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We present a dynamical analysis of the null and timelike geodesics around an asymptotically de Sitter
wormhole in a Randall-Sundrum brane. In this framework, the wormhole throat is interpreted both as a
photon sphere and as a fixed point of the associated dynamical system. The stability of this structure is
evaluated using Lyapunov and Jacobi criteria with consistent results. A Bogdanov-Takens bifurcation is
observed in the null-geodesic dynamics, highlighting critical changes in the behavior of light around the
wormhole. Explicit solutions are derived for geodesics near the throat, providing insight into the optical
appearance of the wormhole shadow. These results show qualitatively similar behavior for null and timelike
orbits, suggesting universal features of geodesic dynamics in brane–de Sitter wormholes.
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I. INTRODUCTION

General relativity is a central theory in our understanding
of the Universe, providing a framework for the analysis of a
wide range of astronomical and cosmological phenomena
and has been extensively tested with increasing accuracy.
Notable recent observations include the direct detection
of gravitational waves by LIGO and Virgo in 2015 [1]
and the first direct image of a black hole detected by the
Event Horizon Telescope in 2019 [2]. Despite its enormous
success, attempts have been made to extend general rela-
tivity.One such approach is the braneworldmodels, designed
as concrete implementations of string theories in a cosmo-
logical framework. Among thewide variety of branemodels,
we highlight the Randall-Sundrum-type scenarios [3,4],
where a four-dimensional brane describing our Universe is
immersed in a five-dimensional bulk. In this context,
solutions describing compact objects such as black holes
and wormholes have been proposed. Relevant examples of
this research can be found in [5–19].
Currently, we are primarily interested in wormhole

solutions. These structures are compact spacetimes with
nontrivially topological interiors and topologically simple
boundaries [20]. They can be thought of as connections
between distant parts of the Universe, while still being
compatible with usual local physics. Wormholes have been

the subject of extensive research since the seminal papers of
Morris, Thorne, and Yurtsever [21,22]. Although the actual
existence of wormholes remains speculative, the very fact
that these objects are consistent solutions compatible with
general relativity raises profound questions about causality
and time travel [22–24]. Research on this topic continues to
provide new insights, ideas, and challenges to general
relativity and its extensions [25–29].
Trajectories of light in the vicinity of ultracompact

objects (UCOs) can be viewed as a gravitational signature
of the system, providing valuable information about the
background geometry [26]. Of particular interest are the
photon spheres of UCOs. These structures are closed paths
of light in the neighborhood of the central object, strongly
depending on the characteristics of the UCO’s spacetime.
From an observational point of view, photon spheres play a
key role in defining the shadows generated by UCOs.
Beyond their observational significance, photon spheres are
closely related to perturbative analyses of spacetime. The
correspondence between photon spheres and quasinormal
modes has been extensively explored [30–32]. These
studies reveal a compelling link between gravitational
waves and geodesic properties [30,33,34].
The connection between geodesics and dynamical sys-

tems has been the subject of considerable research. For
example, the study of geodesics in the presence of black
holes has provided new information about the behavior
of these objects and has helped to further our understanding
of their properties [35–37]. In addition, the investigation of
geodesic dynamics in the expanding Universe has provided
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new insights into the evolution of the Universe as a
whole [38,39].
Dynamical systems sensitive to parameter variations can

undergo structural changes in their phase space topology.
These changes can be manifested by the creation or
annihilation of equilibrium points or by modifications to
their stability properties. In the dynamical systems literature,
such qualitative transformations of the state-space topology
induced by parameter variations are called bifurcations
[40,41]. Bifurcations serve as fundamental mechanisms
for behavioral shifts in dynamical systems, generating
preferred regions of phase space or allowing transitions to
complex dynamics, including quasiperiodic and chaotic
trajectories. In this context, critical phenomena attract
significant attention. For instance, bifurcations in solutions
of Einstein’s field equations have been extensively studied,
from standard Friedmann-Lemaître-Robertson-Walker cos-
mologies [42,43] to modified theories of gravity [44–46].
In recent work, these concepts have been extended to the
analysis of the interactions of dark matter and dark energy
[47]. Alternative bifurcation mechanisms in scalar theories
have also been identified, leading to the formation of hairs in
charged and rotating black holes [48,49]. Homoclinic
bifurcations in the dynamics of geodesics, which can lead
to chaotic behavior in the system, have been studied in the
context of perturbed Schwarzschild black holes [50].
Furthermore, Bogdanov-Takens bifurcations have been
explored in braneworld scenarios, revealing potential gravi-
tational signatures [26].
The main goal of the present work is to apply the

formalism of dynamical systems to the framework involv-
ing geodesics around wormholes. A family of geometries
describing de Sitter wormholes in asymptotically de Sitter
Randall-Sundrum brane models was derived in [14]. We
will revisit the solutions presented in [14] using the
language of dynamical systems. In a sense, the proposal
here is to continue the work developed in [26], where an
extensive dynamical analysis of the null geodesics in the
spacetimes proposed by Casadio et al. was carried out. The
wormhole throat will be dynamically characterized, and its
stability is evaluated by Lyapunov and Jacobi criteria.
Connections between geometric features of the wormhole
spacetime and the dynamics of null geodesics in these
backgrounds will be investigated.
The structure of the paper is presented as follows. In

Sec. II, the wormhole spacetimes explored in this paper are
revisited, and the coordinate systems of interest are defined.
In Sec. III, an effective potential is constructed for null and
timelike geodesics, based on the quasilocal coordinate u.
The main properties of this potential are established. The
geodesic dynamics is analyzed in Sec. IV. For this purpose,
an effective two-dimensional dynamical system is con-
structed, and in this formalism, the wormhole throat is
characterized as a photon sphere and as a fixed point. The
stability of the photon sphere is determined by Lyapunov

and Jacobi criteria. Bifurcations and other special aspects
of the null-geodesic dynamics are discussed, with an
examination of the optical appearance of the wormhole
as seen by a static observer. The timelike geodesic
dynamics, and its relation to the null case counterpart,
are discussed. Final comments are presented in Sec. V. In
this paper, we use signature ð−;þ;þ;þÞ and geometric
units with G4D ¼ c ¼ 1, where G4D is the effective four-
dimensional gravitational constant.

II. DE SITTER WORMHOLES IN THE BRANE

A. Asymptotic de Sitter braneworld solutions

The physical scenario considered in the present work is
an asymptotically de Sitter wormhole in a braneworld setup
[14,29]. The spacetime of interest is interpreted as a four-
dimensional brane immersed in a five-dimensional bulk.
The solution was derived from the treatment proposed by
Maeda et al. [51]. In this formalism, the field equations in
the brane, as a generalization of the four-dimensional
Einstein’s field equations, can be written as

Rμν −
1

2
Rgμν ¼ −Λgμν − Eμν; ð1Þ

with vacuum assumed in the brane. The four-dimensional
metric, Ricci tensor, and Ricci scalar are represented by gμν,
Rμν, and R respectively. The tensor Eμν, the projection of
the five-dimensional Weyl tensor in the brane, furnishes the
bulk’s gravitational influence over the brane. The effective
cosmological constant on the brane is given by Λ.
Using the fact that Eμν is traceless, a suitable combina-

tion of the effective field equations (1) can be obtained,

R ¼ 4Λ; ð2Þ

where R is the four-dimensional Ricci scalar. Imposing
staticity and spherical symmetry, the four-dimensional line
element can be written as

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

with the chart ft; r; θ;ϕg. The coordinate r is the “areal
radius” and θ and ϕ are the usual angle coordinates
associated with spherical symmetry. The combination (2)
can be seen as a constraint between the metric functions
AðrÞ and BðrÞ [14], namely,

2ð1−BÞ−r2B

�
A00

A
−
ðA0Þ2
2A2

þA0B0

2AB
þ2

r

�
A0

A
þB0

B

��
¼ 4Λr2;

ð4Þ

where ( 0) denotes differentiation with respect to r.
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The most general solution of the constraint (4) with the
condition AðrÞ ¼ BðrÞ is given by

A0ðrÞ ¼ B0ðrÞ ¼ 1 −
2M
r

þ q
r2

−
Λ
3
r2: ð5Þ

The Reissner-Nordström–de Sitter spacetime has the same
form as the metric defined by AðrÞ ¼ A0ðrÞ and BðrÞ ¼
B0ðrÞ in Eq. (3). However, the constant q in the brane-
world setup is interpreted as a “tidal charge” that is not
related to the electric properties of the compact object
described by the four-dimensional geometry. Instead, it is
associated with the properties of the brane within a bulk,
which means that there is no restriction on the sign of q.
The functions A0ðrÞ and B0ðrÞ of the metric define the base
solution.
In the nonextreme regime (the focus of this paper),

q < qext and 0 < Λ < Λext, where qext and Λext are bounds
on the tidal charge and the cosmological constant, respec-
tively. In this case, A0ðrÞ has four real roots, denoted rn, r−,
rþ and rc, with rn < 0 < r− < rþ < rc.
The solution of interest in the present work can be

considered “close” to the base solution, in the sense that it
is a continuous deformation of the electrovacuum solution
(5) that satisfies the constraint (4) [12–16,18],

AðrÞ¼A0ðrÞ¼
Λ
3r2

ðrc− rÞðr− rþÞðr− r−Þðr− rnÞ; ð6Þ

BðrÞ ¼ A0ðrÞ½1þ ðC − 1ÞPðrÞ�; ð7Þ

where the function PðrÞ is

PðrÞ≡
�
rc − r0
r − r0

�
c0
�
rc − r0−
r − r0−

�
c0−

×

�
rc − r0−−
r − r0−−

�
c0−−
�
rc − r0n
r − r0n

�
c0n
: ð8Þ

The constants r0, r0−, r0−− and r0n are the (simple and real)
zeros of the function hðrÞ,

hðrÞ≡ rA0
0ðrÞ
2

þ 2A0ðrÞ ¼ 2 −
3M
r

þ q
r2

− Λr2; ð9Þ

with r0n < 0 < r0−− < r0− < r0. The coefficients c0, c0−,
c0−− and c0n are given by

c0 ¼
2

Λ
r0ð2Λr20 − 1Þ

ðr0 − r0−Þðr0 − r0−−Þðr0 − r0nÞ
; ð10Þ

c0− ¼ −
2

Λ
r0−ð2Λr20− − 1Þ

ðr0 − r0−Þðr0− − r0−−Þðr0− − r0nÞ
; ð11Þ

c0−− ¼ 2

Λ
r0−−ð2Λr20−− − 1Þ

ðr0 − r0−−Þðr0− − r0−−Þðr0−− − r0nÞ
; ð12Þ

c0n ¼ −
2

Λ
r0nð2Λr20n − 1Þ

ðr0−− − r0nÞðr0 − r0nÞðr0− − r0nÞ
: ð13Þ

The interpretation and bounds for the parameter C will be
discussed in the following.1

B. Extending the spacetime

From the explicit solution for the metric in Eqs. (6) and
(7), the global properties of the brane can be discussed.
These properties strongly depend on the value of C. This
constant can be interpreted as a deformation parameter
related to the properties of the brane.
For instance, it is straightforward to verify that

AðrÞ ∼ BðrÞ ∼ 1 −
Λ
3
r2 þO

�
1

r

�
: ð14Þ

That is, the spacetime is asymptotically de Sitter for any
value of C.
A key question concerns the range of the parameter C

and its implications for the geometry of the system. The
value of C determines the nature of the spacetime described
by Eqs. (6) and (7). Specifically, for C > 1 the geometry
has a singularity enclosed by a cosmological horizon. For
C ¼ 1, the base solution is recovered, with a singularity
enclosed by a Cauchy horizon. The case of interest for this
work is when

0 < C < 1: ð15Þ

In the range (15), the function BðrÞ has a simple zero rthr
such that AðrthrÞ ≠ 0. Considering the relation between rþ,
r0, rthr and rc, the following inequality is satisfied:

rþ < r0 < rthr < rc: ð16Þ

The metric functions AðrÞ and BðrÞ are positive and
analytic for rthr < r < rc, and the coordinate system
ðt; r; θ;ϕÞ is valid only in this domain. The maximal
extension of the geometry has the structure of a wormhole,
with a throat at r ¼ rthr, covered by a cosmological horizon
at r ¼ rc. There is no event horizon or singularity in this
spacetime [14].
A coordinate system in which the throat is directly

represented is based on the so-called quasilocal radial
coordinate u, defined as [8,9]

du
dr

¼
ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s
: ð17Þ

1In [14], the definition of the parameter C is different from the
one employed in the present work. Hence, the slight difference
form for the metric function in Eq. (7).
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The function uðrÞ is strictly positive and crescent in the
interval rthr < r < rc, with a well-defined inverse function
rðuÞ. Using the chart ðt; u; θ;ϕÞ, the line element iswritten as

ds2¼−AðuÞdt2þ du2

AðuÞþ rðuÞ2ðdθ2þ sin2 θdϕ2Þ; ð18Þ

where

AðuÞ≡ A
�
rðuÞ�: ð19Þ

With a suitable choice of integration constant for Eq. (17),
the throat r ¼ rthr is mapped into u ¼ 0 and the cosmo-
logical constant r ¼ rc is mapped into u ¼ uc ≡ uðrcÞ, with
0 < uc < ∞. The extension “beyond rthr” can be imple-
mented as

rthr < r < rc ⟶ −uc < u < uc: ð20Þ

The extension “beyond rc” can be done with the usual
Eddington-Finkelstein coordinates. After the maximal
extension, the spacetime describes a symmetric and trans-
versable wormhole, with a throat at u ¼ 0. The two sections
of the wormhole (with u < 0 and u > 0) are bounded by
cosmological horizons, and the geometry is asymptotically
de Sitter.
Analytic expressions for the metric functions AðuÞ and

rðuÞ are not available. However, their main qualitative
characteristics can be exhibited. For instance, it is straight-
forward to check that these functions are smooth in the
wormhole section (−uc < u < uc). Since AðrÞ > 0 and
BðrÞ > 0 for rthr < r < rc, it follows from Eq. (17) that
du=dr > 0 in this interval. Hence, dr=du > 0 for 0 < u <
uc and dr=duju¼0 ¼ 0. With the extension beyond the
throat, we obtain

dr
du

8><
>:

< 0; if − uc < u < 0

¼ 0; if u ¼ 0

> 0; if 0 < u < uc

: ð21Þ

Result (21) can be interpreted as the flare-out condition
for the wormhole, reflecting the minimum area of the
throat [20].
For the analysis ofAðuÞ, as AðrÞ > 0 for rthr < r < rc, it

follows thatA > 0 for −uc < u < uc. Considering dA=du,
we notice that the largest extreme point of AðrÞ is smaller
than rthr [14], which implies that dA=dr < 0 for rthr <
r < rc. Since dA=du ¼ ðdr=duÞðdA=drÞ,

dA
du

8><
>:

> 0; if − uc < u < 0

¼ 0; if u ¼ 0

< 0; if 0 < u < uc

: ð22Þ

III. EFFECTIVE POTENTIAL

The chart based on the radial coordinate u is not only
convenient for extending the geometry beyond the worm-
hole throat. The ðt; u; θ;ϕÞ coordinate system also sim-
plifies the analysis of the geodesic dynamics, as we will see
in the following.
The equations of motion for geodesics in the geometry of

interest can be obtained from the action,

I ¼
Z

L dλ; ð23Þ

where the Lagrangian L is given by

−2L ¼ gμν
dxμ

dλ
dxν

dλ
: ð24Þ

From Eq. (24), it follows that L is a constant of motion.
With a convenient choice of parametrization, it is possible
to set L such that

2L ¼
	
0; for null geodesics

1; for timelike geodesics
: ð25Þ

With the chart ðt; u; θ;ϕÞ, the Lagrangian is written as

−2L ¼ −AðuÞ
�
dt
dλ

�
2

þAðuÞ−1
�
dr
dλ

�
2

þ ½rðuÞ�2
�
dθ
dλ

�
2

þ ½rðuÞ�2 sin2 θ
�
dϕ
dλ

�
2

: ð26Þ

The conjugated momenta associated with the coordinates
ft; u; θ;ϕg read

pt ¼AðuÞ dt
dλ

; pu ¼AðuÞ−1 dr
dλ

;

pθ ¼ ½rðuÞ�2dθ
dλ

; pϕ¼ ½rðuÞ�2sin2θdϕ
dλ

: ð27Þ

Hamilton’s equations of motion applied to this system
imply that there are two additional constants of motion:

pt¼E¼ constant; pϕ¼L¼ constant: ð28Þ

The integration constants E and L are related to the energy
and angular momentum of a given geodesic, respectively.
They are a consequence of the staticity and spherical
symmetry of the geometry. In addition, it is straightforward
to show that a given geodesic is contained in a plane, which
can be chosen as θ ¼ π=2.
Using the constants of motion and setting θ ¼ π=2, the

geodesic equations are reduced to
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1

AðuÞ
�
du
dλ

�
2

−
E2

AðuÞ þ
L2

½rðuÞ�2 ¼ −2L ; ð29Þ

dt
dλ

¼ E
AðuÞ ;

dϕ
dλ

¼ L
½rðuÞ�2 : ð30Þ

Relation (29) can be rewritten in the form of a problem in
one spatial dimension,

1

2

�
du
dλ

�
2

þ VðuÞ ¼ E2

2
; ð31Þ

where the effective potential VðuÞ is given by

VðuÞ ¼ AðuÞ
	

L2

2½rðuÞ�2 þL



: ð32Þ

In this setup, the dynamics has the state space
M1 ≡ fuj − uc < u < ucg. From this point onward, we
treat the constants E and L as parameters in the dynamical
model defined by Eq. (31).
An analytical expression for the effective potential VðuÞ

is not available. Nevertheless, its global characteristics can
be determined. For instance, it follows from the definition
(32) that VðuÞ is a smooth function for u∈M1. For radial
null geodesics, that is, if L ¼ 0 and L ¼ 0, VðuÞ is
identically null. For any other case (L ≠ 0 or L ¼ 1),
Vð−ucÞ ¼ VðucÞ ¼ 0 and VðuÞ > 0 if −uc < u < uc.
The extrema of VðuÞ can also be characterized. Let us

consider the case where the potential is not identically zero
and define the function ΩðuÞ as

ΩðuÞ≡ L2

2½rðuÞ�2 þL ; ð33Þ

so that the potential can be written as VðuÞ ¼ AðuÞΩðuÞ,
and thus,

dV
du

¼ dA
du

ΩþA
dΩ
du

: ð34Þ

Using result (22), it is observed that if 0 < u < uc, then
dA=du < 0 andΩ > 0, and hence ðdA=duÞΩ < 0. Also, in
this range of u, A > 0 and dΩ=du < 0, implying that
AðdΩ=duÞ < 0. Combining the previous results and the
expression (34), we obtain that dV=du < 0. Similarly, it
can be shown that dV=du > 0 if −uc < u < 0. Finally,
ðdA=duÞΩ ¼ 0 if u ¼ 0. Summarizing, if L ≠ 0 orL ¼ 1,

dV
du

8><
>:

> 0; if − uc < u < 0

¼ 0; if u ¼ 0

< 0; if 0 < u < uc

: ð35Þ

And if L ¼ 0 and L ¼ 0, then dV=du ¼ 0 for
−uc < u < uc.
Previous considerations furnish an overall picture of the

effective potential associated with the geodesic dynamics in
the de Sitter wormhole. For radial null geodesics, the
potential is identically null. For any other case, the potential
is zero at the cosmological horizons and positive elsewhere,
with a single maximum at the throat.
Complementing the qualitative analysis, an analytical

expression for VðuÞ can be obtained near the throat. This
region is important for geodesic dynamics. The function
rðuÞ is smooth around u ¼ 0, with

dr
du

����
u¼0

¼ 0;
d2r
du2

����
u¼0

¼ 2K> 0; ð36Þ

where the (positive) constant 2K is expressed in terms of
the wormhole parameters as

2K ¼ C − 1

2

dPðrÞ
dr

����
rthr

¼ ð1 − CÞPðrthrÞ
2

�
c0

rthr − r0
þ c0−
rthr − r0−

þ c0−−
rthr − r0−−

þ c0n
rthr − r0n

�
: ð37Þ

Using Eq. (36), the metric functions rðuÞ and AðuÞ are
written as

rðuÞ ¼ rthr þ Ku2 þOðu3Þ; ð38Þ

AðuÞ ¼ A0 þA2u2 þOðu3Þ; ð39Þ

with the Taylor coefficients,

A0 ≡ AðrthrÞ; A2 ≡ K
dA
dr

����
r¼rthr

: ð40Þ

Substituting results (38) and (39) into Eq. (32), an expres-
sion for the effective potential is obtained,

VðuÞ ¼ V0 þ V2u2 þOðu3Þ; ð41Þ

with

V0≡A0

�
L2

2r2thr
þL

�
; V2≡A2

�
L2

2r2thr
þL

�
−
A0L2K
r3thr

:

ð42Þ

The constant V0 represents a background contribution to
the potential, while the term V2 measures a perturbation in
this background.
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As a consistency check, we will verify that V2 is non-null
and negative if L ≠ 0 or L ¼ 1. From Eq. (34),

2V2 ¼Ωð0Þd
2A
du2

����
u¼0

þAð0Þd
2Ω
du2

����
u¼0

þdA
du

����
u¼0

dΩ
du

����
u¼0

:

ð43Þ

Assuming L ≠ 0 or L ¼ 1, Að0Þ > 0, Ωð0Þ > 0,
dA=duju¼0 ¼ dΩ=duju¼0 ¼ 0, d2A=du2ju¼0 < 0 and
d2Ω=du2ju¼0 < 0. It follows from Eq. (43) that

V2 < 0: ð44Þ
IV. DYNAMICAL ANALYSIS

A. Effective dynamical system

Spacetime symmetries simplified the system of interest
into an effective one-dimensional problem characterized by
Eq. (29). The introduction of the quasilocal coordinate u
further simplified the analysis, allowing the definition
of the effective potential (32). In fact, from the solution
of Eq. (31), the functions tðλÞ and ϕðλÞ in Eq. (30) are
readily integrable. Nevertheless, the quadratic kinetic term
in Eq. (31) leads to some complications in treatment. To
overcome this problem, the strategy proposed in the present
work is to transform the one-dimensional equation (31) into
a two-dimensional dynamical system with a constraint.
Differentiating the relation (31) with respect to λ, an

autonomous differential equation of second order is
obtained,

d2u
dλ2

¼ −
dV
du

: ð45Þ

Using Eq. (45), we rewrite the dynamical system defined
by Eq. (31) with two first-order differential equations,

du
dλ

¼ w; ð46Þ

dw
dλ

¼ −
dV
du

; ð47Þ

equipped with the constraint,

1

2
w2 þ VðuÞ ¼ E2

2
: ð48Þ

The state space of the two-dimensional dynamical system
givenbyEqs. (46) and (47) is denoted byM2. Thedynamical
system of interest, taking into account the constraint (48), has
the state space M̃1 ¼ fðu; wÞjw2=2þ VðuÞ ¼ E2=2g. Note
that, although M̃1 ⊂ M2, the state spaces M̃1 andM1 are
homeomorphic.
Another interpretation of the constraint (48) is that it

describes the possible orbits of the dynamical system in the

two-dimensional state space M2. That is, different values
of the energy E and angular momentum L correspond to
different copies of M̃1, each representing a geodesic in the
wormhole spacetime.
The fixed points of the dynamical system can be

determined. Let us denote a fixed point by ðu⋆; w⋆Þ.
Taking into account Eqs. (46) and (47), we have

w⋆ ¼ 0; ð49Þ

dV
du

����
u⋆

¼ 0: ð50Þ

Additionally, a fixed point must satisfy the constraint (48).
Together with Eqs. (49) and (48) implies

Vðu⋆Þ ¼
E2

2
: ð51Þ

Considering the cases where L ≠ 0 or L ¼ 1, Eq. (50)
shows that a fixed point is an extreme point of the effective
potential. However, in Sec. III we have determined that
there is only one extreme of VðuÞ, namely the point u ¼ 0
(a maximum). But condition (51) also has to be satisfied.
Taking into account that Vð0Þ ¼ V0,

ðu⋆;w⋆Þ¼ ð0;0Þ with E¼�
ffiffiffiffiffiffiffiffi
2V0

p
ðL≠ 0 orL ¼ 1Þ;

ð52Þ

with the constant V0 given by Eq. (42).
On the other hand, if L ¼ 0 and L ¼ 0, i.e., radial null

geodesics, condition (51) implies that E ¼ 0. Therefore,
there are only simple solutions associated with this case and
no isolated fixed point. This scenario will be discussed
further in Sec. IV D.

B. Stability tests

The goal of this section is to investigate the stability of the
photon sphere, which is interpreted here as a fixed point of
the constructed dynamical system.The literature on dynami-
cal systems presents several notions of stability for charac-
terizing fixed points. However, these different notions often
do not agree in many systems [52,53], which highlights the
need for systems that show agreement between more than
one stability notion. In this subsection, wewill introduce the
Lyapunov and Jacobi stability notions. The strategy used is
to work in the two-dimensional state space M2, comple-
mented by the fixed-point condition (52).
The effective dynamical system given by Eqs. (46)–(48)

can be locally characterized by its linear stability. This
method is based on the linearization of the dynamics and
the study of the eigenvalues of the Jacobian matrix
associated with the fixed point ðu⋆; w⋆Þ ¼ ð0; 0Þ. Let
fνig be the eigenvalues associated with this Jacobian.
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This fixed point is said to be Lyapunov unstable if (at least)
one eigenvalue νi� has a positive real part [Reðνi�Þ > 0],
and Lyapunov stable otherwise.
Considering the dynamics near the wormhole throat,

we have

u¼ u⋆þδu¼ δu; w¼w⋆þδw¼ δw; ð53Þ

and

d
dλ

�
δu

δw

�
¼ J

�
δu

δw

�
; ð54Þ

with the Jacobian matrix J given by

J ¼
�

0 1

− d2V
du2 0

�
ðu;wÞ¼ð0;0Þ
E2¼2V0

¼
�

0 1

−2V2 0

�
: ð55Þ

The associated (real) eigenvalues νþ and ν− are

ν� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
: ð56Þ

Since V2 < 0, as seen in Eq. (44), the dynamic is hyper-
bolic, and therefore the linear analysis is appropriate.
Because νþ > 0, the fixed point is Lyapunov unstable.
Another characterization of stability is the Jacobi cri-

terion, which is associated with deviations of nearby orbits
around a fixed point in the state space. To present this
notion of stability, we will introduce the relevant quantities
and restrict the formalism to the present wormhole geom-
etry that we study in this work. Initially, consider the
following second-order ordinary differential equation in the
standard form [52–54]:

d2u
dλ2

¼ −2Gðu; wÞ; ð57Þ

where w ¼ du=dλ and with an associated fixed point in
u ¼ u⋆ ¼ 0. The concept of a fully covariant differentia-
tion along the trajectories of the second-order differential
equation (57) is captured in the Kosambi-Cartan-Chern
(KCC) framework. This approach takes into account
corrections due to the nonlinearity of the system. Let ξ
denote the first-order variation of u. The KCC-covariant
derivative Dξ=dλ of the variation field ξ incorporates both
the affine connection of the manifold and the nonlinear
connection induced by the dynamical system. Explicitly,
this derivative has the form [52,53],

Dξ
dλ

¼ dξ
dλ

þ ∂G
∂w

ξ; ð58Þ

where ∂G=∂w is the nonlinear connection. Varying the
trajectories in Eq. (57) into nearby ones, one gets the Jacobi
equation,

D2ξ

dλ2
¼ Pðu; wÞξ; ð59Þ

where Pðu; wÞ is the deviation curvature scalar, defined by

Pðu; wÞ ¼ −2
∂G
∂u

− 2GG̃þ w
∂N
∂u

þ N2; ð60Þ

with the quantities,

N ¼ ∂G
∂w

; G̃ ¼ ∂N
∂w

; ð61Þ

being the nonlinear and Berwald connections, respectively
[52]. Jacobi stability depends on Pðu; wÞ evaluated at the
fixed point ðu⋆; w⋆Þ ¼ ð0; 0Þ. Specifically, if Pðu⋆; w⋆Þ <
0 the trajectories in Eq. (57) are stable, if Pðu⋆; w⋆Þ > 0
they are unstable. The marginal case Pðu⋆; w⋆Þ ¼ 0 must
be studied case by case.
From the geodesic equation (45), one can identify,

Gðu; wÞ ¼ 1

2
V 0ðuÞ; ð62Þ

with associated connections N ¼ 0 and G̃ ¼ 0. These
results furnish the following deviation curvature scalar,

Pðu⋆; w⋆Þjðu⋆;w⋆Þ¼ð0;0Þ ¼ −V 00ð0Þ ¼ −2V2: ð63Þ

As seen in Eq. (44), V2 is negative, and hence Pð0; 0Þ > 0.
Therefore, the trajectories are Jacobi unstable. This result
shows that both notions of stability, Jacobi and Lyapunov,
are in agreement. This is a relevant feature, observed in
other brane geometries and cosmological solutions [26,52].

C. Null geodesics and the photon sphere

After the general discussion presented in previous
sections, we consider specific dynamical properties of null
geodesics (L ¼ 0) in the de Sitter wormhole, initially
focusing on nonradial geodesics (L ≠ 0).
The fixed point in the dynamical system is associated

with geodesics whose orbits are closed, with a constant
radius. The surface generated by these orbits is the so-
called photon sphere [55,56]. Result (52) indicates that the
wormhole throat (u ¼ 0 or r ¼ rthr) is the unique photon
sphere in space-time.
Let us examine the photon-sphere condition. With L ≠ 0

and L ¼ 0, the constraint (51) furnishes

E2 ¼ 2V0 ⇒ L2 ¼ r2thrE
2

A0

: ð64Þ
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Expression (64) can be interpreted as the condition for a
light ray to be located on the wormhole throat (the photon
sphere). Introducing the impact parameter (D), defined as

D≡ L
E
; ð65Þ

the photon-sphere condition (64) is written as

D ¼ �Dcrit; ð66Þ

with the critical impact parameter Dcrit given by

Dcrit ≡ rthrffiffiffiffiffiffi
A0

p : ð67Þ

If the magnitude of the null geodesic’s impact parameter
is less than the critical value (jDj < Dcrit), the geodesic
crosses the throat, going from one patch of the wormhole to
the other (dotted lines in Fig. 1). Otherwise, if jDj > Dcrit,
there is a turning point in the trajectory, and the geodesic
bounces back in the same patch (dashed lines in Fig. 1).
The critical case jDj ¼ Dcrit corresponds to photons
asymptotically approaching the throat in infinite affine
time, forming an unstable photon sphere.
An analytical solution for the null geodesics is available

around the wormhole throat, that is, near the origin of the
two-dimensional state space M2 with D ≈Dcrit. In this
regime, the solution, with respect to the initial position
ðuð0Þ; wð0ÞÞ, can be written as

uðλÞ¼ uð0Þcosh
� ffiffiffiffiffiffiffiffiffiffiffi

2jV2j
p

λ


þ
wð0Þsinh

� ffiffiffiffiffiffiffiffiffiffiffi
2jV2j

p
λ



ffiffiffiffiffiffiffiffiffiffiffi
2jV2j

p ;

ð68Þ

wðλÞ ¼ uð0Þ
ffiffiffiffiffiffiffiffiffiffiffi
2jV2j

p
sinh

� ffiffiffiffiffiffiffiffiffiffiffi
2jV2j

p
λ



þ wð0Þ cosh
� ffiffiffiffiffiffiffiffiffiffiffi

2jV2j
p

λ


; ð69Þ

with V2 defined in Eq. (42). Equations (68) and (69)
describe hyperbolic trajectories in M2, which can be
written as

w2 − E2

�
2K
rthr

−
A2

A0

�
u2 ¼ 2E2

�
1 −

jDj
Dcrit

�
: ð70Þ

The hyperbole in Eq. (70) approximates the orbits shown in
Fig. 1. This expression can also be interpreted as the
constraint in Eq. (48) near the fixed point of the dynamics.
There is a noticeable improvement in the quality of the
approximation as the trajectory approaches the wormhole’s
throat, as seen in Fig. 2.
By reparametrizing the radial differential equation in

terms of the angular variable ϕ, trajectories (68) and (69)
are identified as null geodesics spiraling either into or out of
the wormhole. In the critical case, when the parameter D is
equal to its critical value Dcrit, the null geodesic corre-
sponds to a closed circular orbit at the wormhole throat. It
corroborates the fact that the throat is an unstable photon
sphere, where light rays are trapped for some time but
eventually escape.

FIG. 1. Typical orbits in the two-dimensional phase portrait
M2 of the null-geodesic case, for different values of the impact
parameter. Dashed (dotted) lines represent trajectories that cross
(do not cross) the throat. Dashed and dotted lines can also be
interpreted as copies of M̃1. In this graph, M ¼ 1.0, q ¼ 0.5,
Λ ¼ 0.1, C ¼ 0.5, and several values of D.

FIG. 2. Comparison between the approximate expression (solid
lines) and the numerical results (dashed lines) for orbits close to
the fixed point of the null-geodesic dynamics. In this graph,
M ¼ 1.0, q ¼ 0.5, Λ ¼ 0.1, C ¼ 0.5, and several values of D.
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D. Radial null geodesics and bifurcation

Radial null trajectories (L ¼ 0 andL ¼ 0) are presently
treated. From Eq. (30), we obtain

dϕ
dλ

¼ 0 ⇒ ϕðλÞ ¼ constant: ð71Þ

For this class of null geodesics, the effective potential is
identically null, and the fixed-point condition (52) is not
satisfied. Nevertheless, the dynamical system can be solved
exactly, with

uðλÞ ¼ �Eλþ u0: ð72Þ

The integration constant u0 can be interpreted as an initial
position.
We observe that the topology of the phase portrait

changes drastically from the case of radial null geodesics
to the case of nonradial geodesics. When dealing with
radial geodesics, one sets L ¼ 0, which makes the effective
potential in Eq. (41) identically zero. In this scenario, a
continuous line of fixed points fðu⋆; 0Þ;−uc < u⋆ < ucg
appears in the system. On the other hand, when considering
nonradial null geodesics, one sets L ≠ 0, which makes the
effective potential quadratic and gives an isolated fixed
point in the dynamics. This behavior shows a change in the
topology of the phase portrait of the system, indicating the
existence of a bifurcation when L ¼ 0.
The Jacobian matrix J in Eq. (55) for null geodesics at

the critical value L ¼ 0 is

J ¼
�
0 1

0 0

�
⇒ det J ¼ 0: ð73Þ

The eigenvalues exhibit degeneracy with double multiplic-
ity, and the matrix J has only a single eigenvector. That is,
when L ¼ 0 andL ¼ 0, the eigenspace corresponding to J
becomes one dimensional. This behavior is indicative of a
codimension-two Bogdanov-Takens bifurcation, as dis-
cussed in [26,41,44]. Such a bifurcation is characterized
by the coexistence of a double-zero eigenvalue and a one-
dimensional eigenspace, which plays a critical role in the
dynamical behavior of the system.

E. Null geodesics and wormhole shadow

Presently, we consider the optical appearance of the
wormhole to a static observer. More specifically, we will
study the so-called “shadow” of the wormhole [57,58] as
seen by an observer in a fixed position, u ¼ u⊙, near the
wormhole throat (u⊙ ≈ 0). We also assume that the observ-
er’s angular coordinates are θ ¼ θ⊙ ≡ π=2 andϕ ¼ ϕ⊙ ≡ 0.
Let us consider, without loss of generality, that a light ray

reaches the observer following a trajectory in the plane
θ ¼ π=2. From Eq. (18), the line element in this 3-surface
can be written as

ds23 ¼ −AðuÞdt2 þ dl2
k þ dl2⊥; ð74Þ

where

dlk ¼
du

½AðuÞ�1=2 ; dl⊥ ¼ rðuÞdϕ: ð75Þ

The scalar lk is a proper coordinate of the observer whose
axis is parallel to the radial axis. Conversely, l⊥ is a proper
coordinate perpendicular to the radial coordinate, in the
plane θ ¼ π=2.
Denoting by α the angle of the light ray with the radial

direction, we have

tan α ¼ Δl⊥
Δlk

; ð76Þ

whereΔl⊥ andΔlk are the proper lengths of the triangle in
Fig. 3, defined by the trajectory of the light ray near the
observer at u ¼ u⊙.
Using Eq. (75) considering the limit near the observer,

Δl⊥
Δlk

⟶
rðuÞ

½AðuÞ�1=2
dϕ
du

����
u¼u⊙

; ð77Þ

hence Eq. (76), combined with the approximations in
Eqs. (38) and (39), gives

tan2ðαÞ ¼ ðrthr þ Ku2Þ2
ðA0 þA2u2Þ−1

�
dϕ
du

�
2
����
u¼u⊙

: ð78Þ

The derivative dϕ=du at u ¼ u⊙ can be found from the
geodesic equations (29) and (30),

�
dϕ
du

�
2

¼ D2

rðuÞ2½rðuÞ2 −AðuÞD2� ; ð79Þ

FIG. 3. Light ray received by an observer and relevant
quantities for the analysis of the wormhole shadow.
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where D is the impact parameter defined in Eq. (65), and
consequently,

tan2ðαÞ ¼ D2ðA0 þA2u2⊙Þ
ðKu2⊙ þ rthrÞ2 −D2ðA0 þA2u2⊙Þ

: ð80Þ

Using the identity sin2ðαÞ ¼ tan2ðαÞ½tan2ðαÞ − 1�−1 and the
result (67), the following expression for the angle α is
obtained:

sin2ðαÞ¼ r2thrðA0þA2u2⊙Þ
2rthru2⊙ðA2rthr−A0KÞ−A0K2u4⊙þA0r2thr

:

ð81Þ

The boundary of the shadows is traced by light rays whose
angle α at the observer is given by Eq. (81).
As a consistency check, we verify from Eq. (81) that

lim
u⊙→0

sin2ðαÞ ¼ 1; ð82Þ

as it should be. This result implies that α ¼ π=2 for an
observer located at the throat u ¼ 0 (which is a photon
sphere). At this position, half of the sky is illuminated by
the stars on one side of the wormhole, while the other half is
illuminated by the stars on the other side of the wormhole.
We emphasize that our shadow analysis applies only to
observers close to the wormhole throat, since the derived
expressions are valid only in this near-throat regime. This
differs from standard shadow analyses in the literature,
which typically consider distant observers, particularly for
symmetric wormholes with a single photon sphere [59,60].
Our near-field treatment reveals distinctive observational
signatures that complement the well-studied far-field case.

F. Timelike geodesics

Let us consider the dynamics of timelike geodesics
(L ¼ 1) in the background of the de Sitter wormhole. As
noted in Sec. III, the effective potential (32) is symmetric and
has a single maximum point around u ¼ 0. Therefore,
general results derived in Secs. IVA and IV B indicate that
null and timelike geodesic dynamics are qualitatively
similar. In particular, the only fixed point of the dynamical
system is ðu⋆ ¼ 0; w⋆ ¼ 0Þ, that is, at the wormhole throat.
It is an unstable fixed point according to both Lyapunov and
Jacobi criteria. A typical phase diagram for the dynamics of
timelike geodesics is shown in Fig. 4.
With the points discussed, one can sketch the motion of a

massive particle traveling in the direction of the wormhole.
If the particle has enough energy (E > V0), it crosses the
wormhole throat towards another patch in the direction of
the cosmological horizon. For the critical energy value
E ¼ V0, the particle is temporarily trapped in a closed
circular orbit around the throat. And for a low-energy

particle (E < V0), it bounces back without reaching a
bounded orbit.
The general behavior of massive particles in the worm-

hole spacetime is captured by their trajectories near the
throat.Using results (55)–(56), analytical expressions can be
derived. ForL ¼ 1, this local solution can be expressed as

�
uðλÞ
wðλÞ

�
¼ Cþ

 ffiffiffiffiffiffiffiffiffiffiffi
2jV2j

p
1

!
e
ffiffiffiffiffiffiffiffi
2jV2j

p
λ

þ C−

 
−

ffiffiffiffiffiffiffiffiffiffiffi
2jV2j

p
1

!
e−

ffiffiffiffiffiffiffiffi
2jV2j

p
λ; ð83Þ

with the constantV2 in Eq. (42) depending on thewormhole
parameters, and the constants C� that can be determined
from the initial condition. The solution (83) is associated to
the hyperbolic orbits in state space M2 given by

w2 − E2

�
2K
rthr

�
1 −

2A0

E2

�
−
A2

A0

�
u2

¼ 2E2

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

D2
crit

þ 2A0

E2

s 1
A; ð84Þ

where D and E are the impact parameter and energy of the
timelike geodesic (respectively), and Dcrit is the critical
impact parameter of the null geodesics. As seen in Fig. 5, the
approximation performed for timelike geodesics shows
improved accuracy near the throat region, with decreasing
concordance at larger distances.
The fixed points for both null and timelike geodesics are

identified as the wormhole throat, which corresponds to the
light sphere. Moreover, from results (70) and (84), we

FIG. 4. Two-dimensional phase portrait M2 for the timelike
dynamical system withM ¼ 1.0, q ¼ 0.5, Λ ¼ 0.1, C ¼ 0.5, and
several values of D.
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observe that the trajectories of these geodesics exhibit
hyperbolic behavior close to the fixed point. Although the
orbits have the same geometric shape, the trajectories of
null and timelike geodesics do not coincide for the same
values of energy E and angular momentum L. This
distinction is expected because the dynamical properties
of null and timelike geodesics are inherently different.
However, in the limit of large E, the trajectories of null and
timelike geodesics converge. This behavior is consistent
with relativistic principles, since timelike geodesics asymp-
totically approach null geodesics in the high-energy
regime, reflecting the well-known phenomenon in which
massive particles exhibit lightlike behavior as their veloc-
ities approach the speed of light.
Analogous to the massless particle result (68) and (69),

result (83) describes massive particles spiraling into or out
of the wormhole throat. Massive particles stay near the
throat for some time and eventually escape.
A qualitative difference between the dynamics of time-

like geodesics and its counterpart for the null geodesics is
the absence of a possible bifurcation in the present case. As
can be seen from the expression (32), the effective potential
with L ¼ 1 always has a quadratic form, even for radial

geodesics (L ¼ 0). This excludes the kind of bifurcation
observed in null-geodesic dynamics.

V. FINAL REMARKS

In this work, we investigated the dynamics of photons
and massive particles around an asymptotically de Sitter
wormhole. This spacetime was interpreted as a Randall-
Sundrum brane. Geodesic stability was studied and the
shadow of the wormhole was analyzed. We estimated the
angular amplitude of the wormhole from the perspective of
an observer near the throat, deriving analytical expressions
within this approximation.
We found that the general behavior of null and timelike

geodesics in the wormhole background is qualitatively
similar. Both dynamics share a unique fixed point, corre-
sponding to the wormhole throat, which is described as a
photon sphere in our formalism. Stability evaluations using
Lyapunov and Jacobi criteria consistently classify this
structure as an unstable saddle point. Consequently, mass-
less and massive particles are found to spiral into or out of
the wormhole throat.
Bifurcation theory provided further insight into the null-

geodesic dynamics. Notably, a Bogdanov-Takens bifurca-
tion was identified, which manifests itself as a qualitative
change in the effective potential for radial trajectories. It is
interesting to note that this bifurcation does not appear in
the dynamics of timelike geodesics. Moreover, the absence
of homoclinic and heteroclinic trajectories for both null and
timelike orbits suggests that these dynamical systems are
structurally stable. These results contribute to a deeper
understanding of wormhole physics, particularly regarding
geodesic behavior and stability, and provide a foundation
for future studies of observable phenomena.
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