

Universidade de São Paulo Instituto de Física de São Carlos

XIV Semana Integrada do Instituto de Física de São Carlos

Livro de Resumos da Pós-Graduação

São Carlos 2024

Ficha catalográfica elaborada pelo Serviço de Informação do IFSC

Semana Integrada do Instituto de Física de São Carlos (13: 21-25 ago.: 2023: São Carlos, SP.)

Livro de resumos da XIII Semana Integrada do Instituto de Física de São Carlos – Universidade de São Paulo / Organizado por Adonai Hilário da Silva [et al.]. São Carlos: IFSC, 2023. 358p.

Texto em português.

1. Física. I. Silva, Adonai Hilário da, org. II. Título.

ISSN: 2965-7679

21

Color confinement and topology in lattice Gauge theories

TONHON, Rafael¹; MENDES, Tereza Cristina da Rocha¹

tonhonr@usp.br

¹Instituto de Física de São Carlos - USP

Color confinement is still an open and challenging problem in modern physics, being the non-perturbative regime of $SU(N_c)$ Yang-Mills theory the primarily responsible for such difficulty. Among the various ideas proposed to understand the confinement mechanism, the center-vortex configurations seem to play a crucial role when reproducing the desired phenomenology. (1) In this picture, the Yang-Mills vacuum consists of an ensemble of percolating magnetic flux lines, the center vortices (a "spaghetti" like vacuum), in what is known as center dominance. (2) These vortex carry charges proportional to the weights of the gauge group, and can be oriented or not. The random fluctuation in the vortices degrees of freedom is (believed to be) the origin of area law of the Wilson loops. Yet, the study of these degrees of freedom is a complicated analytical task. At the same time, Monte Carlo simulations on the lattice provide us a very useful way to study these degrees of freedom, and nowadays a great deal of numerical evidence to the center-vortex scenario is available in the literature. However, the detection of these vortices is not so simple on the lattice. In the continuum, they can be identified by their guiding center while, on the lattice, the same cannot be done and one can only see plaquettes pierced by projected vortices on a dual lattice. (3) In this work, we aim to present the techniques utilized to study the center-vortex picture on the lattice, discussing some difficulties that appear, and show some results obtained by our research group at IFSC/USP.

Palavras-chave: Center vortices; Lattice Gauge theories; Color confinement.

Agência de fomento: CAPES (8887.821526/2023-00)

Referências:

1 't HOOFT, G. On the phase transition towards permanent quark confinement. **Nuclear Physics B**, v. 1238, p. 1-25, 1978. DOI: 10.1016/0550-3213(78)90153-0.

2 LANGFELD, K.; REINHARDT, H.; TENNERT, O. Confinement and scaling of the vortex vacuum of SU(2) lattice gauge theory. **Physics Letters B**, v. 419, p. 317-321, 1998. DOI: 10.1016/S0370-2693(97)01435-4.

3 DEL DEBBIO, L.; FABER, M.; GIEDT, J.; GREENSITE, J.; OLEJNIK, S. Detection of center vortices in the lattice Yang-Mills vacuum. **Physical Review D**, v. 58, n. 9, 1998. DOI: 10.1103/PhysRevD.58.094501