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Abstract. Analytical and numerical vortex solutions for the extended Skyrme-Faddeev model
in a (3 + 1) dimensional Minkowski space-time are investigated. The extension is obtained by
adding to the Lagrangian a quartic term, which is the square of the kinetic term, and a potential
which breaks the SO(3) symmetry down to SO(2). The construction of the solutions has been
done in twofold: one makes use of an axially symmetric ansatz and solves the resulting ODE
by an analytical and a numerical way. The analytical vortices are obtained for special form
of the potentials, and the numerical ones are computed using the successive over relaxation
method for wider choice of the potentials. Another is based on a simulational technique named
the simulated annealing method which is available to treat the non-axisymmetric shape of
solutions. The crucial thing for determining the structure of vortices is the type of the potential.

1. Introduction
The so-called Skyrme-Faddeev model was introduced in the seventies [1] as a generalization to
(3+1) dimensions of the O(3) non-linear sigma model in (2+1) dimensions. The Skyrme term,
quartic in derivatives of the field, balances the quadratic kinetic term and according to Derrick’s
theorem, allows the existence of stable solutions with non-trivial Hopf topological charges. Due
to the highly non-linear character of the model and the lack of symmetries, the first soliton
solutions were only constructed in the late nineties using numerical methods [2, 3, 4, 5]. Since
then the interest in the model has increased considerably and it has found applications in many
areas of physics due mainly to the knotted character of the solutions [6]. One of the aspects of
the model that has attracted considerable attention has been its connection with gauge theories.
Faddeev and Niemi have conjectured that it might describe the low energy limit of the pure
SU(2) Yang-Mills theory [7]. They based their argument on a decomposition of the physical
degrees of freedom of the SU(2) connection, proposed in the eighties by Cho [8], and involving
a triplet of scalar fields n⃗ taking values on the sphere S2 (n⃗2 = 1). Gies [9] has calculated
the Wilsonian one loop effective action for the pure SU(2) Yang-Mills theory assuming Cho’s
decomposition, and found that the Skyrme-Faddeev action is indeed part of it, but additional
quartic terms in the derivatives of the triplet n⃗ are unavoidable. In fact, the first numerical
Hopf solitons were first constructed for the Skyrme-Faddeev model modified by a quartic term
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[2] which is the square of the kinetic term. However, the soliton solutions in [2] were constructed
for a sector of the theory where the signs of the coupling constants disagree with those indicated
by Gies’ calculations. Therefore, it is worth investigating the model with correct sign of the
coupling constants.

In this paper we consider an extended Skyrme-Faddeev model (ESF) defined by the
Lagrangian

L = M2 ∂µn⃗ · ∂µn⃗ − 1
e2

(∂µn⃗ ∧ ∂ν n⃗)2 +
β

2
(∂µn⃗ · ∂µn⃗)2 − V (n3) (1)

where n⃗ is a triplet of real scalar fields taking values on the sphere S2, n3 its third component,
M is a coupling constant with dimension of (length)−1, e2 and β are dimensionless coupling
constants, and the potential is a functional of the third component n3 of the triplet n⃗. Note
that the potential breaks the O(3) symmetry of the original Skyrme-Faddeev down to O(2),
the group of rotations on the plane n1 n2, and so eliminating two of the three Goldstone boson
degrees of freedom. In this paper the main role of potential is to stabilize the vortex solutions.

The static energy density (Hstatic = −L) associated to (1) is positive definite if V > 0,
M2 > 0, e2 > 0 and β < 0. That is the sector explored in [2] and where Hopf soliton solutions
were first constructed (for V = 0). In addition, that is also the sector explored in [10] but with
additional terms involving second derivatives of the n⃗ field, and where Hopf soliton were also
constructed. The static energy density of (1) is also positive definite for V > 0 if

M2 > 0 ; e2 < 0 ; β < 0 ; β e2 ≥ 1 (2)

That is the sector that agrees with the signature of the terms in the one loop effective action
calculated in [9] and it is the sector that we will consider in this paper. Static Hopf solitons
were constructed in [11] for the sector (2) (with V = 0) and their quantum excitations, including
comparison with glueball spectrum, were considered in [12]. An interesting feature of the Hopf
solitons constructed in [11] is that they shrink in size and then disappear as β e2 → 1, which is
exactly the point where the exact vortex solution exist [13].

The aim of the present paper is to investigate if vortex solutions for the model (1) continue
to exist when the condition β e2 = 1 is relaxed, and so if they co-exist with the Hopf solitons of
[11]. In order to stabilize the solution, we shall introduce the types of potential

V (n3) =
µ2

2
va
b , va

b ≡ (1 + n3)a(1 − n3)b (3)

where a + b = non-zero integer, and µ is a real coupling constant. A special choice of the
parameters a, b we have holomorphic solutions of the model while for the other case we still have
numerical solutions.

In this paper, first we discuss the integrable holomorphic solutions of the model and next we
shall perform the numerical stuff. The numerical simulations are done by twofold: one is by
solving a differential equation which is accomplished in terms of the standard successive over
relaxation. Another is based on energy minimization scheme called the simulated annealing.
Especially the latter analysis demonstrates the detailed behavior of the symmetry breaking of
the solutions by the change of the structure of the potential.

2. The integrable sector of the model
The first exact vortex solutions for the theory (1) were constructed in [13] for the case where the
potential vanishes, and by exploring the integrability properties of a submodel of (1). In order
to describe those exact vortex solutions it is better to perform the stereographic projection of
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the target space S2 onto the plane parameterized by the complex scalar field u and related to n⃗
by

n⃗ = (u + u∗,−i(u − u∗), u2 − 1)/(1 + u2) (4)

It was shown in [13] that the field configurations of the form

u ≡ u(z, y), u∗ ≡ u∗(z∗, y), for βe2 = 1, V = 0 (5)

are exact solutions of (1), where z = x1 + iε1x
2 and y = x3 − ε2x

0, with εa = ±1, a = 1, 2,
and xµ, µ = 0, 1, 2, 3, are the Cartesian coordinates of the Minkowski space-time. The simplest
solution is of the form u = znei k y, with n integer, and it corresponds to a vortex parallel to the
x3-axis and with waves traveling along it with the speed of light.

In terms of the complex scalar field u introduced in 4 the Lagrangian 1 becomes

L = 4M2 ∂µu∂µu∗

(1 + u2)2
+

8
e2

[
(∂µu)2(∂νu

∗)2

(1 + u2)4
+ (βe2 − 1)

(∂µu ∂µu∗)2

(1 + u2)4

]
− V (| u |2) (6)

where we have used the fact that n3 is a functional of | u |2 only, and so is the potential. The
Euler-Lagrange equations following from (6), or (1), reads

(1 + |u|2)∂µKµ − 2u∗Kµ∂µu = −u

4
(1 + |u|2)3 V ′ (7)

where V ′ = ∂V
∂u2 , and

Kµ ≡ M2∂µu +
4
e2

[
(∂νu∂νu)∂µu∗ + (β e2 − 1)(∂νu∂νu∗)∂µu

]
(1 + u2)2

(8)

We point out that the theory (6) possesses an integrable sector defined by the condition

(∂µu)2 = 0 (9)

Such condition was first discovered in the context of the CP 1 model using the generalized zero
curvature condition for integrable theories in any dimension [14], and then applied to many
models with target space being the sphere S2, or CP 1 (see [15] for a review). It leads to an
infinite number of local conserved currents. Indeed, (9) together with the equations of motion
(7) imply the conservation of the infinity of currents given by

JG
µ ≡ Kµ

δG

δu
−K∗

µ

δG

δu∗ (10)

where G is any functional of | u |2 only. For the case where the potential vanishes, the set of
conserved currents is considerably enlarged since G can be an arbitrary functional of u and u∗,
but not of their derivatives. If in addition to the condition (9) one takes V = 0 and β e2 = 1,
then the equations of motion reduce to ∂2u = 0. It is in that integrable sector that the solutions
(5) lie, and were studied in [13].

It is interesting to note that (7) with a special choice of the potential

V (n3) =
µ2

2
(1 + n3)2−2/n(1 − n3)2+2/n (11)

have an analytical, holomorphic solution for each topological charge as

u(ρ, φ, z, τ) =
(ρ

a

)n
ei[ϵnφ+k(z+τ)] (12)
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Figure 1. The n = 2 profile g(y) and the corresponding Hamiltonian density of the real space
H(ρ) of k2 = 0.0 for the constant r2

0µ
2/M2 = 1.0.

where ϵ = ±1 and a describes a scale of the solution. Here we used dimensionless polar
coordinates (ρ, φ, z, τ) defined by

x0 = ct = r0τ, x1 = r0ρ cos φ, x2 = r0ρ sinφ, x3 = r0z (13)

and where we have introduced a length scale r0 given by

r2
0 = − 4

M2 e2
. (14)

Substituting (12) into (7) the a can be determined such as

a =| n |
[
M2(βe2 − 1)

r2
0µ

2

]1/4

=| n |
[
(−e2) (βe2 − 1)M4

4 µ2

]1/4

(15)

Clearly, the special solution at βe2 = 1 is obtained if we take a proper limit of the vanishing
potential, i.e.βe2 → 1 and µ2 → 0 with (βe2 − 1)/µ2 = constant.

In the case with the potential, the current (10) is still conserved because

∂µJµ =
δ2G

δu2
∂µuKµ +

δG

δu
∂µKµ +

δ2G

δu∗δu
∂µu∗Kµ

− δ2G

δu∗2 ∂µu∗K∗
µ − δG

δu∗∂µK∗
µ − δ2G

δuδu∗∂µu∗K∗
µ = 0 (16)

where we have used the reduced integrable equation

∂µKµ +
µ2

4
(1 + |u|2)2 ∂V (|u|2)

∂u∗ = 0. (17)

The Hamiltonian density associated to (6) is not positive definite due to the quartic terms in
time derivatives. We shall arrange the Legendre transform of each term in (6) to make explicit

XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012014 doi:10.1088/1742-6596/411/1/012014

4



1 2 3 4 5 6 7 8 9 10
12

14

16

18

20

22

24

26

28

30

 e 2

 

 

E sta
tic

　
　

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

 e 2

 
 

E 0

0

1

2

3

4

5

6

7

8

9

 

 

(
e2 -1

) E
4(2

)

1 2 3 4 5 6 7 8 9 10
0.0

1.0x10-10

2.0x10-10

3.0x10-10

4.0x10-10

 e 2

 

 

E 4(1
)

12.5660

12.5662

12.5664

12.5666

12.5668

12.5670

 

 

E 2

Figure 2. The static energy and its components corresponding to the solutions of Fig.1.
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such non positive contributions, and write the Hamiltonian density as (see [16] for details)

H = 4M2

[
| u̇ |2 +∇⃗u · ∇⃗u∗

]
(1 + u2)2

− 24
e2

(∇⃗u)2(∇⃗u∗)2

(1 + u22)4

[(2
3

)2
− F 2

]

− 24
(βe2 − 1)

e2

[
| u̇ |2 +1

3∇⃗u · ∇⃗u∗
] [

∇⃗u · ∇⃗u∗− | u̇ |2
]

(1 + u2)4
+ V (| u |2) (18)

where u̇ denotes the x0-derivative of u, and ∇⃗u its spatial gradient, and where we have denoted

u̇2

(∇⃗u)2
≡ 1

3
+ Fei Φ (19)

with F > 0 and 0 ≤ Φ ≤ 2π, being functions of the space-time coordinates. The most of terms
in (18) make positive contribution while the second term has some possibility to be negative.
Note also, for static configurations apparently it is positive definite for the range of parameters
given in (2).

3. The integrable and the non-integable sectors: numerical analysis by the SOR
Although in the previous section we used the polar coordinates, for the numerical study it is
more convenient to use a new radial coordinate y (0 ≤ y ≤ 1), defined by ρ =

√
1−y

y . We
introduce the solution ansatz of the form

u(ρ, φ, z, τ) =

√
1 − g(y)

g(y)
ei[ϵnφ+k(z+τ)] (20)

where the profile function g(y) is defined at the period 0 ≤ g ≤ 1. The equation can be written
as

d

dy

[
y(1 − y)
g(1 − g)

g′R

]
+

(
g − 1

2

) S

y(1 − y)

{
Ω −

(
y(1 − y)
g(1 − g)

g′
)2}

= − 1
y2

r2
0µ

2

M2
(1 − g)1−

2
n g1+ 2

n

{
4g − 2

(
1 +

1
n

)}
(21)

where the primes at this time indicate derivatives w.r.t.y and where

Ω = n2

S = 1 + βe2g(1 − g) y
1−y

{
Ω +

(
y(1−y)
g(1−g)g

′
)2}

R = 1 + g(1 − g) y
1−y

{
(βe2 − 2)Ω + βe2

(
y(1−y)
g(1−g)g

′
)2}

(22)

The energy in the unit of 4M2 per unit length for the time-dependent vortex can be estimated
in terms of following four parts of integrals of the dimensionless Hamiltonian H := H/4M2

E = 2π

∫ ∞

0
ρdρH(ρ) = E2 + E

(1)
4 + (βe2 − 1)E(2)

4 +
r2
0µ

2

M2
E0 (23)
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Figure 3. The n = 2 static energy and the component E
(1)
4 for several type of potentials vi

j .
k2 = 0 and r2

0µ
2/M2 = 1.0.

in which the components are defined as

E2 = π

∫ 1

0

dy

y(1 − y)

{
2k2 1 − y

y
+ n2 +

(
y(1 − y)
g(1 − g)

g′
)2}

g(1 − g) (24)

E
(1)
4 = π

∫ 1

0

dy

2(1 − y)2

{
4k2 1 − y

y
+ n2 −

(
y(1 − y)
g(1 − g)

g′
)2}

×
{

n2 −
(

y(1 − y)
g(1 − g)

g′
)2}

(g(1 − g))2 (25)

E
(2)
4 = π

∫ 1

0

dy

2(1 − y)2

{
4k2 1 − y

y
+ n2 +

(
y(1 − y)
g(1 − g)

g′
)2}

×
{

n2 +
(

y(1 − y)
g(1 − g)

g′
)2}

(g(1 − g))2 (26)

E0 = 2π

∫ 1

0

dy

y2
g2+ 2

n (1 − g)2−
2
n . (27)

It is easy to see that the k2 term in (26) has positive contributions to the energy while in (25)
the sign of the k2 term depends on the spatial structure of the solution g. For the holomorphic
solution (12), the energy (25) becomes zero and then the energy of the integrable sector keeps
positive definite for all values of k2.

For n = 2, the explicit form the potential is

Vn=2 =
µ2

2
(1 + n3)(1 − n3)3 . (28)

The potential has zero at both the origin and the infinity thus it is so called a new-BS (Baby-
Skyrmion) type. The equation (21),(22) are solved in terms of the standard successive over
relaxation scheme. Fig.1 is the profile function and the Hamiltonian density for n = 2. Fig.2
is the energy per unit length and its components for several values of βe2 and fixed µ2. We
confirmed that the value of the component E

(4)
1 is regarded as zero within the numerical

uncertainty. This clearly indicates that the solution satisfies the condition (9).
Although we have obtained the analytical solutions for a special form of the potential (3),

we have many options for choice of the potential. We can obtain many numerical solutions for
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Figure 5. The energy density per unit length of the old-BS potential v0
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the several types of the potentials. We show the result of n = 2 for the potentials v0
2, v

0
4, v

4/3
8/3;

of course these are not of the form of the analytical solution. Note that for such non-integrable
solutions, the second term in (18) survives and has a possibility to be negative. Here we only
consider the case for k2 = 0. Fig.3 presents the energies and the component E

(1)
4 for these

potentials. For n = 2, the old-BS potentials give higher total energy than the new-BS. This
indicates that the same class of potentials gives the similar energy and then, for n = 2 the
energy of the new type potential v

4/3
8/3 is closest to the integrable sector, which is also plotted in

Fig.3 for reference.

4. Broken axisymmetric solutions: analysis by the SA
In the previous sections, we have assumed that the solution is invariant under the O(2) internal
symmetry u → eiϕu as well as the transformations of the Poincaré group given by rotation on
the plane x1x2 and translations in the directions x0 and x3. However, there is a possibility of
relaxing some of these symmetries. In [17], the authors generalized the old-BS type potential as
V = µ2

2 (1 − n3)s (0 < s ≤ 4) and saw how the solution deforms from the rotational symmetry
on the x1x2 plane by the change of µ or s.

For the deformed solution, the straightforward generalization of the ansatz (20) is

u = f(ρ, φ)eiΘ(ρ,φ)eik(z+τ) (29)
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or equivalently,

n⃗ = (sin F (ρ, φ) cos[Θ(ρ, φ) + k(z + τ)], sinF (ρ, φ) sin[Θ(ρ, φ) + k(z + τ)], cos F (ρ, φ)) (30)

where the n⃗ field in terms of u is given in (4). Here Θ(ρ, φ) := nφ + Θ0(ρ, φ) and Θ0 is
homotopic to the constant map. The method is a kind of the Monte-Carlo method in which
one generates random numbers and properly change the value of the fields n⃗ by the numbers so
as to drop the energy. However, a more sophisticated method may be applied to the problem.
The simulated annealing method [18] is the application of the Metropolis algorithm which can
successfully avoids the unwanted saddle points. The analysis has been done by minimizing the
energy per unit length which is obtained by integrating the hamiltonian corresponding to (1)
with the ansatz (30) into the (ρ, φ) plane. We have confirmed that for the holomorphic solution
(12) the hamiltonian is positive definite. For the general solution, however, the energy positivity
is supported only for a certain range of k. Here we present the results for k = 0. Also, we
examine the case of n = 3 because the solution exhibits obvious symmetry breaking such as
from axial to Z2-symmetry.

We study the following several cases:
(i) We start with two standard cases: the old-BS potential v0

1 and the new-BS potential v1
1. In

Fig.4, we present the energy density per unit length. For the old-BS potential, the solution
strongly deforms from the axial symmetry while for the new-BS the solution keeps the
symmetry.

(ii) Next we shall see how the solution behaves for the change of the model parameters. In
Fig.5, we plot the energy density per unit length of the old-BS potential for several values of
the model parameter βe2. As is easily observed that for larger value of βe2, the deformation
is enhanced.

(iii) From the results of (i),(ii), we get a new insight for the symmetry breaking. That is, most
crucial thing for the deformation is that the potential is finite or not at the point antipodal
to the vacuum. In order to investigate this criterion further, we introduce following two
types of one-parameter family of potentials

Vϵ(n3) :=
µ2

2
(1 − n3)(1 + ϵn3), 0 ≤ ϵ ≤ 1 (31)

Vδ(n3) :=
µ2

2
(1 − n3)(1 + n3)δ, 0 ≤ δ ≤ 1 (32)
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Figure 7. The energy density per unit length of Vδ = µ2

2 (1 − n3)(1 + n3)δ for δ = 0.25 (left)
and δ = 0.5 (right). The results for δ = 0.0, 1.0 are already presented in Fig.4.

Note that for ϵ, δ = 0 the potentials become the old-BS and ϵ, δ = 1 they are the new-BS.
The results are stimulating. In the case of Vϵ, the solutions always break the axial symmetry
except only for ϵ = 1.0 (Fig.6). On the other hand, in the Vδ, the solutions always keep
the axial symmetry except only for δ = 0.0 (Fig.7). Thus we confirmed the criterion for
the mechanism of the symmetry breaking: if a potential has the vacuum value at the point
antipodal to the true vacuum, the solution always exhibits the axial symmetry, and if there
is no another zero except for the vacuum, the solution deforms.

We summarize our results: for n = 1, the potential for the integrable sector is the old-BS type
and the solution naturally has the axial symmetry. For n ≥ 2 the potential for the integrable
sector is always the new-BS type, and in terms of the above simulational study, the solutions
always should be axially symmetric. As a result, our prescription of the ansatz (20) is valid for
all topological charges.
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