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Neural-Network-Based Prediction of Mooring
Forces in Floating Production Storage
and Offloading Systems

Marcelo Godoy SimbesSenior Member, IEEEIhonny Leonidas Merma Tiquilloc&ember, IEEEand
Hélio Mitio Morishita

Abstract—This paper describes the development of a neural-net- Shuttle tanker
work-based prediction of mooring forces of a deep-sea oil exploita- Mothership

tion production process. The evolvement of a neural network (FPSO with Turret)

simulator for analysis of the dynamic behavior of a system
consisting of a turret-floating production storage and offloading
(FPSO) system and a shuttle ship in tandem configuration is de-
scribed. The turret-FPSO is a vessel with a cylindrical anchoring
system fixed to the sea bed my mooring lines and a shuttle ship
is connected during the oil transference. This system has quite
complex dynamics owing to interactions of the forces and moments Mooring lines
due to current, wind, and waves. In general, the mathematical

model that represents the dynamics of these connected floating rig 1. Fioating production storage and offloading system.
units involves a set of nonlinear equations requiring several

parameters difficult to be obtained. In order to deal with such . . )
complexities, a neural network has been devised to simulate an The study of the dynamics of this system under action of cur-

FPSO tandem system. This approach opens new horizons for rent, wind, and waves is of primary concern, because the envi-
maintenance of mooring lines, preventing collisions of the ships.  ronment imposes motions on ships, stressing the mooring lines
Index Terms—Neural networks, offshore simulation, oil ex- and the hawser.
ploitation. The main purpose of this paper is the prevention of colli-
sion by monitoring the forces in order to take proper counter-
measures. However, analysis of the dynamic behavior of the
turret-FPSO system with shuttle vessel in tandem configuration
EVERAL countries have been investing in finding oil fieldss quite intricate since it depends on the relative magnitude and
in offshore deep and ultradeep sea waters. A very attratirection of the wind, current, and waves as well as the displace-
tive solution for the exploitation of such basins is the floatingnent of the ships. Moreover, the complexity of the mathematical
production storage and offloading (FPSO) system. This isnaodel precludes an easy understanding of the problem.
conventional tanker adapted to operate temporarily as a platModeling external forces and moments involves nonlinear
form to receive and store oil collected from the reservoir. Treguations and their parameters usually require test beds to de-
vessel requires a station-keeping device to withstand enviréd@rmine scaled parameters. In addition, a computer program that
mental forces. A suitable solution is an anchoring system giimulates the dynamics of an FPSO tandem system is usually
which the vessel is free to rotate about a huge cylindrical striime consuming, since it demands a huge amount of numerical
ture (turret) installed at the longitudinal center line of the shigalculation in order to try to represent the actual system dy-
Mooring lines connect the turret to anchors on the seabed. ThMic behavior. Therefore, a neural network was selected to get
cargo of the FPSO system is transferred periodically to a shutdéeasonable model of the system, performing a faster simula-
vessel, which takes the oil to onshore installations. During suiin than the conventional use of test beds and scaled models.
offloading operation, both ships are connected to each otHdls paper opens new horizons for maintenance of FPSO sys-

through a hawser, in tandem configuration, as depicted in Fig {8Ms. Those oil exploitation systems are well instrumented and
historical data from ship state variables, heading, position, speed

and yaw rate and mooring cable forces are usually available, fa-

Paper MSDAD-S 01-43, presented at the 2000 Industry Applications Socigifitating the training of neural networks in the field.
Annual Meeting, Rome, Italy, October 8-12, and approved for publication in the
IEEE TRANSACTIONS ONINDUSTRY APPLICATIONSby the Industrial Automation

. INTRODUCTION

and Control Committee of the IEEE Industry Applications Society. Manuscript Il. MODELING FPSO SSTEMS

submitted for review October 15, 2000 and released for publication December. .

14. 2001. The development of the present neural network simulator for
M. G. Sim&es is with the Engineering Division, Colorado School of Minesan FPSO tandem system is based on the mathematical knowl-

Golden, CO 80401-1887 USA (e-mail: m.g.simoes@ieee.org). __edge of the system. Three orthogonal coordinate reference sys-
J. L. M. Tiquilloca and H. M. Morishita are with the University of S&o dtod ibe th d . 1 h .

Paulo/EPUSP, 05508-900 S&o Paulo, Brazil. tgms are use Fo escri e the system dynamics [ ].as shown in
Publisher Item Identifier S 0093-9994(02)02678-6. Fig. 2. Three-dimensional reference frames are defined for the
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Body fixed wherez, andy, are the components of the vessel’s speed in the
(62xy7) coordinate system N, OX andOY axes, and is the vessel heading. The components
//\ Barth fixed u. andv, of the current are calculated as

coordinate system
ue =V cos(ipe — ¢) @)
v, = Ve sin(tp. — 1) (8)

hawser
turret

mooring cables whereV, andq), are the velocity and direction of the current.

To complete the model, high-frequency terms need to be
added to the position determined by (4)—(6) related to the ef-
Fig. 2. FPSO tandem system coordinate system geometry. fects of heave, pitch, and roll as well. The high-frequency terms
can be obtained from convolution of the response amplitude

problem; the first onep XY Z, is earth fixed (also called by in- operator (RAO) of the vessel and wave spectrum [1], but it is
ertial frame); the other twa71XY Z and@2XY Z (also called Not considered in this neural network approach.
by local frames), are body fixed in the center of gravity of the Several difficulties arise in parameterizing the above differen-
FPSO system and shuttle vessel. The axes of each body-fiéliequations due the need of a test-bed scale model, frequency
coordinate system coincide with the principal axes of inertia #Presentation of statistical variables, and variation of param-
the vessel. eters [4], [5]. The usual approach in dealing with the mooring
The ship has motions with six degrees of freedom. Ship mtae force is by considering anisolated line defined by a catenary
tions in the horizontal plane (surge, sway, and yaw) have dgquation [6]. Some commercial software like Visual-OrcaFlex
namics resulting from the combination of high-frequency arige finite-element analysis (FEA) for designing flexible risers
low-frequency terms. The former is due to the action of the firsend mooring systems. However, an integrated approach of an
order wave; motions in the heave, yaw, and row directions hakBSO tandem system under an FEA methodology of an FPSO
only high-frequency terms. The latter results from the forces at@ndem system has not yet been reported, because it demands
moment due to current, wind, and second-order waves forcB§ge computational time. These issues motivated the develop-
The vertical component along th&Z axis can be decoupled ment of the proposed work in this paper. A neural network was
for low-frequency analysis due to the extremely slow time cogelected for modeling, aiming to decrease the development time
stants, thus, all analyses can proceed on a two-dimensional bagiintegration to actual measurements. In this simulation-based
by time window analysis of sliced Y planes, adding the first- research, a scaled simulator model called DYNASIM [7] was
order terms for pitch, heave, and roll. Under such considerésed to provide ship state variables and to verify the perfor-
tions, the motions of each vessel including added mass foréeance of the modeling strategy for a future integration with real

are given by [2], [3] measurements.
(m —my1)i = (m — mag)vr — (may — mag ) l1l. N EURAL-NETWORK-BASED FPSO SSTEM MODELING
= (ma1 = maz)uer + X (1) Applications of neural networks for several engineering prob-
(m — ma2)t = (myy — m)ur — (ma, — mog)7 EE’S ha¥? flou_rished :n the .pastt/fevxt/ y(-:ars, dge tEJS]th[egi]r cAallpa-
ilities of learning nonlinear input/output mapping [8], [9]. Al-
— (mll _ le)UcT +Y (2) g p p pping

though there are hundreds of neural network paradigms, the
(I, — mes)t = —(max, —moe)(v +7u) + N (3) multilayer-perceptron (MLP) trained by backpropagation algo-
rithm reigns in more than 90% of neural network solutions [9].
wherem is the mass of the vessel;; ;, i, j = 1, 2, 6 are the An FPSO system is very complex, the nonlinear dynamic equa-
added mass in surge, sway, and yaw, respectivebndv are tions are hard to compute and, therefore, a neural network ap-
the surge and sway velocities of the vessglandv. are current proach was demonstrated to be a good solution for this kind of
speeds related ¥6.X andGY directions;r is the yaw ratef. is  problem as already shown in previous complex industrial prob-
the moment of inertia about te~ axis; X, Y andN represent lems [9]-[12].
the total external forces and moments in surge, sway, and yawt is of paramount importance to emphasize how the physical
directions due to current, wind, second-order wave term, wanedeling helped to formulate the neural network topology, in-
drift damping, cross flow, hawser, and mooring lingg;is the stead of just looking at the problem under a black-box focus.
coordinate of the vessel's center of gravity along@h& axis; It is indeed possible to correctly build up small network units,
and the dot means time derivative of the variable. The positieorresponding to the differential and algebraic equations of the
and heading of each vessel related to the earth-fixed referefmees and accelerations involved; temporal responses are em-

frame are obtained from the following equations: bedded by time delays, formulating a structured neural network
_ mirroring the physical understanding.
T =wcos(tp) — vsin(t)) (4)  The neural network simulator is designed under the assump-

o = usin(sh) + v cos(s) ) tion that, as measurements of ship states like heading, position,
y(_) speed, and yaw rate are undertaken by various navigation
P =r (6) devices like gyrocompass, rate-gyro, and global-positioning
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Output: f(z) = (21, z2, ..., Z6) (10)
Fig. 3. Time-series-based input-lagged neural network estimator.
where f(x) are vessel displacements.
The time-series neural network was developed to replace

2 Coordinate | f Mapping | | Positions f(x)‘ the parameterized scaled simulator model, enabling an inner
Transformation Forces Update model reference capable of being trained in the field by real
— data. Such model reference integrates the vessel displacements
TDL in a step-by-step simulation fashion, as indicated in Fig. 4.
In addition, a time-series network is capable of providing the
Fig. 4. Step-by-step time series neural network estimation. dynamics to the system, i.e., delayed kinematics perform the

required dynamics and the forces computations only use alge-

. . bnaic calculations. Therefore, such reference model permitted
system, mooring cables forces can also be measured in the fiel

. ) : : £ development of small network units, corresponding to
for performance evaluation. This paper investigates two neU{ﬁ\e structure of the physical modeling, i.e., the design of the
network solutions which were integrated into an FPSO tande T

system modeling: 1) time-series approach and 2) a structufe’ewcwred neural network discussed next,

neural network defined based on the knowledge of the topology Computation of Forces With a Structured Neural Network
of a set of differential equations. ] ] o
A structured neural network is defined by considering the

overall dynamical modeling, i.e., the knowledge of the system
physics guides the connection of several blocks that map forces
to the environment input variables. For example, the trigono-
Fig. 3 portrays a typical time-series neural network where timeetric relation of body-fixed frames (local) to earth-fixed (in-
input data are shifted like a transversal filter [13]; every sanertial) frames were embedded in a neural network unit that per-
pling time, a new sample is introduced in the input layer so &rmed such conversion, indicated in Fig. 5, developing the data
to predict the new output. Fig. 4 shows the approach usedftw calculation of the forces that interact with the ships.
predict position of the vessels, i.e., kinematic data were fed toA hybrid modeling [13] is used because the linear forces
the time-series neural network to generate the vessel positioiig, inertial andF,, wind force), are computed from algebraic
which were then used to map the forces. In order to get a timaultiplications, and the nonlinear forceE{ wave, Fq; slow
series of linear and angular positions and forces in the anchorsway force Fq,,, average sway forc@yy.ret turret forceF g
lines, data for training were obtained running DYNASIM [7], alamping force) are derived from neural network blocks. Fig. 5
scaled simulator developed in the Naval Architecture and Ocestrows the forces computations for one vessel. It is incorpo-
Engineering Department, University of S8o Paulo, Sdo Pautated in Fig. 6, which displays a complete system identification
Brazil. The variables were scaled and fed to the neural netwarkural network configuration, combining the interaction of the
in per-unit for training and then denormalized for testing. Thisvo ships (FPSO system and shuttle) [14].

A. Calculation of Vessels Positions With a Time-Series
Neural Network
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Input data

<

Coordinate
Transformation (NN III)

|

Feedback vessels
displacement

Compute mooring forces (NN I)
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!

Update FPSO position (NN II)
Update Shuttle position (NN V)

i

v
Vessel’s position

Fig. 7. Simulation flowchart.

TABLE |
FPSO SSTEM AND SHUTTLE DIMENSIONS

FPSO

Lenght L=320m
Draught C=7Tm
Beam B=54m
Depth P=27m

Turret with 6 mooring lines

Shuttle

Lenght L=250 m

Draught C=11.8m
Beam B=394m
Depth P=22.5m

neural network blocks. FPSO system modeling is consolidated
with neural network I(NN 1) and neural network 1I(NN II).

NN | computes forces on the six mooring cables connected to
the turret. NN Il produces the FPSO system displacement by
receiving the six mooring cable forces plus the hawser cable
computed from NN IV. The FPSO system acquires the input
datag(x), environment conditions and initial movements of the

Fig. 6 is considered a full-fledged simulator because it has ahip by theneural network | delivering at the output the forces
the physical variables interconnected through several structutedthe mooring cable (turret). The estimated forces, coming
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Fig. 8. Mooring cable estimation by time series neural network (one step ahead).
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Fig. 9. Mooring cable estimation by time series neural network (three steps ahead).
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Fig. 10. Mooring cable estimation by time series neural network (six steps ahead).

from neural network | update the new ship position, which jusi. The neural network INéomputes the force on the hawser and
considered the cables forces on the hawser wéhral net- eventually the neural network V calculates the displacements of
work Il. Thereafter, the new movement is delayed and fed battle shuttle tanker.

to theneural network 1 There is an interdependence from the The training algorithm for each of these neural networks
movement of the FPSO coordinates system to the shuttle tamikasis a standard backpropagation. Each neural network of Fig. 6
(body-fixed frames71 XY Z andG2XY Z) considered by NN was trained separately by data conveniently batched from
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Fig. 11. Hawser forces estimation (one step ahead).
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Fig. 12. Scattering diagram showing the mooring cable dispersion estimation.
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Fig. 13. Scattering diagram showing the hawser dispersion estimation.

DYNASIM. One important reason to have a structured neuralerloading possibilities, i.e., allowing functions that perform

network, formed on the basis of physical modeling, is th&milar tasks operating with different data types of objects;
grouping of meaningful data for training inner networks. Th addition, C++ provides encapsulation, inheritance, and dy-
simulator was implemented in C++ due to the flexibility ohamic run-time binding, allowing reusable code. Fig. 7 depicts
the target operating system implementation and to the functitve system simulation flowchart where the calculation runs up
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Fig. 14. Force estimation for mooring cable #1.
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Fig. 15. Estimation convergence for mooring cable #1.
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Fig. 16. Force estimation for mooring cable #6.

to the maximum prescribed simulation time. The coordinateceived from the input data, and then the mooring and hawser
transformation block refers to NN IlI, the external forces arforces are computed by NN | and 1V, the position update block
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Fig. 17. Estimation convergence for mooring cable #6.
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Fig. 18. Hawser force estimation.

calculates the delayed displacements of the FPSO system amdl trial-and-error procedure has been used to optimize the
shuttle by NN Il and NN V, which are fed back to the input operformance and the following results compare mooring and
NN I, NN IIl, and NN IV. hawser forces for two ships in the physical configuration indi-
cated in Table I. An input time-lagged neural network as pre-
viously indicated in Fig. 3 was used to predict the forces in a
IV. MODELING RESULTS mooring cable and hawser. Two data sets supplied by the scaled
Several parameters can denote the performance of a neba}gpratory model were used fortrainjng. The sets c.ontained 300
network model, and the most important is the figure of met amples of 25 s each, o_f the forces in cable 1 and in the hgvyser.
of number of tested (recalled) correct patterns. Training t he neural network weights were frozen at the end of training
) ’ % och (281x 25 s) and tested with several other data not pre-
neural net_work system to an excessively low error t_olerang nted, in order to approach the performance. Figs. 8-11 show
canresultin overall poor pe_rf_ormance *?y,the network; n effeGhe results for this time-series modeling approach with excellent
the network begins memorizing the training set and might 10§&imation accuracy.
its ability to generalize. Convergence may be measured by therpo scattering results of Figs. 12 and 13 were produced by
overall error over the ensemble of training vectors to be legkyiting how the neural network estimation output would match
than some specified minimum value. By sequentially traininge desired patterns, allowing measurement of network perfor-
and testing with an independent data test set, the error can@gnhce learning and testing. Both figures show a high correlation
compared to the learning phase total error and a generalizatigncable #1 and hawser forces estimation.
loss. The generalization loss can then be used heuristicallyin order to validate the generalization capabilities, the data
to determine whether there are too many hidden units awere split into two sets, one used for training and the other for
the hidden layer size should be decreased, or the training ®&gtting. The recalled output data are shown in the next figures,
does not adequately represent the decision class and shouldvhere the mooring cable forces on lines #1 and #6 are estimated;
augmented. the hawser force is also shown. Fig. 14 shows the real data (from
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The overall implementation was considered to have a good per-
formance. The system is expected to be integrated with online
monitoring variables such as heading, position, speed and yaw
rate, and cable forces by various sensor apparatus, contributing
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— 2 40
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0 ——— : : :
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Fig. 19. Precision of cable #1 force identification. (2]
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@
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Fig. 20. Precision of cable #6 force identification. [71

DYNASIM) and estimated force on cable #1 where it can be
seen that the network has learned the mapping within 5% acl®
curacy; the error is shown in Fig. 15. The force estimation and9]
error for mooring cable #6 are depicted in Figs. 16 and 17, which
also show a good accuracy. All the forces estimated on moorinBO]
lines #2, #3, #4, and #5 have the same kind of behavior with
good estimation performance. (11]

The FPSO system and the shuttle have a strong interaction.
Even for small shuttle displacements, great forces are produced
on the hawser; the environmental effects also influence such?!
coupling. Fig. 18 shows the estimation of hawser force. Al-
though the high-frequency content has not been captured by the
neural network (as expected by the low-frequency formulatior!3!
previously discussed), the average value is properly estimated.
Figs. 19 and 20 show graphically the precision reached by thig4]
neural network on the identification of the forces in cables #1
and #6. Cable #1 has a margin of precision within 3.32% and
Cable #2 has 1.66% of accuracy.

V. CONCLUSION

This paper has explored a methodology of using a time-<
ries-based neural network and a structured neural network
modeling and analysis of the dynamic behavior of the mov
ments of an FPSO system in tandem configuration with a shut
tanker. The FPSO system is fixed to the bottom of the sea by vt
long steel cables, which are stressed due to currents, waves,
wind. The main purposes were to develop a neural network si
ulation of floating production systems based on an amenable
chitecture for implementation in parallel computing. The neural
network approach showed a capacity of nonlinear mapping gf

to improvement of maintenance of mooring lines and preven-
tion of collisions.
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