

ANÁLISE TERMOMECÂNICA DE COMPÓSITOS ESTRUTURADOS

Vinicius Henrique Catoia Migliatti

Prof. Dr Rogério Carrazedo

Escola de Engenharia de São Carlos (EESC-USP)

viniciuscatoia@usp.br

Objetivos

Em certas situações, a avaliação global pode validar projetos, permitindo que métodos convencionais representem adequadamente o desempenho. No entanto, é essencial compreender o comportamento dos materiais em condições específicas. A simulação por Elementos Finitos (FEA) é uma área em crescimento, impulsionada pelo computacional e pela capacidade de resolver problemas complexos. Este projeto foca em explorar técnicas numéricas para representar efeitos locais em compósitos estruturais do tipo honeycomb com bom custo computacional. É feita a análise termomecânica não acoplada do os honeycomb. investigando separadamente. A abordagem visa a precisão na reprodução dos resultados, verificando-os com artigos de referência.

Métodos e Procedimentos

Os procedimentos seguem um padrão. A priori, construiu-se as estruturas com as seguintes dimensões:

Tabela 1: Dimensões geométricas em mm.

	E ₁	E ₂ /E ₃	е	l ₁ /l ₂
Mecânico	6,00	1,00	0,346	4,00
Térmico	15,00	7,00	0,005	3,50

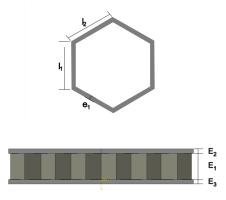


Figura 1: Dimensões Representativas.

Posteriormente, definiu-se as propriedades dos materiais. Para o problema mecânico, E = 68 GPa e v = 0.3. Para o problema mecânico, utilizou-se as propriedades das ligas Al-2024 para a chapa e Al-3003 para o núcleo. A aplicação dos carregamentos e condições de contorno mecânicas consistiu em definir as liberdades de movimento e restringir uma pequena região ao centro da placa superior para aplicar a ação responsável por deslocar a estrutura. A parcela térmica resumiu-se em definir uma temperatura fixa inicial para toda a estrutura e uma temperatura para a placa superior para o estudo do gradiente térmico. Por fim, criou-se a malha priorizando otimizar o custo computacional.

Resultados

A seguir apresenta-se os resultados para a simulação mecânica, a partir da visualização do

deslocamento vertical (Figura 2) e dos valores comparados com Ref [1-2]. (Tabela 2).

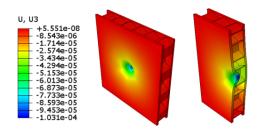


Figura 2: Deslocamento vertical em mm.

Tabela 2: Deslocamento facesheets x 10⁻⁵ mm

Tabela 2. Desideamento lacesneets x 10 mm.					
Modelo/Posição	Ref [1]	Ref [2]	Autoral		
Face Superior	9,004	10,594	10,310		
Face Inferior	3,295	3,792	3,587		

Os resultados apresentam resultados alinhados com os modelos de referência, verificando o método adotado.

Por fim, é exposto os resultados referentes ao estudo térmico na placa inferior, sendo a curva temperatura x tempo (Figura 3) e pelo comparativo entre dados autorais e de referência (Tabela 3).

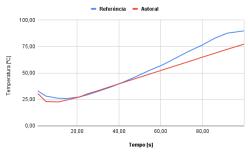


Figura 3: Gráfico temperatura x tempo

Tabela 3: Temperatura face inferior

Tempo (s)	Ref[3] (°C)	Autoral (°C)	ΔΤ (%)
1	33,21	30,84	7,14
5	28,21	22,87	18,93

25	29,50	30,39	3,02
36	36,70	37,28	1,58
80	76,53	64,95	15,13
100	89,94	77,35	13,90
σ	7.51	ΔT_Méd	7.56%

A divergência resulta da falta de clareza nos dados fornecidos pela Ref[3]. É necessário assumir valores autorais para realização. A falta de informações é comprometedora para o desvio dos resultados.

Conclusões

A análise mecânica foi verificada com sucesso, mostrando valores compatíveis aos de referência. Na análise térmica, apesar de seguir parâmetros da literatura, houve discrepância nos resultados. Em resumo, o trabalho foi eficaz na representação dos pontos desejados. Os resultados verificam a metodologia, indicando o potencial de pesquisa.

Agradecimentos

Ao CNPq pela concessão da bolsa de iniciação científica (PIBIC).

Referências

- 1- LI, D.; LIU, Y.; ZHANG, X. A layerwise/solid-element method of the linear static and free vibration analysis for the composite sandwich plates. Composites Part B: Engineering, v. 52, p. 187–198, set. 2013.
- 2- CARRAZEDO, R.; PACCOLA, R. R.; CODA, H. B. Active face prismatic positional finite element for linear and geometrically nonlinear analysis of honeycomb sandwich plates and shells. Composite Structures, v. 200, p. 849–863, set. 2018.
- 3- KONKA, K.; RAO, J.; GUPTA, K. S. A. Heat Insulation Analysis of an Aluminum Honeycomb Sandwich Structure. Journal of Thermal Engineering, v. 1, n. 3, p. 210, 2015.

