodeixis includens (Walker, 1857) (Lepidoptera: Noc-
tuidae), Nezara viridula (Linnaeus, 1758) (Hemiptera: Pentatomidae), Piezodorus guildinii
(Westwood, 1837) (Hemiptera: Pentatomidae), Euschistus heros (Fabricius, 1798) (Hemiptera:
Pentatomidae), and Bemisia tabaci (Gennadius, 1887) (Hemiptera: Aleyrodidae), race B, in
soybean fields, with a recommended limit of five applications per crop cycle. In the second
crop season, an organophosphate insecticide was also used that is recommended for con-
trolling Anticarsia gemmatalis (Hübner, 1818) (Lepidoptera: Noctuidae), Caliothrips phaseoli
(Hood, 1912) (Thysanoptera: Thripidae), Epinotia aporema (Walsingham, 1914) (Lepidoptera:
Tortricidae), Frankliniella rodeos (Moulton, 1936) (Thysanoptera: Thripidae), Frankliniella
schultzei (Trybom, 1910) (Thysanoptera: Thripidae), Hedylepta indicata (Fabricius, 1794) (Lep-
idoptera: Crambidae), Trichoplusia ni (Hübner, 1803) (Lepidoptera: Noctuidae), Piezodorus
guildinii (Westwood, 1837) (Hemiptera: Pentatomidae), Nezara viridula (Linnaeus, 1758)
(Hemiptera: Pentatomidae), and Euschistus heros (Fabricius, 1798) (Hemiptera: Pentato-
midae) in soybean fields, with a recommended maximum of two applications per crop
cycle. Despite the recommended application limits of five or two times per soybean cycle,
insecticides were applied at 15-day intervals.

2.3. Phase 1
2.3.1. Obtaining Environmental Covariates

To investigate the relationships between the environmental covariates and insect spa-
tial variability, data were collected on nine covariates that could reflect the environmental
conditions within the area. These covariates included five vegetation indices (VIs), the soil
clay content, terrain slope, and distances from rivers and riparian forest.

(a) Vegetation indices

Vegetation influences microclimates and the availability of food for herbivorous insects.
Thus, vegetation architecture often influences the intensity of pest insect infestation [25].
Considering that vegetation indices provide information on vegetation variability, five
vegetation indices (VIs) were tested in this research (Table 1 and Figure 3A–E). Among
the VIs, there were two widely used in agricultural studies (EVI and NDVI—Figure 3A,B),
two that use the red-edge band in their calculations and therefore tend to correlate more
with the leaf chlorophyll content (NDRE and SFDVI—Figure 3C,D), and one that presented
a simple mathematical combination of two spectral bands, which is easy to calculate
and interpret (DVI—Figure 3E). For this purpose, 11 cloudless PlanetScope images were
obtained throughout the crop cycle (January 15, 18, 21, 22, 24, 25; February 8, 9, 12;
and March 2, 3), captured using the SuperDove sensor with a spatial resolution of 3 m.
Six were acquired close to the sampling dates, with each image used to calculate the VIs
for assessments related to each phenological stage. For comprehensive data evaluation
throughout the cycle, the mean, median, sum, and standard deviation of the VIs from the
11 images were determined, and a single image for each vegetation index was obtained to
represent the entire crop season.
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Table 1. Vegetation indices: name, formula, and references.

Vegetation
Index Name Formula References

EVI Enhanced vegetation index 2 NIR−R
NIR+C1 R−C2 B+1 [26]

NDVI Normalized difference
vegetation index

NIR−R
NIR+R [27]

NDRE Red-edge normalized
difference vegetation index

NIR−RE
NIR+RE [28]

SFDVI Spectral feature depth
vegetation index

NIR+G
2

R+RE
2

[29]

DVI Difference vegetation index NIR − R [30]
Spectral bands: NIR = near infrared; R = red; RE = red edge; G = green, and B = blue. EVI: C1 and C2 = aerosol
influence adjustment coefficients (C1 = 6; C2 = 7.5).
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(b) Soil and Terrain topography

The soil clay content and terrain slope data (Figure 3F,G) were included as covariates,
as they can be related to soil moisture [31] and influence vegetation development and the
microclimate under the canopy.

Soil samples were collected from 67 georeferenced sampling points, based on an
optimized MSSD (minimizing mean squared shortest distance) sampling design previously
developed by Pusch et al. (2023) [23]. The soil samples were sent to a commercial laboratory
for physical property analysis. The samples were dried at 40 ◦C and sieved through a 2 mm
mesh to obtain fine air-dried soil for texture determination. The particles were separated
using the chemical dispersion method, in which sodium hexametaphosphate was added
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to the sample to break up the particle aggregates and isolate the individual fractions,
according to the Brazilian Soil Classification System (SiBICS), described by Santos et al.
(2018) [32]. The soil was then categorized into textural fractions: sand (>0.053 mm, in
g/kg), clay (<0.002 mm, in g/kg), and silt (values between clay and sand). The soil clay
content distribution map was generated using ordinary kriging interpolation. Among the
67 sampling points, 28 points were located within the evaluated plots. The variogram
was modeled by testing spherical, exponential, and Gaussian models using the SmartMap
plugin [33] in QGIS software, version 3.28.13. The spherical model was selected to achieve
the best cross-validation performance, with a root mean square error (RMSE) of 52.18 and a
coefficient of determination (R2) of 0.68.

Terrain slope was calculated by densely collecting elevation data across the entire
area using a global navigation satellite system (GNSS) receiver with differential correction
mounted on the harvester. These data were interpolated using ordinary kriging following
the same protocol used for the clay content. However, a 10-fold cross-validation was
implemented to validate the interpolation model due to the high data density (626 points
per hectare). From the elevation map, the terrain slope was calculated in radians (rad)
using the RSAGA package [34] in R software, version 4.3.2.

(c) Riparian areas

Riparian areas significantly impact insect habitats. Proximity to rivers influences the
soil and air moisture levels. In addition to influencing moisture, riparian forests affect wind
speed, contributing to unique microclimate conditions nearby [35]. These areas also serve
as biodiversity sources for beneficial and non-beneficial insects, potentially influencing
pest infestations in the surrounding areas [22,36]. To determine the distances from the river
and riparian forest, a raster layer with a spatial resolution of 3 m was created to cover the
entire experimental area. A vector dataset was also generated to represent points along
each feature (river or riparian forest). The distance for each pixel in the raster was then
calculated based on its proximity to the nearest point in the vector dataset (Figure 3H,I).

2.3.2. Insect Pest Sampling

In the 2021–2022 crop season, insect pest infestations were monitored at 50 georef-
erenced points distributed within the area (Figure 4A). Of these, 28 points had the same
location as the data used to generate the soil clay content map obtained from an optimized
soil sampling project. This allowed for pest sampling at the same points with the available
soil data, providing better local information than only using the interpolated soil data. To
complete the 50 sampling points, 22 points were randomly generated.

Samplings were performed during the soybean phenological stages R2 (50 days after
sowing–DAS), R3 (57 DAS), R4 (64 DAS), R5 (77 and 84 DAS), and R7 (99 DAS), following
the phenological scale proposed by Fehr and Caviness (1977) [37]. Pest sampling used the
beat cloth method, in which a cloth measuring 1 × 1 m was placed between two soybean
rows, and plants from one row were shaken onto the beat cloth. Insects on the cloth were
identified at the species or genus level and then counted. Each sample consisted of three
sub-samples collected within a 3 m radius from the sampling point, mirroring the pixel
size in the satellite images used in the study (PlanetScope).

For each sampling date, the abundance of each insect species and the total pests were
obtained for each sampling point. In addition, data on the abundances’ mean, median,
sum, and standard deviation were determined for each sampling point throughout the
crop cycle.
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sampling points combined with 22 random points (50 points). Phase 2: Regular grid (B), optimized
CORR design (C), optimized SPAN design (D), each with 50 points, and external dataset (20 points).

2.3.3. Data Analyses

The insect pest sampling data were subjected to the Shapiro–Wilk normality test. Due
to the non-normal distribution, a Spearman correlation analysis was performed using the
PerformanceAnalytics package [38] in R software, version 4.3.2. Correlations between the
species abundance, total pest abundance, and covariates were evaluated individually at
each phenological stage and throughout the crop cycle. For the crop cycle, correlations of
covariates were analyzed with the mean, median, sum, and standard deviation of each pest
species and the total pests present at each sampling point. After comparing the correlations
across different pest statistics and covariates, further analyses focused on the median
values of pest species and total pests and the mean vegetation indices from 11 images taken
throughout the soybean cycle (Figure 3A–E).

Aside from correlation analysis, a principal component analysis (PCA) was performed
to select covariates for the sampling optimization algorithm in the second phase. In the
PCA, data from the covariates (mean of VIs) and the median of total pests throughout the
soybean cycle were used, employing the dudi.pca function from the ade4 package [39] in R
software, version 4.3.2. First, principal components explaining at least 70% of the total data
variance were identified. Subsequently, the contributions of each original variable to these
principal components were evaluated based on their loadings. Following this analysis, the
soil clay content, NDVI, and river distance were selected for the next research phase.

2.4. Phase 2
2.4.1. Sampling Designs

In the second phase, the 2022–2023 crop season, three sampling designs, each con-
taining 50 georeferenced points, were generated: a regular grid with two samples/ha
(71 × 71 m), and two optimized sampling designs. Optimization employed the iterative
algorithm optimization of sample configurations using spatial simulated annealing (SP-
SANN) [40] in R software. SPSANN is a variation of the spatial simulated annealing (SSA)
algorithm used to find optimal solutions for sampling optimization problems [41]. During
the algorithm’s execution, sampling points are adjusted through random perturbations to
explore potential solutions for optimization. After each perturbation, the objective function
is recalculated to assess the “energy” of the new sampling configuration. The objective
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function minimizes this energy, refining the configuration to achieve an optimal distribution
aligned with the sampling design objectives. Simulated annealing (SA) employs a cooling
schedule to facilitate this, which prevents the algorithm from becoming trapped in local
optima. The cooling process across iterations gradually restricts the movement of points,
thereby guiding the algorithm toward a more precise solution. Schedule parameters are
fine-tuned through trial and error, with the initial temperature enabling broad exploration
of the search space. At each iteration, points are adjusted, and the objective function is
evaluated to determine whether the new configuration should be accepted. The algorithm
continues iterating until achieving the configuration with the lowest energy and no further
changes in the distribution of the sampling points, thereby reaching the best configuration.

As interactions between environmental covariates influence insect pest locations, one
of the sampling optimization criteria used the CORR objective function to replicate the
bivariate correlation between covariates [40]. Points were allocated based on correlations
between the population (covariates) and the samples (from the population) in a specific row
and column of the correlation matrix with dimension p (number of covariates). The second
optimized sampling design used the multi-objective function optimization of sampling
locations for variogram calculations (SPAN), which optimizes the sampling configuration
to identify and estimate variograms and spatial trends for spatial interpolation [40]. SPAN
optimization criteria include the (a) distribution of variables (DIST); (b) correlation between
variables (CORR); (c) minimizing the mean squared shortest distance (MSSD); and (d) op-
timizing sampling for variogram identification and estimation (PPL). Each optimization
criterion in this sampling design received equal weighting. In addition, insect pest data
were collected at 20 external points on each sampling date for validation of the results.
These points were randomly generated.

2.4.2. Vegetation Index

Since the vegetation index is the only covariate that changes between crop seasons, the
selected VI (NDVI) was calculated for the second season for pest prediction. However, due
to heavy cloud cover, it was not possible to obtain cloudless images for the third sampling
date. To compensate, three images were used: two from January (26 and 27) and one from
February 25, while the sampling took place on February 8 and 9 (R5–94 and 95 DAS). The
VI was calculated for each image and then averaged to represent the sampling date.

2.4.3. Insect Pest Sampling

Insect pest monitoring was conducted during the phenological stages R2 (59 and
60 DAS), R5 (80 and 81 DAS), and R5 (94 and 95 DAS). The 150 points from the three
sampling designs and 20 external data points were collected over two consecutive days,
with each plot sampled on a separate day (Figure 4B–E). As in the previous crop season,
the beat cloth method was used for samplings. Due to the low pest incidence, only the data
from the third sampling were utilized for analyses in the second phase of the research.

2.4.4. Data Analyses

Three methods, geostatistics, regression, and classification, were evaluated using
the three sampling designs to predict the total pests and the most abundant species (Eu-
schistus heros) in the second crop season. In geostatistics, the spatial dependence was
initially assessed using Moran’s index, and its statistical significance was assessed using the
SmartMap plugin in QGIS software, version 3.28.13 [33]. Variograms and their parameters
were analyzed in the spherical, exponential, and Gaussian models. The best-fitted models
were selected based on cross-validation metrics, R2, and RMSE.

The effectiveness of environmental covariates in the prediction stage was assessed
using the covariates selected in Phase 1 for the predictions with regression and classification
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models using the random forest (RF) algorithm. RF is a machine learning approach
that combines predictions from multiple individual decision trees to identify linear and
nonlinear patterns in data, providing a comprehensive analysis of relevant variables in
the mapping. Regression and classification RF analyses were conducted using the mlr
package [42] in R software, version 4.3.2, with hyperparameter optimization.

The regression analysis used covariates to predict the abundance of total pests and the
most abundant pest species. Data were randomly split for modeling, with 80% used for
model training and 20% for testing. During hyperparameter optimization, the candidate
range for the number of trees (ntree) was set from 100 to 1000; the number of random
variables (mtry) used at each tree node split ranged from 1 to 10; and the minimum
number of samples required in a terminal node (nodesize) ranged from 2 to 5. A 5-fold
cross-validation, in which the dataset was divided into five parts, was applied during
hyperparameter optimization to assess the performance of the different parameter sets.
After optimization, the RF model was trained on the complete training data with the best-
adjusted hyperparameters. RMSE and R2 were the metrics used to evaluate the prediction
accuracy. The models were used to predict the insect pest distribution maps, which were
externally validated using observed data from 20 independent points. Predicted values at
these locations were compared with the observed data using R2 and RMSE.

The classification analysis used the covariates selected in Phase 1 to predict classes
associated with insect pest absence (0) and presence (1). For effective modeling, a substan-
tial number of observations in the two classes (0 e 1) is essential, even before applying
the class balance techniques. In this case, the data on the total pests were unsuitable for
classification due to the scarcity of the absence class. Consequently, the classification was
focused on predicting the presence of the most abundant species during the growing season
(Euschistus heros). Initially, class balancing was implemented using the synthetic minority
over-sampling technique (SMOTE) to reduce the model’s bias toward the majority class.
This technique creates synthetic examples of the minority class by generating weighted
combinations of neighboring samples [43]. Subsequently, these data were randomly di-
vided into training (70%) and test (30%) sets. To select the optimal hyperparameters, we
conducted optimization using the random search method (1000 iterations). Hyperparam-
eters included the number of trees, tested in the range of 100 to 3000 (ntree), the number
of variables selected at each split, ranging from 1 to 14 (mtry), and the minimum number
of samples required in a terminal node, ranging from 2 to 30 (nodesize). Hyperparameter
evaluation was performed using 10-fold cross-validation on the training set, with the high-
est accuracy considered optimal. After optimization, the RF model was trained on the full
training dataset using the best-tuned hyperparameters. Subsequently, confusion matrices
were generated using the test data to evaluate the models. The models generated insect
pest distribution maps, which were externally validated using observed data from 20 inde-
pendent points. The predicted values at these locations were compared with observed data
using the confusion matrices and their performance metrics.

The following metrics were calculated from the confusion matrices: accuracy, precision,
specificity, recall (sensitivity), and F1 score. Accuracy represents the percentage of correct
predictions (true positives and true negatives) relative to the total number of predictions
made by the model (Equation (1)). Precision represents the proportion of true positive
predictions relative to the total number of positive predictions (true positives and false
positives) (Equation (2)). Specificity measures the proportion of true negatives relative to
the total number of actual negative cases (Equation (3)). Recall quantifies the percentage of
correct positive predictions that the model makes relative to the total number of positive



AgriEngineering 2025, 7, 21 10 of 24

cases (Equation (4)). Finally, the F1 score combines precision and sensitivity into a single
score, indicating the balance between these metrics (Equation (5)).

Accuracy =
(TN + TP)

(TN + FP + FN + TP)
(1)

Precision =
TP

(TP + FP)
(2)

Specificity =
TN

(TN + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F1 Score = 2
(Precision × Recall)
(Precision + Recall)

(5)

where TN—true negative; TP—true positive; FN—false negative; and FP—false positive.

3. Results
Both crop seasons showed the presence of Spodoptera spp. (Lepidoptera: Noctuidae)

and looper caterpillars, potentially including species such as Rachiplusia nu (Guenée, 1852)
(Lepidoptera: Noctuidae), Trichoplusia ni (Hübner, 1800–1803) (Lepidoptera: Noctuidae),
and Chrysodeixis includens (Walker, 1857) (Lepidoptera: Noctuidae). Due to the difficulty of
visually differentiating these species, this study used the popular name “looper caterpil-
lar” to refer to any species in this group. Stink bugs identified included Euschistus heros
(Fabricius, 1798) (Hemiptera: Pentatomidae), Nezara viridula (Linnaeus, 1758) (Hemiptera:
Pentatomidae), Dichelops spp. (Hemiptera: Pentatomidae), and Arvelius albopunctatus (De
Geer, 1773) (Hemiptera: Pentatomidae). Additionally, beetle species observed were Lagria
villosa (Fabricius, 1781) (Coleoptera: Tenebrionidae), Blapstinus punctulatus (Solier, 1849)
(Coleoptera: Tenebrionidae), Aracanthus murei (Marshall, 1958) (Coleoptera: Curculionidae),
Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae), Cerotoma arcuata (Olivier,
1791) (Coleoptera: Chrysomelidae), and Colaspis sp. (Coleoptera: Chrysomelidae). The
latter three species, which are defoliators, were evaluated together and are referred to here
by their family name, Chrysomelidae. Overall, the most abundant species in Phase 1 was
the looper caterpillar, whereas Euschistus heros predominated in Phase 2, showing not only
adult insects, but also a high incidence of nymphs.

3.1. Phase 1
3.1.1. Correlation Between Insect Pests and Environmental Covariates

(a) Phenological stages

The insect pest species infestations showed varied correlations with the environmental
covariates across phenological stages. The most abundant species throughout the cycle,
looper caterpillar and Spodoptera spp., presented greater correlation with the covariates,
especially with river and riparian forest distances (Table 2). When assessing the total pests
at the sampling points, these correlations also varied. At R5 (77 DAS), when sampling took
place two days after insecticide application, only the E. heros species showed correlation,
and only with distance from riparian forest. Conversely, at 84 DAS, we again observed
correlations between some species and covariates.
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Table 2. Spearman’s correlation between environmental covariates and insect pests during soybean
phenological stages R2 to R7.

R2–50 DAS

EVI NDVI NDRE SFDVI DVI Clay Slope River_dist Forest_dist

Looper 0.32 * 0.33 * 0.34 * 0.29 * 0.30 * −0.24 −0.09 0.41 * 0.40 *
Spodoptera 0.22 0.23 0.22 0.2 0.20 −0.17 −0.23 0.22 0.19
Euschistus −0.12 −0.13 −0.17 −0.08 −0.12 0.21 0.07 0.10 −0.08
Dichelops −0.05 −0.08 −0.05 −0.03 −0.06 0.09 −0.03 −0.25 * −0.15

Chrysomelidae −0.03 −0.06 −0.1 0.03 0 0.12 0.01 −0.01 −0.12
Lagria 0.28 * 0.22 0.21 0.31 * 0.29 * −0.27 * −0.15 −0.07 −0.13

Aracanthus −0.11 −0.09 −0.09 −0.14 −0.12 −0.07 −0.06 −0.22 −0.14
Total pests 0.30 * 0.26 * 0.26 * 0.32 * 0.29 * −0.25 * −0.14 0 −0.03

R3–57 DAS

Looper 0.11 0.13 0.1 0.14 0.14 −0.26 * −0.20 0.47 * 0.50 *
Spodoptera 0.34 * 0.37 * 0.34 * 0.30 * 0.34 * −0.21 0.01 0.35 * 0.35 *

Nezara 0.17 0.19 0.2 0.10 0.14 −0.28 * 0.07 −0.01 0.02
Dichelops −0.12 −0.12 −0.11 −0.13 −0.11 0.15 −0.04 −0.14 −0.21

Chrysomelidae −0.21 −0.21 −0.20 −0.16 −0.20 0.25 * −0.047 0.05 −0.08
Lagria 0.00 −0.02 −0.02 −0.04 −0.02 −0.02 0.07 0.06 −0.01

Aracanthus 0.04 0.045 0.08 −0.06 0.01 −0.20 0.01 −0.32 * −0.30 *
Total pests 0.17 0.15 0.14 0.12 0.16 −0.23 −0.07 0.35 * 0.27 *

R4–64 DAS

Looper 0.16 0.16 0.13 0.23 0.2 −0.21 −0.063 0.26 * 0.11
Spodoptera 0.38 * 0.35 * 0.35 * 0.40 * 0.38 * −0.12 0.1 0.43 * 0.29 *
Euschistus 0.18 0.19 0.17 0.16 0.2 −0.04 −0.18 0.09 0.12

Nezara 0.23 0.24 0.22 0.24 0.23 −0.13 0.06 0.19 0.23
Dichelops −0.14 −0.13 −0.13 −0.22 −0.16 0.18 −0.06 −0.12 0.06

Chrysomelidae −0.23 −0.22 −0.23 −0.23 −0.21 0.22 −0.21 −0.05 −0.01
Lagria 0.06 0.08 0.06 0.07 0.07 0.14 0.014 −0.016 −0.07

Arvelius 0.11 0.11 0.09 0.08 0.09 −0.33 * −0.17 −0.34 * −0.31 *
Total pests 0.19 0.2 0.17 0.22 0.22 −0.07 −0.04 0.17 0.09

R5–77 DAS

Looper 0.22 0.11 0.22 0.22 0.22 −0.12 0.11 −0.06 −0.05
Spodoptera 0.18 0.16 0.17 0.2 0.2 −0.02 0.13 −0.02 −0.12
Euschistus 0.08 0.03 0.06 0.1 0.09 0.16 0.16 −0.15 −0.34 *
Dichelops −0.10 −0.13 −0.09 −0.10 −0.10 0.04 0.12 0.02 0.02

Chrysomelidae −0.07 −0.06 −0.11 −0.05 −0.08 −0.08 −0.014 0.23 0.19
Lagria −0.07 −0.09 −0.16 −0.08 −0.08 0.06 −0.12 0.06 0.09

Blapstinus 0.12 0.06 0.07 0.13 0.12 −0.10 −0.11 −0.14 −0.16
Total pests 0.05 −0.04 −0.01 0.07 0.06 −0.17 −0.019 −0.20 −0.24 *

R5–84 DAS

Looper 0.08 0.13 −0.04 0.12 0.09 0.13 0.31 * 0.48 * 0.37 *
Spodoptera −0.06 −0.17 −0.05 0 −0.04 0 −0.08 0.03 −0.20
Euschistus 0.04 0.04 0.05 0.03 0.06 0.08 0.03 0.07 −0.08
Dichelops −0.01 −0.15 0 0.02 0.03 −0.15 0.09 −0.21 −0.18

Chrysomelidae 0.06 0.18 0.11 0.02 0.03 0.08 −0.05 −0.08 −0.03
Lagria −0.01 −0.06 −0.08 −0.02 0.01 0.11 0.22 −0.12 −0.17

Blapstinus 0.29 * 0.2 0.25 * 0.31 * 0.30 * −0.21 −0.10 0.14 0.21
Total pests 0.2 0.12 0.12 0.27 * 0.24 * −0.06 0.20 0.37 * 0.18
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Table 2. Cont.

EVI NDVI NDRE SFDVI DVI Clay Slope River_dist Forest_dist

R7–99 DAS

Looper −0.09 −0.04 0 −0.09 −0.06 0.23 0.20 0.04 0.02
Spodoptera 0.16 0.19 0.22 0.10 0.15 0.06 0.11 0.15 −0.07
Euschistus 0.22 0.26 * 0.31 * 0.16 0.24 −0.15 −0.15 0.43 * 0.44 *

Nezara 0.15 0.12 0.11 0.27 * 0.17 −0.23 −0.40 * 0.35 * 0.31 *
Dichelops −0.14 −0.12 −0.13 −0.15 −0.14 0.13 0.01 −0.03 −0.14

Chrysomelidae 0.16 0.15 0.18 0.09 0.15 0.05 −0.01 0.13 0.25
Lagria 0.15 0.15 0.10 0.18 0.17 0.01 0.09 0.08 0.15

Blapstinus 0.03 0.02 0.05 0.11 0.05 −0.38 * 0.14 −0.06 0.02
Total pests 0.19 0.24 0.28 * −0.03 0.19 0 0.14 0.22 0.04

Looper = Looper caterpillar. * Significant at the 0.05 level.

(b) Crop cycle

Regarding infestations at sampling points throughout the crop cycle (median per
sampling point of each species and total species), a correlation between covariates and
pest species infestations was found (Table 3). Looper caterpillar showed the highest
correlation with the covariates, particularly with river and riparian forest distances, similar
to observations made at each phenological stage.

Table 3. Spearman’s correlation between environmental covariates and the median number of species
per point and the total pest median in the soybean cycle.

EVI NDVI NDRE SFDVI DVI Clay Slope River_dist Forest_dist

Looper 0.27 0.28 * 0.27 0.29 * 0.28 * −0.26 * −0.11 0.50 * 0.43 *
Spodoptera 0.26 0.22 0.21 0.27 0.26 −0.05 −0.02 0.17 −0.00
Euschistus −0.20 −0.25 −0.24 −0.20 −0.21 0.28 * −0.06 0.01 −0.08

Nezara 0.22 0.23 0.23 0.22 0.23 −0.13 0.25 * 0.19 0.23
Aracanthus −0.15 −0.07 −0.08 −0.20 −0.17 −0.08 −0.15 −0.32 * −0.24

Lagria −0.04 −0.05 −0.04 −0.04 −0.03 0.14 −0.05 −0.12 −0.13
Blapstinus 0.23 0.17 0.20 0.22 0.24 −0.22 0.11 −0.22 −0.12
Total pests 0.32 * 0.38 * 0.35 * 0.31 * 0.32 * −0.34 * −0.07 0.34 * 0.29 *

Looper = Looper caterpillar. * Significant at the 0.05 level.

3.1.2. Selection of Environmental Covariates

Two principal components explained 75% of the variance in the data (Figure 5). In
the first principal component (PC1), clay content and vegetation indices (VIs) contributed
the most significantly. Distances from the river and riparian forest were the primary
contributors to the second principal component (PC2). Based on these results, the clay
content was selected for the next research stage. Given the similar contributions of the
vegetation indices in PC1, NDVI was included due to its broad applicability and highest
correlation with the total number of pests (Table 3). Distance from the river was chosen
as one of the most important variables in PC2 because of its stronger correlation with
pest infestations compared to the distance from the riparian forest (Table 3). Regarding
covariates, there was an inverse relationship between the VIs and soil clay content. The
slope was inversely proportional to the distance from the river and riparian forest.
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3.2. Phase 2
3.2.1. Geostatistical Modeling

The three different sampling designs failed to capture spatial dependence in the data
corresponding to the total pests or in the data of the most abundant species during the
2022–2023 crop season, E. heros (Table 4). Thus, the data proved inadequate for geostatistical
interpolation. Despite this limitation, SPAN optimization showed the lowest errors mea-
sured by cross-validation during variogram modeling compared with the other designs.

Table 4. Spatial dependence measured by Moran’s index (MI) and its significance (p); variogram
parameters: a (range), c0 (nugget effect), c1 (sill), and c0 + c1 (partial sill); and cross-validation metrics:
R2 (coefficient of determination), RMSE (root mean square error), and best-fitted model.

Sampling
Designs MI p a c0 c1 c0 + c1 RMSE R2 Model

Total
pests

Regular 0.61 0.07 181.52 7.35 5.89 13.24 3.25 0.14 Gaussian
CORR 0.29 0.37 163.19 7.67 0.54 8.21 3.02 0.00 Spherical
SPAN 0.49 0.01 384.34 6.41 2.81 9.22 2.82 0.13 Gaussian

Euschistus
Regular 0.58 0.15 280.33 6.18 4.78 10.96 3.20 0.01 Spherical
CORR 0.44 0.04 257.31 2.03 3.84 5.87 2.46 0.04 Spherical
SPAN 0.43 0.05 384.34 3.65 1.20 4.84 2.07 0.06 Gaussian

3.2.2. Random Forest Regression

Predictions made using RF regression for total pests showed the best model fits
(Figure 6A–C) compared with the predictions specifically for E. heros (Figure 6D–F). In
the first scenario, the SPAN sampling design presented lower error and higher R2 values,
followed by the regular and CORR designs (Figure 6A–C). Regarding the prediction for
E. heros, the regular and CORR designs showed high errors and R2 values close to zero.
Despite the lower error and higher R2, prediction with the SPAN design was not satisfactory
in generating an infestation map for this species (Figure 6D–F).
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The validation results using external data (Figure 7A–C) were consistent with the
modeling results for the total pest predictions (Figure 6A–C). The SPAN sampling design
demonstrated the lowest errors and the highest R2 values, outperforming both the regular
and CORR designs.
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3.2.3. Random Forest Classification

In classifying the presence and absence of E. heros, the SPAN sampling design showed
fewer errors, achieving superior performance metrics (Tables 5 and 6). The optimized
designs (SPAN and CORR) made more errors in predicting the presence of pests where they
were absent (FP) than in predicting absence where pests were present (FN). The regular
grid showed an equal number of FP and FN, which resulted in more errors overall, and
consequently the worst metrics.
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Table 5. Confusion matrix. RF classification modeling for predicting the presence–absence of E.
heros, using the regular, CORR, and SPAN sampling designs. FN—false negative, FP—false positive,
TN—true negative, and TP—true positive.

Regular CORR SPAN

Predicted

Absence
(0)

Presence
(1)

Absence
(0)

Presence
(1)

Absence
(0)

Presence
(1)

Observed
Absence (0) 5 (TN) 4 (FP) 4 (TN) 4 (FP) 7 (TN) 2 (FP)
Presence (1) 4 (FN) 8 (TP) 2 (FN) 7 (TP) 1 (FN) 11 (TP)

Errors % 38.1 35.3 14.3

Table 6. Metrics from the confusion matrix. RF classification modeling for predicting the presence–
absence of E. heros using the regular, CORR, and SPAN sampling designs.

Accuracy Precision Specificity Recall F1 Score

Regular 0.62 0.56 0.67 0.56 0.56
CORR 0.65 0.67 0.78 0.50 0.57
SPAN 0.86 0.88 0.92 0.78 0.82

In the external validation results (Tables 7 and 8), the findings differed from those of the
modeling phase (Tables 5 and 6). In this case, the regular design demonstrated the fewest
errors and the best metrics for classifying the presence and absence of E. heros. Although
the CORR design achieved an accuracy comparable to the SPAN design, it showed the
weakest performance across all evaluation metrics. The SPAN design exhibited more FN,
while the CORR design had more FP.

Table 7. Confusion matrix. External validation metrics for E. heros presence–absence classification
using the regular, CORR, and SPAN sampling designs. FN—false negative, FP—false positive,
TN—true negative, and TP—true positive.

Regular CORR SPAN

Predicted

Absence
(0)

Presence
(1)

Absence
(0)

Presence
(1)

Absence
(0)

Presence
(1)

Observed
Absence (0) 5 (TN) 2 (FP) 1 (TN) 6 (FP) 6 (TN) 1 (FP)
Presence (1) 6 (FN) 7 (TP) 4 (FN) 9 (TP) 9 (FN) 4 (TP)

Errors % 40 50 50

Table 8. Metrics from the confusion matrix. External validation metrics for E. heros presence–absence
classification using the regular, CORR, and SPAN sampling designs.

Accuracy Precision Specificity Recall F1 Score

Regular 0.60 0.45 0.54 0.71 0.55
CORR 0.50 0.20 0.69 0.14 0.16
SPAN 0.50 0.40 0.31 0.86 0.54

4. Discussion
Among the main species found by the samplings, the looper caterpillar stood out,

which is economically significant for soybeans, tobacco, alfalfa, and sunflower crops in
South America due to its defoliating nature during the juvenile stage [44]. From the
same family, the Spodoptera genus also produces defoliator caterpillars, which are highly
relevant in corn, soybean, and cotton crops. In Brazil, species within this genus include S.
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albula, S. cosmioides, S. eridania, and S. frugiperda. During the soybean reproductive phase,
some of these species can cause direct damage to soybean pods in addition to defoliation.
Species within this genus have shown resistance to Bt transgenics [45,46], one of the leading
technologies used for caterpillar control in major crops, complicating their management.

The species E. heros, N. viridula, and Dichelops spp. are the most common among the
stink bug species belonging to the family Pentatomidae recorded in soybean cultivation
areas in Brazil. In their juvenile (nymph) and adult stages, they feed by inserting stylets
into plants and grains, thus reducing the yield and quality. As for the Coleoptera beetles
found in the samplings, the main species were C. arcuata and D. speciosa, defoliators of the
family Chrysomelidae. Both are polyphagous and D. speciosa, and in addition to feeding on
leaves in their adult stage, they attack the root system in its immature phase.

It is important to note that the insecticide applications were more intensive during
the second crop season, resulting in a lower incidence of pests than in first crop season.
Although looper caterpillar and E. heros were the most abundant species in Phase 1 and
Phase 2, respectively, the selection of variables included all species. Despite insects generally
exhibiting similar ecological behaviors, this does not invalidate our assessment of sampling
optimizations in the second crop season.

4.1. Phase 1
Environmental Covariates and Insect Pest Infestations

Species behavior and abundance significantly influence the correlation between en-
vironmental covariates and insect pest populations in the area. Among the insect species
found in this research, looper caterpillar and Spodoptera spp. have lower mobility. When
they find favorable environments, larvae with low mobility adjust their behavior for ther-
moregulation, thereby minimizing their mortality rate, accelerating their development [47].
In conditions of high temperature and low relative humidity, instead of seeking other
places for shelter, Noctuidae larvae move to the lower, more shaded, and cooler parts of
plants [48]. Conversely, they move to the upper parts of plants under low temperatures and
high humidity. Hence, we might initially assume that these species would correlate more
with environmental covariates because they move less horizontally (across the area) and
more vertically (on the plant). However, at different phenological stages, other species were
more correlated with the covariates (Table 2). Thus, the greater abundance of Noctuidae
caterpillars at different stages favored the perception of their correlations with covariates
compared to other species.

Among the covariates, distances from the river and riparian forest were the most
correlated with pest infestations (Table 2). The influence of distance from riparian forests
and rivers on insect abundance is expected because insects can use riparian zones and
vegetation for reproduction, foraging, or movement corridors [20,21]. As a source of plant
species biodiversity, riparian areas provide food for many animal species including pest
arthropods and their natural predators. Additionally, refuge suitability for ectotherms
may depend on its proximity to water and the organism’s ability to tolerate water loss [49].
Habitats near water sources, even in monoculture areas, may exhibit higher insect abun-
dance, which can then disperse toward the crop’s interior [22]. On the other hand, pest
insect enemies in natural areas near crops can reduce the presence of these pests [50]. This
complex interplay between natural habitats and cultivated fields highlights the importance
of integrated pest management strategies that consider the ecological dynamics of these
environments.

The vegetation indices showed positive correlations with the defoliating looper cater-
pillar and Spodoptera spp. (R2 to R4) as well as the defoliating beetle Lagria villosa (R2)
(Table 2). In agricultural environments, however, such a correlation is expected to be
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negative (i.e., a higher pest population in areas with less vegetation). This is because remote
sensing (RS) techniques allow for the identification of some physiological and morphologi-
cal changes associated with pest damage to plants [51]. However, the RS detection of plant
damage depends on the pest population size and damage intensity, as the pest feeding
time must be sufficient to alter turgor, biomass, and photosynthetic pigments, resulting in
changes to the electromagnetic radiation reflected by the plants [52,53]. In this research,
the positive correlations between infestations of these pest insects and vegetation biomass
can be explained by the plant’s greater food availability in areas with denser vegetation,
which alters the microclimates under the canopy, favoring insect population growth. Insect
infestations in agricultural areas follow survival and reproduction criteria similar to popu-
lation ecology in natural environments and other study scales [10]. In precision agriculture,
however, VI-guided insect sampling is targeted to areas with lower VI values. The results
of this research indicate, however, that such directing is not always appropriate, as this
relation is not always negative. Low VI values can be associated with other factors affecting
vegetation development such as plant nutrients [54], soil parameters like moisture [55],
and others. In such a context, these covariates should be considered together with the VIs
to increase sampling and pest prediction effectiveness.

Ecology, particularly at a microscale, demonstrates that insect population dynamics are
closely linked to specific local environmental conditions such as microclimate, soil compo-
sition, and vegetation structure [56,57]. In addition to environmental factors, availability of
food resources, and population growth (birth rate, death rate, presence of natural predators,
and others) [58], management practices in agricultural environments will influence pest
infestations and their natural enemies. All of these intrinsic and complex variables hinder
drawing generalizable conclusions about the relations between environmental variables
and pest infestations based solely on individual evaluations of each phenological stage. In
this regard, considering data from phenological stages together with the entire cycle can
provide complementary inferences. Analyzing the correlations of the median of total pests
throughout the crop cycle (Table 3) and the PCA results (Figure 5) revealed a consistent
pattern of pest–covariate relations. Consequently, insect pest infestations tended to be more
pronounced in places with higher VIs values, lower soil clay content, and were closer to
riparian areas. Thus, the correlation and interaction between selected covariates influence
insect pest distribution.

4.2. Phase 2

The optimized SPAN project stood out in most scenarios compared to the regular
sampling and CORR projects. At the tested sampling density, however, none of them
could capture the spatial dependence between the samples (Table 4). Spatial dependence
is a fundamental requirement for effectively applying kriging and other geostatistical
techniques [59]. In this context, machine learning techniques (regression and classification)
for insect pest prediction using environmental covariates were more appropriate.

4.2.1. Random Forest Regression

In the regression analysis (Figures 6A–F and 7A–C), the superior metrics of the SPAN
design were also reflected in the predicted maps of the total pest abundance generated
by the three sampling designs (Figure 8D–F). The SPAN produced more detailed and
coherent spatial patterns, while the CORR design showed a pattern that indicated probable
estimation errors. Unlike the CORR design, which considers only the correlation between
variables to determine the sampling points, SPAN is a multi-objective function with four
criteria including the variable distribution, correlation between variables, minimization
of the shortest mean squared distance, and sampling optimization for identifying and
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estimating variograms [40]. In other words, it considers the correlation between variables,
their distribution, and the distance between sampling points. Although the covariates
allow for inferences about the environmental conditions and insect locations, points that
are too close together can introduce bias and redundancy into the estimates. In contrast,
points that are too far apart may not adequately capture the spatial variability.
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Figure 8. Environmental covariates, pest sampling points, and prediction maps. (A–C) Environmental
covariates selected in phase 1: soil clay content, NDVI, and distance from river. (D–F) Predicted
maps using the RF regression algorithm, with environmental covariates as predictors of total pests
abundance in the regular, CORR, and SPAN sampling designs, respectively. (G–I) Predicted maps
using the RF classifier algorithm, with environmental covariates as predictors of the presence and
absence of E. heros in the regular, CORR, and SPAN sampling designs, respectively.

Regarding the distance between points in each sample design, the regular design
presented the highest value of maximum (796 m) and minimum (71 m) distances between
points, the CORR design had the smallest maximum (653 m) and minimum (3 m) distances,
and the SPAN design showed maximum and minimum distances of 661 m and 13 m, re-
spectively. The SPAN sampling plan had distances between points that allowed for a better
capture of the spatial variability patterns of pest insects, resulting in more robust models
with a greater ability to generalize for un-sampled locations. Although it was created to
benefit geostatistical models, the SPAN design is also efficient for non-geostatistical models
like RF regression.

4.2.2. Random Forest Classifier

Regarding the classification, the three sampling designs evaluated showed good
metrics for classifying the presence and absence of E. heros in the modeling and external
validation phases (Tables 5–8). The regular design exhibited more errors, with an equal
number of FP and FN during the modeling phase. Still, it showed the best results in external
validation, achieving the lowest error rate. An FN occurs when the model incorrectly
classifies locations where the pest is present as absent. In terms of management, this would
imply failing to apply insecticide in areas where control is necessary. The CORR design
showed intermediate performance during the modeling phase, and despite showing fewer
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FNs in external validation, it presented a higher number of FPs in both the modeling and
validation phases. While the SPAN design demonstrated superior classification metrics
during the modeling phase, its performance in external validation was hindered by a higher
prevalence of FNs. In managing pests, weeds, and other phytosanitary organisms, the ideal
is to minimize both classification errors. However, in terms of control, FNs are generally
more detrimental than FPs because they can allow for the persistence of infestation sources
in the area [60]. On the other hand, FPs can lead to unnecessary insecticide applications,
increasing costs and causing economic and environmental impacts.

Regarding the predicted maps, despite the CORR and regular designs showing good
metrics overall, the predicted maps from these models exhibited distribution patterns
indicating prediction errors (Figure 8G,H). The regular design showed excessive alignment
with the spatial structure of the vegetation index, which was not observed in the best
regression models (Figure 8A–I). The tendency of the prediction model to reproduce only
the provided data (i.e., the covariate) indicates noise, and that the model failed to capture
the patterns of the predicted variable [61]. Conversely, despite external validation results
indicating limitations for the SPAN design, this design demonstrated spatial distributions
more similar to the regression model in the same sampling design, which presented the
best metrics and predictions (Figure 8F,I). This suggests that SPAN, among the three
evaluated models, is more effective in capturing the spatial complexity of pest distribution.
These observations emphasize the importance of relying on classification metrics and
carefully analyzing the predicted maps’ spatial and ecological coherence when evaluating
sampling designs.

4.3. Environmental Covariates in Pest Sampling and Prediction

The effectiveness of using environmental covariates for insect pest sampling and
prediction relies on some key factors: the proper selection of covariates, the sampling
method employed, the density and frequency of sampling during the crop season, the
assessment and treatment of outliers, and the choice of prediction model.

In this research, distance from the river was one of the most relevant covariates, given
its location near the crop in our experimental site, which is not always the case. Thus,
evaluating the quality of covariate selection is essential, as each agricultural system is
unique and presents a different distribution of environmental covariates, which may affect
insect pest infestations differently. Therefore, to optimize the sampling and prediction of
insect pests, covariate selection should be conducted for each agricultural area. Pusch et al.
(2023) also noted the need to select covariates for each agricultural area in a study on
optimized sampling and the prediction of soil variables [23]. Additionally, irrelevant and
collinear variables should be avoided since they can affect the performance of prediction
models [62,63].

The effectiveness of a sampling method in capturing pest distribution patterns is
closely linked to the abundance of pests within the area, which is influenced not only
by environmental covariates, but also by the management practices applied. A higher
pest abundance increases the likelihood that sampling points will capture meaningful
spatial patterns, while low pest density can obscure these patterns, leading to less reliable
predictions. Given the variety of factors that can affect pest abundance in agroecosystems,
it is recommended that analyses use data from different samplings for covariate selection.
This assists in capturing the influence of covariates in different scenarios, both in terms of
crop development and pest population, thus increasing the reliability of covariate selection.

Adopting a more strategic sampling approach with multi-objective functions that
considers the distribution of covariates and sample points in the area, such as the SPAN
design, is superior to relying on a regular grid or a design based solely on covariate corre-
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lations (CORR). The distance between sampling points and the distribution of covariates
are essential for capturing the spatial variability of insect pests because they ensure a
more comprehensive representation of the environmental conditions that drive insect pest
distribution patterns. This increases the model’s sensitivity to local variations, increasing
its generalization ability to new scenarios.

Outliers can affect prediction quality [61], thus carefully evaluating their exclusion is
essential to ensure model robustness. If outliers represent extreme values significant to the
problem, their removal can distort analysis and lead to incorrect predictions. Pest data are
field observations in which high values are not necessarily errors but natural population
variations; however, extreme values initially negatively impacted the performance of the
tested predictive models. In our study, extreme values were associated with E. heros at
points of high nymph density. At this cycle stage, these stink bugs have lower mobility
than adults and usually occur clustered. Although nymphs also cause crop damage,
excluding these points was justifiable since extreme values were relatively rare (only one
in the regular grid and one in CORR) and were linked to the species’ less mobile stage.
However, it is important to note that the decision to exclude such values should be context-
dependent, balancing the need for model accuracy with the ecological significance of
extreme observations. In this case, excluding outliers helped to refine the predictive models
without compromising the integrity of the analysis.

The choice of the best prediction model depends on the sampling method, sampling
density, data characteristics, and spatial distribution patterns of pests. For example, when
pest data do not have spatial dependence, machine learning models, like regression and
classification, tend to be more suitable than geostatistical methods. Machine learning mod-
els can capture complex, nonlinear relationships between the environmental covariates and
pests without relying on spatial dependence. Moreover, the choice of model should align
with the prediction objective: regression models allow for the estimation of insect abun-
dance while classification models assess the presence and absence (binary class) or even
infestation levels (multiclass). Each approach can be used for different pest management
strategies, optimizing intervention measures in specific locations.

4.4. Integrated Pest Management and Site-Specific Management

Although studies, such as those by Bueno et al. (2011), have demonstrated the effi-
ciency of IPM compared to traditional control methods, its adoption by farmers remains
limited due to challenges in achieving effective pest population monitoring [64]. However,
combining IPM, which uses ecological concepts, and precision agriculture techniques that
utilize covariates allows for more accurate spatial monitoring and insect pest predictions
than traditional techniques. Thus, using these approaches, prophylactic insecticide ap-
plications can be replaced by site-specific management. For example, predictions using
regression techniques can be utilized for variable-rate pesticide applications. However, in
Brazil, the current insecticide dose recommendations for agricultural pest control generally
do not consider variations in doses based on insect population variability or vegetation
coverage. Therefore, incorporating these variabilities into recommendations is a necessary
advancement toward more sustainable and precise management.

Integrated pest management guidelines suggest that chemical pesticides should only
be applied when pest populations reach economic thresholds [2,64]. Since few insecticides
currently allow for variable rate recommendations, classification models offer practical
solutions. In this way, predicting the presence or absence of pests or economic thresholds
through classification makes it possible to apply a single dose in specific locations, using
the on–off function available on many sprayers. This allows pesticides to be applied only
in areas where pests are present, or where economic thresholds are reached.
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5. Conclusions
Among the analyzed covariates, NDVI (satellite image related to crop vigor variabil-

ity), soil clay content, and distance from the river provide valuable information for pest
infestation prediction. These covariates assist in agricultural pest mapping when included
in optimization and prediction models. However, due to the unique characteristics of
each agricultural area, covariate selection must be tailored to the specific conditions of
each location. In this case, a two-phase sampling optimization ensures that the selected
agricultural environment covariates represent the specific area. This approach enhances
the effectiveness of pest mapping strategies in agricultural systems, contributing to more
efficient and sustainable agricultural management practices.

Multi-objective sampling designs such as SPAN that consider environmental covariates
and their distribution as well as the distance between sampling points in the area generate
better insect pest maps compared with simpler sampling designs without covariates (e.g.,
regular grid) or with only one objective function representing the covariates’ correlation
(e.g., CORR).

Although precision agriculture uses vegetation indices (VIs) to guide the sampling
of insect pests, these samples are generally directed toward areas with lower VI values.
However, this approach may need to be more accurate. When pest populations are low
and their feeding time is insufficient to cause damage, pest locations can be associated with
higher VI values, areas with greater food availability, and a favorable microclimate under
the plant canopy. Considering that other factors, such as topography, soil characteristics and
moisture, can influence crop canopy biomass and microclimate variability, these covariates
should be used with VIs to increase the effectiveness of pest sampling and mapping.
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