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Neural-Network-Based Prediction of Mooring
Forces in Floating Production Storage

and Offloading Systems
Marcelo Godoy Simões, Senior Member, IEEE, Jhonny Leonidas Merma Tiquilloca, Member, IEEE, and

Hélio Mitio Morishita

Abstract—This paper describes the development of a neural-net-
work-based prediction of mooring forces of a deep-sea oil exploita-
tion production process. The evolvement of a neural network
simulator for analysis of the dynamic behavior of a system
consisting of a turret-floating production storage and offloading
(FPSO) system and a shuttle ship in tandem configuration is de-
scribed. The turret-FPSO is a vessel with a cylindrical anchoring
system fixed to the sea bed my mooring lines and a shuttle ship
is connected during the oil transference. This system has quite
complex dynamics owing to interactions of the forces and moments
due to current, wind, and waves. In general, the mathematical
model that represents the dynamics of these connected floating
units involves a set of nonlinear equations requiring several
parameters difficult to be obtained. In order to deal with such
complexities, a neural network has been devised to simulate an
FPSO tandem system. This approach opens new horizons for
maintenance of mooring lines, preventing collisions of the ships.

Index Terms—Neural networks, offshore simulation, oil ex-
ploitation.

I. INTRODUCTION

SEVERAL countries have been investing in finding oil fields
in offshore deep and ultradeep sea waters. A very attrac-

tive solution for the exploitation of such basins is the floating
production storage and offloading (FPSO) system. This is a
conventional tanker adapted to operate temporarily as a plat-
form to receive and store oil collected from the reservoir. The
vessel requires a station-keeping device to withstand environ-
mental forces. A suitable solution is an anchoring system in
which the vessel is free to rotate about a huge cylindrical struc-
ture (turret) installed at the longitudinal center line of the ship.
Mooring lines connect the turret to anchors on the seabed. The
cargo of the FPSO system is transferred periodically to a shuttle
vessel, which takes the oil to onshore installations. During such
offloading operation, both ships are connected to each other
through a hawser, in tandem configuration, as depicted in Fig. 1.
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Fig. 1. Floating production storage and offloading system.

The study of the dynamics of this system under action of cur-
rent, wind, and waves is of primary concern, because the envi-
ronment imposes motions on ships, stressing the mooring lines
and the hawser.

The main purpose of this paper is the prevention of colli-
sion by monitoring the forces in order to take proper counter-
measures. However, analysis of the dynamic behavior of the
turret-FPSO system with shuttle vessel in tandem configuration
is quite intricate since it depends on the relative magnitude and
direction of the wind, current, and waves as well as the displace-
ment of the ships. Moreover, the complexity of the mathematical
model precludes an easy understanding of the problem.

Modeling external forces and moments involves nonlinear
equations and their parameters usually require test beds to de-
termine scaled parameters. In addition, a computer program that
simulates the dynamics of an FPSO tandem system is usually
time consuming, since it demands a huge amount of numerical
calculation in order to try to represent the actual system dy-
namic behavior. Therefore, a neural network was selected to get
a reasonable model of the system, performing a faster simula-
tion than the conventional use of test beds and scaled models.
This paper opens new horizons for maintenance of FPSO sys-
tems. Those oil exploitation systems are well instrumented and
historical data from ship state variables, heading, position, speed
and yaw rate and mooring cable forces are usually available, fa-
cilitating the training of neural networks in the field.

II. M ODELING FPSO SYSTEMS

The development of the present neural network simulator for
an FPSO tandem system is based on the mathematical knowl-
edge of the system. Three orthogonal coordinate reference sys-
tems are used to describe the system dynamics [1] as shown in
Fig. 2. Three-dimensional reference frames are defined for the

0093-9994/02$17.00 © 2002 IEEE
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Fig. 2. FPSO tandem system coordinate system geometry.

problem; the first one, , is earth fixed (also called by in-
ertial frame); the other two, and (also called
by local frames), are body fixed in the center of gravity of the
FPSO system and shuttle vessel. The axes of each body-fixed
coordinate system coincide with the principal axes of inertia of
the vessel.

The ship has motions with six degrees of freedom. Ship mo-
tions in the horizontal plane (surge, sway, and yaw) have dy-
namics resulting from the combination of high-frequency and
low-frequency terms. The former is due to the action of the first-
order wave; motions in the heave, yaw, and row directions have
only high-frequency terms. The latter results from the forces and
moment due to current, wind, and second-order waves forces.
The vertical component along the axis can be decoupled
for low-frequency analysis due to the extremely slow time con-
stants, thus, all analyses can proceed on a two-dimensional basis
by time window analysis of sliced planes, adding the first-
order terms for pitch, heave, and roll. Under such considera-
tions, the motions of each vessel including added mass forces
are given by [2], [3]

(1)

(2)

(3)

where is the mass of the vessel; , 1, 2, 6 are the
added mass in surge, sway, and yaw, respectively;and are
the surge and sway velocities of the vessel;and are current
speeds related to and directions; is the yaw rate; is
the moment of inertia about the axis; and represent
the total external forces and moments in surge, sway, and yaw
directions due to current, wind, second-order wave term, wave
drift damping, cross flow, hawser, and mooring lines;is the
coordinate of the vessel’s center of gravity along the axis;
and the dot means time derivative of the variable. The position
and heading of each vessel related to the earth-fixed reference
frame are obtained from the following equations:

(4)

(5)

(6)

where and are the components of the vessel’s speed in the
and axes, and is the vessel heading. The components

and of the current are calculated as

(7)

(8)

where and are the velocity and direction of the current.
To complete the model, high-frequency terms need to be

added to the position determined by (4)–(6) related to the ef-
fects of heave, pitch, and roll as well. The high-frequency terms
can be obtained from convolution of the response amplitude
operator (RAO) of the vessel and wave spectrum [1], but it is
not considered in this neural network approach.

Several difficulties arise in parameterizing the above differen-
tial equations due the need of a test-bed scale model, frequency
representation of statistical variables, and variation of param-
eters [4], [5]. The usual approach in dealing with the mooring
line force is by considering an isolated line defined by a catenary
equation [6]. Some commercial software like Visual-OrcaFlex
use finite-element analysis (FEA) for designing flexible risers
and mooring systems. However, an integrated approach of an
FPSO tandem system under an FEA methodology of an FPSO
tandem system has not yet been reported, because it demands
huge computational time. These issues motivated the develop-
ment of the proposed work in this paper. A neural network was
selected for modeling, aiming to decrease the development time
and integration to actual measurements. In this simulation-based
research, a scaled simulator model called DYNASIM [7] was
used to provide ship state variables and to verify the perfor-
mance of the modeling strategy for a future integration with real
measurements.

III. N EURAL-NETWORK-BASED FPSO SYSTEM MODELING

Applications of neural networks for several engineering prob-
lems have flourished in the past few years, due to their capa-
bilities of learning nonlinear input/output mapping [8], [9]. Al-
though there are hundreds of neural network paradigms, the
multilayer-perceptron (MLP) trained by backpropagation algo-
rithm reigns in more than 90% of neural network solutions [9].
An FPSO system is very complex, the nonlinear dynamic equa-
tions are hard to compute and, therefore, a neural network ap-
proach was demonstrated to be a good solution for this kind of
problem as already shown in previous complex industrial prob-
lems [9]–[12].

It is of paramount importance to emphasize how the physical
modeling helped to formulate the neural network topology, in-
stead of just looking at the problem under a black-box focus.
It is indeed possible to correctly build up small network units,
corresponding to the differential and algebraic equations of the
forces and accelerations involved; temporal responses are em-
bedded by time delays, formulating a structured neural network
mirroring the physical understanding.

The neural network simulator is designed under the assump-
tion that, as measurements of ship states like heading, position,
speed, and yaw rate are undertaken by various navigation
devices like gyrocompass, rate-gyro, and global-positioning
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Fig. 3. Time-series-based input-lagged neural network estimator.

Fig. 4. Step-by-step time series neural network estimation.

system, mooring cables forces can also be measured in the field
for performance evaluation. This paper investigates two neural
network solutions which were integrated into an FPSO tandem
system modeling: 1) time-series approach and 2) a structured
neural network defined based on the knowledge of the topology
of a set of differential equations.

A. Calculation of Vessels Positions With a Time-Series
Neural Network

Fig. 3 portrays a typical time-series neural network where the
input data are shifted like a transversal filter [13]; every sam-
pling time, a new sample is introduced in the input layer so as
to predict the new output. Fig. 4 shows the approach used to
predict position of the vessels, i.e., kinematic data were fed to
the time-series neural network to generate the vessel positions,
which were then used to map the forces. In order to get a time
series of linear and angular positions and forces in the anchoring
lines, data for training were obtained running DYNASIM [7], a
scaled simulator developed in the Naval Architecture and Ocean
Engineering Department, University of São Paulo, São Paulo,
Brazil. The variables were scaled and fed to the neural network
in per-unit for training and then denormalized for testing. The

Fig. 5. Building block for structured neural network.

time-series neural network calculates through the following data
input and output requirements:

(9)

where is environmental conditions, i.e., wind, waves, and cur-
rent are lumped in the external forces , and of equations
(1)–(3) and are time-delayed vessel displacements

(10)

where are vessel displacements.
The time-series neural network was developed to replace

the parameterized scaled simulator model, enabling an inner
model reference capable of being trained in the field by real
data. Such model reference integrates the vessel displacements
in a step-by-step simulation fashion, as indicated in Fig. 4.
In addition, a time-series network is capable of providing the
dynamics to the system, i.e., delayed kinematics perform the
required dynamics and the forces computations only use alge-
braic calculations. Therefore, such reference model permitted
the development of small network units, corresponding to
the structure of the physical modeling, i.e., the design of the
structured neural network discussed next.

B. Computation of Forces With a Structured Neural Network

A structured neural network is defined by considering the
overall dynamical modeling, i.e., the knowledge of the system
physics guides the connection of several blocks that map forces
to the environment input variables. For example, the trigono-
metric relation of body-fixed frames (local) to earth-fixed (in-
ertial) frames were embedded in a neural network unit that per-
formed such conversion, indicated in Fig. 5, developing the data
for calculation of the forces that interact with the ships.

A hybrid modeling [13] is used because the linear forces
( inertial and wind force), are computed from algebraic
multiplications, and the nonlinear forces ( wave, slow
sway force, average sway force, turret force
damping force) are derived from neural network blocks. Fig. 5
shows the forces computations for one vessel. It is incorpo-
rated in Fig. 6, which displays a complete system identification
neural network configuration, combining the interaction of the
two ships (FPSO system and shuttle) [14].
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Fig. 6. Full-fledged neural network FPSO system–shuttle model.

Fig. 7. Simulation flowchart.

Fig. 6 is considered a full-fledged simulator because it has all
the physical variables interconnected through several structured

TABLE I
FPSO SYSTEM AND SHUTTLE DIMENSIONS

neural network blocks. FPSO system modeling is consolidated
with neural network I(NN I) and neural network II(NN II).
NN I computes forces on the six mooring cables connected to
the turret. NN II produces the FPSO system displacement by
receiving the six mooring cable forces plus the hawser cable
computed from NN IV. The FPSO system acquires the input
data , environment conditions and initial movements of the
ship by theneural network I, delivering at the output the forces
on the mooring cable (turret). The estimated forces, coming
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Fig. 8. Mooring cable estimation by time series neural network (one step ahead).

Fig. 9. Mooring cable estimation by time series neural network (three steps ahead).

Fig. 10. Mooring cable estimation by time series neural network (six steps ahead).

from neural network I update the new ship position, which just
considered the cables forces on the hawser withneural net-
work II. Thereafter, the new movement is delayed and fed back
to theneural network I. There is an interdependence from the
movement of the FPSO coordinates system to the shuttle tanker
(body-fixed frames and ) considered by NN

III. The neural network IVcomputes the force on the hawser and
eventually the neural network V calculates the displacements of
the shuttle tanker.

The training algorithm for each of these neural networks
was a standard backpropagation. Each neural network of Fig. 6
was trained separately by data conveniently batched from
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Fig. 11. Hawser forces estimation (one step ahead).

Fig. 12. Scattering diagram showing the mooring cable dispersion estimation.

Fig. 13. Scattering diagram showing the hawser dispersion estimation.

DYNASIM. One important reason to have a structured neural
network, formed on the basis of physical modeling, is the
grouping of meaningful data for training inner networks. The
simulator was implemented in C++ due to the flexibility of
the target operating system implementation and to the function

overloading possibilities, i.e., allowing functions that perform
similar tasks operating with different data types of objects;
in addition, C++ provides encapsulation, inheritance, and dy-
namic run-time binding, allowing reusable code. Fig. 7 depicts
the system simulation flowchart where the calculation runs up
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Fig. 14. Force estimation for mooring cable #1.

Fig. 15. Estimation convergence for mooring cable #1.

Fig. 16. Force estimation for mooring cable #6.

to the maximum prescribed simulation time. The coordinate
transformation block refers to NN III, the external forces are

received from the input data, and then the mooring and hawser
forces are computed by NN I and IV, the position update block
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Fig. 17. Estimation convergence for mooring cable #6.

Fig. 18. Hawser force estimation.

calculates the delayed displacements of the FPSO system and
shuttle by NN II and NN V, which are fed back to the input of
NN I, NN III, and NN IV.

IV. M ODELING RESULTS

Several parameters can denote the performance of a neural
network model, and the most important is the figure of merit
of number of tested (recalled) correct patterns. Training the
neural network system to an excessively low error tolerance
can result in overall poor performance by the network; in effect,
the network begins memorizing the training set and might lose
its ability to generalize. Convergence may be measured by the
overall error over the ensemble of training vectors to be less
than some specified minimum value. By sequentially training
and testing with an independent data test set, the error can be
compared to the learning phase total error and a generalization
loss. The generalization loss can then be used heuristically
to determine whether there are too many hidden units and
the hidden layer size should be decreased, or the training set
does not adequately represent the decision class and should be
augmented.

A trial-and-error procedure has been used to optimize the
performance and the following results compare mooring and
hawser forces for two ships in the physical configuration indi-
cated in Table I. An input time-lagged neural network as pre-
viously indicated in Fig. 3 was used to predict the forces in a
mooring cable and hawser. Two data sets supplied by the scaled
laboratory model were used for training. The sets contained 300
samples of 25 s each, of the forces in cable 1 and in the hawser.
The neural network weights were frozen at the end of training
epoch (281 25 s) and tested with several other data not pre-
sented, in order to approach the performance. Figs. 8–11 show
the results for this time-series modeling approach with excellent
estimation accuracy.

The scattering results of Figs. 12 and 13 were produced by
plotting how the neural network estimation output would match
the desired patterns, allowing measurement of network perfor-
mance learning and testing. Both figures show a high correlation
for cable #1 and hawser forces estimation.

In order to validate the generalization capabilities, the data
were split into two sets, one used for training and the other for
testing. The recalled output data are shown in the next figures,
where the mooring cable forces on lines #1 and #6 are estimated;
the hawser force is also shown. Fig. 14 shows the real data (from
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Fig. 19. Precision of cable #1 force identification.

Fig. 20. Precision of cable #6 force identification.

DYNASIM) and estimated force on cable #1 where it can be
seen that the network has learned the mapping within 5% ac-
curacy; the error is shown in Fig. 15. The force estimation and
error for mooring cable #6 are depicted in Figs. 16 and 17, which
also show a good accuracy. All the forces estimated on mooring
lines #2, #3, #4, and #5 have the same kind of behavior with
good estimation performance.

The FPSO system and the shuttle have a strong interaction.
Even for small shuttle displacements, great forces are produced
on the hawser; the environmental effects also influence such
coupling. Fig. 18 shows the estimation of hawser force. Al-
though the high-frequency content has not been captured by the
neural network (as expected by the low-frequency formulation
previously discussed), the average value is properly estimated.
Figs. 19 and 20 show graphically the precision reached by the
neural network on the identification of the forces in cables #1
and #6. Cable #1 has a margin of precision within 3.32% and
Cable #2 has 1.66% of accuracy.

V. CONCLUSION

This paper has explored a methodology of using a time-se-
ries-based neural network and a structured neural network for
modeling and analysis of the dynamic behavior of the move-
ments of an FPSO system in tandem configuration with a shuttle
tanker. The FPSO system is fixed to the bottom of the sea by very
long steel cables, which are stressed due to currents, waves, and
wind. The main purposes were to develop a neural network sim-
ulation of floating production systems based on an amenable ar-
chitecture for implementation in parallel computing. The neural
network approach showed a capacity of nonlinear mapping and
dynamic features extraction of a quite complex and highly non-
linear system: mooring cables stresses and the hawser cable
connection. The estimation was tested with a scaled simulator
model called DYNASIM which provided ship state variables.

The overall implementation was considered to have a good per-
formance. The system is expected to be integrated with online
monitoring variables such as heading, position, speed and yaw
rate, and cable forces by various sensor apparatus, contributing
to improvement of maintenance of mooring lines and preven-
tion of collisions.
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