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Copy number variations and genome-wide associations reveal
putative genes and metabolic pathways involved with the feed
conversion ratio in beef cattle
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Abstract The use of genome-wide association results com-
bined with other genomic approaches may uncover genes and
metabolic pathways related to complex traits. In this study, the
phenotypic and genotypic data of 1475 Nellore (Bos indicus)
cattle and 941,033 single nucleotide polymorphisms (SNPs)
were used for genome-wide association study (GWAS) and
copy number variations (CNVs) analysis in order to identify
candidate genes and putative pathways involved with the feed
conversion ratio (FCR). The GWASwas based on the Bayes B
approach analyzing genomic windows with multiple regres-
sion models to estimate the proportion of genetic variance

explained by each window. The CNVs were detected with
PennCNV software using the log R ratio and B allele fre-
quency data. CNV regions (CNVRs) were identified with
CNVRuler and a linear regression was used to associate
CNVRs and the FCR. Functional annotation of associated
genomic regions was performed with the Database for
Annotation, Visualization and Integrated Discovery
(DAVID) and the metabolic pathways were obtained from
the Kyoto Encyclopedia of Genes and Genomes (KEGG).
We showed five genomic windows distributed over chro-
mosomes 4, 6, 7, 8, and 24 that explain 12 % of the total
genetic variance for FCR, and detected 12 CNVRs (chro-
mosomes 1, 5, 7, 10, and 12) significantly associated [false
discovery rate (FDR) < 0.05] with the FCR. Significant ge-
nomic regions (GWAS and CNV) harbor candidate genes
involved in pathways related to energetic, lipid, and pro-
tein metabolism. The metabolic pathways found in this
study are related to processes directly connected to feed
efficiency in beef cattle. It was observed that, even though
different genomic regions and genes were found between
the two approaches (GWAS and CNV), the metabolic pro-
cesses covered were related to each other. Therefore, a
combination of the approaches complement each other
and lead to a better understanding of the FCR.
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Introduction

Feeding cattle is a major cost in beef production and it directly
affects the overall profitability of the meat industry. Several
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strategies have been proposed to reduce this cost, focusing
mainly on the improvement of feed efficiency. The feed con-
version ratio (FCR) is a feed efficiency trait that measures the
animal’s capacity to convert feed consumed into the desired
output (e.g., meat deposition or gained mass). The FCR is not
a direct measurement, and it is computed as a function of the
feed consumed, body weight gain, and duration of the trial
(Arthur et al. 2001).

The discovery of DNA variants, such as single nucleotide
polymorphisms (SNPs) and copy number variations (CNVs),
which may be associated with the genetic variation of desired
economic traits, has played an important role in livestock ge-
netics (Kijas et al. 2011). In recent years, high-throughput
technologies have led to the discovery of markers associated
with economic traits by genome-wide association studies
(GWAS), which allowed the identification of subsets of
markers that explain an important portion of the variation of
these traits (Barendse et al. 2007; Moore et al. 2009; Rolf et al.
2012). The use of genomic information can be a strategy for
the improvement of interesting phenotypes such as the FCR
by increasing the prediction accuracy of young animal candi-
dates for genetic selection (Hayes et al. 2007), and, thus, ac-
celerating genetic gain by reducing the generation interval.
The association between markers and important phenotypes
can be improved by using other genomic approaches, such as
genomic prediction, to select animals (Bishop and Woolliams
2014; Kadarmideen 2014).

Additionally, several studies have reported the viability of
using the information from SNPs to identify quantitative trait
loci (QTL) and candidate genes associated with phenotypes of
interest. Moreover, pathway analyses fromGWAS results have
been applied to aggregate information about genes and the
physiology involved with important diseases and economical
traits (Carbonetto and Stephens 2013), and to understand the
molecular and physiological mechanisms involved in feed ef-
ficiency in beef cattle (Bolormaa et al. 2011; Snelling et al.
2011; Lu et al. 2013). Thus, the combination of GWAS with
other approaches can be interesting to better explain these
genes and pathways related to complex traits. There are alter-
native frameworks, such as CNVs, that can be useful to explain
the variability and unveil the molecular architecture of com-
plex traits (Hou et al. 2012b; Tamari et al. 2013; Bickhart and
Liu 2014). The objective of this studywas to identify candidate
genes and putative pathways involved with the FCR in Nellore
cattle (Bos indicus) from GWAS and CNV results.

Materials and methods

Ethical statement

No statement by the local ethics committee was required be-
cause the data used were from other experiments. DNA

samples taken from each of the tests had been approved by
the respective ethics committees of each study (Gomes et al.
2013; Santana et al. 2013; Alexandre et al. 2015).

Animals and phenotype

The phenotypic data of 1475 Nellore (B. indicus) young bulls
and steers were used from 16 different studies focusing on
feed efficiency conducted in Brazil from 2007 to 2013. The
number of animals evaluated per test ranged from 45 to 120,
and the animals had an average age of 574±95 days and live
weight of 381±45 kg at the beginning of the experiments.
These animals were from different breeding programs.

The tests were conducted in feedlots equipped with three
different types of installation: two automated systems
(GrowSafe and Calan Gates) and an individual pen system.
Before testing, a period of adaptation to diets and facilities was
conducted for no less than 21 days. Individual feed
intake was measured daily for 70 to 90 days, with an
average of 84 days. In addition, the feed was periodically
analyzed for its chemical composition in order to adjust the
dry matter intake (DMI). The diet was offered twice daily as
total mixed ration. More details about the tests, diets, and
managements appear in Gomes et al. (2013), Santana et al.
(2013), and Alexandre et al. (2015).

During the experimental period, the animals were weighed
regularly every 21 days to obtain the individual body weight
(BW). These data were used to calculate the average daily gain
(ADG), which was estimated as the slope of the linear regres-
sion of BW by individual experimental days. Feed efficiency
was evaluated by the FCR, which was estimated by dividing
theDMI by theADG. Phenotypes (ADG,DMI, and FCR)were
tested for normality (Shapiro–Wilk, P<0.05) and the data that
exceeded three standard deviations above or below the mean
were considered outliers and excluded from further analyses.

Genotypes, imputation, and informativeness

The genotypic data from 3776 Nellore cattle were used in this
study and these animals were genotyped with four different
commercial products according to manufacturer: Illumina
BovineSNP50® version 2 BeadChip (54,609 SNPs),
Illumina BovineHD® Genotyping BeadChip (777,962
SNPs), GGP Indicus Neogen HD® (84,379 SNPs), and
Affymetrix Axiom® Genome-Wide BOS 1 Array (648,874
SNPs). The genotypes were tested to ensure that they were
determined correctly and clustering provided by the manufac-
turer was correct. First, only samples with genotype calls
greater than 0.70 and call rate over 90 % were retained.
Additionally, errors of duplicate samples were tested by cal-
culating the proportion of alleles identical by state (IBS) of 10,
000 SNPs randomly sampled, and all possible pairs of sam-
ples with IBS over 95 % were deleted.
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In order to combine the genotypes of animals from these
four different genotyping platforms and, thus, increase the
sample size and marker density for association tests, a super-
dense panel (SDP) was created and imputation was imple-
mented. A total of 2604 animals were genotyped with
Illumina BovineHD. Initially, the SDP (1,261,128 SNPs)
was made by combining the genotypes of 279 (Affymetrix
BOS 1) animals also genotyped using Illumina BovineHD
(subset of 2604). Afterwards, imputation was performed for
all animals with both genotypic and phenotypic data (1475
young bulls and steers). The imputation accuracy was tested
by cross-validation for each SNP panel to the SDP in a parallel
investigation and, for all scenarios, the concordance rate was
higher than 97.5 % between the imputed and true genotypes.
Imputation procedures were performed using FImpute 2.2
software (Sargolzaei et al. 2014).

After imputation, the genotypic data were evaluated for
their informativeness and only SNPs in autosomal chromo-
somes (Chr) with minor allele frequency above 2 % and de-
viation from the Hardy–Weinberg equilibrium (χ2-test, 1 df,
P>1 × 10−5) were kept. All quality control procedures were
performed in R (R Development Core Team 2008). The final
dataset had 1475 samples and 941,033 SNPs for the associa-
tion test.

Genome-wide association study

Genome-wide associations for the FCR were made using
Bayes B analyzing all SNP data simultaneously with different
genetic variance for each SNP (Meuwissen et al. 2001; Habier
et al. 2011). The prior genetic and residual variances were
estimated using Bayes C (Garrick and Fernando 2013; Cesar
et al. 2014), with π being 0.9999. The model equation was:

y ¼ Xbþ
Xk

j¼1

a jβ jδ j þ e

where:

y The vector of the phenotypic values
X The incidence matrix for fixed effects
B The vector of fixed effects defined above
k The number of SNP loci (941,033)
aj The column vector representing the SNP covariate at

locus j coded as the number of B alleles

βj was the random substitution effect for locus j, which,
conditional on σ2

β, was assumed to be normally distributed
N(0, σ2

β) when δj=1 but βj=0 when δj=0, with δj being a
random 0/1 variable indicating the absence (with probability
π) or presence (with probability 1 − π) of locus j in the model,
and e is the vector of the random residual effects assumed to
be normally distributed N(0, σ2

e).

The variance σ2β (or σ
2
e) was a priori assumed to follow a

scaled inverse Chi-square distribution with vβ=4 (or ve=10)
degrees of freedom and scale parameter S2β (or S

2
e), and these

parameters for markers were derived as a function of the
known genetic variance of the population. The genetic vari-
ance was based on the number of SNPs assumed to have non-
zero effects based on parameter π being 0.9999 and the aver-
age SNP allele frequency. The posterior distributions of SNP
effects was performed in GenSel software (Fernando and
Garrick 2008) using Markov chain Monte Carlo (MCMC).
The Bayesian multiple regression models with π=0.9999
and about 80–105 SNP markers are fitted simultaneously in
each MCMC iteration. Inference of associations in these mul-
tiple regression models is based on genomic windows
rather than on single markers (Onteru et al. 2011), and
these genomic windows were constructed based on the
UMD3.1 bovine assembly.

In this study, 2527windows (1MB) were performed across
the autosomal chromosomes. Samples of the proportion of
genetic variance explained by each window were obtained
by dividing the variance of the window by the variance of
the whole genome in that iteration. The window was comput-
ed by multiplying the number of alleles that represent the SNP
covariates for each consecutive SNP in a window by their
sampled substitution effects in that iteration.

CNV detections and association analyses

The CNV analyses were performed in 2253 animals geno-
typed in Illumina BovineHD. The CNVs were identified by
PennCNV (Wang et al. 2007), which uses the luminosity mea-
sure of log R ratio (LRR) and B allele frequency (BAF) in the
predictions. The LRR is predicted from the ratio of the expect-
ed normalized intensity of a sample and observed normalized
intensity, while the BAF is calculated from the difference be-
tween the expected position of the cluster group and the actual
value (Winchester et al. 2009). A PennCNV perl script was
used to eliminate calls from low-quality samples based on the
standard deviation of LRR (>0.30), the default for BAF drift
(>0.01), and waviness factor (>0.05).

The CNV regions (CNVRs) were determined by merging
overlapping CNVs identified in two or more samples (Redon
et al. 2006; Hou et al. 2012a). They were inferred by
CNVRuler (Kim et al. 2012). Regions of very low density
of overlapping (recurrence parameter <0.1) were not used in
the analyses for a more robust definition of the beginning and
end of regions. CNVRs with less than 5 % allele frequency
were also not included in the association analyses.
Linear regression was used to determine associations
between CNVRs and the FCR. The false discovery rate
(FDR) method was used for multiple comparison correction,
where an FDR<0.05 was considered to have a potentially
significant association.

J Appl Genetics (2016) 57:495–504 497



Quantitative trait loci, candidate genes, and enrichment
analysis

The top five SNP windows with the highest posterior mean
proportion of genetic variance and the significant CNVRwere
considered the most important regions associated with FCR
and were declared as promising QTL. Gene annotations were
obtained from the Ensembl Genes 81 Database using BioMart
software (Kinsella et al. 2011). Functional annotation was
performed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.7 (Huang et al. 2009)
and pathway analyses were based on data available in the
Kyoto Encyclopedia of Genes and Genomes (KEGG).

Results and discussion

There was no evidence (P=0.38, P=0.47, and P=0.55 for
the FCR, DMI, and ADG, respectively) that the phenotypic
data were not normally distributed according to the Shapiro–
Wilk test. The top five associated genomic windows identified
herein explained 6.92 %, 3.02 %, 0.83 %, 0.63 %, and 0.60 %
of the genetic variance for the FCR, respectively, accounting
for 12 % of the total genetic variance (Table 1).

These genomic regions are distributed over five different
Chr: 4, 6, 7, 8, and 24 (Fig. 1) and harbor 135 genes based on
the Bos taurus genome assembly UMD3.1. Of those 135
genes, 117 are annotated and used in silico for the functional
analysis; the functional annotation tool uses gene-GO term
enrichment analysis to look at the internal relationships among
hundreds of other terms (Table 2).

The FCR is a measure of animal efficiency and relates the
conversion of consumed feed into the desired output, such as
muscle growth (protein accretion). Therefore, we identify
QTL regions associated with the FCR that harbor important
genes involved with pathways related to muscle development
(myogenesis) and enhanced adipogenesis. Themain pathways
identified in GWAS were the JAK-STAT signaling pathway,
cytokine–cytokine receptor interaction, ribosome and toll-like
receptor signaling pathway. The cytokines is a class of endog-
enous feeding-regulatory substances (Plata-Salamán 2001)
which activate the JAK-STAT pathway, positively or nega-
tively regulating the differentiation of myoblasts (Jang and
Baik 2013). The protein accretion and muscle growth is di-
rectly related to ribosome metabolism in that the protein syn-
thesis is regulated by amino acids, which actively influence
the protein synthesis by affecting the number of ribosomes, as
reported by Wannemacher et al. (1971). On the other hand,
toll-like receptors (TLRs) are associated with adipogenesis
and insulin resistance (Senn 2006; Yan et al. 2010).

According to Animal QTLdb, the QTL region Chr4 over-
laps with four (5271, 14675, 18437, and 18438) QTL previ-
ously reported for the FCR and two (18436 and 18435) for the

ADG (Sherman et al. 2008, 2009, 2010). In this QTL region,
two potential candidate genes were identified: Carnitine O-
octanoyltransferase (CROT) and Insulin-like growth factor 2
mRNA binding protein 3 (IGF2BP3). These genes are asso-
ciated with the generation of precursor metabolites and ener-
gy, fatty acid metabolism, carnitine metabolic process, and
regulation of cytokine biosynthesis, respectively (Table 2).
The relationship between IGFs proteins and feed efficiency
is well known. These proteins have been considered as prom-
ising physiological markers for feed efficiency traits since the
1990s, mainly IGF1 and IGF2 (Stick et al. 1998; Arthur et al.
2004; Moore et al. 2005; Herd and Arthur 2009). An SNP in
IGF2 was previously associated with the FCR in Bos taurus
cattle (Sherman et al. 2008).

Chr6 at 81 Mb was previously described as a suggestive
region of the signature of artificial selection for production
purposes (Pérez O’Brien et al. 2014). In this region, the gene
TECRL was identified (Table 2) and is associated with lipid
production in the body, i.e., lipid metabolic process
(GO:0006629) and oxidat ion– reduc t ion process
(GO:0055114). Another gene harbored in the region Chr6 at
81 Mb is EPHA5 (Table 2), which is related to the regulation
of insulin secretion involved in the cellular response to glu-
cose stimulus (GO:0061178), which is also important to the
lipid metabolism. In EphA5 knockout mice, behavioral
changes were observed due to altered concentrations of sero-
tonin (5-HT) and the metabolite 5-HIAA in the hypothalamus,
resulting in an increase of body weight (Mamiya et al. 2008).

In the Chr7 QTL region, several candidate genes were
identified as COMP, CRLF1, UBA52, INSL3, PGPEP1,
MPV17L2, IFI30, PIK3R2, JAK3, MAP1S, COLGALT1, and
SLC27A1, as well as one QTL previously described for the
FCR and one for the DMI (Nkrumah et al. 2007; Lu et al.
2013). These genes are involved in biological processes such
as lipid metabolism, apoptotic process (GO:0006915), cellular
protein metabolic process (GO:0044267), carbohydrate meta-
bolic process (GO:0005975), glycogen biosynthetic process
(GO:0005978), fibroblast growth factor receptor signaling
pathway (GO:0008543), protein transport (GO:0015031),
and cellular response to insulin stimulus (GO:0032869).
These biological processes are highly associated with muscle
(myogenesis) and adipose (adipogenesis) development; these
are mechanisms related to animal feed efficiency. Chr8 QTL
harbors two miRNAs (bta-mir-873 and bta-mir-876) and three
QTL for the ADG (Santana et al. 2014a) and Chr24 QTL
harbors seven genes DOK6, 5S_rRNA, CCDC102B, TMX3,
HIGD1D, DSEL, and CDH19, which were not directly asso-
ciated with molecular or biological processes related to feed
efficiency.

A total of 139,089 CNVs were identified by PennCNV
using 2253 HD genotypes, of which about 32 % (44,558)
were non-redundant, unique CNVs. CNVs were not detected
in approximately 28 % (622) of the animals. Gurgul et al.
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(2015) reported 33 % unique CNVs in 849 Holstein animals
and 48 % in animals without detection. Several CNVRs
(2667) were determined in autosomal chromosomes after
CNVRuler analyses, representing 9 % of those chromosomes.
The pattern of the different types of CNVRs was specific for
each segment, with 1111 loss, 938 gain, and 617 mixed re-
gions. Hou et al. (2012a), working with BovineHD SNP chip
in 147 Holstein animals, reported 443 CNVRs and also more
loss than gain regions, with a loss to gain ratio of 1.7.
Likewise, Wu et al. (2015) found more losses than gain and
mixed regions in Simmental cattle.

The detected CNVRs were used in the association analy-
ses, resulting in 16 non-fixed regions, where 12 (chromo-
somes 1, 5, 7, 10, and 12) had significant association
(FDR<0.05) with the FCR (Table 3). All of them were de-
fined as mixed CNVRs, meaning that the boundary of the
regions was constituted by both Bgain^ and Bloss^ of CNVs.

Compared to SNPs, CNVs can be defined as a segment of
DNA that displays copy number differences by comparison
with reference genomes (Redon et al. 2006; Scherer et al.
2007; Liu et al. 2010). In other words, a CNV is the variation
on the number of copies of a particular genomic region or gene
from one individual to another, including changing gene struc-
ture and dosage, alternating gene regulation, and exposing
recessive alleles (Zhang et al. 2009; Clop et al. 2012). The
PennCNV algorithm is the most common in CNVs detection
from SNP arrays (Kadri et al. 2012; Hou et al. 2012a; Xu et al.
2014b). It is also considered to be a software with relatively

low false-positive rates, supporting the viability of these calls
(Dellinger et al. 2010). Hou et al. (2012a) reported a high
correlation between PennCNV estimations of copy number
and qPCR copy number estimates.

The main goal of CNV detection is to identify their asso-
ciation with interested traits. Seroussi et al. (2010) were the
first to work with complex traits in livestock, finding a signif-
icant association between CNVRs and protein and fat
production, and herd life in Holstein cattle. Xu et al. (2014a)
reported 33 candidate CNVRs using BovineSNP50 arrays in
an Angus population. The authors reported one deletion in
Chr7 associated with resistance to gastrointestinal nematodes.
In another study, Xu et al. (2014a) conducted CNV analyses
on a Holstein population and reported 34 CNVs on 22 chro-
mosomes with significant association (P<0.05 and FDR cor-
rection) with milk production traits.

Searching for genes in BioMart software (Kinsella et al.
2011) on these 12 significant regions resulted in 51 genes
spread over four Chr (5, 7, 10, and 12). The metabolic path-
ways found in KEGG related with these genes were endocy-
tosis (FLJ20531, IKZF4, RNF126, ZC3H10, ZNF496,
ZNF672), glycerophospholipid metabolism (DGKA,
PPAP2C), insulin signaling pathway (SHC2), histidine metab-
olism (AMDHD1, HAL), olfactory transduction (OR10A7,
OR10P1, OR11L1, OR14C36, OR2AJ1, OR2AK2, OR2AP1,
OR2B11, OR2G2, OR2G3, OR2L13, OR2M4, OR2T1,
OR2T6, OR6C1, OR6C2, OR6C75, OR6C76, OR6F1,
OR6J1), oxidative phosphorylation (ATP5D, NDUFS7), and

Table 1 Genomic variance
explained by quantitative trait loci
(QTL) regions associated with the
feed conversion ratio (FCR) in
Nellore cattle by Bayes B

#SNP/window Start position End position Chromosome Variance (%) Cumulative variance(%)

389 81011906 81997627 6 6.92 6.92

373 14004499 14998872 8 3.02 9.94

249 32000405 32995535 4 0.83 10.77

335 5004457 5999368 7 0.63 11.40

557 9007160 9999594 24 0.60 12.00

Fig. 1 Manhattan plot of the
genome-wide association study
(GWAS) for the feed conversion
ratio (FCR) in Nellore cattle
by Bayes B
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Table 2 Symbol, name, and gene ontology of candidate genes identified from the genome-wide association study (GWAS) for the feed conversion
ratio (FCR) in Nellore cattle

Candidate gene symbol Name Gene ontology/biological process

COLGALT1 Collagen beta(1-O)galactosyltransferase 1 Extracellular matrix organization (GO:0030198)

COMP Cartilage oligomeric matrix protein Skeletal system development (GO:0001501); growth plate
cartilage development (GO:0003417); apoptotic process
(GO:0006915); cell adhesion (GO:0007155); organ
morphogenesis (GO:0009887); extracellular matrix
organization (GO:0030198); negative regulation of apoptotic
process (GO:0043066)

CRLF1 Cytokine receptor-like factor 1 Positive regulation of cell proliferation (GO:0008284);
positive regulation of tyrosine phosphorylation of Stat3
protein (GO:0042517); negative regulation of neuron
apoptotic process (GO:0043524)

CROT Carnitine O-octanoyltransferase Generation of precursor metabolites and energy
GO:0006091; fatty acid metabolic process (GO:0006631);
carnitine metabolic process (GO:0006635); fatty acid
beta-oxidation (GO:0009437)

EPHA5 EPH receptor A5 Regulation of insulin secretion involved in cellular response
to glucose stimulus (GO:0061178)

IFI30 Interferon, gamma-inducible protein 30 Cytokine-mediated signaling pathway (GO:0019221); negative
regulation of fibroblast proliferation (GO:0048147); protein
stabilization (GO:0050821); oxidation–reduction process
(GO:0055114)

IGF2BP3 Insulin-like growth factor 2 mRNA
binding protein 3

Regulation of cytokine biosynthetic process (GO:0042035);
anatomical structure morphogenesis (GO:0009653)

INSL3 Insulin-like 3 Inositol biosynthetic process (GO:0006021); lipid metabolic
process (GO:0006629); biological process (GO:0008150);
phospholipid biosynthetic process (GO:0008654)

JAK3 Janus kinase 3 JAK-STAT cascade involved in growth hormone signaling
pathway (GO:0060397)

MAP1S Microtubule-associated protein 1S Deoxyribonuclease activity (GO:0004536); protein binding
(GO:0005515); microtubule binding (GO:0008017);
microtubule binding (GO:0008017); tubulin binding
(GO:0015631); beta-tubulin binding (GO:0048487); actin
filament binding (GO:0051015); actin filament binding
(GO:0051015)

MPV17L2 MPV17 mitochondrial membrane
protein-like 2

Mitochondrial ribosome assembly (GO:0061668); positive
regulation of mitochondrial translation (GO:0070131)

PGPEP1 Pyroglutamyl-peptidase I Proteolysis (GO:0006508)

PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 Cellular glucose homeostasis (GO:0001678); phospholipid
metabolic process (GO:0006644); phosphatidylinositol
biosynthetic process (GO:0006661); insulin receptor signaling
pathway (GO:0008286); insulin receptor signaling pathway
(GO:0008286); fibroblast growth factor receptor signaling
pathway (GO:0008543); protein transport (GO:0015031);
cellular response to insulin stimulus (GO:0032869); response
to endoplasmic reticulum stress (GO:0034976);
phosphatidylinositol-3-phosphate biosynthetic process
(GO:0036092)

SLC27A1 Solute carrier family 27 (fatty acid
transporter), member 1

Medium-chain fatty acid transport (GO:0001579); long-chain
atty acid metabolic process (GO:0001676); phosphatidylethanolamine
biosynthetic process (GO:0006646); phosphatidic acid biosynthetic
process (GO:0006654); phosphatidylglycerol biosynthetic process
(GO:0006655); phosphatidylcholine biosynthetic process
(GO:0006656); phosphatidylserine biosynthetic process
(GO:0006659); long-chain fatty acid transport (GO:0015909);
response to insulin (GO:0032868); adiponectin-activated signaling
pathway (GO:0033211); cellular lipid metabolic process
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retinol metabolism (RDH5). Retinol metabolism was related
to the rump fat thickness in another GWAS in Nellore cattle.
In that study, the authors indicated that this metabolic pathway
participates in cell proliferation and differentiation, increased
fat deposition, and release of growth hormone in the pituitary
(Santana et al. 2015). Lipid and protein metabolism, which are
related to body composition and protein turnover, are widely
known and discussed as important bases for the physiology of
feed efficiency (Richardson and Herd 2004; Moore et al. 2009;
Herd and Arthur 2009). Glycerophospholipid and histidine
pathways found in this study reinforce the physiological link-
age of lipid and protein metabolism with feed efficiency.
Likewise, the endocytosis pathway was previously associated
with the DMI in Angus cattle (Rolf et al. 2012), and differences
in the gene expression profile of Yorkshire pigs related to this
molecular mechanism were also observed (Lkhagvadorj et al.
2010). Interestingly, all of the genes in this study for the endo-
cytosis pathway are genes that are encoding zinc finger-type
proteins. These proteins have been identified as candidate genes
for the DMI in Nellore cattle (Santana et al. 2014b) and
Holstein–Friesian dairy cows (Veerkamp et al. 2012).

Energy metabolism was also observed in our CNVR anal-
ysis by the enriched oxidative phosphorylation and insulin
pathways. The importance of energy metabolism for feed ef-
ficiency is well known. Processes such as oxidative phosphor-
ylation are essential for cellular energetic efficiency and,
therefore, to the energy required by the animal for basal met-
abolic maintenance. The relation between energymaintenance
and feed efficiency has been widely discussed (Castro Bulle et
al. 2007; Hoque et al. 2009). In Bos taurus cattle, differential
gene expression of the oxidative phosphorylation pathway
with feed efficiency was demonstrated and the authors sug-
gested that there is a relationship between cellular energetic
efficiency and residual feed intake (Kelly et al. 2011).

Another interesting molecular process that was found in this
study was an insulin pathway, one of the main hormones

involved in energy and lipid metabolism, which plays an im-
portant role in controlling feed intake and efficiency in beef
cattle (Richardson and Herd 2004; Rolf et al. 2012; Karisa
et al. 2014). Several studies have shown the importance of
insulin in feed intake. Do et al. (2014) found an association
between insulin, olfactory response, and feed efficiency in pigs.
The authors suggested that insulin secretion could be an inter-
mediate stimulus to the olfactory pathway influencing feed ef-
ficiency. In fact, it has been shown that insulin levels may
modulate the response of odor perception by smell
(Palouzier-Paulignan et al. 2012), and this perception may in-
dicate the importance of genes that affect smell and taste in
cattle intake (Veerkamp et al. 2012). Moreover, the genes
linked to the olfactory pathway may participate in nutrient up-
take by acting as chemical sensors in the gut (Veerkamp et al.
2012). In this study, most of the genes found in the CNVR

Table 2 (continued)

Candidate gene symbol Name Gene ontology/biological process

(GO:0044255); positive regulation of protein serine/threonine
kinase activity (GO:0071902)

TECRL Trans-2,3-enoyl-CoA reductase-like Lipid metabolic process (GO:0006629); oxidation–reduction
process (GO:0055114)

UBA52 Ubiquitin A-52 residue ribosomal
protein fusion product 1

G1/S transition of mitotic cell cycle (GO:0000082); G2/M
transition of mitotic cell cycle (GO:0000086); activation
of MAPK activity (GO:0000187); protein polyubiquitination
(GO:0000209); mitotic cell cycle (GO:0000278); toll-like
receptor signaling pathway (GO:0002224); MyD88-dependent
toll-like receptor signaling pathway (GO:0002755);
carbohydrate metabolic process (GO:0005975); glycogen
biosynthetic process (GO:0005978); glucose metabolic
process (GO:0006006); cellular protein metabolic process
(GO:0044267)

Table 3 Copy number variation regions (CNVRs) associated with the
FCR

CNVR Chromosome Start End Size FDR

1 5 58386640 58441130 54491 <0.01*

2 12 74844575 74942860 98286 <0.01*

3 5 117356476 117639815 283340 <0.01*

4 5 59421039 59627471 206433 <0.01*

5 12 75016673 75141024 124352 <0.01*

6 7 44437375 44444959 7585 <0.01*

7 12 72748544 72882991 134448 <0.01*

8 10 22709100 22952910 243811 0.01*

9 1 93730576 93819471 88896 0.01*

10 12 73657824 73666963 9140 0.01*

11 12 72518489 72739627 221139 0.02*

12 7 42736530 43353211 616682 0.04*

FDR False discovery rate

*FDR< 0.05
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analysis were linked to the olfactory pathway. Two other stud-
ies have also found the potential relationship of the olfactory
pathway with feed intake in cattle (Veerkamp et al. 2012;
Lindholm-Perry et al. 2015).

Combining different methods of analysis (e.g., GWASwith
CNV) can identify more effectively the genomic regions and
pathways associated with complex traits (Ritchie et al. 2015),
such as feed efficiency. This genome-wide study identified
QTL and CNV regions that were associated with the FCR.
Our results showed that the two approaches found distinct
genomic regions, but the identified genes are part of the same
biological processes, mainly lipid, protein, and energetic me-
tabolism. These findings contribute to the knowledge of the
genetic basis of feed efficiency. The benefits of using more
than one type of approach has been demonstrated, especially
when it is possible to integrate multi-omics data in a systems
biology approach (Ritchie et al. 2015). This integration can be
critical for a full understanding of complex traits from the
physiological point of view. More biologically interesting
and promising results could be obtained using a multi-stage
multi-omic approach (Kadarmideen 2014), which includes
genome, epigenome, transcriptome, proteome, and metabo-
lome in the same integrated analysis.
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