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In this paper we study the class of Banach spaces X for which every Pettis integrable
map f : [0, 1] — X is measurable, where [0, 1] is the real unit interval with Lebesque measure
A. Although we assume familiarity with the notions of measurability of functions in a Banach
space ([Y]), as well as with Pettis and Riemann integration ([DU],[P]), we recall in section 1,
for the reader’s convenience, the basic concepts of Pettis integration over probability spaces
with values in a Banach space, together with some of the fundamental results of this theory.
One can find a wealth of information on this topic in [DU] and [T]. We also note that, for
[0,1] with the Lebesgue measure, every Riemann integrable function is Pettis integrable.

The basic categories of spaces we will be interested in are singled out in :

Definition 1 : A Banach space X is said to be

i) Pm when all bounded Pettis integrable maps f : [0,1] — X are measurable. Otherwise,
it 15 said to be nPm.

i) Rm when all Riemann integrable functions f: [0,1] — X are measurable. Otherwise,
it is said to be nRun.

X is said to have property P if for each bounded Pettis integrable map f: [0,1] — X,
with null Pellis integral over all measurable A C [0, 1], we have f = 0 ae.

X is said to have property R if for each Riemann integrable map f : [0, 1] — X such

that ¥ t € [0,1] ‘/[’ ]fdt=0, we have f = 0 ) - ae.
0.t

A compact Hausdorff space is said to be Pm or to have property P if C(K) has the
corresponding property.

In section 2 we gather sorne of the fundamental, but mostly elementary, relations between
these concepts and give examples of Pettis and Riemann integrable maps which are not
measurable,

We verify that every Pm space has property P and observe that the converse is false.



There are several examples of nPm (not Pm) spaces : among them, {,(I), with |I] > 2%, for
1 <p <o

On the other hand, the study of the Pm property for the case p = 1 involves a combi-
natorial problem related to intersections of finite sets, indexed by a subset A C [0,1] with
A*A > 0. This lead us to state a measure theoretic analogue of the Erdés-Rado theorem,
whose proof is the subject of section 3.

As an application of this property and assuming the continuum hypothesis (CH), we
prove in section 4 that the operation of l;-sums preserves the property of being Pm. For
spaces of type [lW(T) ® [Eqealn]0,1]]1]1, it’s possible to show, without CH, that they are
Pm.

In section 5 we discuss abstract L,-spaces, with 1 < p < co. Assuming CH, and using
methods analogous to those in [MR], it is shown that such spaces are Pm iff they are
separable.

Since C(K)* is an abstract L;-space for every compact Hausdorff topological space K,
we apply the results of section 4 to show that C(K)* is Pm iff K is measure separable.

In section 6, a sufficient condition, indepedent of CH, for X to be a Pm space is presented.
If X has property P and the separable projection property (every separable subspace of
X is contained in a complemented separable subspace of X) then X is Pm.

In section 7 we prove that nonseparable WCG Banach spaces are not Pm. This allows
us to conclude that if K is a measure separable compact then C(K)* doesn’t contain any
subspace isomorphic to a nonseparable WCG space.

In sections 8 and 9, we study the Pm property in C(K) spaces. It’s shown that if K
is dyadic then C(K) is Pm. We also show that there are non dyadic compacts with this
property. In fact, more is true : if K is a separable compact and X a Banach space, both
Pm, so is C(K, X). Conditions are also presented for C(K) to be a Pm space when K is an
arbitrary product of compacts.

In section 10 we discuss, using Martin’s axiom, the independence of some of the state-
ments proved with aid of the continuum hypothesis.

A comment on notation and terminology. Unless express mention to the contrary, all
vector spaces will be over the reals and all normed spaces complete (Banach); all compact
spaces shall be Hausdorff and all measures will be positive and finite.

We use standard notation for duals. Thus X* is the dual of X, with its elements denoted
by x*. As usual, the norm in X* is given by ||x*|| = sup”X“<1[x*(x)|.

For A C X, A denotes the closure of A in the norm topology, while A" is the closure of
A in the weak topology.

CH is the continuum hypothesis, 2% = ¥;. We may use c as shorthand for 2%.

If A is a set, |A| is its cardinality. We write A for the symmetric difference of sets
(AAB=(A-B)U(B-A)), as well as for the end of a proof.



If X is a vector space and K C X, span K is the subspace generated by K.

1 Preliminaries

Let X be a Banach space, X* the dual of X and (S, B, ¢) a complete probability space.

Definition 2 : A function f: § — X is called

a) measurable if there is ¢ sequence S = % of simple functions such that f, — f
p-ae.

b) weakly (or scalarly) measurable if, for each 2* € X*, 2> o f: § — IR is
measurable.

¢) scalarly Ly if =™ o f € Lyi(n), for all 2* € X*.

The connection between measurability and weak measurability is described by the fol-
lowing theorem of Pettis.

Theorem 1 ([T}, pg. 33) : For a function f: § — X, are equivalent:
a) f is measurable;

b} f is scalarly measurable and f has almost separable range (that is, there exists A € B
such that pA =1 and f(A) C X is separable). A

In particular, if X is separable, the notions of measurability and weak measurability
coincide.

Definition 8 : Let f: S — X be a scalarly L, function. We say that f is Pettis inte-
grable if, for each F € B, there is xg € X such that

z*(zg) =/E fdu, Vz*e X~

We denote the element zg of X by /E £ g

Observe that a Pettis integrable function doesn’t need to be measurable {as the Bochner
integrable ones) but only scalarly measurable (and scalarly L;).

Example 1 : Recall that if I is any set, ¢o(I) is the Banach space whose underlying set
is given by

) ={x=(x)¢€ IR' : x is bounded and for each € > 0, there is a finite set F, C I such
that {t: |xi| > €} C F.},

with the norm ||x|[ec = sup {[xi| : t € T}.
Let [0,1] provided with the Lebesgue measure and define



f:[0,1] — co([0,1]), by f(t) =

where
o1 =t
«(t) = {0 if £ At

We have co([0, 1])* = [;([0,1]). Then, given x* € co([0,1]), there is a, € [;([0,1]) such that
x*(e,) = a, ¥V t € [0,1]. Moreover, the set {t € {0,1] : a, # 0} is countable, and so we may
write it as {ti,...,tq, -..}. Thus,

. _ | &, ift=t,forsomen >1
B = { 0 otherwise
and we conclude that x* o f # 0 only in a countable subset of {0,1], i.e., x* o f =0 A ae.
It’s simple to verify that xg = 0 for all E € ¥; thus f is Pettis integrable.

But f is not measurable because it doesn’t have almost separable range : given a mea-
surable A with gA = 1, we have |A| = |IR| and for distinct t, t’ €A, |le; —ey|,, = 1. This
shows that co([0, 1]) is not Pm and does not have property P.

Example 2: When f : S — X is Pettis integrable, we have x* o f: S — IR integrable
(in the classical sense), for all x* € X*, But f need not be bounded. As an example take
f : [01 1] — Co ([07 1]) giVEH by

flt) = { (1/t)er ift#0

€p ft=20

The map f is scalarly measurable and Pettis integrable, with xg = 0, for all measurable
E. But { is neither bounded nor bounded almost everywhere; moreover, { is not measurable
and, consequently, not Bochner integrable. The above example illustrates that there are
Pettis integrable functions that are not Bochner integrable. We register that all Bochner
integrable maps are Pettis integrable, with the same integral over all measurable sets.

We assume that the reader is familiar with the basic results of Pettis integration, as
presented for instance in [DU] or [T]. In particular, for each measurable E, the map

f dyu is linear and preserved by bounded linear operations T : X — Y, that is,

/T fd,u— /fd,u,

It’s well known that a Pettis integrable f : § — X originates a map from B — X,

given by E — / f dy, which is a completely additive X valued vector measure with weakly
E

compact range. Furthermore, this vector measure is g continuous : for all E € B, g E = 0

implies F(E) = 0.

For perfect measure spaces, there is an important theorem due to Stegall.

Definition 4 : A finite measure space (S, B, p) is perfect if, for each measurable map
h: 8 — R, for each set E C R, if k™' (E) € B, there is a Borel set C C E such that
ph™! (C) = ph~ (E). All Radon measure spaces are perfect.



Theorem 2 (Stegall, [T], pg47) : Let f: § — X be a Pettis integrable function. If
(S, B, p) is a perfect measure space, then { /E. fdu : E € B} is relatively compact (and so
separable) in X. A

Corollary 1 ([T}, pg.46f) : If f: [0,1] — X is Pettis integrable then {./E fdp : E€ B}

is norm compact. A

The next Lemma is a straightforward application of the Hahn-Banach theorem.

Lemma 1 : Suppose that f: § — X is Pettis integrable and let A, B be measurable sets.
Then, (A A B) = 0 implies /A f du =/B fdu. A

Observation 1 : Let (S, B, v) be a finite measure space.

Given A, B € B, define A to be equivalent to B (A ~ B) if (A A B) = 0, where
AAB= (A B) U (B - A); ~ is an equivalence relation. Let B = B/~ be the quotient
algebra and for each A € B, write A= {B € B: A ~ B}; then B = {A: AeB})

Observe that A ~ A’ and B ~ B’ implies »(A A B) = »(A’ A B’). Thus, the function

~

p: BxB — [0,00), givenby #(A, B) =v(A AB)
is well defined, where A and B are representatives of A and B, respectively; i defines a

metric on B.

A measure v is said to be separable (complete) and (S, B, v) to be separable in
measure (resp., complete) when (B, ) is a separable (resp., complete} metric space. It
can be shown that the following are equivalent : (See [L], page 121 and [DS], page 169).

(i) v is a separable measure ; (i) Li(v) is a separable Banach space ;

(ii1) Ly(v) is a separable Banach space, for 1 < p < co.

_ According to the notation set down above, if (A A B) = 0, for A, B € B, then
A = B in B. Moreover, for f : S — X Pettis integrable, x4 = xg (Lemma 1). Therefore,

we can consider the function f : (8, i) — X defined by f(E) = /};} f dp where E € B is
a representative of £ € B.

Proposition 1 : If f: § — X is a bounded Pettis integrable function then
Ji(B,m) — X, defined by J () = [ §du

is ji - ||| uniformly continuous : for each € > 0, there is § > 0 such that, if B, £’ € B and
WEAE)<S then ||/E fdp— /E Fdu|| < e



Proof : By hypothesis, there is M > 0 such that ||f(t)]| < M,V t € S. Given E, E’ € B
and x* € X* we have :

x*(xe) — x"(xe)| = [ [ x* o fdu— [ x o fdyl

- x*o fdu— x*o fd
|-/];}—EF'IE’ f H E'-ENE! f pll

Sf [x* o f] d,u,-]-/ |x* o f] dp
E-ENE/ E'—ENE

= * < "' E AEND.
g X0t di < M| )

So, [lxe — xg/|| < M ji(E, E"), showing that f is uniformly continuous. A

In {P], by a more elaborate argument, Pettis showed that f is absolutely continuous,
even when T is not bounded.

When the measure space is [0,1] with Lebesque measure we have

Corollary 2 : Let f: § — X be a bounded and Petlis integrable function. If we define
f : [011]_’ XJ by fv(t) = [0.4] fdf-" = T[0,t]:
then f is uniformly continuous. A

Lemma 2 : Let (S, B, p) be a separable measure space and (Dn)ny1 C B be such that
(Da)n>1 is dense in B.

a) If f: 8 — X is a bounded Pettis integrable map and Y is a closed subspace of X
suchthatfn fdpe Y, ¥n> 1, then[ fduc Y,YEcB.
n E

b) Iff, g : S — X are bounded and Pettis integrable functions and./D fdg = /D g dg,

> = E
V2 1, then /E fdp fE gdu, VEE€B

c) Let f, g : [0,1] — X Peitis integrable maps. If fdp = ][0 4 gdu,Vie 1]

gdp, ¥V Ee L.

[0, ¢]

then f and g have the same Pettis integral : ./E fdu = /E

Proof : Item (a) is a direct consequence of Proposition 1.

b) It’s sufficient to prove that if ¢ : S — X is bounded, Pettis integrable and such that
/D gdpy=0,Vn> l,thenfE gdpy =0,VE € B. Fixe > 0 and E € B. By Proposition 1

we can select & > 0 such that

HEAR)<b = IIngd#—/E,gd#IKS-

Moreover, there is n > 1 such that p(E A D,) < §. Then,



IIfDn g du —/Egdu||<6-

Since jD g dp = 0, we get ||/E g dp|| <e,

c} It’s sufficient to note that if s < r are rationals in [0, 1} then

dy = dy — dy = dg,
f[s a fdp o fdp i Jfdu - gdu

and that the family of intervals with rational endpoints is measure dense in the Lebesque
measurable sets. A

Before showing that Riemann integrable maps are Pettis integrable we set down

Definition 5 : (i) A partition P of the interval [a, b] € IR is a finile sequence
e =g <t < ... < t, =b Weset At; = t; - t;_q, I < i < n. Further,
AP = maz{At; : 1 < i< n} is the diameter of P.

(i1) Let f: [a, b] — X be a function and P = {1y, ..., t,} a partition of [a, b]. An
element £ = (1, &2, ..., &n) € H?=1 Jtiz1, t;] is called a sample in the partition P. We set

S(, P, &) = 3., f(&)AL.

(iii) f : [a, b] — X is Riemann integrable iff there is = € X such that
limpap o S(f, P, §) = 2, that is :

for each ¢ > 0, there is § > 0 such that, for each partition P of [a, b], if AP < 6,
then ||S(f,P,€) —x|| < &, for all samples £ in P.
This unique element 2 is called the Riemann integral of f and will be denoted by

" [ dt. The use of the variable t will always indicate that we are considering

the Riemann integral. Typically, in what follows, we will have fa, b] = [0,1].
The definition in (1ii) is equivallent to the following : there is x € X such that

Ve > 03 ng > 1 such that, if P is a partition of [a, b] in subintervals of lenght 61,
with 8 < 1/ny, then ||S(f,P,£) — x|| < ¢, for all samples £ in P.

The map in Example 1 is Riemann integrable with null integral everywhere.

Proposition 2 : A Riemann integrable function f: [0,1] — X is Pellis integrable, with
the same integral over every subinterval of [0,1].

Proof : For E € ¥, we must find xg such that x*(xg) = f x*of dA, ¥ x* € X*. (1)
E

For E = [0,t] we take xg = ‘/[ | fdt. Then, for 0 < t; < tp < 1, if E = [tq, t3] or
0,t

(t1, t2) or [t1, t2) or (ty, t2], we have xg = /};; f dt. In all these cases, x*(xg) = /E x*o f dA,



¥ x* € X*. Further, equality (1) is still true if E is a finite union of mutually disjoint intervals.

If E € ¥ any measurable set, there is, given € > 0, a finite union V of open inter-
vals such that A(E A V) < e. Suppose V = |J {(a1,b1),(az,b2),--.,(ar,br)} and set

L= (ag, by) - U], (@i, b), 1<j<m

We have V = U;=1 Land ;NI = Bif j # j’ ; so, we can suppose V is a finite union of
mutually disjoint intervals (now, not necessarily open).

For each n > 1, choose a finite union E, of mutually disjoint intervals I}, 1 < j < ky,
such that A(E A E,) < 1/n. We know that we have xg, = Zf; /I“ fdt.
;

Fact : (xg,),> , is a Cauchy sequence in X.

In effect, given x* € X* and n, m > 1, n # m, we have :

%" (%, = xgo )| = [x*(x8,) — x*(xg.,)|

=|/En x"‘ofd/\—[E x* o fd)|

gf Ix* of| d)\+f Ix* o ] dA
En—Em Em~En

= Jo ap, XofldA S |Ix| M A(E, A En),
where M > 0 is such that [|f(t)|| < M,V t € [0,1].

We also have A(Ey & Ep) € A(E, AE) + MER AE). Thus,
x* (x5, —x5,) < 7l M (1/n + 1/m ), Vm,n > 1.
Given € > 0, choose ng > (2M)/e. Then, for m, n > no,
Iew = X = suD o< 1 ¥k — x| € M(1/n + 1/m) < (2/n0) M < &
proving the Fact.
et xg € X be the limit of the sequence xg, in X. We have to verify that
x*(xg) = fE x* o fdu, Vx*e X~

Since xg, — Xg in norm, for each x* € X*, j;_} x*o fdy — x*(xg) in R. (2)

n

We also have, I_/;3 x* o fdu —/E x* o fdp| <[Ix*|Mp(Ex AE) < |jx*|| M1/n and
so,_/En fdA—»[EfdAln}I{. (3)

From (2) and (3) we get x*(xg) = -/E x* o f dA, ending the proof. A

Observation 2 We can derive more from the above result : if
f: [0,]] — X is a bounded function such that, for each t € [0,1], there is xpy € X



with x*(Xpy) = /[‘ ] x* o fdu, Vx* € X* then fis Pettis integrable.
0t

2 Pm spaces and property P

In this section we discuss the relations between the concepts set down in Definition 1 of
the Introduction. We start with

Proposition 1 : Let X and Y be Banach spaces.

i) If X is separable then X is Pm (and Rm).

ii) If X is Pm (Rm) and Y is a closed subspace of X then Y is Pm (resp., Rm).

iii) If X ts Pm (Rm) and T : X — Y is a linear isomorphism of X onto Y then Y is
Pm (resp., Rm).

Proof : (i) is a consequence of Pettis’ theorem, caracterizing measurable functions, while
(i) is clear. Item (iii) is a consequence of the fact that a linear isomorphism preserves
measurability. A

From Proposition 1.2 we get
Proposition 2 : All Pm spaces are Rm. A
Problem 1 : Is the converse of Proposition 1 true ?

A Pettis integrable S £, X is a null function if /E fdu = 0, for all measurable
E C S. Clearly, f is a null function iff x* o f = 0 a.e., Vx* € X*. When § = [0,1], we
have that f is a null function iff for all t € [0,1] and x* € X¥, /[0 , x* o fdu=0.
P
Observe that the function f : [0,1] — co([0,1]), f(t) = e:, has null Pettis integral but is

not zero almost everywhere in [0, 1]. Thus there is an important distinction between a null
function and one which is zero a.e. In a Pm space, both concepts of course coincide.

With respect to property P, note that Observation 1.2 yields that X has P when, for
each bounded Pettis integrable function f: [0,1] — X, if./[ : fdu =0,¥t € [0,1], then
0.t
f=0X- ae

We have already noted in Example 1.1 that co([0,1]) does not have property P. It’s quite
clear that we have

Lemma 1 : Property P is inherited by subspaces and preserved by linear isomorphism. A
We shall have more to say about property P latter on. For the moment, we prove

Proposition 3 : All Pm spaces have property P.



Proof : Let be f : [0,1]] — X be a bounded, Pettis integrable function with
jﬁ.} fdp=0,YE € E. Since X is Pm, f is measurable, and so || f|| is measurable. Moreover,

since f is bounded, || f]| is Lebesgue integrable. Consequently, f is Bochner integrable and
its Bochner integral is zero over every measurable E. But this implies that f =0 X -ae. A

There are, of course, analogous results for Rm spaces.
Proposition 4 ([DI]) : A Rm space has property R. A

There are, however, spaces with R and P which are not Pm or Rm. An example is [,(IN)
(see example 4 below).

Example 1 : The spaces I,(I), 1 < p < oo, with |I| > 2%, do not have property R and
thus, do not have P and are neither Pm nor Rm. To see this, let t — 7, be an injective map
from [0,1] into I. Define f : [0,1] — (1) by f(t) = ep, where

s )1 ifi=myp,
en,(i) = { 0 otherwise
It can be shown that f is Riemann integrable, with f[ : fdt=0,Vte[0,1]. It’s clear
0.t

that f is distinct from zero at all t € [0, 1]. In fact, if t, t’ are distinct points in [0,1], then
||£(t) — £(t"){|, = 2'/P, and the range of f cannot be almost separable.

Example 2 : co(I), |I| > 2%, is nPm (and nRm), because co{I) contains a subspace
isomorphic to co([0,1]).

Example 3 : L, ([0,1]) is nRm (and so, nPm). To see this, define f : [0,1] — Ly ([0,1])
by

J(t) = xpo.g = characteristic map of the interval [0,t].

We will show that /{ | fdt = g, where g(t) = 1 - t, ¥Vt € [0,1] (i.e., f is Riemann
0,1
integrable).

Let P = {0 = tg < t; < ...ty = 1} be a partition of [0,1]. For each i, 1 <i < n, choose
& € [tiza, ti]- Then, (B, f(&) A ti - g) () = B, xper(t) O 6 - g(t).
For t # 0, choose j such that t;_; <t < t;. Then,

[Eisaxpa () At — g(t)] =
{ IEP Aty — (1 — t)l =1{ — E‘I;iA t < Atj < AP ifte [tj_l, EJ}

i=j

B Ot — (1 —t)| =t — B AL < AP it & [t &]

10



So, |ZR, f(&) Ati — glle < AP, proving that f is Riemann (and Pettis) integrable.
But f does not have almost separable range and so cannot be measurable : for distinct t, t’

in [0,1], | £(t) — f(t')]lo = 1.

Example 4 : I,(IN) is nRm (so, it’s nPm). Although it’s possible to show this directly,
it’s sufficient to remember Pelczynski’s theorem : I, (IN) is isomorphic to Le([0,1]).

Note that I (I) is nRm (and nPm), if |T| > Rq, since it contains [oo(IN) isometrically.

Example 5 : Let be (Xi)icr a family of non zero spaces with [I| > 2%. Then,
the I, sum X = (®X;)p, | < p < o0 or p = 0, is not Pm (Rm).

Recall that, for 1 < p < 0o, X = {x = (xi)ier : % € X3, Vi € Tand T ||x]]° < oo},
with Jlxllp = (Sier lhall”)".

For p = 00, X = {x = (xhex + suprerlixill < oo}, with [l = supie [l the case
p = 0 was described in Example 1.1.

In each case it’s possible to construct a linear isometry of [,(I) or (co(I)) into X and so
it inherits from the classical sequence spaces the fact that it does not have R, P, Rm or Pm.

For p = 1, the situation is quite different : in the presence of CH, the I - sum of Pm
spaces is Pm . The next two sections shall be devoted to this result.

We end this section with
Proposition 5 : A Pm space that contains an isomorphic copy of co(IN) is not a dual.

Proof : By Pelczynski’s theorem ([Pe]), if a dual space contains co(IN) then it contains
loo(IN). This is not possible because X is Pm and l(IN) isnot. A

3 A measure theoretic Erdés-Rado theorem

To simplify exposition we set down

Definition 1 : A family {S; : i € I} of sets is quasi-disjoint if there is J such that
Si N Sy = J, for all distinct i, i’ € J. In particular, a family of pairwise disjoint sets is
quasi-disjoint.

We may phrase the well known Erdds - Rado theorem for finite sets as

Theorem 1 (CH) : (Erdés-Rado, see [C], page 5) : Let {S¢ : £ € A} be a family of finite
sets, with |A| = c. Then there is B C A such that |B| = ¢ and {S; : { € B} is quasi-disjoin.

We wish to establish the following measure theoretic analogue of Theorem 1, where A™
denotes Lebesque outer measure.

Theorem 2 (CH) : Let A be a subset of [0,1] with X*A > 0 and {S; : t € A} a family of
finite sets. Then there is B C A, with A*B > 0, such that {S; : t € B} is quasi-disjoint.

11



Before the proof of Theorem 2, we need some preparatory steps.

Observation 1: If C C [0,1] is such that A*C = § > 0, then
AC=inf {¥ Al,: CC U I, and every I, is an interval}
=inf {£ Al,: C C U I, and every I, is an interval with rational endpoints}.

The set {J : J C [0,1] and J is an interval with rational endpoints} is countable. So, if
we assume CH, the collection

Is = {(In)n21 : A, < § and every I, is an interval with rational endpoints}
has cardinal Ry; we fix a bijection h : [1, ®;) — Zg, h{a) = (Iﬁ)nzl-

Proposition 1 (CH)) : Let A be a subset of [0,1] with \*A > 0 and {S; : t € A } be a family
of singletons. Then there is B C A such that \*B > 0 and {S; : t € B} is quasi-disjoint.
Thus, one of the following two possibilities occurs :

(i) there is an element a such that S; = {a}, YVt € B; or
(it) the sets S;, t € B, are pairwise disjoint.

Proof : The proof involves a diagonal argument and transfinite induction. Let § = A*A.
Suppose A = {a, : t € A};forx € A, set Ay = {t € A : §; = {x}}.

If, for some x € A, A*A; > 0 then the proposition is proved : it’s sufficient to take
B=A,and S, = {x},t € B.

Thus, we may assume that for each x € A, A*A, = 0.
Let (I3),>y, @ < ®; be the enumeration of Zg constructed in observation 1.

We claim that, by transfinite induction on R;, we may choose a sequence {f, : o < ¥;}
such that if , B are distinct countable ordinals then ty # tg and S, N S, = B.

For the first step in the induction, since A*A = § > 0 and ALl < § thereis t; € A such
that t; ¢ U IL. Note that t; € Ay, where S, = {z1}.

Having constructed ty, 7 < a, and recalling that UKQ A, has measure zero, because

it’s a countable union of sets measure zero, we may choose t, € A - (UKQA% U U I%).

Ii’s straightforward that the sequence B = {t, : a < ¥,} has the claimed properties. It
remains to verify that A*B > 0.

If X*B = 0 then there is a covering (I,) of B by intervals with rational endpoints such
that ¥ A, < é/2. By observation 1, we can find o < ¥ such that (I;) = (I¢). Thus,
B C [ I2. But this is impossible since t, € B was chosen outside | JIZ. A

Observation 2 : The proof of Proposition 1 actually shows that if there is no subset of C

of A of positive outer measure, such that S, = Sy, for all t, t’ in C, then thereis B C A
such that A*B = A*A and S; N Sy = @, for all distinct t, t’ in B.
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Proof of Theorem 2

We begin by generalizing Proposition 1.

Fact : Let A be a subset of [0,1] with A*A > 0 and {S, : t € B} a family of finite
sets, each of them with k > 0 elements. Then there is B C A such that A*B > 0 and
{S, : t € B} is quasi-disjoint.

Proof : We proceed by induction on k > 0, the case k = 0 being trivial and that in
which k = 1 having been taken care of by Proposition 1. So, suppose the statement holds
for each j < k; we are going to verify it for k + 1. Let A*A = 6 > 0 and define A = UtEAS"

fuCAset A, ={t € A:uCS.}. Notethat if we write S¢ = {t; : 1 <i < k + 1}
thent € Uf:ll Ay). We shall use the enumeration of Zg described in Observation 1.

Case 1 : Thereisu € A, 1 < |u| < k + 1 such that A*A, > 0.

Then, {S; - u: t € A,} is a family of sets with k + 1 - |u] < k elements such that
AAu > 0. By induction, there is B C A, with A*B > 0, such that {S¢ - u: t € B} is
quasi-disjoint. It’s clear that {S, : t € B} has the same property.

Case 2 : For all u C A with fu| <k + 1, A*"A, = 0.

Here we proceed as in the proof Proposition 1. By transfinite induction on a € ;, it’s
possible to construct a sequence B = {t, : o < ¥;} of elements of A such that

ta€ A-(UTzUl,, (AfU...UALY),

where S;, = {xf : 1 <i<k+ 1} and Afj = {t GA:xfE St} = Apsy.

The inductive step comes, as in the proof Proposition 1, from the fact that A*A?j = 0 for
all B < ¥; and j € k + 1, by the hypothesis assumed in Case 2. Moreover, the constructed
sequence satisfies

B<ng = tygAJU...UAL, == 8,NS, =9,

and {S; : t € B} is a disjoint family of sets.

The same diagonal argument used in the proof of Proposition 1 will show that A*B > 0,
establishing the Fact.

To finish the proof write A = Uk>1 Ay, where Ay = {t € A : S, has cardinal k}. Since

A has strictly positive outer measure, the same must be true of at least one Ax. The desired
conclusion follows from an application of the Fact to Ayx. A

Observation 3 : An analysis of the preceding proof will show that the statement holds
for separable regular Borel measures. This of course might also be obtained as a Corollary of
the above result, using the well known Caratheodory classification of such spaces. It would
be interesting to find other classes of measure spaces for which this generalization of the
Erdés-Rado theorem holds true.

It’s clear that Theorem 1 is in fact a consequence of Theorem 2.
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4 [; sums of Pm spaces

Given a family (X;);e; of Banach spaces, their /; sum will be indicated by [@;;Xils; the
definition of this space is recalled in Example 2.5.

Theorem 1 (CH) : The operation of taking l; sum preserves property P.

Proof : Let f : [0,]] — X be a bounded Pettis integrable function, and suppose

o fdx=0,Vt € [0,1]. We reason by contradiction to show that f = 0 A-ae.
o

If f is not zero A-ae, there are € > 0 and A ¢ [0,1], with A*A > 0, such that
|f(t)]] > &, Vit €A,

For t € [0,1], set f(t) = (fi{t))ier, where f,(t) € X;, Vi € L. Moreover, for each t € A,
f(t) is summable : 3 a finite J; C I such that

(1) Siea IO > e/2 and Sy, IHO1 < /3.
Observe that {J; : t € A} is a family of finite sets and A*A > 0. By Theorem 3.2, there

is B C A, with A*B > 0, and a set J such that for distinct t, t’ € B, Jy N Jyr = J.

We have two cases to consider :

Case 1:J=0.

The dual of X is [®;e1Xlee; and so we may write x* = (x)ier, with xf € X|,
supicr [{x}]| < oo and x*((xi)icr) = Tierxf(xi)-

Consider x* = (x);er € X* given by :

—ifigU{JtztEB},setxi'=O;

- if i € Ji, for some t € B, choose x! with [|xI|| = 1 and x¥(f;(t)) = || fi(t)Il-

Put L =] {Jv: t € B} and, for t € B, Ly = J {Jv : t" € B, t’ # t}. Note that for
t € B, we have x* o f(t) = Z;er xF(fi(t)) = Z;er xF(f;(t)), since xf =0, fori & L.

Moreover,
(2) x*o f(t) = Ticax(£i(t) + Zier 5 (£i(t) = TieallfiOll + Bier x5 (fi(1))-

But [Eier, x0(fit)] < Bir, 51 1AM < gy, 1£WI < /3. (3)
1t follows from equations (1) - (3) that x* o f(1) > ¢/2-¢/3 =¢/6,¥ t € B.

Consequently, A({t : x* o f(t) > 0}) > 0. But this is absurd since f has null Pettis
integral and so x* o f has be zero almost everywhere.

Case 2: J = {iy, ..., ir}.

For each j < r, consider the projection m;;, : X — X, m;,(x) = x;; and define
f.g’ =% 0 f: {051] — Xij'

14



i r S i = B s =0,Vt o1,
Since m;, ( fm f d,\) fm m 0 f dA j[m] f;, dX, and fm FdA=0,Vte [0l
it follows that f[m] fodA=0,Vte[0l),1<j<r

So, fis fiys --- fi, are functions with null Pettis integral. By hypothesis, the spaces
X;, have property P and so there is C; C [0,1] with A*C; = 0 and fi;(t)=0,Vt¢&Cand
j<r. Set Co =B-CUCyU...UC,. Then we have :

(1) A*Cp >0
(2t€C = /M >e and [ (t)=0,1<j<r
Since J = {iy, ..., i}, we have that

teCo = TienalF®l >e/2 and Sg, 1AM <e/3.

Observe that, for t € B, the sets J; - J are pairwise disjoint; and we profit from this fact
to define the following element x* = (x;);¢; of X~ :

-ifi & UtECo(Jt -J), then xf =0

~ifi€e -3, t € Co, choose x* € X* such that [|x7]| = 1 and x;{(f;(t)) = |l fi(t)]].
Let W= {J{Jv-J:t € Co} and, for t € Co, Wy = {Ju - J: t7 € Co, t" # t}.
For t € Co,

x* o f(t) = Tigr %5 (fi(1)) = Biew (fi(t)) = Hics—s ¥ (filt)) + Tiew, x5 (fi(t))-

But |Siew, (i) € Siew, 5 11£:(0)) < /3, and just as in Case 1, it follows that
x* o f(t) > ¢/6,V t € Cq.

Thus, A({t : x* o f(t) > 0}) > 0, a contradiction, because we have x* o f = 0 A-ae.

From cases 1 and 2 we conclude that f = 0 A - ae, as desired. A

We fix some notation that will be useful below. Let (X;);eq be a family of Banach spaces
and X = [@;e1X;]1 their I sum.

For each J C I, let Xj = [@c;X;]1 and 75 : X — X be the map that forgets the
ccordinates outside J : 73({x;)) = (xi)ies.  J = {i} we write X; instead of Xy;.

Define i3 : Xy — X, t3(x3) = (x5, 0) and identify X; with its image in X, é3(XJ).
Proposition 1 : Let X be the l; sum of Pm spaces X;, i € I. Let f : [0,1] — X be a

bounded Pettis integrable function. Then there are bounded and Pettis integrable functions
fi, fo i [0,1] — X such that :

(i) f=Ff1 + far (ii) f, is measurable;
(iii) f, has null Pettis integral : f[ =0,V i 01
0,t

Proof : Let {r, : n > 1} be an enumeration of the rational numbers in [0,1]. For each

n>1,letx, = / f dX € X. Since X is an [; sum of the X;, there is a countable subset

0,l‘n]
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Jn € Isuch that {i: x,(i) # 0} C J,. Let J = Un>1Jn C I; J is countable and we have that
‘/[- : S dA € X5, ¥Yn > 1. By Lemma 1.2.a) we have/[ | Fdre X Vit e[0,1].
0,ry 0.t

Define f; = éjomyo fand f, = f ~ fi. It’s clear that f,, f, are bounded and Pettis
integrable. Moreover, fidA =i50m; ( e f d)\) = /[0 | fdra, ¥Vn 2> 1.
0.rn n

[0,ra]

Thus, ][ [ frdr= /[' [ J 43, V't € [0,1] and it follows that f and f, have the same
0.t 0.t
Pettis integral over all measurable sets (Lemma 1.1.c).

Since X; is Pm, for each i € J, there is C; € [0,1], A*C; = 0, such that (w0 £)([0,1] - C;)
is separable. Set C = [ J. . Ci. Then A*C = 0 and (7y o f)([0,1] - C) is also separable. Since
25 is an isometry into X, ﬁ’l has almost separable range and so must be measurable.

Fi A= " - b A =0,Vtelol A
inally, /[O’t] f,d /{U’t] T j[o,t] 7, d), and so fm £, Y telo)l]

Observation 1 : Proposition 1 holds true if we replace ([6,1], X, A) by any complete measure
separable space (S, B, i) : If X is the /; sum of a family of Pm spaces, any bounded Pettis
integrable f : § — X can be written as f = f, + f,, where f,, f, : $ — X are such that
[y 1s measurable and f, has null Pettis integral.

Theorem 2 (CH) : The operation of taking i sums preserves the property of being Prm.
Proof : Let f : [0,1]] — X be a bounded Pettis integrable function. By Proposition 1,
there are bounded Pettis integrable f,, f, : [0,1]] — X, such that :

A f=f+fs (ii) fy is measurable; (iii) f, has null Pettis integral.

Since all the components of X are Pm, they have property P. By Theorem 1, X also has
this property and so f, must be zero - ae in [0,1]. Thus, f = f1 A- ae and consequently
also measurable. A

Corollary 1 : Any l; sum of separable spaces is Pm. In particular, ¥V sets I' and A,
[((D) @ [Bagala([0, DL} & Pm. A

Observation 2 : A remark due to M. Ignez S. V. Diniz implies that spaces of the form

[1(T) & [aca L1[0,1])1); are Pm, independently of CH. We will comment on this at the end
of section 8.

5 The L, spaces and the Pm property

We refer the reader to [L], chapter 5, for a detailed account of abstract Ly spaces. For
his convenience we transcribe here the results that are relevant to our discussion.

1) If X is an abstract L, space, 1 < p < oo, then X is isometric to L (), for some
p Space, P p
measure ».

(2) f X is an abstract L, space, 1| < p < oo, then X is isometric to
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[L(T) @ [®Eaealpl0, 11™=],]p, for some set I' and some set of cardinal numbers my > Ro.
(3) For 3 > Rg and 1 < p < o0, L([0,1]7) has a subspace isomorphic to l5().

(4) If L,(v) is separable then L,(v) is isometric to one of the following spaces :

(i) L(T), where [T| < Ro; (i) Lp([0,1]);  (iii) [;(T) ® Lyp([0, 1])]p, where |T'| < Rq.

In particular, if |A] < Ry and m, < Rg, Yo € A, then [$X,c4Lp([0, 1]™)]; is isometric
to Lp([0,1]).

(5) Let (2, ¢, 6) be a finite measure space. Then L;{§) is isometric to one of the following
spaces :

(1) [@kej}le([O, ].]m")]l, with my 2 NQ, v k 2 1, (il) 11(1-‘), with 1F| S Ng;
(iii) [1(T) @ (@ ke L ([0, 17™)]1)s, with |T| < Ro, and my > Ro, Vk > 1.

Theorem 1 (CH) : Let be 1 < p < oo and X an abstract L, space. Are equivalent :
(i) X is Pm;
(ii) X is isometric to I,(T') or [[,(T) @ Ly[0,1]], or L,[0,1], where [I| < Ro.

Proof: (i) = (ii) : We can ssume that X is of the form [[,(T') ® [®Z,c 1 Lp([0, 1]™) ]},
where m, > Ny, Yo € A.

If || > Ro then, by CH, || > c. By example 2.1, [,(T') is nPm. This is impossible since
I,(T) 1s a closed subspace of X and X is Pm. Thus, |T'| < R,.

If m, > Ny, for some o € A, then m, > c. By result (3) above, Lp([0, 1]™=) contains an
isomorphic copy of Ip(1), with |I| = m, > c. Again this is impossible because I;(I} is nPm
and X is Pm. Therefore, m, < R, Vo € A, and so L, ([0, 1]™) is isometric to Ly([0,1]).

Thus, X is a space of the type [[,(T) @ [PLoca Lpl0, H]plp-

Now we show that [®X,c 4 Lp([0, 1])]p contains an isometric copy of I,(A).

For each a € A, choose e, € Ly([0,1]), with |leq]lp = 1. For x = (Xa)aea € I(A), consider
Tx = (Xa€a)aca. Since || Tx||,° = B,ea |[xaeall” = Laca [%a[” = IIx|lp", T is a linear isometry

from I,(A) to [, Lp([0,1])]p.

If |A| > R then I,(A) is nPm, and X would be nPm. Thus, |[A| < ¥y and, by the result
(4) mentioned above X is of one of the forms asserted in (ii).

For (ii) = (i), it’s sufficient to observe that all spaces mentioned in (ii) are separable
and consequently Pm. A

Corollary 1 (CH) : For 1 < p < co, an abstract L, space is Pm iff it is separable. A

We now turn to the case p = 1.
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Theorem 2 (CH) : Let X be an abstract Ly space. Are equivalent :
(i) X is Pm ;
(i) There are sets I' and A such that X is isometric to [,(T') @ [®E,c4Ln[0,1]}t]: ;

(iii) Let (Z, €, §) be a finite measure space. If Ly(8) is isomorphic to a subspace of X
then Ly (8) is separable.

Proof : (i) == (ii) : We may assume that X is [[;}(T) @ [BE,c4 L1([0, 1]™=)]1]s, with
m, > No. Moreover, m, < ¥ by the same argument used in the proof of Theorem 1. By (4),
Ly ([0,1]™=) is isometric to L;([0,1]), and so, X is isometric to [1(T") & [®Zyc 4 L1([0, 1])]1]1.

(i) = (iii) : We have that L,(8) is isomorphic to [[;(T) @ [®Z, >, L1([0,1]™)]1]:, where
IT| < & and my < Ro, ¥k > 1. Since X is Pm, we have my, < Ro, V k > 1 and again by (4),
(B ,<, L1([0, 1]™)}; is isometric to Li([0,1]). Thus, Li(8} is isomorphic to [[;(T")® L:([0, 1])]x
or I(T) (with |T| < ¥) or Ly([0,1]), and therefore separable.

(i1) = (i) is an immediate consequence of Theorem 4.2.

(iii) = (ii) : We can suppose X is of the form [{1(I") @ [®E,e 4 L1 ([0, 1]™)]1]1, because X
is an abstract Ly space. Since [0, 1]™= is a finite measure space and L, ([0, 1]™*) is isometric to
a closed subspace of X, it follows from (iii) that L;([0,1]™=) is separable; but this is possible
only if m, < Ng in which case L;([0, 1]™*) is isometric to L;([0,1]). It’s now clear that (ii)
must hold. A

Observation 1 : In [MR] an analogous classification of the abstract L, spaces, 1 < p < oo,
is given with respect to property Rm (assuming CH), as follows :

Theorem (CH) : Let be X an abstract L, space, 1 < p < oo.

(a) For 1 < p < o0, X is Rm iff X is isometric to I,(T") or [1,(T') @ Lyp([0, 1])], or Lp([0,1]),
where |y| £ Ro. Thus, X is Rm iff it is separable.

(b) For p = 1, are equivalent :
(1) X is Rm;

(2) Let (Z, £, &) be a finite measure space. If L;(é) is isomorphic to a closed subspace
of X then L, () is separable, that is, it is isometric to {;(T), L1([0,1]) or [:(T") & L1([0, 1])]s,

where T' is countable;

(3) There are sets I and A such that X is isometric to [[;(T") @ [®X.e4 L1([0,1D)1]1-

Theorems 1 and 2 together with the result mentioned in Observation 1 yield an affirma-
tive answer to Problem 2.1 in the class of Ly spaces:

Corollary 2 (CH) : For I < p < oo, an abstract L, space is Pm iff it is Rm. A

We now apply our results to duals of spaces of continuous real function on compact
spaces. If K is a compact space, C(K) is the Banach space of continuous real functions
defined on K with the sup norm, || f]lec = sup,ek|f(t)|. It’s known that C(K)* is an abstract
L, space.
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Definition 1 : A compact space K is measure separable if every regular Borel measure
on K is separable.

Examples of measure separable compacts are the compact metric spaces, compact dis-
persed spaces and the one point compactification of the disjoint union of measure separable
compacts.

The following result describes the dual of measurable separable compacts :

Theorem ([L]) : Let K be a measure separable compact.

a) If K is a not dispersed then C(K)* = [1{K) @ [®Z;e; L1([0, 1])]1]1, where [I] = R.
b) If K is dispersed then C(K)* = [;(K).

An immediate consequence of Theorems 4.1, Theorem 2 and the preceding results is

Corollary 3 (CH) : If K is a compact, C(K)* is Pm iff K is measure separable. A

Corollary 4 (CH) : If K is measure separable then C(K)* does not contain a subspace
isomorphic to a non separable Hilbert space.

Proof : It’s sufficient to remember that a non separable Hilbert space is isomorphic to
1,(I"), for some uncountable set I'. Since we are assuming CH, it is nPm, and so cannot be
a subspace of a Pm space. A

Observation 2 : In section 7 we will show that in fact if K is measure separable then C(K)*
cannot contain a subspace isomorphic to a non separable WCG space.

6 A sufficient condition for the Pm property

We have already observed that a Pm space has property P. The converse is false : {,(IN)
has P but is not Pm. In this section we discuss a condition, the separable projection property
(spp), which, together with P, guarantees that a space is Pm.

Definition 1 : A Banach space X has the separable projection property (spp) when
each separable subspace of X is contained in a separable complemented subspace of X.

Fquivalently, if Y is a separable subspace of X, there is e separable 7 C X such that
Y C Z and Z is the image of a continuous linear projection defined in X.

Example 1. X = C([0, %]) has the spp, where [0, &,] is the usual compact order space.
To see this, let Y be a separable subspace of X and D = {f,, : n £ 1} a countable dense
subset of Y. For n > 1, let &, < Ry be an ordinal such that f is constant for all # > oy. Set
a = sup{a, : n > 1}; clearly e is countable.

Let 7Z = {g € X : g is constant for all # > «}. It’s clear that Z is a closed subspace of
X, containing Y. It’s easily verified that Z is separable.

19



To see that Z is complemented in X, define, for f € X, f: [0, %] — R by

. (B) ith<a
ﬂm:{f@%ﬁﬁza

Since (a, R1] is clopen in {0, ¥4], f is a continuous function. Moreover, f is constant for
B > «, and so it is in Z. It’s readily verified that f — f is a linear continuous projection
from X onto Z. This shows that X has the spp.

Example 2. [,(I),1 < p < o0, and co(I) both have the spp. In fact, any I, sum of separable
spaces has spp, if 1 < p < oco. It’s a consequence of the long chain of projections that are
a decomposition of the identity in a WCG space, that all such spaces have the separable
projection property (see [Li]).

Theorem 1 : A Banach space with the spp and property P is Pm.

Proof : Let f: [0,1]] — X be a bounded Pettis integrable function. Then, the map
f: [0,1]] — X, given by fi) = / fdXx = x, is continuous (Corollary 1.1). Set
0.t

Y = span {x,: r € [0,1] N Q} C X; cle:arly, Y is separable in X. Since X has spp, there is
Z, a closed separable complemented subspace of X, with Y C Z. Let p : X —+ Z be the
projection of X onto Z.

Set fi = p o f. Then f; is bounded and Pettis integrable. Moreover, since
f1{{0,1]) € Z, fi has separable range and so must be measurable. Since all x, can be ap-
proximated by a sequence of x,’s, we conclude that x, € Z, V t € [0,1]. Thus, p(x;) = x,
vVt € [0,1] and we get

(0]

fl dx = - pof d) = p(/[’()’t] f d/\) = p(xt) = X,

showing that the Pettis integrals of f and f; are the same.

Now consider fo = f — fi; it is bounded, Pettis integrable and . fadr = 0,
0,

Vt € [0,1]. Since X has property P, it follows that f; = 0 A-ae. It’s then clear that
f = fi A-ae is measurable, proving that X is Pm, A

With essentially the same proof one can show

Theorem 2 : Let (S, B, v) be a complete separable measure space and X a Banach space
with the spp and such that :

(*) IfS Ly X s bounded, Pettis integrable andjE fdv =0,V E€B, then f = 0 v-ae.
Then, all bounded Pettis integrable X valued maps defined in S are measurable. A
Corollary 1 : If X has a countable total subset } C X*, then X has property P. If X also

has the spp, then it is Pm.
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Proof : It’s enough to show that X has property P. Let f : [0,]] — X be a bounded
null function; then x*(x,) = /[ : *ofdd=0,¥Yx*eX*and t € [0,1]. In particular, for
0.t
each x* € @, we may choose A,+ C [0,1] with AA,e =0 andx* o f =0,V t & A,..

Set A = Ux.e q Axe- Since () is countable, AA = 0; further, t € A implies x* o f(t) = 0,
¥ x* € Q. Since  is total in X*, this yields f(t) = 0if t € A, that is, f = 0 X-ae. A

Observation 1. The proof of Theorem 1 does not depend on CH. In section 10 we shall use
Theorem 1, Martin’s Axiom and the negation of CH to prove the independence of certain
statements concerning the separability of Pm spaces.

7 WCG spaces and the Pm property

Our aim here is to prove that if we assume CH, nonseparable WCG spaces are not Pm. A
good reference on WCG is [Li].

Definition 1 : A Banach space X is WCG if there is a weakly compact K C X, such that
X =span K.

Recall our conventions about closures : ¥ is norm closure while ¥¥ is closure in the weak
topology.

Example 1. : a) Separable spaces; b) co(I);

¢) Any reflexive space, in particular L,(v), 1 < p < o0;

(d) Ly(v) is WCG iff vis a o - finite measure.

(e) Every complemented subspace of a WCG space is WCG.

(f) C(K), where K is the one point compactification of a discrete space.

Recall that a compact space K is an Eberlein compact if it is homeomorphic to a weakly
compact subset in some Banach space. In [Li] it is shown that a compact space K is an

Eberlein compact iff C(K) is WCG.

We have already mentioned in Example 6.2 that all WCG spaces have the separable
projection property.

Let be X a WCG space. Then there is U weakly compact in X such that X = span U.
Set K = co(U U —U). Clearly K is convex and by the Krein-Smulian theorem it is also
weakly compact. We write B; for the open ball of radius r in X.

Lemma 1 : For K as defined above
a) K is absolutely convex.
b) If B = span K, then 0 is an interior point of B and B = Un>1 nk.

¢) For each x* in X* we have |[z*| = sup {|z*(y)] : y € B and |ly|| < 1}
Thus, if K, = By N nK, n < 1, we have ||z*|| = sup {J:I*Kn rn > 1}
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Proof : a) Since K is convex and 0 € K, it’s enough to show that x € K implies
—x € K. If x € U C K then -x € U, and there is nothing to do.

Suppose x € co(U U —U). Then there are x1,...,%x, € UU-U, and o1,..., 00 2 0, such
that & op = 1 and x = ¥ aqxx. But then — x = B oy~ xx), showing that - x € K.

Now assumne that x € co(U U —U); then there is a sequence (yn) in co(U U -U) such
that y, (norm) converges to x. But then — x is the limit of -y, € K and so - x € K.

b) Given x € B, we have x = Y%, oxXk, with the oy in IR and the xy in K. For k < n,
consider

ykz{)(j ifaj>0

—X; otherwise

Of course y1,...,yn € K (K is absolutely convex) and we have that x = ¥ |ox|yk. Let
o = ¥ |ou|; we may as well suppose that « # 0. It’s straightforward to verify that x/a is in
K. Thus 4 {x/a) € K and we may conclude that 8 x € K, VB € [0, 1/a]. This shows that 0

is internal to B.

If x € B, since 0 is an internal point of B, there is > 0 such that ax € K, i.e.,
x € (1/a)K. Now choose n > 1/a to get that x € nK. Since it’s clear that nK C B, for all
n > 1, we conclude B={J {nK:n > 1}.

c) Let |jx*|| = a > 0 and fix ¢ > 0. Choose x € X with |[x]| = 1 and |x*(x)| > a - &/2.
Since x € B, there is (yn) € B, with |[ys]| < 1, such that y, (norm) converges to x. Since
Ix*(ya)] — |x*(x)| and |x*(x)] > a - £/2, there is n > 1 such that [x*(yn)| > a - €. Now (¢)
follows immediately. A

Observe that for each n > 1 the sets K, in item (c) of Lemma 1 are convex, weakly
compact and UKn = B;.

The next result, that appears in [Hg] with a different proof, was obtained independently
by the authors. We denote by dens X the density of the space X. The symbol w denotes
the cardinal number of IN.

Theorem 1 : If X is a WCG space, then dens X* < (dens X)*.

Proof : By Lemma 1, we can suppose that X = span K, where K is absolutely convex
and weakly compact. For each n > 1, let K, = B; N nK be the weakly compact sets defined
in Lemma 1.{c). Consider the map

T:X* — 7 = [@nz IC(Kn)]ooa defined by T()(*) — (x*iKn)'

T is obviously linear and since ||x*|| = sup {|jxfy, || : n = 1}, it is also an isometry onto
its range. Thus, dens X* < dens Z. But dens 7 = Hn>1 dens C(K,) and so

(*) dens X* < Hn>1 dens C(K,).

22



Let {x; : i € I } be a dense subset of By, with |If = dens X and select (x{);er
in X* such that ||xf|| = 1 and x{(x;) = ||x]|, Vi € L. Then {x{ : i € I} separates points
in By and so separates points in K, V n > 1. Now the Stone-Weirstrass theorem yields
dens C(K,) < |I| = dens X, V n > 1; thus, Hn>1 dens C(K,) < (densX)¥ and the result
follows from (*). A -

Proposition 1 : If X is a@ WCG space with dens X = o 2 ¢ then it has a closed WCG
subspace Y such that dens Y = c. '

Proof : Let K be a convex weakly compact subset of X such that such that X is the
closure of span K; dens X = « implies that dens K = « (in the ||.]| topology).

Fact : If & > c there are § > 0 and D C K such that [D} = ¢ and satisfying

Vx,x’€D,x #x’* = [lx —%|| = 6.

We first make the following observation : let v be a strictly positive real and define
A={CCK:Vx,x€C,x#x" = |x=¥| > v} I A# 0, we can order A by inclusion
and an application of Zorn’s lemma will yield a maximal element of 4.

Choose n > 1 such that 1/n < diam K. Note that for every m > n we have that
An={CCK:Vx,x € C,x #x = |x—x| > 1/m} is not empty. By the observation
in the preceding paragraph, there is A, C K such that Ap, is maximal in Ag.

We claim that K = Um>n A,,. For suppose we could find x € K and k > n such that
Bia N (Um>m An) =10, where Bi/x is the open ball of radius 1/k in X. In particular, there is
noy € Ay such that ||x — y|| < 1/k and so Ay U {x} is an element of Ay properly containing
Ay, an impossibility since this set is maximal in Aj.

Now dens K = « forces |Um>]1 Ayl > o, and so |Ax| > «, for some k > n. To finish the
proof of the Fact, just choose D C Ay, with |D| = c.

A moment of thought will convince the reader that D is closed and that dens D = c.
Thus, dens co(D) = c; furthermore K, = co(D)wr is weakly compact and has density c¢. The
desired WCG of density c is then span K; and the proof is complete. A

Definition 2 : If X is a Banach space, define dens™ X as the least cardinal v such that X
has a total subset of cardinal v,

Proposition 2 ([Li]) : If X is WCG then dens* X = dens X. A

Proposition 3 : In a WCG space X, any family of closed hyperplanes of cardinality strictly
less than dens X has non trivial intersection.

Proof : Suppose a < dens X and Hy, A < a, is a family of closed hyperplanes in X.
For each A, let x*) be the continuous norm 1 linear functional associated to Hy. It’s easily
seen that ﬂ Hy = @ implies that {x*) : A < a} is total in X. Consequently, dens* X < ¢,
which is impossible by Proposition 2. A
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Theorem 2 (CH) : A WCG space is Pm iff it is separable.

Proof : We have only to verify that if X is not separable then it is not Pm. By CH,
dens X > c; since the property of being Pm is inherited by subspaces, if it is shown that
WCG subspaces of density ¢ are not Pm, the same will be true of X. On the other hand,
Proposition 1 guarantees that X has a WCG subspace of density ¢ and so cannot be Pm.

We may therefore assume that dens X = c. Since dens* X < (densX)¥, it follows from
Theorem 1 that dens X* = ¢. Let {x*, : @ < ¢} be a norm dense subset in X*. Using
Proposition 3 and transfinite induction we can define a sequence {x, : &« < ¢} C X such
that, for o, 8 < ¢, we have

%]l =1 and a<f = x*s(x.) =0.

Fix a bijection h : [0,1] — [0, ¢), h(t) = a4 from [0, 1] to the set of ordinals strictly
less than c¢. Now define f : [0,1] — X by f(t) = xq,,. Since ||xq,|| = 1, f is bounded in X
and in fact Im f C B;. Clearly, f(t) # 0, ¥t € [0,1].

We contend that x* o f = 0 A-ae, V x* € X*, that is, f is a null function. To see this,
fix s € [0,1]; then for each t € [0,1], x*4(f(t)) = x4, (X4, ), Consequently,

Q>0 = X' (%4 ) = 0.

Thus, {t € [0,1]: x", o f(t) # 0} ={t € [0,1] : & < a,}; since oy < ¥y = ¢, it follows
that this set is countable and so has Lebesque measure zero. This shows that x*, 0 f =0
A-ae, as desired.

Now let x* € X*. Recalling that {x*, : @ < c} is norm dense in X*, for each n > 1,
there is @y, < ¢ such that ||x* — x*a, || < 1/n; let Ay, = {t € [0,1] : x*4, (%) = 0}. Since
X © f =0 Xae, M A, =1,Yn2>1.

Moreover, it’s clear that /\(ﬂ:; , Aj) = 1 for all n and so ([0,1] has finite measure),
x\(ﬂn>1 A, = inf {)\(ﬂ:;l A):n<1}=1. Set A = ﬂn>1 An; we have AA = 1 and for
t €A, -

[x* (X )] < [ (Ken) = X (K )| F+ Ko (K )| < X — Kol + [ an(xa)] £ 1/m,
for all n > 1. It follows immediately that x* o f = 0 X-ae. Since x* is arbitrary in X*, f
is Pettis integrable with zero integral over all measurable sets in [0,1]. This shows that X is
not Pm, ending the proof. A

If K is an Eberlein compact, C(K) is separable iff K is metrizable. Thus
Corollary 1 (CH) : An Eberlein compact is Pm iff it is metrizable. A

From Corollary 5.3 and Theorem 2 we get

Corollary 2 (CH) : If K is a measure separable compact, C(K)* does not contain a subspace
isomorphic to a nonseparable WCG space. A
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Observation : In the presence of Martin’s Axiom and the negation of CH it’s possible to
exibit non separable WCG spaces which are Pm. But we also show that even then WCG
spaces with density > 2" are not Pm. This will be discussed in section 10.

8 The Pm property for compact spaces

Let {Ki);e1 be a family of compact spaces and K = ]_—L. c IK; be their product, with the

product topology. For x € K, let x; be its j* coordinate in Kj. This notation will remain
fixed throughout this section.

Definition 1 : (i) A function g € C(K) depends on a subset A C I of coordinates
whenever the following condition is satisfied:

[dep] :  if z, y € K are such that z; = y;, V j € A, then g(z) = g(y).

(ii) A function f: [0,1] — C(K) is said to depend on a set I' of coordinates if,
for dll t € [0,1], f(t) depends only on the coordinates in I'.

Observation 1. If f € C(K;),i € I, we can ‘lift’ f to C(K) by defining f(x) = f(x;). Observe
that f depends only on i. If F is any finite subset of I, the elements of the subalgebra of
C(K) generated by the ‘lifting’ of the maps in C(X;), 1 € F, depend only on the coordinates
in F.

Let A be the collection of maps in C(K) that depend only on a finite set of coordinates
in I. Then A is an algebra wich contains the constant functions and separates the points of
K. By the Stone - Weirstrass theorem, A is dense in C(K); so, each function in C(K), can be
uniformly approximated by a sequence each term of which depends only on a finite number
of coordinates. It follows that every function in C(K) depends only on a countable
set of coordinates.

For J C 1, set Ky = HiEJ K; and Kij = H K;. We identify K with K; x Ki-;
that is, x with (xj, x;_j).

iel-J

We have natural projections py : K — Kj, given by ps(x) = (x;);e5. Whenever conve-
nient we write x; for pj(x). Thus in this notation, Idx = p; ® pi-J.

We shall need the following simple result.

Lemma 1 : With notation as above
(a) (i) The map p; is continuous and onto.

(i) The function ay : C(K;) — C(K), given by aj(g) = g o py is linear and an
isomelry onto its range.

(b) Let y be any element of [].

Ber = K;. Then
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(i) The map K; 25 K, @y(z) = (2, y), is continuous and injective.

(i1} The map C(K) =% C(K,), n;(g) = gopys is linear, continuous and onto. &

Theorem 1 : Let be (S, B, v) a complete separable measure space and f : S — C(K)
a bounded and Pettis integrable function, where K = Hl_e IK,-. Then there are functions

fi, f2 : § — C(K} such that :
(i) f=fi + fa; (i) f1 and f; are bounded and Pettis integrable;
(iii) fE £ dy = fE fdv,VEe B;
(iv) span f1(S) is isometric to a subspace of C(K;), where J C I'is a countable sei;
(v) /E f,dv =0,V E€B.

Proof : Let (Dy)_ >, € B be a sequence of measurable sets such that {Da:n>1}is
dense in B (notation as in Observation 1.1). Let k, = /D fdv,n > 1. Then &, € C(K)

and it depends only on a countable set J,, of coordinates in I. Set J = Un>1 Ja-

With notation as in Lemma 1, define fi = ay o w5y o f: § — C(K). Obviously f; is
bounded and Pettis integrable. Moreover, for each n > 1,

j];n fldv=fDn a;omofdu:a;om/Dn fdv = ajomy(ha),

Note that oy o my(ha) = T3(hn) 0 3 = hn 0 1 0 p3. We claim that A, 0 @30 py = hy. This
will then immediately yield / fudv = fD £ dv.
Da n

In effect, if x = (x3, x1—1) € K, then

hy 0 @3 0 p1(x) = hn 0 @3(x3) = Pa(x1, ¥) = = ha(xy, X123) = 2a(x),

because h, depends only on the coordinates which arein J and y € Hie ;g Kiis the element
used in the definition of oy, as in Lemma 1.(b).

Since/ fidv = / fdv,Vn > 1, Lemma 1.2 yields/E [ fE fdv,VE € B.
Dy Du

Moreover, span f,(S) is isometric to a subspace of C(Kj) since all functions in fi(5)
depend only on the coordinates in J. If we define f, = f — fi, then f; is bounded, Pettis

integrable and '/E fodv=0,YVE€B. A

The above result applies in particular to [0,1] with Lebesque measure. Recall that a
compact K is said to have property P if C(K) has P.

Proposition 1 : For compact spaces, the property of being Pm as well as property P are
preserved by continuous image.
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Proof: If # : T — T" is a continuous onto map of compact spaces, it induces a linear
isometry 7 : C(T) — C(K), f — = o f. The conclusion now follows from the fact that
properties P and Pm are inherited by subspaces. A

Proposition 2 : All compact separable spaces have property P.

Proof : Suppose T is a separable compact and D = {d, : n > 1} a countable dense
subset of T. For each n > 1, let d* : C(K) — IR be the linear continuous functionals
‘evaluation at d,’, dX(f) = f(dn).

It’s clear that © = {d* : n > 1} is total in C(T) and so the statement follows from
Corollary 6.1. A

Proposition 3 : Any product of separable compact spaces has property P.

Proof : Let f : [0,]] — C(K) be bounded function such that /[ ] fdu =0,
0,6

V t € [0,1]. For each t € [0,1], the clement f(t) of C(K) depends only on a countable
set Iy of coordinates. Set I' = UtE[O 1 I';. Then |I| € ¢ and f depends only on the

coordinates in I'. For y € Hie]—r K;, let or : Kr — K, or(x) = (x, ¥), and
#r : C(K) — C(Kr), 7r(g) = g o ¢r, be the maps defined in Lemma 1.(b).

Consider the function zp o f : [0,1] — C(K7t). Since |I| < c and K; is a separable
space, Kr is a separable compact space. Thus, it has property P. But the fact that f
has null Pettis integral implies that the same is true of ar o f and so we conclude that
mro f = 0 dae. Let A C [0,1] be such that AA = 0 and 7r o f(t) = 0if t & A.

To finish the proof observe that if t & A, then for all x € K,
f(t)(}() . f(xra x‘I—]f‘) . f(X[‘, y) = 0:
because for all t € [0,1], f(t) depends only on the coordinates in T. A

Recall that a compact space is said to be dyadic if it is the continuous image of the
product 27 = {0,1}7, for some cardinal .

Corollary 1 : A continuous image of a product of separable spaces has property P. In
particular, all dyadic compacts have property P. A

As the last step to one of the main result of this section we prove
Proposition 4 : For all cardinals n, C(27) has the separable projection property (spp).

Proof : Let Y C C(27) a separable subspace of C(27) and D = {g, : n = 1} a
countable dense subset of Y. Every g, depends on a countable set J; C 5 of coordinates. Let

I=U,, &=

Observe that all ¢ € Y depend only on the coordinates in J because there is a subsequence
of the g, converging to ¢ in the sup norm.
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We write 0 for the sequence in a product of 2 = {0, 1} whose coordinates are all equal
to zero.

Let Z = {h € C(27) : h(x) = h{xj,0), Y x € 27}. Of course Y C Z and Z is a closed
subspace of C(27). For g € C(27), define § : 27 — IR by g(x) = g(x3, 0). Clearly § is
continuous and in Z.

1f we define p : C(27) — Z by p(g) = §, then p is a linear projection from 2" onto Z,
and so Z is a closed complemented subspace of C(27). Moreover, 7 is isometric to C(27),
and since J is countable, C(27) is separable. This completes the proof. A

Theorem 6.1 and the results of this section yield
Theorem 2 : All dyadic compacts are Pm spaces. A
Under CH, nonseparable WCG spaces are nPm. We get Hagler’s theorem ([Hg]) :

Corollary 2 (CH) : If K is a dyadic compact, C(K} has no subspace isomorphic lo a non
separable WCQ space. A

Observatien 3 : In [DI] it’s shown (by an entirely distinct method) that a dyadic compact
is Rm. This property is a consequence of the fact these spaces are Pm.

Observation 4 : M. Ignez S. V. Diniz has remarked that every space X of the form
(DB [Zae L]0, 1]]1]: is isomorphic to a closed subspace of C(T), for some dyadic compact
T. This obtained by observing that the unit ball of the components of X with the weak*
topology are either homeomorphic to a product of copies of [0,1] or are metrizable. Thus, X
is isometric to a subspace of G(T) where T is a product of dyadics and consequently dyadic.
It follows from Theorem 2 that X is Pm. This proof is independent of CH.

We now our attention to providing an example of a Pm compact of a quite distinct
nature. We will show that there is a separable, measure separable Pm compact K such that
C(K) is not a subspace of C(D) for any dyadic D. In particular, K is not dyadic. To provide
this example, we shall make use of a construction due to Talagrand and presented in [T],
pages 199 ff. We ask the reader to consult [T] for the details omitted below.

Let L = [~1,1]* and, for each n € w, let 8, : L — [-1, 1] be the projection on the
n-coordenate. Recalling that L is a compact metric space, we can enumerate (Ay)y<w, the
Borel regular measures defined on L. Let (Da)a<w, be the family of infinite subsets of IN.

We begin with the following result, whose proof may be found in [T] :

Lemma 2 : There is a collection (Aq)a<w, of infinite subsets of IN verifying the following
conditions :

J)<a = AQ-ABisaﬁniteset;

i) For every subset D € IN there is & < wy such that either Aq - D or Ag U D is a
finite set ;
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iii) For every v < wy, if @ = v + 1, then one of the following holds :
a) Ay({z € L : 3 limy,, 6.(z)}) = 1 or
b) For B = Ay - Aq, Ay({z € L :limp 6,(z) does not ezists}) > 0. A

Let A= {A CIN: Aisafiniteset} U {Aa : @ <w; }. Let H be the Boolean algebra

generated by A. It’s clear that the elements of H can be written as (Ay; N ...N Ayy) U
U (An N Lo A, ), where Ajj or AS; are in A.

Let K = S(H), be the Stone space of H. For A€ Hyput Sx = { FEK: A€ F}. It
is known that K is a compact Hausdorff space and that { Sao : A € H } is a basis clopens
in K. Since the finite sets are in H, it’s not difficult to verify that K is separable, with the
countable collection of principal ultrafilters F(n) = {C € H : n € C} as an open dense set
in K.

In [T], Talagrand proves that every scalarly measurable function f : [0,1] — C(K) is
strongly measurable. Thus, K is a separable Pm compact space.

The following result shows that C(K) provides an example of a nonseparable Banach
space such that both it and its dual are Pm. It will in fact imply that C(K) is not isomorphic
to a subspace of C(D) for any dyadic space D. In particular, K is not dyadic. We just register
that it is possible to prove directly from the construction that K is not dyadic.

Theorem 3 : K is measurable separable.

Proof : Let u be a regular positive probability Borel measure on K.

We must prove that there is a countable set { Z, : n €IN} C { borel sets of K } such
that for every Borel set Z and £ > 0, there is n € IN such that u(Z A Z,) < e.

It is sufficient to consider the case that g is a measure without atoms, that is, in which
the measure of finite sets is zero.

The sets G = {¢Sa, : o < wi} and H = {pS§, : a < w1} are subsets of [0,1],
and so there is a sequence (&), >, such that {uSa,, : n >1} and {pS5, : n =1} are
dense respectively in G and H. Put @ = sup {ay : n >1}. Then @ < w; and we have
{pSa. : @ <&} and {§S5, : @ <@} countable and dense in G and H, respectively.

We first prove the folowing Facts, where ¢ > 0 is a real number :
1. Vo < wy, Ve > 0 there is § < @ such that u(Sa, A Sa;) <e.

If o« < @, it is sufficient to take § = a. Suppose o > @; then we may choose
8 < @ such that |uSa, — #Sa,| < €. We have Sa, A Sa, = (Saa - 4,) U (Sa; — a.) which
implies p(Sa, & Sa,) = p#(Sas - as) + #(Sas - aa)-

Since § < o« implies that A, - A; is a finite set, we get p(Sa, - Sa,) = 0 and
#(Sa. A Sa,) = p(Sa, - Saa)-

Therefore, from A, = (A, - As) U (Ay N As) and p(Sa, - a;) = 0 we get
PSA. = #SA, — Ag

Thus, |pSa, — #Sa,| < ¢ implies [#Sa,na, — #Sa,| < €, which yields gSa;-a, < € and
it follows that #(Sa, & Sa,) < &, proving Fact 1.
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2. Va < wy, 3 6 < @ such that u(85, A S;,) <e.

3. Suppose R = A; N...N A, and Q = By N...N By, with A;, B; € H, are such that
#(Sa, & Sg,) < &/n, 1 <1< n. Then, ¢(Sg A 5q) < €.

4. Suppose Ry, ..., Ry, Q1, ..., Q; are elements of H such that p(Sg, A Sq) < g/t,
1 S i S t. Then #(SRl u..t R A SQ1 .. Qt) < E.

The proofs of items 2 - 4 are straightforward calculations.
Set W={Aag: a<a@}U{A%: a <@} U{U:Uis a finite or cofinite set in IN} and
E={NZ:7ZCW,Z finite }.

Then D = {Sq,u.uq. @ @i € €, 1 <i <t} is countable. We will prove that D 15 dense
in the measure p.

Let Y be a Borel set in K and ¢ > 0. We may select a closed F and an open set © such
that FCY C © and p(0-F) < ¢ /2.

For each x € F, choose Vi € H such that x € Sy, € ©. Since F is compact, there
are X, ..., xx € F such that F C J&, Sv,, € ©. We have Y - UL, Sv, €Y - F and
K Sv, Y CO-Y;thus p(Y A UL, Sv,,) <e&/2.

Ii’s straightforward to see that we may write US; Vi = Ry U ...U Ry, where each R;
is an intersection of elements from .4 or whose complement is in A, that is

Ri=Aln...nAL1<iZt, (%)

where each A;: is finite, cofinite, a member of the sequence constructed in Lemma 2 or the
complement of one such element,.

For eachi <t,1 <j < (asin (*)), if A} = A, (or A%), with o < wy, by Fact 1 we
may select §; < @ such that p(Sa & Sas) < &f2tr (or u(Sa A Sag ) < g/2tr;).
1 ]

Let B% = Ay (or A‘j-j). If A} is a finite or cofinite set, put Bij . Aj

Let Qi =Bin...NB,1<i<t Then Sq U. Uq € D, and since (by Fact 3)
#(Sp, A Sq) < €/2t, it follows (from Fact 4) that ¢(Sp, U . Ur, & Sq, U .. U @) < €/2.

Finally,

P:(Y TAN SQlU e U Q:) < l"’(Y A SR1U...UR;) + -”(SR1U--AURt A SQ;U...UQ;) < 6/2 + 6/2 =g

ending the proof. A
The preceding discussion and Corollary 5.3 yield

Theorem 4 : Both C(K) and C(K)* are Pm spaces. A
Corollary 3 : If D is a dyadic, C(K) is not isomorphic to a closed subspace of C(D).

Proof : We recall here a theorem of Hagler ( [. ] ) :
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Let X be a Banach space and D a dyadic compact with X isomorphic to a
subspace of C(D). Let § be a regular cardinal number. Are equivalent :

(i) the dimension of X is > 6 ; (ii) X* contains a subspace isomorpbic to C(2%)*.
In our case, the dimension of C(K) is > c. If C(K) were isomorphic to a subspace of
C(D), C(K)* would contain subspace isomorphic to C(2°)*. Note that C(2°)* is not Pm

since 2° is not measure separable (just consider the usual Haar measure on 2¢). But this is
impossible because the dual of C(K) is Pm. A

9 The spaces C(K, X) and the Pm property

Given a compact K and a Banach space X, we denote by C(K, X) the Banach space of
the continuous functions g : K — X, with the sup norm ||g]| = suppexk [lg(t)]-

In this section we show that if K is a separable Pm compact and X is Pm then C(K, X)
is Pm.

For L € C(K, X) and p € K, weset L(p) = {f(p): f €L} X
The next result is useful in identifying separable subsets of C(K, X).

Proposition 1 : For a subset L of C(K, X), are equivalent :
(1) L is separable ;
(2) There is a countable D C C(K, X) such that :
(a)V p € K, L(p)  D(p).
W)V p qc K (VdeD (i) = dg)] = [Naclap)=cl@)
(3) There is a countable set W C C(K) and a separable Y C X such that
(a)Vae L, imalY;
)V b, g€ K (Noe W(elp) =o(e)] = [Yael(afp)=a@)

(4) There is a compact metric space K, a closed subspace Y C X, a surjective continuous
function © : K — K,, and an injective continuous function v : L — C(K, Y) such that
7o 07 =iy, where m, : C(Km, Y) — C(K, X) is the isometry induced by = and iy, is the
canonical injection of L in C(K , X}.

Proof : (1) == (2) : Since L. € C(K, X) is separable, there is a countable D € L such
that D = L. For p € K, consider L(p) = {f(p) : f € L} and D(p) = {f(p) : f € D}.

First notice that L(p) = D(p). To see this, let f(p) € L(p) and ¢ > 0; since D is dense

in L, there is ¢ € D such ||f — g|| < e. In particular, ||f{(p) — g(p)|| < € and so f(p) € D(p)-

Now suppose p, q € K are such that d(p) = d(q),Yd € D.Ifa € Land e >0, there is
d € D such that || —d| < /2, and so

ladp) —d(p)ll < /2 and [le(q) — d{q)l| <&/2-
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Thus, |la(p) — a(q)]| < &; since € is arbitrary we conclude that e(p) = a(q).

(2) == (3) : Let D = {g,,: n > 1}; for each n > 1, the image of g, is separable because
it’s a compact in the metric space X. Let be Y = span U g,(K). Then Y is a separable
closed subspace of X. Let {ya : |lyn]l = 1, n > 1} be a countable dense subset of the set of
norm 1 vectors in Y.

For each n > 1, choose x} € X* such that x%(y,) = 1 = ||xX||. It’s readily verified that
{x;:n>1}istotal in Y, that is,if y € Y and x*(y) = 0,V n > 1, then y = 0.

Define W = {x},0¢, : n,m > 1}.

(a) : Fix o € L; given € > 0, there is n > 1 such that |je —g,| < . Thus,
lla(p) — go(P)|| < &, ¥ p € K. Recalling that Im g, C Y, this reasoning shows that

Ve>0VpeK3Iy€ Y such that ||alp) —y|| <e.

Since Y is closed in X we get that a(p) € Y,V p € K.
(b) : Let p, q € K be such that o(p} = (q), Vo€ W. Then,

X 0 9n(P) = x5 og,(q), Vm>1.

Since {x;, : m > 1} is total in Y, ¢,(p) = ga(q), ¥ n > 1, which, by 2.(b), implies
o(p) = a(q), Vet € L.

(3) == (4) : Let W = {on : n > 1} be the countable set satisfying the conditions in
(3). Define the following equivalence relation = on K

p~q iff on(p) =o4(q),Vn>1.

Let Km = K/~, considered as a topological space with the quotient topology. Then the
function 7 : K — Ky, given by =(p) = p/~ (the class of p under =), is continuous and
onto and so Ky, is compact. We must verify that the topology on K, is Hausdorff, The
following facts are easily established :

i) f U C R is an open subset then 0~!(U) is invariant by =, for all ¢ € W, ie. :
if p € ¢71(U) and p = q, then q € = (U).

ii) If p and q are not equivalent under ~# then there are open subsets U, V C IR,
and oy € W such that UNV =0, o4(p) € U and aa(q) € V.

It follows from (i) that if U C IR is open and o € W, then 7~ (x (e~} (U))) = o~ }(U).
Since Km has the quotient topology, we get that 7(o~*(U)) is open in Ku, for all & € W and
all open U C R.

Now, to separate the points of K., proceeds as follows : if p/~ # q/=~, using (ii) choose
opens U, V in IR and n > 1 such that ¢,(p) € U, ou(q) € Vand U NV = §. By (i),
p/~ C o7'(U) and q/~ C 67 1(V), s=Y(U) N ¢=(V) = 0 and both these inverse images are
open and invariant. The projections of these inverse images on K., will then be non empty,
disjoint neighbourhoods of p/a and q/=, proving that K., is Hausdorff.
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Our next step is to verify that C(K,,) is separable which will then imply that K, is
metrizable. For each n > 1, define 7, : K, — IR by an(p/~) = ou(p). 7n is well defined
and, since on © T = 0y, it follows that it is continuous. A moment of thought will convince
the reader that this countable family of continuous maps separates the points of K, and the
Stone-Weierstrass Theorem then guarantees the separability of C(Ky).

Now, For every function o € L, define & : K,, — X by &(p/=) = a(p). It’s straight-
forward to check that & is well defined and continuous because & o 7 = o

Let v: L — C(Kn, Y) be given by y(e) = &; then « is linear, continuous and injective.
Moreover, if 7* is the isometry from C(Ky, Y) — C(K, X) induced by = (z*(k) = h o =),
it’s clear that #* o ¥y = 71, the canonical immersion of L in C(K, X).

{(4) = (1) : Since #* o & = i, and 4 is injective, L is a subspace of C(K,, Y).

On the other hand, Y is separable and so by a result of Banach ([Ba]), isometric
to a closed subspace of C([0,1]). From this we obtain that C(Km, Y) is a subspace of
C(Km, C([0,1])}, which is isomorphic to C(K,, x [0,1]). But K,, x [0, 1] is metrizable which
in turn implies that C(Ky,, Y) is separable. Thus, the same must be true of its subspace L,
concluding the proof. A

Theorem 1 : If K is a separable Pm compact and X ¢ Pm Banach space, C(K, X) is Pm.

Proof : Let D = {d, ; n > 1} be a dense subset of K and f : [0,]] — C(K, X) a
bounded Pettis integrable function.

For each n > 1, we define df : [0,1] — X by d:(t) = {(t)}(dn). It is easy to see that
d;, is bounded and Pettis integrable because it is the composition of f and the operation of
calculation at d,,.

Since X is Pm, there is C C [0,1], AC = 1, such that Un>1 d;(C) is separable. If

Y = spanU_~, d:(C), we have that Y is separable. Consequently, proceding just as in the
proof of (2) implies (3) in Proposition 1, there is a countable family of continuous linear
functionals in X* which is total in Y.

For each n > 1, consider the function h, : [0,1] — C(K) given by h.(t) = x o f(t).
Each h, is bounded and Pettis integrable; since K is Pm, there is B C [0,1], AB = 1, such
that Z = spanUp>y ha(B) € C(K) is separable. Let W = {oy, : n 2 1} be a dense set in Z.

Now consider A = BN C C [0,1], B and C as above. Then AA = 1 and we will show
that L = f(A) is separable, using the conditions in Proposition 1.3.

(a) It’s clear that D being dense in K, Y being closed and that V n and t € A
f(t)(dn) = di(t) € Y, forces f(t) C Y, for all ¢t in A.

b) Let be p, q € K such that on(p) = ou(q), Vo > 1. Then x%o f(t)(p) = x%o f(t)(q),
¥ n > 1. Since {x : n > 1} is total in Y, we get f(i)(p) = f(t)(q), YV t € A.

This ends the proof. A

Corollary 1 : a) If K4, ..., K,, are separable Pm compacts, then K; x ... x K, is Pm.
b) If K is a Pm compact and X a separable Banach space then C(K, X) is Pm.

33



c¢) If K, and Ky are Pm compact spaces and K, is separable then the tensor product
C(K1) ® C(K3) is Pm.

Proof : a) It follows from Theorem 1 that C(Kj, C(K;)) is Pm; but this space is
isometric to C(K; x K3). Thus, K; x K; is Pm. Induction will complete the proof of (a).

b) By Banach’s theorem, X is isometric to a closed subspace of C([0,1]) and so C(K, X)
is isometric to a subspace of C(K, C([0,1])). This space is isomorphic to C(K x [0,1]), in
turn isomorphic to C([0,1], C(K)), which is Pm by Theorem 1.

¢) It'sufficient to remember ([S], pg.357) that C(Ky) ® C(K;) is isometric to
C(Ky, C(K3)) and then apply Theorem 1. A

Theorem 2 Let be (K,),>, a family of compacts such that, every finite product of the K, s
is Pm. Then K = Hn>1 K., as well as every continuous image of K, is Pm.

Proof : Notation will be as in Lemma 1, except that we write pj, o, ¥; and 7; for the
maps corresponding to the finite subset J = {1, ..., j}. For the definition of all ¢; and 7,
we fix y = (ya) in K. By Proposition 8.1, it’s sufficient to verify that K is Pm.

Let f : [0,1]] — C(K) be a bounded Pettis integrable function. For j > 1, consider
h; = ejomjo f. Then by is Pettis integrable and hi(1) (%)) = F(E)(x1, + - -5 Xy (¥5)in3); thus
Im h; is isometric to a subspace of C(Ky x ... X K;). By hypothesis, Ky X ... X K; is Pm and
so there is A; C [0,1] such that AA; = 1 and hy(A;) is separable.

Set A = ﬂj>1 Aj. Then XA =1 and Z = U;>, hi(A) € C(K) is separable. Let

D = {g, : n > 1} be a dense subset of Z. We will prove that f(A) € Z and consequently, it
must be separable. The measurability of f is then clear.

Fix t € A and ¢ > 0. Then there is ¢ € C(K), depending only on the coordinates below
some j > 1, such that [|f(t) — g]| < /3.

In particular, we have |[f(t)(x1,... y X5, (¥i)ivg) — 9(X1, - -5 X5 (yiiss)l < €/3,
V(x) € H£<j K;; thus, one has [[hi(t) — gl < €/3.

On the other hand, since k;(t) € Z, there is g, € D such that ||h;(t) — gl < e/3.
These inequalities clearly imply ||f(t) — ;|| < . Since Z is closed and ¢ arbitrary, we

conclude f(A) C Z, ending the proof. A
Corollary 2 : Let (K;);cr be a family of compact and K = HiEIK’" Are equivalent :
(1) K is Pm ; (2) (e} ¥ F C I, F finite, H{EFK; is Pm ;
(b) K has property P.

Proof : (1) implies (2) is a direct consequence of Proposition 8.1.

(2) = (1) : By Theorem 8.1 we can write a bounded Pettis integrable f as
f = fi + fa where these maps have the properties described in its statement. Since K
has property P and f is a null function (Theorem 8.1 item (v)), we have that f = fi A-ae.
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On the other hand, by item (iv) in the same result, f; (and thus f) can be considered as
a map into a countable product of components of K. An application of Theorem 2 yields
the measurability of f; and consequently, that of f. A

Proposition 8.3, Corollary 1 and the preceding result give

Corollary 3 : Any product of separable Pm compacts is Pm.

10 Some aspects of Pm theory under -CH + MA

In the previous sections we used the continuum hypothesis (CH) to obtain a number
of results. Here, the independence of some of these statements from ZFC will be discussed,
using Martin’s axiom (MA) and the negation of CH. A convenient reference for Martin’s
axiom is [K]. A formulation of MA can be stated as

MA : In a CCC compact Hausdorff space, the union of a family of meager sets with
cardinality o < 2% is a meager set.

It is known that there are models of ZFC set theory (Zermelo - Fraenkel with Axiom
of Choice) satifying MA in which CH is false. The following consequence of Martin’s axiom
will be important in what follows.

Theorem 1 (see [K]) : (MA) If n is a cardinal number such that 5 < 2% then the union
of n subsets of R of Lebesque measure zero has measure zero. A

In section 6 we proved that if X is a Banach space which have spp and the null Pettis
integral property then X is Pm. The proof did not use C'H and so this result holds true
under ~CH + MA. Thus, with a proof analogous to that of Corollary 6.1 we can show

Theorem 2 : Let X be a Banach space and n an infinite cardinal such that the union of
subsets in [0,1] of Lebesgue measure zero has measure zero. If X has a total subset O C X~
with |Q| < n, then X has property P. If X also has the spp, then X is Pm. A

Consequently,

Corollary 1 (=CH + MA) : A Banach space with density n < 2% has property P. If it
also has the spp, then it is Pm.

Proof : It is enough to recall that a Banach space with density 5 < 2% has a total
subset 2 C X* such that || = 5. By MA, the union of 5 subsets of measure zero in [0,1]
has measure zero and thus we can apply Theorem 2 to conclude. A

In section 7, it was proved that CH implied that a WCG space is Pm iff it is separable.
In section 5 it was shown that, under CH, an abstract L, space, 1 < p < oo, is Pm iff it is
separable. Furthermore, we had observed that the continuum hypothesis implied that a non
CCC compact space did not have property P. These statements are all independent of ZFC
since we can apply Corollary 1 to get
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Corollary 2 (-CH + MA) : For ®; < n < 2%, I(y), 1 < p < oo, co(n) are Pm and
C([0, 7]} has property P. Moreover, C([0, w1]) is Pm. A

Nevertheless, the following result shows that the class of nonseparable Pm WCG spaces
in a model of - CH 4+ MA is not ‘very large’. Notation is as set down in section 7.

Proposition 1 (—CH + MA) : If X is WCG and dens X > ¢ then X is not Pm.

Proof : By Proposition 7.1, we may assume that dens X = ¢. Thus dens*X = ¢ and
therefore, ¢ = dens X = dens* X < dens X* < (densX)*” = ¢, and we get dens X* = c.

Let {x} : A < c} be a dense subset in X*, and Hy = (x3)71(0), VA <.

Just as in the proof of Proposition 7.3, for every a < ¢, we can find x¢ € n)\(aHA’ with
[xall = 1.

Fix a bijection h : [0,1] — [0, c), t + X, and consider f : [0,1] — X, given by
f(t) =x) . f is bounded, in fact IF ()| = L, ¥ t € [0,1]. Moreover, given to € [0,1], we have
Ag > Ay = X), € H)\‘ = X’S\‘ (X)\t) =0 = X’:\ o f(t) = 0.

0 o o

Since J{t : <A }H € |Mo| < ¢, by MA, p{t : Ay < A} = 0. To conclude, one can now
proceed as in the proof of Theorem 7.2. A
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