
Proceedings of the XVIII International Symposium on Dynamic Problems of Mechanics (DINAME 2019),
M.A. Savi, T.G. Ritto and W.M. Bessa (editors), ABCM, Buzios, RJ, Brazil, March 10th to 15th, 2019

Fuzzy inference of oil furnace combustion state through computer
vision information
Gustavo C. S. Neto (gustavoneto@usp.br)1, Danilo S. Chui (danilochui@usp.br)1, Flavio C.
Trigo (trigo.flavio@usp.br)1, Flavius P. R. Martins (flavius.martins@usp.br)1 and Agenor T. Fleury
(agenorfleury@usp.br)1
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Abstract: Regular furnace operation systems require continuous monitoring of air/fuel ratio, oil and water temperatures,
combustion byproducts emissions, etc. Experts analyze these data to detect anomalies and act to prevent the system to
reach critical or undesired conditions. PID controllers may control parameter reference levels, however human decision
is still crucial to the control process. A first step on human decision is to recognize flame patterns that constitute
anomalous behavior and then, through experience, change parameters to stabilize the combustion process. This research
focus on this first step and proposes a method that infers different anomalous states from images captured by a digital
camera from an experimental oil furnace. Different image processing algorithms extract information through features
vectors that are analyzed by a previously trained “artificial expert”. State of the combustion processes are then obtained
through fuzzy inference together with estimated input values. Results show that the proposed “artificial expert” is able
identify most different anomalous states as desired.
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INTRODUCTION

Industrial furnace operation requires an extensive network of sensors and safety measures to assure a continuous and
stable combustion process. Even though sophisticated supervisory systems may provide several pieces of information and
control systems are available for reference tracking parameters, e.g., PID controllers, there are a great number of factors
that can cause deviations from optimal combustion operation. For such cases, human experts still play a fundamental role
on decision making, due to their accumulated technical experience and their pattern recognition ability.

Combustion processes inside furnace chambers are subjected to a variety of physical phenomena, such as acoustic
vibrations inside the chamber, heat transfer between the flame and the surroundings, interaction of fluids with different
velocities that suffer chemical reactions, and so on. This complexity poses a great difficulty on modeling the combustion
process. Thus, creating supervisory or control systems that can predict combustion state or correct possible deviations is
a very challenging task, making the job of technical experts even more relevant for this application.

On the other hand, several researches try to overcome modeling difficulties and attempt to mimic the human decision
making process (Li and Chang, 2000; Cho et al., 1998). González-Cencerrado, Peña and Gil (2012) studied the influence
of the air-fuel ratio on the structure and stability of the flame from images obtained by a CCD camera in a swirl-stabilized,
semi-industrial scale burner of 500 kWth for biomass processing with pulverized coal. Chen, Chan and Cheng (2013)
used flame images along with principal component analysis for modeling the combustion in a heavy oil burner. From
a set of 300 colored images (RGB standard), a matrix was assembled in which each line is formed by three ordered
vector blocks containing the red, green and blue tones of an image. That is, for an RGB image of 658× 492 , each line
will have dimension of 3 · 658 · 492. With this matrix, it was found that the first two components presents 98.8% of the
total variance of flame image. Tóth et al. (2017) investigated the use of deep belief networks using routinely measured
operational parameters and real-time flame imaging to predict the thermal output of a 3 MW biomass boiler. It was found
that flame images analysis increases the accuracy of predictions compared to those obtained using only operational data.
Sreedhanya et al. (2017) used the Mamdani inference method (Mamdani and Assilian, 1975) to estimate the temperature
measurement based on the red, green and blue tones of the flame image of a typical rotary kiln of the cement manufacturing
process.

An indicator that the combustion process in furnaces is according to specifications is the stability of its flame. It
should be monitored and maintained continuously to improve overall combustion performance. Stability depends on a
number of factors, such as fuel type, equivalence ratio, furnace structure and type of burner. Since flame stability is
closely linked to the combustion efficiency and its respective pollutant emissions, several techniques for flame monitoring
and characterization have been proposed. Bertucco et al. (2000), which presents the proposal of an approach by cellular
neural networks for real-time analysis in the combustion process of a garbage incinerator. Fleury, Martins and Trigo (2009)
propose an approach for the monitoring of oil furnace flames by identifying the quality of nebulization using computer
vision and Kalman filter techniques. In this work, they used CCD video cameras sensitive to the infrared spectrum to



Fuzzy inference of oil furnace combustion state through computer vision information

capture and monitor the flame rather than conventional sensors. From the capture of these images, properties such as
brightness, geometry and spectrum of spatial frequencies are used to construct a vector of characteristics, considered
the state of the dynamic system. Estimates of this vector, whose model of propagation adopted is the random walk, are
obtained with a Kalman filter.

Fleury, Trigo and Martins (2013) proposed an estimation method for atomization quality from grabbed flame images
on an industrial furnace that burns fuel oil type 1. They classified flame atomization quality based on a fuzzy rule, and
then estimated quality of new flames combining a random-walk model with Kalman filtering. This research triggered a
series of articles that related flame images processed by computer vision techniques to aspects of the combustion process
dynamics (Silva et al., 2015; Fleury et al., 2015). Recently, Fleury et al. (2018) proposed an inference model to correlate
33 flame image features with 5 physical input values, that could make combustion state diagnostics among 9 flame state
categories. That inference engine, based on Dempster-Shafer method, was able to recognize most of the sudden changes
in the combustion process resulting from the modification of physical parameters.

This work makes further developments on the results of Fleury et al. (2018) for the same objective that is to correlate
input physical data to flame image features and classify different flame states as flame categories. Instead of using
Dempster-Shafer method, a fuzzy inference engine based on 11 image features will correlate 3 physical input values, and
in addition to classify the flame image into 5 flame state categories, it will also estimate input values for each flame image.

EXPERIMENTAL EQUIPMENT

Experimental data were obtained from a vertical furnace with 4.0 m height and 1.5 m internal diameter, that is divided
in 12 water cooled ring blocks. The burner, located at the bottom, presents two manually controlled air inlets for primary
and secondary air supplies, as shown on Fig. 1, and may process up to 80 kg/h of fuel oil number 1. At the top, an opening
leads the combustion byproduct gases to the exhaust pipe. A digital camera especially prepared for high temperature
applications is placed at the central cross-section block of the furnace. It has a heat shield and a water cooling system to
allow continuous operation in the hostile environment of the working furnace.

Figure 1 – Burner schematics, adapted from Fleury et al. (2013).

Images of the combustion process were captured by a monochromatic RS-170 CCD camera coupled with a narrow
band-pass interferometric filter at 900 nm wave length, which is the range of the radiation of the soot that corresponds to
almost all the radiation emitted by a typical oil flame, mounted over a 6 mm lens (f/1.2). Video data acquisition was made
through a frame grabber board at sampling rate of 25 Hz, whose output were interlaced 640 x 480 pixel images. In order
to correlate flame images to physical variables, other process parameters needed to be monitored: fuel pressure, mass flow
and temperature, nebulization steam pressure, flow and temperature, exhaust gases temperature and concentration of CO,
CO2, SO2, O2 and NOx.

FLAME CLASSIFICATION AND IMAGE ANALYSIS

Three input variables were selected as effective on acting over the system response: SFR (steam to fuel ratio), EA (%
excess air) and PSAFR (primary to secondary air flow ratio). Steam to fuel ratio is a measure of atomization of the fuel
and affects consumption and combustion quality. Additionally, the excess air measures how fuel poor the mixture is, and
have great influence over the exhaust gas emissions. And also, primary to secondary air flow ratio affects the stability of
the flame. A design of experiments was carried out to analyze the influence of each of three input variables in the most
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separate way as possible. Each experimental run with different input values were named as a “Parameter Set”. Groups
of parameter sets were classified according to the opinion of an expert into different categories of flame. Figure 2 shows
examples of segmented images of each category and contents of Tab. 1 sum up the information of the tests.

Figure 2 – (a) Stable flame. (b) Unstable flame. (c) Low excess air flame. (d) High excess air flame. (e) Poorly
atomized flame

Table 1 – Experimental operational parameters by flame category.

Primary Secondary Steam Oil fuel
Category Parameter air flow air flow flow flow PSAFR EA SFR

Set (m3/h) (m3/h) (kg/h) (kg/h) (%)
Nominal 500 500 23 70 1.00 3.0 0.33

EA high level 1 500 500 23 70 1.00 3.8 0.33
Stable, PSAFR high level 1 600 400 23 70 1.50 3.0 0.33

well-atomized PSAFR high level 2 650 350 23 70 1.86 3.0 0.33
and normal SFR high level 1 500 500 25 70 1.00 3.0 0.36
excess air SFR high level 2 500 500 30 70 1.00 3.0 0.43

SFR high level 3 500 500 35 70 1.00 3.0 0.50
SFR high level 4 500 500 40 70 1.00 3.0 0.57

Unstable PSAFR high level 3 700 300 23 70 2.33 3.0 0.33
Low EA low level 1 500 500 23 70 1.00 1.0 0.33

excess air EA low level 2 500 500 23 70 1.00 1.5 0.33
High EA high level 2 500 500 23 70 1.00 5.0 0.33

excess air EA high level 3 500 500 23 70 1.00 6.0 0.33
SFR low level 1 500 500 20 70 1.00 3.0 0.29

Poorly SFR low level 2 500 500 18 70 1.00 3.0 0.26
atomized SFR low level 3 500 500 16 70 1.00 3.0 0.23

SFR low level 4 500 500 15 70 1.00 3.0 0.21
SFR low level 5 500 500 12 70 1.00 3.0 0.17

Flame Image Processing

From experimental data, image sequences were obtained for each “Parameter Set” of Tab. 1. As the acquisition module
delivers interlaced images, the first step is to deinterlace them. Deinterlacement process generates two non-interlaced
images called odd and even images, which is a reference to the line numbers from the original image. An original image
from the “Nominal” parameter set and its deinterlaced counterparts are shown in Fig. 3(a) to 3(c).

Then, it is needed to separate the flame from the background of the furnace. A binarization process based on 1D Otsu
method is used, Fig. 4(b). After that, segmentation is completed using the white part of the binarized image as a filter of
the deinterlaced image, Fig. 4(c). Both binary and segmented image are used to form the respective feature vector.

Image Feature Vector

It is a common practice on image based classification problems to represent the image as a series of distinctive visual
features or image characteristics. These data that summarize the image itself are gathered inside a feature vector. On
a dynamic state identification of the flames, the calculation of such features and generation of these image vectors are
continuous. For the identification of the flame state, it was used a group of 11 image features: f1: Luminous region or
simply the area of the binary image; f2 and f3: x and y coordinates of image centroid; f4 and f5: second moments of area
relative to x and y axis; f6: perimeter of the binary image; f7: detachment from the burner, that is the closest distance from
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Figure 3 – (a) Original image. (b) Deinterlaced odd image. (c) Deinterlaced even image.

Figure 4 – (a) Deinterlaced even image. (b) Binarized image. (c) Segmented image

the burner location (or extreme right of the image) to the rightmost pixel of the image; f8: dispersion, that is a measure
of how clustered the pixels are, normalized by the area; f9: eccentricity of an ellipse that approximately surrounds the
image, maintaining an area that is approximately the area of the image; f10: normalized average brightness of the image
and f11: non-uniformity, that is a measure of the deviation from the average brightness.

Available images from all the parameter sets were divided in the following manner: 70% for a training set to generate
the fuzzy rules, and 30% for the validation set. Validation set data were used to test if the rules created with the training
set lead to appropriate identification.

FUZZY INFERENCE

In most mathematically modeled phenomena, inaccurate data arises, often approximated by real numbers, which
causes a certain “stiffness” in the model, often unnecessary. The Fuzzy Set Theory, introduced by Zadeh (1965), appears
as an excellent alternative for modeling these problems. This fact leads to greater fidelity in the storage and processing
of inaccurate concepts in computer programming, making operation with numbers that contain incorporated uncertainties
possible.

A fuzzy set N of a classical set U , denominated universe of discourse, (N ⊂ U) is characterized by the function
µN(x) : U −→ [0,1] so-called membership function of fuzzy set N. It is common to write the set N as a classical set
formed by ordered pairs N = {(x,µN(x))/x ∈U}. That is, a fuzzy set is fully characterized by µN(x) and it represents the
grade of membership of x in N. They map the elements of an universe set U to the interval [0,1] and allow to specify how
well an object satisfies a vague description. Thus, a sentence may be partially true and partially false.

A 4-tuple [a b c d], with a,b,c,d ∈ R, where “a” represents the smallest likely value, [b,c] interval the most probable
values, “c” the largest possible value of any fuzzy event and whose membership function’s graph forms a trapezium is
called Trapezoidal Fuzzy Number (TpFN). An example of this number is Fig.5. A particular case of TpFN is Triangular
Fuzzy Number, where b = c, and it is denoted by [a b d].

Fuzzy rules tend to mimic human behavior to infer an output based on input variables. A fuzzy rule may be written as
If situation Then conclusion (If x is A Then y is B). The situation called rule antecedent, is defined as a combination of
relations such as x is A for each component of a input vector. The conclusion part, y is B, is called consequence. Prade
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and Dubois (1996) comment that If / then rules provide a suitable format for expressing parts of knowledge, but it is just
a format which to cover different intended semantics and uses. A Fuzzy Inference System (FIS) is a manner of mapping
an input space to an output space using If / then rules. A FIS tries to formalize the reasoning process of human language
by terms of fuzzy logic (Barros and Bassanezi, 2010). In the flame identification problem, for each image acquired from
the system, the state of the flame is inferred from image feature values.

In general, a FIS consists of following parts: i) fuzzification module, that transforms the inputs, which are generally
measures (real numbers which are also called crisp numbers), into fuzzy sets. ii) knowledge base, which consists of a set
of If / then rules supplied by specialists or prior informations. iii) inference engine, which simulates the human reasoning
process by making fuzzy inference on the inputs and If / then rules and finally, iv) defuzzification module, which transforms
the fuzzy set obtained by the inference engine into a crisp value. In this paper, the inference method to be used is the
Mamdani fuzzy inference (Mamdani and Assilian, 1975), which is the most commonly seen fuzzy methodology due to
its simple structure of “min-max” operations and was among the first control systems built using fuzzy set theory. Further
information on the Mamdani’s method can be found, for example, in Barros and Bassanezi (2010) and Mamdani and
Assilian (1975).

Feature vector f = [ f1 · · · f11]
T was created for all images of each category of the training set. This information together

with the help of a specialist were used to create the linguistic variables of the fuzzification module, as well as its pertinence
functions, which will form the antecedent of the rule base. For example, in the case of dispersion ( f8), it was created the
partitions low, medium, high and very high by means of triangular and trapezoidal numbers obtained from minimum and
maximum values of training images. Fig. 5 shows the membership functions of the dispersion feature. Fuzzy variable

Figure 5 – Dispersion membership functions

outputs were designated according Tab. 1. Some parameter sets were grouped into the same output in order to reduce the
number of rules in the inference module. For the SFR output, for instance, membership functions were created through
triangular and trapezoidal numbers, setting the membership value 1 to the SFR value of the category indicated in Tab.1,
which is the representative value of the class. Then, in case of SFR, the following linguistic variables were created:

• SFR normal: [0.28 0.33 0.35], that is, the value 0.33 has membership 1 to this set;

• SFR very low: [0.1 0.1 0.17 0.2], that corresponds to SFR low level 5;

• SFR low: [0.17 0.29 0.3], gathering SFR low level 1, 2, 3 and 4;

• SFR medium high: [0.33 0.36 0.4], that represents SFR high level 1;

• SFR high: [0.37 0.43 0.5], that represents SFR high level 2;

• SFR very high: [0.47 0.5 0.6 0.6], gathering SFR high level 3 and 4.

It is worth remembering that the representation [a b c] and [a b c d] in brackets refers to the triangular and trapezoidal
fuzzy numbers, respectively. Fig.6 presents the membership functions of SFR. The same strategy was used to assemble
the rule base: based on the spectrum of values obtained for the features of the training images and with the aid of a
combustion specialist, 3172 rules were created for the inference engine. With these considerations, the fuzzy inference
system was then assembled having as inputs the 11 fuzzified features of the images and as output the fuzzy numbers
PSAR, SFR and EA.
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Figure 6 – SFR membership functions

RESULTS

Simulation results of validation tests made with obtained FIS are presented on Tab. 2. In these simulations the vali-
dation set of images were used for all the specified known conditions already shown on Tab. 1, processed through Fuzzy
inference and classified into a a priori known category. Percentage of correct inference is obtained through a comparison
between the known conditions of the experimental data and the inferred category for each image.

Table 2 – Results of FIS.

Category Percentage of Correct Answers
Stable, Well-atomized and Normal Excess Air 95.45%

Unstable 83.33%
Poorly Atomized 97.96%
Low Excess Air 0.00%
High Excess Air 2.08%

From Tab. 2, it can be verified that for the analysis of flame instability, represented here by the imbalance of the
primary and secondary air ratio (PSAFR), the FIS has a quite good percentage of correctness. In the case of wrongly
inferred unstable flames, 16.67% may represent images that show a mixed behavior of stable and unstable conditions, and
consequently their image features, although unstable, could be interpreted as a stable flame. Figure 7 shows the inferred
values of PSAFR and EA and their target values for unstable flames. In this case, inferred values are close to the target
values, with EA average a little greater than target value, but overall explain good performance on flame classification.

Figure 7 – Inferred PSAFR and EA values vs. target values for unstable flames
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A better performance were observed for “Stable, Well-atomized and Normal Excess Air” and “Poorly Atomized”
categories with errors of only 4.55% and 2.04%, respectively. Figure 8 shows he inferred values of PSAFR and EA and
their target values for stable, well atomized and with normal excess air flames. It can be seen that, although some of
punctual disparities exist, inferred values tend to follow target values.

Figure 8 – Inferred PSAFR and EA values vs. target values for stable, well atomized and with normal excess air
flames

In the “Low Excess Air” and “High Excess Air” cases, the designed FIS presented a poor outcome. This is due to
the fact that FIS is in doubt between a Normal Excess Air flame and its correct category. In most cases, this is due to
the fact that the highest membership is from the Normal Excess Air category, then the classification of the validation data
indicates that there is no combustion irregularity. It should be noted that the FIS makes no confusion between High and
Low Excess Air. High Excess Air images were classified either as Normal or High Excess Air. On the other hand, Low
Excess Air images were all classified as Normal Excess Air. This indicates that it may be necessary to add other indicators
to help FIS distinguish flames with Normal Excess Air from flames with disturbances in Excess Air, either low or high.
Figure 9 shows a comparison of either low and high excess air cases for their inferred and target EA values. For both
cases, inferred values have average values close to 3%, which is the nominal value for the EA variable. Thus, it can be
seen that designed FIS is not evaluating EA properly, as discussed above.

(a) (b)

Figure 9 – Inferred EA values vs. target values for (a) low excess air and (b) high excess air cases

In order to verify the behavior of the inference engine on a dynamic situation, a simulation was carried out gradually
varying input PSAFR. Inference engine maintains its state identification with few deviations to the desired state according
to the right categories. Figure 10 shows the evolution membership values throughout the image sequence. From image 1
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to 82, parameter sets change from Nominal to PSAFR high level 1 and then to PSAFR high level 2, all of them composing
the category “Stable, well-atomized and normal excess air”. Even though, the inference identifies conditions PSAFR high
level 1 and PSAFR high level 2 as Nominal, all these parameter sets fall into the same category, due to similarity on flame
responses. From image 83 to 111, inference engine presents some difficulty on locking the identification to PSAFR high
level 3, but most of the samples were identified as “Unstable”, due to a larger membership for PSAFR high level 3, as
showed on Tab. 2.

Figure 10 – State inference for sequence of images for PSAFR variation

CONCLUSIONS

In this paper, the objective was to obtain an intelligent framework that identifies some types of anomalies in oil
furnace combustion processes and to infer values related to important indicators on combustion quality, namely SFR, EA
and PSAFR from images obtained from a CCD camera. In order to train the artificial intelligence, tests under conditions
known a priori were made and their images classified by a specialist. These images were processed in the search for
features that translated the behavior of these combustion conditions. These features were used together with the expert’s
knowledge to obtain the fuzzification module and the inference engine for the fuzzy inference system (FIS). After that,
validation tests were done in order to verify the accuracy of the FIS. The results showed that this inference machine
presents good results for detection of atomization defects (related to SFR variable) and instability in the primary/secondary
air ratio (related to PSAFR variable). For the imbalance in excess air, the system has difficulty on distinguishing among
flames with normal excess air and altered excess air, indicating the need of embedding different types of information to
the inference engine, and it will require further research to overcome this problem. However, it should be noted that
although excess air anomalies were not identified correctly, the inference engine does not confuses low excess air with
high excess air, and vice-versa, which is good news if one supposedly design a controller, for it would not act against the
actual anomaly to bring it to nominal condition. In any case, the proposed model presents itself as a tool for detecting and
inferring indicators of atomization defects and imbalance in the primary/secondary air ratio, and also gives an estimation
of quantitative value for these variables.
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