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In this paper we study the class of Banach spaces X for which every Pettis integrable 
map/: (0, 1]--+ Xis measurable, where [O, 1] is the real unit interval with Lebesque measure 
>.. Although we assume familiarity with the notions of measurability of functions in a Banach 
space ((Y]), as well as with Pettis and Riemann integration ((DU],(P]), we recall in section 1, 
for the reader's convenience, the basic concepts of Pettis integration over probability spaces 
with values in a Banach space, together with some of the fundamental results of this theory. 
One can find a wealth of information on this topic in [DU] and [T). We also note that, for 
(0,1) with the Lebesgue measure, every Riemann integrable function is Pettis integrable. 

The basic categories of spaces we will be interested in are singled out in : 

Definition 1 : A Banach space X is said to be 

i) Pm when all bounded Pettis integrable maps f: {0, 1 J--+ X are measurable. Otherwise, 
it is said to be nPm. 

ii) Rm when all Riemann integrable Junctions f: {0, 1 J--+ X are measurable. Otherwise, 
it is said to be nRm. 

X is said to have property P if for each bounded Pettis integrable map f: {0, 1 J --+ X, 
with null Pettis integral over all measurable A ~ {0, 1 ], we have f = 0 ae. 

X is said to have property R if for each Riemann integrable map f : {O, 1}--+ X such 

that V t E {0,1} f f dt = 0, we have f = 0). - ae. 
lro,tJ 

A compact Hausdorff space is said to be Pm or to have property P if C(K) has the 
corresponding property. 

In section 2 we gather some of the fundamental, but mostly elementary, relations between 
these concepts and give examples of Pettis and Riemann integrable maps which are not 
measurable. 

We verify that evf'ry Pm space has property P and observe that the converse is false. 
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There are several examples of nPm (not Pm) spaces : among them, lp(I), with III ~ i~0
, for 

1 < p ~ 00. 

On the other hand, the study of the Pm property for the case p = 1 involves a combi­
natorial problem related to intersections of finite sets, indexed by a subset A ~ [0,1] with 
A* A > 0. This lead us to state a measure theoretic analogue of the Erdos-Rado theorem, 
whose proof is the subject of section 3. 

As an application of this property and assuming the continuum hypothesis ( CH), we 
prove in section 4 that the operation of 11-sums preserves the property of being Pm. For 
spaces of type [li(J) EB [EaEAL1 [0, l]]t]i, it's possible to show, without CH, that they are 
Pm. 

In section 5 we discuss abstract LP-spaces, with 1 < p < oo. Assuming CH, and using 
methods analogous to those in [MR], it is shown that such spaces are Pm iff they are 
separable. 

Since C(K)* is an abstract 11-space for every compact Hausdorff topological space K, 
we apply the results of section 4 to show that C(K)* is Pm iff K is measure separable. 

In section 6, a sufficient condition, indepedent of CH, for X to be a Pm space is presented. 
If X has property P and the separable projection property (every separable subspace of 
X is contained in a complemented separable subspace of X) then X is Pm. 

In section 7 we prove that nonseparable WCG Banach spaces are not Pm. This allows 
us to conclude that if K is a measure separable compact then C(K)* doesn't contain any 
subspace isomorphic to a nonseparable WCG space. 

In sections 8 and 9, we study the Pm property in C(K) spaces. It's shown that if K 
is dyadic then C(K) is Pm. We also show that there are non dyadic compacts with this 
property. In fact, more is true : if K is a separable compact and X a Banach space, both 
Pm, so is C(K, X). Conditions are also presented for C(K) to be a Pm space when K is an 
arbitrary product of compacts. 

In section 10 we discuss, using Martin's axiom, the independence of some of the state­
ments proved with aid of the continuum hypothesis. 

A comment on notation and terminology. Unless express mention to the contrary, all 
vector spaces will be over the reals and all normed spaces complete (Banach); all compact 
spaces shall be Hausdorff and all measures will be positive and finite. 

We use standard notation for duals. Thus X* is the dual of X, with its elements denoted 
by x*. As usual, the norm in X* is given by llx*JJ = supllxll~1 lx*(x)J. 

For A ~ X, A denotes the closure of A in the norm topology, while Aw is the closure of 
A in the weak topology. 

CH is the continuum hypothesis, 2No = ~1 . We may use c as shorthand for 2No. 

If A is a set, IA I is its cardinality. We write l:-,. for the symmetric difference of sets 
(A l:-,. B = (A - B) U (B - A)), as well as for the end of a proof. 
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If Xis a vector space and K ~ X, span K is the subspace generated by K. 

1 Preliminaries 

Let X be a Banach space, X* the dual of X and (S, 8, µ) a complete probability space. 

Definition 2 : A function f : S -+ X is called 

a) measurable if there is a sequence S .!.!.+ X of simple functions such that f n -+ f 
µ-ae. 

b) weakly ( or scalarly) measurable if, for each x* E X* 1 x* o f : S --+ IR is 
measurable. 

c) scalarly L1 if x* o J E Li(µ), for all x* E X*. 

The connection between measurability and weak measura.bility is described by the fol­
lowing theorem of Pettis. 

Theorem 1 ((Tl, pg. 33) : For a function f: S--+ X, are equivalent: 

a) f is measurable; 

b) f is scalarly measurable and f has almost separable range (that is, there exists A E B 
such that µA =1 and J(A) ~ Xis separable). 6. 

In particular, if X is separable, the notions of measurability and weak measurability 
coincide. 

Definition 3 : Let f: S -+ X be a scalarly L1 function. We say that J is Pettis inte­
grable if, for each E E B, there is x E E X such that 

We denote the element XE of X by JE J dµ. 

Observe that a Pettis integrable function doesn't need to be measurable (as the Bochner 
integrable ones) but only scalarly measurable (and scalarly Li). 

Example 1 : Recall that if I is any set, c0 (1) is the Banach space whose underlying set 
is given by 

co(I) = { x = (x;) E IR1 
: x is bounded and for each t > 0, there is a finite set Ff ~ I such 

that {t : lxtl > t} ~ Ff}, 

with the norm llxlloo = sup {lxt] : t E I}. 

Let [0,1] provided with the Lebesgue measure and define 
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f: [0,1] _. c0([0,1]), by f(t) = et 

where 

( ') { 1 if t '= t 
et t = 0 if t :/: t' 

We have co([0, 1])* = 11([0,l]). Then, given x'" E c0 ([0,1]), there is at E l1([0,l]) such that 
x*(et) = at, Vt E [0,1]. Moreover, the set {t E [0,1] : at :/: 0} is countable, and so we may 
write it as {t1, ... , tn, ... }. Thus, 

{ 
atn if t = tn for some n 2 1 

x* 0 f ( t) = 0 otherwise 

and we conclude that x'" o f :/: 0 only in a countable subset of [0,1}, i.e., x* o f = 0 >. ae. 
It's simple to verify that XE = 0 for all E E ~; thus f is Pettis integrable. 

But f is not measurable because it doesn't have almost separable ra.nge : given a mea­
surable A with µA = 1, we have IAI = IIRI and for distinct t, t' EA, llet - et1 !1 00 = 1. This 
shows that c0 ([O, 1]) is not Pm and does not have property P. 

Example 2: When f: S --+Xis Pettis integrable, we have x* of: S _. IR integrable 
(in the classical sense), for all x* E X*. But f need not be bounded. As an example take 
f : [O, l] -t co ([O, l]) given by 

f(t) = { (1/t)et ~ft :/: 0 
eo 1f t = 0 

The map f is scalarly measurable and Pettis integrable, with XE = 0, for all measurable 
E. But f is neither bounded nor bounded almost everywhere; moreover, f is not measurable 
and, consequently, not Bochner integrable. The above example illustrates that there are 
Pettis integrable functions that are not Bochner integrable. We register that all Bochner 
integrable maps are Pettis integrable, with the same integral over all measurable sets. 

We assume that the reader is familiar with the basic results of Pettis integration, as 
presented for instance in [DU] or [T]. In particular, for each measurable E, the map 

f i--+ h, f dJt is linear and preserved by bounded linear operations T : X --+ Y, that is, 

k T O f dµ = T(k_ j dJt ). 

It's well known that a Pettis integrable f : S --+ X originates a map from B ---+ X, 
given by E i--+ k, f dp, which is a completely additive X valued vector measure with weakly 

compact range. Furthermore, this vector measure is µ continuous : for all E E B, µ E = 0 
implies F(E) = 0. 

For perfect measure spaces, there is an important theorem due to Stegall. 

Definition 4 : A finite measure space (S, B, µ) is perfect if, for each measurable map 
h : S _. IR, for each set E ~ IR, if h-1 (E) E B, there is a Borel set C ~ E such that 
µh-1 (C) = µh-1 (E). All Radon measure spaces are perfect. 
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Theorem 2 (Stegall, [T], pg.47) : Let f : S --+ X be a Pettis integrable function. If 

(S, 8, µ) is a perfect measure space, then {k, f dµ : EE 8} is relatively compact (and so 

• separable) in X. 6. 

Corollary 1 ([T], pg.46ff) : If f: [0,1}--t Xis Pettis integrable then {jE f dµ : EE B} 

is norm compact. 6. 

The next Lemma is a straightforward application of the Hahn-Banach theorem. 

Lemma 1 : Suppose that f: S--+ Xis Pettis integrable and let A, B be measurable sets. 

Then, µ(A 6. B} = 0 implies /A f dµ = JB f dµ. 6. 

Observation 1 : Let (S, B, v) be a finite measure space. 

Given A, B E 8, define A to be equivalent to B (A ~ B) if v(A 6. B) = 0, where 
A 6. B = (A - B) U (B - A);~ is an equivalence relation. Let B = 8/~ be the quotient 
algebra and for each A EB, write A= {B E B : A~ B}; then 8 = {A : A EB}. 

Observe that A ~ A' and B ~ B' implies v(A I::,. B) = v(A' I::,. B'). Thus, the function 

v: 8 x 8--+ [O, oo), given by ii(A, B) = v(A 6. B) 

is well defined, where A and B are representatives of A and B, respectively; v defines a 

metric on 8. 
A measure II is said to be separable ( complete) and (S, B, v) to be separable in 

measure (resp., complete) when (8, ii) is a separable {resp., complete) metric space. It 
can be shown that the following are equivalent : (See [L], page 121 and [DS], page 169). 

(i) v is a separable measure ; (ii) 11 ( 11) is a separable Banach space ; 

(iii) Lp(v) is a separable Banach space, for 1 :5 p < oo. 

According to the notation set down above, if µ(A 6. B) = 0, for A, B E B, then 
A = iJ in 8. Moreover, for f : S --t X Pettis integrable, XA = xs (Lemma 1). Therefore, 

we can consider the function j: (8, µ) --+ X defined by ](E) = k, J dµ where EE 8 is 

a representative of E E 8. 

Proposition 1 : If f : S --+ X is a bounded Pettis integrable function then 

j: (8, µ) --+ X, defined by J (E) = k, f dµ 

isµ - 11-11 uniformly continuous : for each c: > O, there is b > 0 such that, if E, E' E B and 

µ(E 6. E') < S then lljE J dµ - JE' f dµII < E. 
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Proof: By hypothesis, there is M > 0 such that llf(t)II ~ M, Vt E S. Given E, E' EB 
and x* E X* we have : 

lx*(xE) - x*(xE,)I =I/ x* of dµ - f x* of dµI lE lE1 

= I / x* o f dµ - { x* o f dµI 
lE-EnE' lE1-EnE' 

~ f Ix* of I dµ + / Ix* o fl dµ 
lE-EnE' JE'-EnE 

= f Ix* o fl dµ ~ M llx*II µ(E 6 E'). 
]E6E' 

So, llxE - XE•II ~ M µ(E, E1), showing that J is uniformly continuous. 6 

In [P], by a more elaborate argument, Pettis showed that J is absolutely continuous, 
even when f is not bounded. 

When the measure space is [0,1] with Lebesque measure we have 

Corollary 2 : Let f: S --t X be a bounded and Pettis integrable function. If we define 

J: {0,1}--+ X, by ](t) = { f dp = X[o,t}, 
110,t] 

then J is uniformly continuous. 6 

Lemma 2 : Let (S, B, µ) be a separable measure space and (Dn)n2'.,I ~ B be such that 

(Dn)n'2:I is dense in 8. 
a) If f : S --+ X is a bounded Pettis integrable map and Y is a closed subspace of X 

such that [ f dµ E Y, V n 2 1, then [ f dµ E Y, V E E B. 
loo lE 

b) If f, g: S --+ X are bounded and Pettis integrable functions and f f dµ = [ g dµ, 
Jon Jon 

V n 2 1, then JE f dµ = JE g dµ, V E E B. 

c} Let!, g: {0,1}--+ X Pettis integrable maps. If Ao,t) f dJt = lro,t) g dµ, Vt E [0,1}, 

then f and g have the same Pettis integral: JE J dµ = JE g dJt, VEE E. 

Proof: Item (a) is a direct consequence of Proposition 1. 

b) It's sufficient to prove that if g : S --+ X is bounded, Pettis integrable and such that 

{ g dµ = 0, V n 2 1, then / g dµ = 0, VEE B. Fix c > 0 and EE B. By Proposition 1 
Jon lE 
we can select ti > 0 such that 

µ(E 6 E') < 6 ;::::::::;} II / g dµ - f g dµII < C, ]E jE, 

Moreover, there is n 2 1 such that µ(E 6 Dn) < ti. Then, 
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II / g dµ - { 9 dµII < e. lo. lE 

Since f g dµ = 0, we get II / g dµII < e, 
Jon JE 

c) It's sufficient to note that if s ::; r are rationals in [O, 1] then 

r f dµ = { f dµ - f Idµ= r g dµ, 
J[s,r] J[o,r] J[o,s] J[s,r] 

and that the family of intervals with rational endpoints is measure dense in the Lebesque 
measurable sets. 6. 

Before showing that Riemann integrable maps are Pettis integrable we set down 

Definition 5 : (i) A partition P of the interval [a, b} 5;;; IR is a finite sequence 
a = to < t1 < ... < tn = b. We set Dii.ti = ti - ti-t, 1 :::; i ::; n. Further, 
Dii.P = max{ Dii.ti : 1 ::; i ::; n} is the diameter of P. 

{ii) Let f: [a, b}--+ X be a function and P = {to, ... , tn} a partition of [a, b}. An 

element ( = (6, e2, ... , en) E rr;=l [ti-I, ti} is called a sample in the partition P. We set 

S(J, P, [} = z:=;=1/(ei)~t;. 

(iii) J : fa, b} ~ X is Riemann integrable iff there is x E X such that 

lim~P--o S(J, P, {) = x, that is : 

for each£ > 0, there is 8 > 0 such that, for each partition P of [a, b}, if Dii.P < 8, 

then 11S(f, P, {) - xii < c:, for all samples ( in P. 

This unique element x is called the Riemann integral of f and will be denoted by 

f f dt. The use of the variable t will always indicate that we are considering 
J[a,b) 
the Riemann integral. Typically, in what follows, we will have [a, b} = {0,1}. 

The definition in (iii) is equivallent to the following : there is x E X such that 

V c > 0 :3 no ~ 1 such that, if P is a partition of [a, b] in subintervals of lenght 81, 

with 81 < 1/no, then IIS(f, P, {) - xii < c, for all samples {in P. 

The map in Example 1 is Riemann integrable with null integral everywhere. 

Proposition 2 : A Riemann integrable function f : {O, 1 J -... X is Pettis integrable, with 
the same integral over every subinterval of [O, 1}. 

Proof: For EE E, we must find XE such that x*(xE) = h, x*of cl.A, V x* E X*. (1) 

For E = [O,t] we take XE = / f dt. Then, for O ::; t1 < t2 ::; 1, if E = [ti, t2] or 
l(o,i1 

(t1 , t2) or [ti, t2) or (t1, t2l, we have XE = h, f dt. In all these cases, x*(xE) = h, x* of d.A, 
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V x* E X'". Further, equality (1) is still true if Eis a finite union of mutually disjoint intervals. 

If E E E any measurable set, there is, given c > 0, a finite union V of open inter­
vals such that >.(E !::,. V) < c. Suppose V = LJ {(a1, bi), (a2, h2), ... , (a,., br)} and set 

lj = (aj, bj) - u::: (ai, bi), 1 ~ j ~ r. 
We have V = u::;;;t Ij and lj n Ij' = 0 if j -f. j'; so, we can suppose Vis a finite union of 

mutually disjoint intervals (now, not necessarily open). 

For each n ~ 1, choose a finite union En of mutually disjoint intervals If, 1 ~ j ~ kn, 

such that >.(E !::,. En) < 1/n. We know that we have XEn = z:=;:1 in f dt. 
) 

Fact : ( XEn )
0

~ 1 is a Cauchy sequence in X. 

In effect, given x* E X* and n, m ~ 1, n -f. m, we have: 

lx*(xEn - XEm)I = lx*(xEJ - x*(xEm)I 

= 11 x* o J d>. - f x* o f d>.I 
En }Em 

~kn-Em lx*ofld>.+ km-En lx*ofid>. 

= { I\ lx*ofl d).::; l[x*II M >.(E .. 6.Em), 
}En LlEm 

where M > 0 is such that llf(t)II ~ M, Vt E [0,1]. 

We also have >.(En 6. Em) ~ >.(En 6.E) + >.(Em 6.E). Thus, 

Ix* (xE0 - XEm)I ~ llx*II M ( 1/n + 1/m ), V m, n ~ 1. 

Given c > 0, choose no > (2M)/c. Then, form, n ~ no, 

llxE. - XEmll = supllx*II~ 1 lx*(xErn - XE0 I ~ M(l/n + 1/m) ~ (2/no) M < c, 

proving the Fact. 

Let XE E X be the limit of the sequence XEn in X. We have to verify that 

x*(xE) = k x* o f d1t, V x* E X*. 

Since XE. - XE in norm, for each x* EX*, f x* o J dµ - x*(xE) in IR. (2) 
}En 

We also have, 11 x* o f dµ - f x* o f dµI ~ llx*II M µ(En 6. E) < llx*II M 1/n and 
E }En 

so, f f d>. -t f f d>. in Ill. (3) 
}En JE 
From (2) and (3) we get x*(xE) = k x* o f d>., ending the proof. 6. 

Observation 2 We can derive more from the above result if 
f : [0,1] - X is a bounded function such that, for each t E [0,1], there is X[o,t] E X 
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with x"(x10 t]) = / x* o f dµ, 'ii x* E X*, then f is Pettis integrable. 
' 110,t) 

2 Pm spaces and property P 

In this section we discuss the relations between the concepts set down in Definition 1 of 
the Introduction. We start with 

Proposition 1 : Let X and Y be Banach spaces. 

i} If Xis separable then Xis Pm {and Rm). 

ii) If Xis Pm {Rm} and Y is a closed subspace of X then Y is Pm (resp., Rm). 

iii} If X is Pm {Rm) and T : X - Y is a linear isomorphism of X onto Y then Y is 
Pm (resp., Rm). 

Proof: (i) is a consequence of Pettis' theorem, caracterizing measurable functions, while 
(ii) is clear. Item (iii) is a consequence of the fact that a linear isomorphism preserves 
measurability. D. 

From Proposition 1.2 we get 

Proposition 2 : All Pm spaces are Rm. 6 

Problem 1 : Is the converse of Proposition 1 true ? 

A Pettis integrable S ...!._,, X is a null function if h, f dµ = 0, for all measurable 

E ~ S. Clearly, f is a null function iff x* o f = 0 a.e., V x* E X*. When S = [0,1], we 

have that J is a null function iff for all t E [0,1] and x" E X*, / x* o / dµ = 0. 
110,tJ 

Observe that the function f: (0,1] - c0 ([0,1]), f(t) = et, has null Pettis integral but is 
not zero almost everywhere in (0, 1]. Thus there is an important distinction between a null 
function and one which is zero a.e. In a Pm space, both concepts of course coincide. 

With respect to property P, note that Observation 1.2 yields that X has P when, for 

each bounded Pettis integrable function f: [0,1] ---+ X, if f f dµ = 0, 'ii t E [0,1), then 
110,t] 

f = O A - ae. 

We have already noted in Example 1.1 that c0 ([0,1]) does not have property P. It's quite 
clear that we have 

Lemma 1 : Property P is inherited by subspaces and preserved by linear isomorphism. 6 

We shall have more to say about property P latter on. For the moment, we prove 

Proposition 3 : All Pm spaces have property P. 
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Proof : Let be f : [0,1] --+ X be a bounded, Pettis integrable function with 

! J dµ = 0, VEE E. Since Xis Pm, f is measurable, and so 11/11 is measurable. Moreover, 

since J is bounded, llfll is Lebesgue integrable. Consequently, f is Bochner integrable and 
its Bochner integral is zero over every measurable E. But this implies that f = 0 ..\ - ae. 6 

There are, of course, analogous results for Rm spaces. 

Proposition 4 (IDI]) : A Rm space has property R. D.. 

There are, however, spaces with Rand P which are not Pm or Rm. An example is l00(1N) 
(see example 4 below). 

Example 1 : The spaces lp(I), 1 < p < oo, with III ~ 2No, do not have property Rand 
thus, do not have P and are neither Pm nor Rm. To see this, let t 1---t T/t be an injective map 
from [0,1] into I. Define J : [0,1] --+ lp(I) by f(t) = eT/

1 
where 

C) { 1 if i = 'T/t 
e'T/1 

1 = 0 otherwise 

It can be shown that J is Riemann integrable, with / f dt = 0, \;/ t E [0,1). It's clear 
110,t] 

that f is distinct from zero at all t E [O, 1]. In fact, if t, t' are distinct points in [0,1], then 
llf(t) -f(t')IIP = 21

/P, and the range off cannot be almost separable. 

Example 2 : c0 (I), III ~ 2No, is nPm (and nRm), because c0 (I) contains a subspace 
isomorphic to co([0,1]). 

Example 3: 1 00 ([0,l]) is nRm (and so, nPm). To see this, define f: [O,lJ-+ 1 00([0,1]) 
by 

f(t) = X(o,t] = characteristic map of the interval [O,t). 

We will show that / f dt = g, where g(t) = 1 - t, \;/ t E [0,1) (i.e., f is Riemann 
110,1] 

integrable). 

Let P = {O =to< t1 < ... tn = 1} be a partition of [0,1]. For each i, 1 :=:; i :=:; n, choose 
<i E [ti-1, ti)- Then, (E?;;;;1 f(<i) 6 ti - g) (t) = Ef;;;;1 X(o,e;1(t) D.. ti - g(t). 

Fort i= 0, choose j such that tj-l < t :=:; tj. Then, 

IE~1X(o,e;J(t)D..ti - g(t)I = 
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So, IIEi=if((i) ~ ti - gJloo :::; ~P, proving that f is Riemann (and Pettis) integrable. 
But f does not have almost separable range and so cannot be measurable : for distinct t, t' 
in [0,1], llf(t) - f(t')lloo = 1. 

Example 4: l00(IN) is nRm (so, it's nPm). Although it's possible to show this directly, 
it's sufficient to remember Pelczynski's theorem : l00(1N) is isomorphic to Loo([O,l]). 

Note that 100 (1) is nRm (and nPm), if III ~ ~0 , since it contains l00(1N) isometrically. 

Example 5 : Let be (Xi)iEI a family of non zero spaces with III ~ 2~0
• Then, 

the lp sum X = (EBXi)p, 1 < p :::; oo or p = 0, is not Pm (Rm). 

Recall that, for 1 < p < oo, X = {x = (xi)iEI : Xi E Xi, 'vi E I and I:iEI llxillP < oo }, 
with llxllp = (I:iEI llx;jj?)1!P. 

For p = oo, X = {x = (xi)iEI : SUPiErllxdl < oo }, with llxlloo = supiEI llxill; the case 
p = 0 was described in Example 1.1. 

In each case it's possible to construct a linear isometry of lp(I) or ( co(I)) into X and so 
it inherits from the classical sequence spaces the fact that it does not have R, P, Rm or Pm. 

For p = 1, the situation is quite different : in the presence of CH, the Ii - sum of Pm 
spaces is Pm . The next two sections shall be devoted to this result. 

We end this section with 

Proposition 5 : A Pm space that contains an isomorphic copy of c.o(IN) is not a dual. 

Proof : By Pelczynski's theorem ([Pe]), if a dual space contains co(IN) then it contains 
/ 00 (/N). This is not possible because Xis Pm and l00(IN) is not. ~ 

3 A measure theoretic Erdos-Rado theorem 

To simplify exposition we set down 

Definition 1 : A family { Si : i E I} of sets is quasi-disjoint if there is J such that 
Si n Si, = J, for all distinct i, i' E J. In particular, a family of pairwise disjoint sets is 
quasi-disjoint. 

We may phrase the well known Erdos - Rado theorem for finite sets as 

Theorem 1 (CH) : (Erdos-Rado, see [C], page 5) : Let {Se : e E A} be a family of finite 
sets, with JAi = c. Then there is B ~ A such that IBI = C and {Se : e E B} is quasi-disjoint. 

We wish to establish the following measure theoretic analogue of Theorem 1, where.\* 
denotes Lebesgue outer measure. 

Theorem 2 (CH) : Let A be a subset of [0,1} with .X* A > 0 and {St : t E A} a family of 
finite sets. Then there is B ~ A, with x• B > 0, such that {St : t E B} is quasi-disjoint. 
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Before the proof of Theorem 2, we need some preparatory steps. 

Observation 1 : If C ~ [0,1] is such that .X*C = S > 0, then 

.X "C = inf { E .\In : C ~ LJ In and every In is an interval} 

= inf { E >. In : C ~ LJ In and every In is an interval with rational endpoints}. 

The set { J : J ~ [0,1] and J is an interval with rational endpoints} is countable. So, if 
we assume CH, the collection 

Is = { (In)n~l : E >.In < 8 and every In is an interval with rational endpoints} 

Proposition 1 (CH)) : Let A be a subset of {0,1] with).* A> 0 and {St : t E A} be a family 
of singletons. Then there is B ~ A such that ).* B > 0 and {S1 : t E B} is quasi-disjoint. 
Thus, one of the following two possibilities occurs : 

(i} there is an element a such that St = {a}, V t E B ; or 

(ii} the sets St, t E B, are pairwise disjoint. 

Proof: The proof involves a diagonal argument and transfinite induction. Let 8 = ).* A. 

Suppose A= {at: t E A}; for x EA, set Ax= {t EA: St= {x} }. 

If, for some x E A, ).* Ax > 0 then the proposition is proved : it's sufficient to take 
B = Ax and Si = {x}, t EB. 

Thus, we may assume that for each x E A, >.*Ax = 0. 

Let (I~)
0

~ 1, a < ~1 be the enumeration of I 0 constructed in observation 1. 

We claim that, by transfinite induction on ~1 , we may choose a sequence { t 0 : a < ~1} 
such that if v, /3 are distinct countable ordinals then tv # t13 and St,, n Si.B = 0. 

For the first step in the induction, since .>.*A = S > 0 and E.>.I~ < 8 there is t1 E A such 
that t1 ¢ U I!. Note that t1 E Axi, where Si1 = {xi}. 

Having constructed tn, T/ < a:, and recalling that LJ Ax!J has measure zero, because 
'I 71<0 

it's a countable union of sets measure zero, we may choose t 0 E A - (LJ Ax., U LJ I;:). 
11<0 

It's straightforward that the sequence B = { t 0 : a < ~1} has the claimed properties. It 
remains to verify that .>. *B > 0. 

If >.*B = 0 then there is a covering (In) of B by intervals with rational endpoints such 
that ~ .\In < 8 /2. By observation 1, we can find a: < ~1 such that (In) = (I~). Thus, 
B ~ LJ ~- But this is impossible since ta E B was chosen outside LJ I~. !:::. 

Observation 2 : The proof of Proposition 1 actually shows that if there is no subset of C 
of A of positive outer measure, such that St = Sv, for all t, t' in C, then there is B ~ A 
such that .X*B =,\*A and St n St, = 0, for all distinct t, t' in B. 
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Proof of Theorem 2 

We begin by generalizing Proposition 1. 

Fact : Let A be a subset of [0,1) with .\* A > 0 and {St : t E B} a family of finite 
sets, each of them with k 2: 0 elements. Then there is B ~ A such that >. *B > 0 and 
{St : t EB} is quasi-disjoint. 

Proof : We proceed by induction on k ~ 0, the case k = 0 being trivial and that in 
which k = 1 having been taken care of by Proposition 1. So, suppose the statement holds 
for each j $ k; we are going to verify it fork+ 1. Let.\* A= 8 > 0 and define A= LJtEASt. 

If u ~ A, set Au= {t E A : u ~ St}. Note that if we write St = {ti : 1 $ i $ k + l} 

then t Eu:~: A{t;}· We shall use the enumeration of Is described in Observation 1. 

Case 1 : There is u ~ A, 1 $ lul $ k + 1 such that >.*Au > 0. 

Then, {St - u : t E Au} is a family of sets with k + 1 - lul $ k elements such that 
>.*Au > 0. By induction, there is B ~ Au with >. *B > 0, such that {St - u : t E B} is 
quasi-disjoint. It's clear that {St : t E B} has the same property. 

Case 2: For all u ~ A with lul $ k + 1, .\*Au= 0. 

Here we proceed as in the proof Proposition 1. By transfinite induction on a E ~1, it's 
possible to construct a sequence B = { ta : a < ~1 } of elements of A such that 

ta E A - (U I~ U ufJ<o: (Af U • · · U At+1)), 

where St13 = {xf: 1 $ i $ k + l} and A.0j = {t EA : xf E StJ = A{xff 

The inductive step comes, as in the proof Proposition 1, from the fact that >." A6j = 0 for 
all /3 < ~1 and j $ k + 1, by the hypothesis assumed in Case 2. Moreover, the constructed 
sequence satisfies 

{3 < T/ =} tr, ¢ Af u ... u Ai+i =} St13 n Stri = 0, 

and {St : t E B} is a disjoint family of sets. 

The same diagonal argument used in the proof of Proposition 1 will show that >. *B > 0, 
establishing the Fact. 

To finish the proof write A= uk>t Ak, where Ak = {t EA: St has cardinal k}. Since 
A has strictly positive outer measure, the same must be true of at least one Ak. The desired 
conclusion follows from an application of the Fact to Ak, 6. 

Observation 3 : An analysis of the preceding proof will show that the statement holds 
for separable regular Borel measures. This of course might also be obtained as a Corollary of 
the above result, using the well known Caratheodory classification of such spaces. It would 
be interesting to find other classes of measure spaces for which this generalization of the 
Erdos-Rado theorem holds true. 

It's clear that Theorem 1 is in fact a consequence of Theorem 2. 
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4 li sums of Pm spaces 

Given a family (X;);EJ of Banach spaces, their 11 sum will be indicated by [EBiEJX;]i; the 
definition of this space is recalled in Example 2.5. 

Theorem 1 (CH) : The operation of taking li sum preserves property P. 

Proof : Let f : [0,1) ------t X be a bounded Pettis integrable function, and suppose 

{ f d>. = 0, Vt E [0,1]. We reason by contradiction to show that f = 0 >.-ae. 
110,t) 

If f is not zero >.-ae, there are c > 0 and A ~ [0,1], with x• A > 0, such that 
IIJ(t)II >£,Vt E A. 

Fort E [0,1], set J(t) = (/;(t));Ei, where J;(t) E Xi, Vi E I. Moreover, for each t E A, 
f(t) is summable: 3 a finite Jt ~ I such that 

Observe that { Jt : t E A} is a family of finite sets and >.*A > 0. By Theorem 3.2, there 
is B ~ A, with X"B > 0, and a set J such that for distinct t, t' E B, Jt n Jt, = J. 

We have two cases to consider : 

Case 1: J = 0. 

The dual of X is [EBiEiXi)oo; and so we may write x* - (xnEr, with xi E Xi, 
supiEI llxrll < oo and x*((xitE1) = EiE1xi(xi)• 

Consider x* = (xitEr E X* given by : 

- if i ¢ LJPt : t E B}, set xj = 0 ; 

·- if i E Jt, for some t E B, choose xj with llxill = 1 and xj(fi(t)) = llfi(t)II• 

Put L = LJ {Jt' : t' E B} and, fort EB, Lt= LJ {Jt, : t' EB, t' f=. t}. Note that for 
t E B, we have x* o f(t) = E;Er xj(fi(t)) = E;EL xj(fi(t)), since xi = 0, for i ¢ L. 

Moreover, 

(2) x* o f(t) = EiEJ,x;(fi(t)) + E;EL,xi(J;(t)) = E;EJ,llfi(t)II + E;EL.xi(f;(t)). 

But IE;EL, xi(J;(t))j ~ EiEL, llxill IIJ;(t)II ~ Eif/J, llfi(t)II < c/3. (3) 

It follows from equations (1) - (3) that x* o f(t) > e/2 - e/3 = c/6, Vt E B. 

Consequently, >.( {t : x* o /(t) > 0}) > 0. But this is absurd since f has null Pettis 
integral and so x* o f has be zero almost everywhere. 

Case 2: J ={it, ... , ir}, 

For each j ~ r, consider the projection 1r;1 X ------t Xip 1r;;(x) Xi- and define 
J 

Ji, = 1r;, o J: [0,1) - xij• 
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Since 1r;; ( { f d>.) = { 1r;
1 
of d>. = { Ji- d>., and / J d>. = 0, Vt E [0,1], 

110,tJ lro,tJ l[o,tJ 1 110,tJ 

it follows that f fi- d>. = 0, Vt E [0,1], 1 S j Sr. 
lro,tJ , 

So, /;
1

, /i
2

, .•• Ji, are functions with null Pettis integral. By hypothesis, the spaces 
X;, have property P and so there is Cj £;; [0 ,1] with >.*Cj = 0 and /;;(t) = 0, Vt ¢ Cj and 
j Sr. Set Co= B - C1 U C2 U ... U Cr, Then we have: 

(1) >.*Co > O ; 

(2) t E Co =? 11/(t)II > c and J;1(t) = 0, 1 S j Sr. 

Since J = {it, ... , ir }, we have that 

Observe that, fort E B, the sets Jt - J are pairwise disjoint; and we profit from this fact 
to define the following element x* = (xi)iEI of x• : 

- if i r/. LJtEc/Jt - J), then xi = 0; 

- if i E Jt - J, t E Co, choose xi E X* such that llxill = 1 and xi(fi(t)) = 11/i(t)II. 

Let W = LJ {Ji, - J : t' E Co} and, fort E Co, Wt = LJ Pt• - J : t' E Co, t' # t }. 

Fort E Co, 

x* o f(t) = E;E1 xi(/i(t)) = E;Ew x1(/i(t)) = EiEJ1-J x;(/i(t)) + E;Ew1 xi(/i(t)). 

But IEiEw
1
xj(fi(t))I S E;Ew1 llxill llfi(t)II S c/3, and just a.sin Case 1, it follows that 

x* o J(t) > e/6, Vt E Co. 

Thus, >.( {t : x* o J(t) > 0}) > 0, a contradiction, because we have x* of= 0 >.-ae. 

From cases 1 and 2 we conclude that f = 0 >. - ae, as desir<'<l. 6-

We fix some notation that will be useful below. Let (Xi)iEI be a family of Banach spaces 
and X = [EBiEIXih their 11 sum. 

For each J £;; I, let XJ = [EBiEJXi]1 and 7rJ : X --+ XJ bl.3 the map that forgets the 
ccordinates outside J : 7rJ((xi)) = (xi)ieJ• If J = {i} we write Xi instead of X{i}• 

Define iJ : X1 --+ X, iJ(x1) = (xJ, 0) and identify XJ with its image in X, iJ(XJ). 

Proposition 1 : Let X be the /1 sum of Pm spaces Xi, i E I. Let f : {0,1} --+ X be a 
bounded Pettis integrable function. Then there are bounded and Pettis integrable functions 
f i, / 2 : [0,1}--+ X surh that: 

(i) f = f 1 + J 2 ; {ii) J 1 is measurable; 

(iii) f 2 has null Pettis integral : f J 2 d). = 0, V t E {O, 1}. 
J[o,tJ 

Proof: Let {rn: n 2: 1} be an enumeration of the rational numbers in [0,1). For each 

n 2'.: 1, let Xn = f f d). E X. Since X is an /1 sum of the Xi, there is a countable subset 
J[o,rn) 
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Jn ~ I such that {i : xn(i) # O} ~ Jn. Let J = LJn>i Jn ~ I; J is countable and we have that 

[ f d,\ E XJ, v' n 2:: 1. By Lemma 1.2.a) we h~ve / f d>. E XJ, 'v' t E [0,1]. 
110,rnl lro,tJ 

Define f 1 = iJ o 7rJ of and f 2 = f - ft. It's clear that f 1 , f 2 are bounded and Pettis 

integrable. Moreover, / / 1 d>. = iJ o 1rJ ( f f d>.) = f f d>., 'v' n 2:: 1. 
l[o,rn] lro,rn) l[O,rn) 

Thus, / / 1 d,\ = { f d>., 'v' t E [0,1] and it follows that f and f 1 have the same 
lro,tJ lro,tJ 

Pettis integral over all measurable sets (Lemma 1.1.c). 

Since Xi is Pm, for each i E J, there is Ci~ [0,1], ,\*Ci= 0, such tha.t (1ri o f)([0,1] - Ci) 
is separable. Set C = LJi~JCj. Then ,\*C = 0 and (1rJ o /)((0,1] - C) is also separable. Since 
iJ is an isometry into X, J 1 has almost separable range and so must be measurable. 

Finally, / / 2 d,\ = / f d,\ - f f 1 d,\, and so f f 2 d,\ = 0, v' t E [0,1]. f::::. 
lco,tJ lro,tJ lro,tJ lro,tJ 

Observation 1 : Proposition 1 holds true if we replace ([0,1], :E, ,\) by any complete measure 
separable space (S, B, Jt) : If Xis the Ii sum of a family of Pm spaces, any bounded Pettis 
integrable f: S----+ X can be written as f = f 1 + f 2 , where f i, / 2 : S----+ X are such that 
f 1 is measurable and f 2 has null Pettis integral. 

Theorem 2 (CH) : The operation of taking li sums preserves the property of being Pm. 

Proof: Let f : [0,1] ---+ X be a bounded Pettis integrable function. By Proposition 1, 
there are bounded Pettis integrable f u f 2 : [0,1] ---+ X, such that : 

(i) f = ! 1 + / 2 ; (ii) f 1 is measurable; (iii) f 2 has null Pettis integral. 

Since all the components of X are Pm, they have property P. By Theorem 1, X also has 
this property and so f 2 must be zero,\- ae in [0,1]. Thus, f = f 1 .-\- ae and consequently 
also measurable. 6. 

Corollary 1 Any 11 sum of separable spaces is Pm. In particular, 'v' sets I' and A, 
(l1(I') EB [E0 EAL1([0, l})]i]t is Pm. 6. 

Observation 2 : A remark due to M. Ignez S. V. Diniz implies that spaces of the form 
[l1(r) EB [E0 EAL1[0, l]]t]t are Pm, independently of CH. We will comment on this at the end 
of section 8. 

5 The LP spaces and the Pm property 

We refer the reader to (L], chapter 5, for a detailed account of abstract Lp spaces. For 
his convenience we transcribe here the results that are relevant to our discussion. 

(1) If X is an abstract Lp space, 1 $ p < CX)1 then X is isometric to Lp(v), for some 
measure v. 

(2) If X 1s an abstract Lp space, 1 < p < oo, then X 1s isometric to 
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(3) For T/ 2:: ~o and 1 S p < oo, Lp([O, 1]11 ) has a subspace isomorphic to 12 (11). 

(4) If Lp(v) is separable then Lp(v) is isometric to one of the following spaces: 

(i) lp(f), where lfl s ~o; (ii) Lp([O,1]); (iii) [lp(r) EB Lp([O, l])]p, where lfl s No. 

In particular, if !Al S No and m 0 S ~o, rla EA, then [EBEaEALp([O, l]m0 )]p is isometric 
to Lp([O,11). 

(5) Let (Z, e, b) be a finite measure space. Then 11 (8) is isometric to one of the following 
spaces : 

(i) [EBkenvL1 ([O, l]mk )h, with mk 2: N0 , V k 2:: 1; (ii) l1(r), with lfl S No; 

(iii) [l1(r) EB [EBEkeIN 11([0, t]mk)hh, with If! S No, and mk ~ No, V k 2:: 1. 

Theorem 1 ( CH) : Let be 1 < p < oo and X an abstract Lp space. A re equivalent : 

{i) Xis Pm; 

(ii) Xis isometric to lp(f') or [lp(r) EB Lp[O, l]]p or Lp[O, 1], where lfl S No. 

Proof: (i) => (ii) : We can ssume that X is of the form [lp(r) EB [EBEaEA Lp([O, l]Ina )]p]p, 
where ma 2:: No, Va E A. 

If lfl > N0 then, by CH, [rl 2: c. By example 2.1, lp(r) is nPm. This is impossible since 
lp(I') is a closed subspace of X and X is Pm. Thus, lrJ S No. 

If m 0 > ~0 , for some a E A, then ma 2: c. By result (3) above, Lp([O, t]mo) contains an 
isomorphic copy of l2(I), with III = m 0 2::: c. Again this is impossible because h(I) is nPm 
and Xis Pm. Therefore, ma S N0 , Vo: EA, and so Lp([O, 1iro0) is isometric to Lp([O,1]). 

Thus, Xis a space of the type [lp(r) EB [EBEaEA Lp[O, l]]p]p-

Now we show that [EBEaEA Lp([O, l])]p contains an isometric copy of lp(A). 

For each a E A, choose ea, E Lp([O,1]), with llea]lp = 1. For x = (xa)oeA E lp(A), consider 
Tx = (xoea)aEA· Since IITxlll = EoEA l1x0 eallP = EaEA lxalP = llxll/, Tis a linear isometry 
from lp(A) to [EBE°'EA Lp([O, l])]p. 

If IAI > ~o then lp(A) is nPm, and X would be nPm. Thus, IAI S No and, by the result 
( 4) mentioned above X is of one of the forms asserted in (ii). 

For (ii) => (i), it's suffirient to observe that all spaces mentioned in (ii) are separable 
and consequently Pm. b. 

Corollary 1 (CH) : For 1 < p < 001 an abstract Lp space is Pm iff it is separable. I:::. 

We now turn to the case p = 1. 

17 



Theorem 2 ( CH) : Let X be an abstract L1 space. A re equivalent : 

{i) Xis Pm; 

{ii} There are sets r and A such that Xis isometric to Z.(r) EB [EBE"EAL1[0, l]hh ; 

(iii) Let (Z, ~' S) be a finite measure space. If Li(S) is isomorphic to a subspace of X 
then Li(8} is separable. 

Proof: (i) =} (ii) : We may assume that Xis [/1(r) EB [EBEaEA 11([0, 1pn°)hh, with 
m,,, ::::: N0 . Moreover, m0 $ N0 by the same argument used in the proof of Theorem 1. By ( 4), 
11 ([0, I]Ina) is isometric to L1([0,l]), and so, Xis isometric to [l1(f) EB (EBE()'EA 11([0, l])]i)i. 

(i) =} (iii): We have that 11(6) is isomorphic to [l1(r) EB [EBEk>i 11([0, l}mk)hh, where 
1r1 $ No and mk $ N0 , V k::::: 1. Since Xis Pm, we have mk $ N0 , V-k::::: 1 and again by (4), 
[EBEk<t 11([0, l]m1r)]i is isometric to 1 1([0,l]). Thus, 11(8) is isomorphic to [l1(f)EBL1([0, l])]i 
or l1(f) (with lfl ~ No) or L1([0,l]), and therefore separable. 

(ii) =} (i) is an immediate consequence of Theorem 4.2. 

(iii) =} (ii) : We can suppose Xis of the form {11 (f) EB [EB Ea EA 11 ([0, l]Ina )hh, because X 
is an abstract L1 space. Since [0, l]m"' is a finite measure space and 1 1 ([0, l]m"') is isometric to 
a closed subspace of X, it follows from (iii) that 11 ([O, 1 ]m0) is separable; but this is possible 
only if m()' $ N0 in which case 11 ([0, 1]111a) is isometric to 1 1([0,l]). It's now clear that (ii) 
must hold. ~ 

Observation 1 : In [MR] an analogous classification of the abstract Lp spaces, 1 $ p < oo, 
is given with respect to property Rm (assuming CH), as follows : 

Theorem (CH) : Let be X an abstract Lp space, 1 ~ p < oo. 

(a) For 1 < p < oo, Xis Rm iff Xis isometric to lp(f) or [lv(f) EB Lp([O, l])]p or Lp((O,l]), 
where 1,1 $ No. Thus, Xis Rm iff it is separable. 

(b) For p = 1, are equivalent : 

(1) Xis Rm; 

(2) Let (Z, t, <5) be a finite measure space. If 1 1 (8) is isomorphic to a closed subspace 
of X then L1(8) is separable, that is, it is isometric to li(f), 11([0,1]) or [l1(f) EB L1([0, l])]i, 
where r is countable; 

(3) There are sets rand A such that Xis isometric to (l1(r) EB [EBEaEA L1([0, l])]i]t. 

Theorems 1 and 2 together with the result mentioned in Observation 1 yield an affirma­
tive answer to Problem 2.1 in the class of 1p spaces: 

Corollary 2 (CH) : For 1 $ p < oo, an abstract Lp space is Pm iff it is Rm. 6 

We now apply our results to duals of spaces of continuous real function on compact 
spaces. If K is a compact space, C(K) is the Banach space of continuous real functions 
defined on K with the sup norm, [l/11 00 = SUPtEKlf(t)I. It's known that C(K)* is an abstract 
L1 space. 
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Definition 1 : A compact space I( is measure separable if every regular Borel measure 
on K is separable. 

Examples of measure separable compacts are the compact metric spaces, compact dis­
persed spaces and the one point compactification of the disjoint union of measure separable 
compacts. 

The following result describes the dual of measurable separable compacts : 

Theorem ([L]) : Let K be a measure separable compact. 

a) If K is a not dispersed then C(K)* = [li(K) EB [EB~iEI 11([0, l])]i)t, where III ~ ~o-

b) If K is dispersed then C(K)* = 11 (K). 

An immediate consequence of Theorems 4.1, Theorem 2 and the preceding results is 

Corollary 3 (CH) : If I{ is a compact, C(K)'" is Pm iff [( is measure separable. 6. 

Corollary 4 (CH) : If J( is measure separable then C(I<)"' does not contain a subspace 
isomorphic to a non separable Hilbert space. 

Proof: It's sufficient to remember that a non separable Hilhert space is isomorphic to 
l2 (f), for some uncountable set r. Since we are assuming CH, it is nPm, and so cannot be 
a subspace of a Pm space. I::,. 

Observation 2 : In section 7 we will show that in fact if K is measure separable then C(K)* 
cannot contain a subspace isomorphic to a non separable \VCG space. 

6 A sufficie nt condition for the Pm property 

We have already observed that a Pm space has property P. The converse is false: l00 (IN) 
has P but is not Pm. In this section we discuss a condition, the separable projection property 
(spp), which, together with P, guarantees that a space is Pm. 

Definition 1 : A Banach space X has the separable projection property (spp) when 
each separable subspace of X is contained in a separable complemented subspace of X. 

Equivalently, if Y is a separable subspace of X, there is a separable Z ~ X such that 
Y ~ Zand Z is the image of a continuous linear projection defined in X. 

Example 1. X = C([O, N1]) has the spp, where [O, N1] is the usual compact order space. 
To see this, let Y be a separable subspace of X and D = {/ n : n :s; 1} a countable dense 
subset of Y. For n ~ 1, let an < N1 be an ordinal such that J n is constant for all /3 ~ O:n, Set 
a = sup{ an : n ~ 1}; clearly a is countable. 

Let Z = {g E X : g is constant for all /3 ~ a}. It's clear that Z is a closed subspace of 
X, containing Y. It's easily verified that Z is separable. 
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To see that Z is complemented in X, define, for f E X, J: [O, N1] ------+ IR by 

l (/3) _ { J(/3) if ,a ::; a 
- J( a) if ,8 ?: a 

Since (a, ~i] is clopen in [O, N1], J is a continuous function. Moreover, J is constant for 
/3 ?: a, and so it is in Z. It's readily verified that / 1---+ j is a linear continuous projection 
from X onto Z. This shows that X has the spp. 

Example 2. lv(I), 1 ::; p < oo, and c0(I) both have the spp. In fact, any lv sum of separable 
spaces has spp, if 1 ::; p < oo. It's a consequence of the long chain of projections that are 
a decomposition of the identity in a WCG space, that all such spaces have the separable 
projection property (see (Lil). 

Theorem 1 : A Banach space with the spp and property P is Pm. 

Proof: Let f : [0,1] ------+ X be a bounded Pettis integrable function. Then, the map 

J : [0,1] ------+ X, given by /(t) = f f d,\ = Xt is continuous (Corollary 1.1). Set 
l[o,tJ 

Y = span {xr : r E [0,1] n Q} ~ X; clearly, Y is separable in X. Since X has spp, there is 
Z, a closed separable complemented subspace of X, with Y ~ Z. Let p : X ------+ Z be the 
projection of X onto Z. 

Set /1 = p o f. Then / 1 is bounded and Pettis integrable. Moreover, since 
!1([0,1]) ~ Z, Ji has separable range and so must be measurable. Since all Xt can be ap­
proximated by a sequence of x11's, we conclude that Xt E Z, Vt E [0,1]. Thus, p(xt) = Xt, 

Vt E [0,1] and we get 

[ !1 d,\ = f p O / d,\ = p ( [ f d,\) = p(xt) = Xt, 
l[o,t] lto,t] lto,t] 

showing that the Pettis integrals of f and / 1 a.re the same. 

Now consider h = f - Ji; it is bounded, Pettis integrable and f h d,\ = 0, 
110,t] 

V t E [0,1]. Since X has property P, it follows that h = 0 .\-ae. It's then clear that 
J = Ji .\-ae is measurable, proving that X is Pm. 6. 

With essentially the same proof one can show 

Theorem 2 : Let (S, B, v) be a complete separable measure space and X a Banach space 
with the spp and such that : 

(*) If S -L X is bounded, Pettis integrable and k f dv = O, V E EB, then f = 0 v-ae. 

Then, all bounded Pettis integrable X valued maps defined in S are measurable. 6. 

Corollary 1 : If X has a countable total subset n ~ X*, then X has property P. If X also 
has the spp, then it is Pm. 
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Proof: It's enough to show that X has property P. Let f : [0,1] --+ X be a hounded 

null function; then x"'(xt) = f x* o· f d>. = 0, V x* E X* and t E (0,1). In particular, for 
l[o,tJ 

each x* E n, we may choose Ax• s;: [0,1] with >.Ax• = 0 and x* o / = 0, Vt ¢ Ax•· 

Set A= LJx•Eo Ax•· Since n is countable, ).A= O; further, t ¢ A implies x* o /(t) = 0, 
V x* En. Since n is total in X*, this yields /(t) = 0 if t ¢ A, that is, f = 0 A-ae. D. 

Observation 1. The proof of Theorem 1 does not depend on CH. In section 10 we shall use 
Theorem 1, Martin's Axiom and the negation of CH to prove the independence of certain 
statements concerning the separability of Pm spaces. 

7 WCG spaces and the P m property 

Our aim here is to prove that if we assume CH, nonseparable WCG spaces are not Pm. A 
good reference on WCG is [Li). 

Definition 1 : A Banach space X is WCG if there is a weakly compact K ~ X, such that 
X = span I<. 

Recall our conventions about closures : * is norm closure while *w is closure in the weak 
topology. 

Example 1. : a) Separable spaces; b) c0(I); 

c) Any reflexive space, in particular Lp(v), 1 < p < oo; 

(d) L1(v) is WCG iff vis a~ - finite measure. 

(e) Every complemented subspace of a WCG space is WCG. 

(f) C(K), where K is the one point compactification of a discrete space. 

Recall that a compact space K is an Eberlein compact if it is homeomorphic to a weakly 
compact subset in some Banach space. In [Li] it is shown that a compact space K is an 
Eberlein compact iff C(K) is WCG. 

We have already mentioned in Example 6.2 that all WCG spaces have the separable 
projection property. 

Let be X a WCG space. Then there is U weakly compact in X such that X = span U. 
Set K = co(U U -U). Clearly K is convex and by the Krein-Smulian theorem it is also 
weakly compact. We write B.- for the open ball of radius r in X. 

Lemma 1 : For K as defined above 

a) /( is absolutely rom,ex. 

b) If B = span K, then O is an interior point of B and B = LJ
11

2::
1 

nK. 

c) For each x* in X* we have llx*II = sup {lx*(y)I : y E Band IIYII ::; 1} 

Thus, if Kn = Bi n nK, n::; 1, we have llx*II = sup {xiKn : n 2:: 1}. 
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Proof : a) Since K is convex and O E K, it's enough to show that x E K implies 
-x E K. If x E U ~ K then -x E U, and there is nothing to do. 

Suppose x E co{U U -U). Then there are x1 , ... ,xn EU U -U, and a1, ... ,an;::=: 0, such 
that E ak = 1 and x = E OkXk. But then - x = E ak(- xk) , showing that - x E K. 

Now assume that x E co(U U -U); then there is a sequence (Yn) in co(U U -U) such 
that Yn (norm) converges to x. But then - xis the limit of - y0 E K and so - x E K. 

b) Given x E B, we have x = I:?=t akxk, with the ak in JR and the Xk in K. For k $ n, 
consider 

k - J J { 
x· if a·> 0 

y - -Xj otherwise 

Of course Yt, ... ,Yn E K (K is absolutely convex) and we have that x = E laklYk· Let 
a= E lakli we may as well suppose that a# 0. It's straightforward to verify that x/a is in 
K. Thus (3 (x/a) EK and we may conclude that (3 x E K, V/3 E [O, 1/a). This shows that 0 
is internal to B. 

If x E B, since O is an internal point of B, there is a > 0 such that ax E K, i.e., 
x E (1/a)K. Now choose n ;:::: 1/a to get that x E nK. Since it's clear that nK ~ B, for all 
n ;::=: 1, we conclude B = LJ {nK: n ~ l}. 

c) Let llx*II = a > 0 and fix c > 0. Choose x E X with llxll = 1 and lx"'(x)I > a - c/2. 
Since x E B, there is (y0) ~ B, with IIYnll $ 1, such that Yn (norm) converges to x. Since 
lx*(yn)I ---. lx*(x)I and lx"'(x)I > a - c/2, there is n;:::: 1 such that lx*(Yn)I > a - c. Now (c) 
follows immediately. I::,. 

Observe that for ea.ch n ;::=: 1 the sets Kn in item (c) of Lemma 1 are convex, weakly 

compact and LJKn = B1. 

The next result, that appears in [Hg) with a different proof, was obtained independently 
by the authors. We denote by dens X the density of the space X. The symbol w denotes 
the cardinal number of lN. 

Theorem 1 : If X is a WCG space, then dens X* $ ( dens X)w. 

Proof : By Lemma 1, we can suppose that X = span K, where K is absolutely convex 
and weakly compact. For each n ;::=: 1, let K0 = B1 n nK be the weakly compact sets defined 
in Lemma l.(c). Consider the map 

T is obviously linear and since llx* II = sup {llxjKJ : n ;::=: 1}, it is also an isometry onto 

its range. Thus, dens X* $ dens Z. But dens Z = JL;::::i dens C(Kn) and so 
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Let {xi : i E I } be a dense subset of B1 , with III = dens X and select (x;)iEI 
in X* such that llxill = 1 and xr(xi) = llxill, Vi E I. Then {xi : i E I} separates points 
in B1 and so separates points in Kn, V n ~ 1. Now the Stone-Weirstrass theorem yields 
dens C(Kn) :5 III = dens X, V n ~ 1; thus, IIn>t dens C(Kn) :5 (dens X)w and the result 
follows from (*). D. -

Proposition 1 : If X is a WCG space with dens X = a ~ c th.en it has a closed WCG 
subspace Y such that dens Y = c. 

Proof : Let K be a convex weakly compact subset of X such that such that X is the 
closure of span K; dens X = a implies that dens K = a (in the 11-11 topology). 

Fact : If a ~ c there are 8 > 0 and D ~ K such that IDI = c and satisfying 
V x, x' E D, x =/ x' => llx - x'II ~ 8. 

We first make the following observation : let , be a strictly positive real and define 
A= {C ~ K : V x, x' E C, x =f. x' => llx - x'II ~ 1 }. If A =f. 0, we can order A by inclusion 
and an application of Zorn's lemma will yield a maximal element of A. 

Choose n ~ 1 such that 1/n < diam K. Note that for every m ~ n we have that 
Am = {C ~ K : V x, x' E C, x =f. x' => Jlx - x'II ~ 1/m} is not empty. By the observation 
in the preceding paragraph, there is Am ~ K such that Am is maximal in Am. 

We claim that K = LJm~n Am. For suppose we could find x E K and k ~ n such that 

B1/k n (LJm>n Am) = 0, where B1/k is the open ball of radius 1/k in X. In particular, there is 
no y E Ak such that llx - YII ~ 1/k and so Ak U {x} is an element of Ak properly containing 
Ak, an impossibility since this set is maximal in Ak. 

Now dens K = a forces ILJm>n Anl ~ a, and so !Aki ~ a, for some k ~ n. To finish the 
proof of the Fact, just choose D ~ Ak, with !DI = c. 

A moment of thought will convince the reader that D is closed and that dens D = c. 
Thus, dens co(D) = c; furthermore K1 = co(D) w is weakly compact and has density c. The 
desired WCG of density c is then span K1 and the proof is complete. t0. 

Definition 2 : If X is a Banach space, define dens* X as the least cardinal I such that X 
has a total subset of cardinal 1 . 

Proposition 2 ((Li}) : If Xis WCG then dens* X = dens X. D. 

Proposition 3 : In a WCG space X, any family of closed hyperplanes of cardinality strictly 
less than dens X has non trivial intersection. 

Proof : Suppose a < dens X and H ,\, ,\ < a, is a family of closed hyperplanes in X. 
For each >., let x* ,\ be the continuous norm 1 linear functional associated to H ,\ · It's easily 
seen that n H.A = 0 implies that {x* >. : >. < a} is total in X. Consequently, dens* X ~ a, 
which is impossible by Proposition 2. 6. 
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Theorem 2 ( CH) : A ll'CG space is Pm iff it is separable. 

Proof : We have only to verify that if X is not separable then it is not Pm. By CH, 
dens X 2:: c; since the property of being Pm is inherited by subspaces, if it is shown that 
WCG subspaces of density c are not Pm, the same will be true of X. On the other hand, 
Proposition 1 guarantees that X has a WCG subspace of density c and so cannot be Pm. 

We may therefore assume that dens X = c. Since dens* X ~ ( densX)w, it follows from 
Theorem 1 that dens X* = c. Let {x\,, : o: < c} be a norm dense subset in X*. Using 
Proposition 3 and transfinite induction we can define a sequence {x0 : o: < c} ~ X such 
that, for o:, /3 < c, we have 

Fix a bijection h : [0,1} - [0, c), h(t) = O:t from [O, 1) to the set of ordinals strictly 
less than c. Now define J: [0,1] - X by f(t) = Xo:,• Since llxa,II = 1, J is bounded in X 
and in fact Im f ~ B1. Clearly, J(t) =/ 0, Vt E [0,1]. 

We contend that x* o f = 0 A-a.e, V x* E X*, that is, f is a null function. To see this, 
fix s E [0,1]; then for each t E [0,1], x*a, (f(t)) = x"'a.(xo:1), Consequently, 

Thus, {t E (0,1]: x*°'• o f(t) =/ O} = {t E [0,1]: O:t ~ 0-5 }; since 0'8 < ~1 = c, it follows 
that this set is countable and so has Lebesgue measure zero. This shows that x* °'• o f = 0 
A-ae, as desired. 

Now let x* E X*. Recalling that { x* °' : a < c} is norm dense in X*, for each n 2:: 1, 
there is O'n < c such that llx"" -x""anll < 1/n; let An= {t E [0,1]: x"'o:n(xa,) = 0}. Since 
x* °'n o f = O A-ae, >,An = 1, V n 2:: 1. 

Moreover, it's clear that .x.(n;=l Ai) = 1 for all n and so ([0,1] has finite measure), 

),(nn>t An = inf {,\(n;=l Ai) : n $ 1} = 1. Set A = nn>t An; we have ,\A= 1 and for 
t EA-; -

for all n 2:: 1. It follows immediately that x* o f = 0 >.-ae. Since x* is arbitrary in X*, f 
is Pettis integrable with zero integral over all measurable sets in [0,1]. This shows that Xis 
not Pm, ending the proof. 6 

If K is an Eberlein compact, C(K) is separable iff K is metrizable. Thus 

Corollary 1 (CH) : An Eberlein compact is Pm iff it is metrizable. 6 

From Corollary 5.3 and Theorem 2 we get 

Corollary 2 (CH) : If J( is a measure separable compact, C(J<)* does not contain a subspace 
isomorphic to a nonseparable WCG space. ~ 
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Observation : In the presence of Martin's Axiom and the negation of CH it's possible to 
exibit non separable WCG spaces which are Pm. But we also show that even then WCG 
spaces with density 2: 2No are not Pm. This will be discussed in section 10. 

8 The P m property for compact spaces 

Let (Ki)iEI be a family of compact spaces and K = llE1Ki be their product, with the 
product topology. For x E K, let Xj be its lh coordinate in Kj. This notation will remain 
fixed throughout this section. 

Definition 1 : (i) A function g E C(K} depends on a subset A ~ I of coordinates 
whenever the following condition is satisfied: 

{dep]: if x, y E I( are such that Xj = Yi, V j E A, then g(x) = g(y). 

(ii} A function f: {0, 1] -+ C(K) is said to depend on a set r of coordinates if, 
for all t E {0,1], f(t) deprnds only on the coordinates in I'. 

Observation 1. If f E C(Ki), i EI, we can 'lift' f to C(K) by defining f(x) = J(xi)- Observe 
that J depends only on i. If F is any finite subset of I, the elements of the subalgebra of 
C(K) generated by the 'lifting' of the maps in C(Ki) , i E F , depend only on the coordinates 
in F. 

Let A be the collection of maps in C(K) that depend only on a finite set of coordinates 
in I. Then A is an algebra wich contains the constant functions and separates the points of 
K. By the Stone - Weirstrass theorem, A is dense in C(K); so, each function in C(K), can be 
uniformly approximated by a sequence each term of which depends only on a finite number 
of coordinates. It follows that every function in C(K) depends only on a countable 
set of coordinates. 

For J ~ I, set K1 = ILEJ Ki and K1-J = I LeI-J Ki. We identify K with K1 x K1-J 
that is, x with ( XJ, XJ-J). 

We have natural projections PJ : K -+ KJ, given by PJ(x) = (xj)jeJ• Whenever conve­
nient we write XJ for PJ(x). Thus in this notation, ldK = PJ EB PI-J• 

We shall need the following simple result. 

Lemma 1 : With notation as above 

{a} (i} The map PJ is continuous and onto. 

(ii} The function OJ : C(KJ ) -+ C(I(), given by aJ(g) =go PJ is linear and an 
isometry onto its range. 

(b} Let y be any element of I LeI-J I<;. Then 
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(i) The map K1 .:!:.:!.+ K, t.pJ (x) = (x, y), is continuous and injective. 

(ii) The map C(K) ~ C(KJ), 7rJ(g) = got.pJ is linear, continuous and onto. 6 

Theorem 1 : Let be (S, B, v) a complete separable measure space and f : S --t C(K) 
a bounded and Pettis integrable function, where K = JLE

1
K;. Then there are functions 

Ji, fz : S---+ C(K) such that : 

{i} J = Ji + fz; (ii) Ji and fz are bounded and Pettis integrable; 

(iii} f E Ji dv = f E f dv, V E E B; 

(iv) span/1(S) is isometric to a subspace o/C{l<J}, where Jc;, Iis a countable set; 

(v) JE fz dv = 0, VE EB. 

Proof: Let (Dn)n>t <;, B be a sequence of measurable sets such that {Dn : n ? 1} is 

dense in f3 (notation a.;in Observation 1.1). Let hn = { f d11, n? 1. Then hn E C(K) 
Jon 

and it depends only on a countable set Jn of coordinates in I. Set J = un?l Jn. 

With notation as in Lemma 1, define Ji = OJ o 7rJ o f : S --t C(K). Obviously Ji is 
bounded and Pettis integrahle. Moreover, for each n ? 1, 

{ fi dv = { O'.J O 11'J O j dv = OJ O 1l'J { f dv = OJ O 7rJ(hn), 
Jon Jon Jon 

Note that aJ o 1rJ(hn) = 11'J(hn) o PJ = hn o t.pJ o PJ• We claim that hn o t.pJ o PJ = hn• This 

will then immediately yield / / 1 dv = { f dv. 
Jon Jon 

In effect, if x = (xJ, x1-J) E K, then 

because hn depends only on the coordinates which are in Jandy E TI- K1 is the element iEl-J 

used in the definition of CYJ, as in Lemma 1.(b). 

Since fr Ji dv = { f dv, V n? 1, Lemma 1.2 yields { Ji dv = { f dv, VEE B. 
Dn Jon JE }E 

Moreover, spanf 1(S) is isometric to a subspace of C(KJ) since all functions in fi(S) 
depend only on the coordinates in J. If we define fz = f - Ji, then fz is bounded, Pettis 

integrable and k, fz dv = 0, V E E B. 6 

The above result a.pplies in particular to [0,1] with Lebesque measure. Recall that a 
compact K is said to have property P if C(K) has P. 

Proposition 1 : For compact spaces, the property of being Pm as well as property P are 
preserved by continuous image. 
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Proof: If 1r : T - T' is a continuous onto map of compact spaces, it induces a linear 
isometry 1r* : C(T) - C(K), f t-t 1r o f. The conclusion now follows from the fact that 
properties P and Pm are inherited by subspaces. l::. 

Proposition 2 : All compact separable spaces have property P. 

Proof : Suppose T is a separable compact and D = { dn : n ~ 1} a countable dense 
subset of T. For each n ~ 1, let d; : C(K) - IR be the linear continuous functionals 
'evaluation at dn', d;(f) = J(dn). 

It's clear that n = { <l; : n ~ 1} is total in C(T) and so the statement follows from 
Corollary 6.1. 6. 

Proposition 3 : Any product of separable compact spaces has property P. 

Proof : Let f : [0,1] - C(K) be bounded function such that f J dµ = 0, 
l[o,tJ 

V t E (0,1]. For each t E [0,1], the clement J(t) of C(K) d~pends only on a countable 
set rt of coordinates. Set r = U l rt• Then 1r1 < c and J depends only on the 

tE 0,1] -

coordinates in r. For y E II- r K;, let <.pr : Kr -- K, <.pr(x) = (x, y), and 
•E/-

71"f: C(K) - C(Kr), rrr(g) =go <.pr, be the maps defined in Lemma 1.(b). 

Consider the function rrr o f : [0,1] - C(J<r ). Since !fl :s; c and Ki is a separable 
space, Kr is a separable compact space. Thus, it has property P. But the fact that J 
has null Pettis integral implies that the same is true of 1rr o f and so we conclude that 
rrr o J = 0 -\-ae. Let A £ (0,1] be such that >..A= 0 and 1rr o J(t) = 0 if t ¢ A. 

To finish the proof observe that if t ¢ A, then for all x E K, 

f(t)(x) = J(xr, X1- r) = J(xr, y) = 0, 

because for all t E (0,1], f(t) depends only on the coordinates in r. 6. 

Recall that a compact space is said to be dyadic if it is the continuous image of the 
product 21/ = {O, 1 }'Y/, for some cardinal T/· 

Corollary 1 : A continuous image of a product of separable spaces has property P. In 
particular, all dyadic compacts have property P. l::. 

As the last step to one of the main result of this section we prove 

Proposition 4 : For all cardinals TJ, C(2'Yf) has the separable projection property (spp). 

Proof : Let Y s; C(2'Yf) a separable subspace of C(2T/) and D = {gn : n ~ 1} a 
countable dense subset of Y. Every 9n depends on a countable set Jn s; TJ of coordinates. Let 

J = un~l Jn. 

Observe that all g E Y df'pend only on the coordinates in J because there is a. subsequence 
of the 9n converging tog in the sup norm. 
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We write O for the sequence in a product of 2 = { 0, 1} whose coordinates are all equal 
to zero. 

Let Z = {h E C(211 ) : h(x) = h(xJ, 0), V x E 271}. Of course Y ~ Zand Z is a closed 
subspace of C(277). For g E C(211 ), define g : 211 --+IR by g(x) = g(xJ, 0). Clearly g is 
continuous and in Z. 

If we define p : C(211 ) --+ Z by p(g) = g, then pis a linear projection from 217 onto Z, 
and so Z is a closed complemented subspace of C(2Tf). Moreover, Z is isometric to C(21), 
and since J is countable, C(2J) is separable. This completes the proof. 6 

Theorem 6.1 and the results of this section yield 

Theorem 2 : All dyadic compacts are Pm spaces. 6 

Under CH, nonseparable WCG spaces are nPm. We get Hagler's theorem ([Hg]) : 

Corollary 2 (CH) : If I( is a dyadic compact, C(K) has no subspace isomorphic to a non 
separable WCG space. 6 

Observation 3 : In [DI] it1s shown (by an entirely distinct method) that a dyadic compact 
is Rm. This property is a consequence of the fact these spaces are Pm. 

Observation 4 : M. lgnez S. V. D_iniz has remarked that every space X of the form 
[/i(/)EB["E0 EAL1 [0, l]hh is isomorphic to a closed subspace of C(T), for some dyadic compact 
T. This obtained by observing that the unit ball of the components of X with the weak* 
topology are either homeomorphic to a product of copies of [0,1] or are metrizable. Thus, X 
is isometric to a subspace of C(T) where T is a product of dyadics and consequently dyadic. 
It follows from Theorem 2 that X is Pm. This proof is independent of CH. 

We now our attention to providing an example of a Pm compact of a quite distinct 
nature. We will show that there is a separable, measure separable Pm compact K such that 
C(K) is not a subspace of C(D) for any dyadic D. In particular, K is not dyadic. To provide 
this example, we shall make use of a construction due to Talagrand and presented in [T], 
pages 199 ff. We ask the reader to consult [T] for the details omitted below. 

Let L = [-1, l]w and, for each n E w, let Sn : L -+ [-1, 1] be the projection on the 
n-coordenate. Recalling that Lis a compact metric space, we can enumerate (>., h<w1 the 
Borel regular measures defined on L. Let (Da)a<Wi be the family of infinite subsets of IN. 

We begin with the following result, whose proof may be found in [T] : 

Lemma 2 : There is a collection (Aa)a<Wi of infinite subsets of "IN verifying the following 
conditions : 

i} /3 < a ==> Ao - A13 is a finite set ; 

ii} For every subset D E IN there is a < w1 such that either Aa - D or Aa U D is a 
finite set ; 
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iii} For every 1 < wi, if a = 1 + 1, then one of the following holds : 

a} ,\1 ({x EL: 3 limAa 8n(x)}) = 1 or 

b} For B = A, - Aa, .. >v-y({x EL : limB8n(x) does not exists})> 0. 6. 

Let A = { A ~ IN : A is a finite set} U { Aa : a < w1 } . Let H be the Boolean algebra 
generated by A. It's clear that the elements of H can be written as (A1,1 n ... n A1,rJ U 
... u (As,l n ... n As,.-.), where Ai,j or Af,j are in A. 

Let K = S(H), be the Stone space of H. For A E H, put SA = { FE K : A E F}. It 
is known that K is a compact Hausdorff space and that { SA : A E H } is a basis clopens 
in K. Since the finite sets are in H, it's not difficult to verify that K is separable, with the 
countable collection of principal ultrafilters F{n) = {C E H : n E C} as an open dense set 
in K. 

In [TJ, Talagrand proves that every scalarly measurable function f : [0,1] ---+ C(K) is 
strongly measurable. Thus, K is a separable Pm compact space. 

The following result shows that C(K) provides an example of a nonseparable Banach 
space such that both it and its dual are Pm. It will in fact imply that C(K) is not isomorphic 
to a subspace of C(D) for any dyadic space D. In particular, K is not dyadic. We just register 
that it is possible to prove directly from the construction that K is not dyadic. 

Theorem 3 : I( is measurable separable. 

Proof: Let µ be a regular positive probability Borel measure on K. 

We must prove that there is a countable set { Zn : n ElN} ~ { borel sets of K } such 
that for every Borel set Z and c > 0, there is n E IN such that Jt(Z 6. Zn) < c. 

It is sufficient to consider the case that µ is a measure without atoms, that is, in which 
the measure of finite sets is zero. 

The sets Q = {1tSA
0 

: a < w1} and 1i = {µS'io : a < wt} are subsets of [0,1], 
and so there is a sequence (an)n>i such that {µSAon : n ~1} and {µSAc,n : n ~1} are 
dense respectively in g and ri. Put a = sup { an : n ~ 1}. Then a < w1 and we have 
{µSA

0 
: a :::; a } and {JtS;,.

0 
: o: :::; a } countable and dense in g and ri, respectively. 

We first prove the folowing Facts, where c > 0 is a real number : 

1. Va < w1, V c > 0 there is 8 :=::; a such that µ(SA 0 6. SA6 ) < 6. 

If a :::; a, it is sufficient to take 8 = a. Suppose a > a; then we may choose 
8 ::::; a such that lµSAo - µSA6 I < 6 . We have SAo 6. SA6 = (SAa - A6) u (SA6 - AJ which 
implies µ(SAo 6_ SA6) = fl(SAa - AJ + µ(S A6 - Ao )· 

Since o < a implies that A0 - A0 is a finite set, we get µ(SA 0 - SA6) = 0 and 
µ(SAa 6, SA6) = µ(SA6 - SAa ). 

Therefore, from A0 = (A0 - A0) U (A0 n A0) and /t(SA"' _ A 6 ) = 0 we get 
µSAo = µSAa - A6• 

Thus, lµSAa - µSA6 I < C, implies lµSAanA6 - µSA6 I < e:,, which yields µSA6-Aa < 6 and 
it follows that Jt(SA

0 
6. SA6 ) < c, proving Fact 1. 
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2. Va < w1, 3 8 S a such that µ(S'.t,. 6. St) < c. 

3. Suppose R = A1 n ... n An and Q = B1 n ... n Bn, with Ah Bi EH, are such that 
µ(SA; 6 Sa;) < c:/n, 1 S i S n. Then, µ(SR 6. SQ) < c:. 

4. Suppose R1, ... , Rt, Qi, ... , Qt are elements of H such that µ(SR; 6. SQ;) < c:/t, 
1 $ i $ t. Then µ(SR1 u ... u R, 6 SQ1 u ... u Q,) < c:. 

The proofs of items 2 - 4 are straightforward calculations. 

Set W = {Aa: a $a} U {Ah : a$ a } U {U : U is a finite or cofinite set in lN} and 
£ = { n z : z ~ w, z finite}. 

Then 'D = {Sq
1
u ... uQ, : Qi E £, 1 $ i $ t} is countable. We will prove that 'Dis dense 

in the measure µ. 

Let Y be a Borel set in Kand c > 0. We may select a closed F and an open set 0 such 
that F ~ Y ~ 0 and Jt( 0 - F) < c /2. 

For each x E F, choose Yx E H such that x E Svx ~ 0. Since F is compact, there 
are X1, ... , Xk E F such that F ~ ur=l Svx; ~ 0. We have y - ur=l Svx; ~ y - F and 

U}=l Svx; - Y ~ 0 - Y; thus /t(Y 6 LJ7=1 SvxJ < c/2. 

H's straightforward to see that we may write U7::a:t Yx; = R1 U ... U Rt, where each R; 
is an intersection of elements from A or whose complement is in A, that is 

where each A~ is finite, cofinite, a member of the sequence constructed in Lemma 2 or the 
complement of one such element. 

For each i $ t, 1 $ j $ ri (as in (*)), if Aj = Acr (or A~), with a < wi, by Fact 1 we 
may select 8i $ a such that µ(SAJ 6. SA•;) < c:/2tri (or µ(SAi 6. SA6i) < c:/2tfi). 

Let Bj = Ar,i (or A5J If A} is a finite or cofinite set, put B} = Aj. 

Let Qi = B; n ... n B~, 1 $ i $ t. Then Sq
1 
u ... u Q, E 'D, and since (by Fact 3) 

µ(SR; 6 SQ;) < c:/2t, it follows (from Fact 4) that µ(SR1 u ... u R, 6. SQ1 U ... U Q,) < c:/2. 

Finally, 

ending the proof. 6 

The preceding discussion and Corollary 5.3 yield 

Theorem 4 : Both C(K) and C(K)* are Pm spaces. 6. 

Corollary 3 : If Dis a dyadic, C{K) is not isomorphic to a closed subspace of C(D}. 

Proof: We recall here a theorem of Hagler ( [. ] ) : 
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Let X be a Banach space and D a dyadic compact with X isomorphic to a 

subspace of C{D). Let o be a regular cardinal number. Are equivalent : 

(i) the dimension of X is 2:: o ; (ii) X* contains a subspace isomorphic to C(2.s)*. 

In our case, the dimension of C(K) is 2:: c. If C(K) were isomorphic to a subspace of 

C(D ), C(K)* would contain subspace isomorphic to C(2c)•. Note that C(2c)* is not Pm 

since 2c is not measure separable (just consider the usual Haar measure on 2c). But this is 

impossible because the dual of C(K) is Pm. b. 

9 The spaces C(K, X ) and the P m property 

Given a compact K and a Banach space X, we denote by C(K, X) the Banach space of 

the continuous functions g : K --+ X, with the sup norm ll911 = suppEK llg(t) II. 

In this section we show that if K is a separable Pm compact and Xis Pm then C(K, X) 

is Pm. 

For L ~ C(K, X) and p EK, we set L(p) = {f(p) : f EL} ~ X. 

The next result is useful in identifying sepa.ra.ble subsets of C(K, X). 

Proposition 1 : For a subset L of C(K, X), are equivalrnt : 

{1} L is separable ; 

(2) There is a countable D ~ C(K, X) such that : 

(a) V p E K, L(p) ~ D(p). 

(b) V p, q E I{ {[V d E D {d(p) = d(q))} :=;,. [Va E L (a(p) = a(q))j}. 

(3) There is a cotmtable set W ~ C(K) and a separable Y ~ X such that 

{a) Va E L, Im a ~ Y; 

{b} V p, q E J( {[Va E W (a {p) = a(q))] ==} {Va E L (a(p) = a{q})j} . 

(4) There is a compact metric space Km , a closed subspace Y~ X, a surjective continuous 

function 1r" : [( --+ K m and an injective continuous function 1 : L--+ C(Km, Y) such that 

11",. o 1 = h, where 11",. : C(Km, Y) --+ C(K, X) is the isometry induced by 1r and iL is the 

canonical injection of L in C(K , X). 

Proof: (1) ==} (2) : Since L ~ C(K, X) is separable, there is a. countable D ~ L such 

that D = L. For p EK, consider L(p) = {f(p): /EL} and D(p) = {/(p): f E D}. 

First notice that L( p) = D(p). To see this, let f (p) E L(p) and c: > O; since D is dense 

in L, there is g ED such !If - gll < c: . In particular, llf(p) - g(p)II < c: and so / (p) E D(p). 

Now suppose p, q E Kare such that d(p) = d(q), V d E D. If a EL and c > 0, there is 

d E D such that Ila - dll < c:/2, and so 

lla(p) - d(p)II < c:/2 and llcr(q) - d{q)II < c:/2. 
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Thus, l!a(p) - a(q)II < c; since c is arbitrary we conclude that a(p) = a(q). 

(2) =a} (3): Let D = {gn: n ~ 1}; for each n > 1, the image of 9n is separable because 
it's a compact in the metric space X. Let be Y = span U 9n(K). Then Y is a separable 
closed subspace of X. Let {yn: IIYnll = 1, n 2:: 1} be a countable dense subset of the set of 
norm 1 vectors in Y. 

For each n 2:: 1, choose x! E X* such that x;(Yn) = 1 = llx;II. It's readily verified that 
{x; : n 2:: 1} is total in Y, that is, if y E Y and x;(y) = 0, V n 2:: 1, then y = 0. 

• Define W == { x:;.. o g n : n, m 2:: 1}. 

(a) : Fix a E L; given c > 0, there is n 2:: 1 such that IJa - 9nll < c. Thus, 
lla(p) - 9n(P)II < c, V p EK. Recalling that Im 9n ~ Y, this reasoning shows that 

V c > 0 V p E K 3 y E Y such that lla(p) - YII < c. 

Since Y is closed in X we get that o(p) E Y, V p E K. 

(b) : Let p, q EK be such that u(p) = u(q), VuE W. Then, 

Since {x:i : m ~ 1} is total in Y, 9n(P) = 9n(q), V n 2:: 1, which, by 2.(b), implies 
a(p) = a(q), Va EL. 

(3) =} ( 4) : Let W = { O"n : n 2:: 1} be the countable set satisfying the conditions in 
(3). Define the following equivalence relation ~ on K 

p ~ q iff O" n (p) = O" n ( q) , V n 2:: 1. 

Let Km = K/~, considered as a topological space with the quotient topology. Then the 
function 1r: K ---t Km, given by 7r(p) = p/~ (the class of p under~), is continuous and 
onto and so Km is compact. We must verify that the topology on Km is Hausdorff. The 
following facts are easily established : 

i) If U ~ IR is an open subset then u-1 (U) is invariant by ~, for all u E W, i.e. : 
if p E u-1 (U) and p ~ q, then q E o--1(U). 

ii) If p and q are not equivalent under ~ then there are open subsets U, V ~ JR, 
and Un E W such that Un V = 0, un(P) EU and un(q) EV. 

It follows from (i) that if U ~ IR is open and u E W, then 1r-1 (1r(u-1(U))) = u-1(U). 
Since Km has the quotient topology, we get that 1r( u-1 (U)) is open in Km, for all u E W and 
all open U ~ IR. 

Now, to separate the points of Km proceeds as follows : if p/~ -/= q/~, using (ii) choose 
opens U, V in IR and n 2:: 1 such that un(P) E U, un(q) E V and U n V = 0. By (i), 
p/~ ~ u-1 (U) and q/~ s; u-1 (V), cr-1(U) n u-1 (V) = 0 and both these inverse images are 
open and invariant. The projections of these inverse images on Km will then be non empty, 
disjoint neighbourhoods of p/~ and q/~, proving that Km is Hausdorff. 
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Our next step is to verify that C(Km) is separable which will then imply that Km is 
metrizable. For each n 2: 1, define 8; : Km ---+ IR by un(p/,;:::,) = un(p). 8; is well defined 
and, since Un o ,r = Un, it follows that it is continuous. A moment of thought will convince 
the reader that this countable family of continuous maps separates the points of Km and the 
Stone-Weierstrass Theorem then guarantees the separability of C(Km)-

Now, For every function a E L, define a : Km ---+ X by a(p/,;:::,) = a(p). It's straight­
forward to check that a is well defined and continuous because a o 1r = a. 

Let 1 : L ---+ C(Km , Y) be given by , (a)= a; then I is linear, continuous and injective. 
Moreover, if ,r* is the isometry from C(Km, Y) ---+ C(K, X) induced by 7r (1r*(h) = ho 11"), 
it's clear that 11"* o 1 = iL, the canonical immersion of L in C(K, X). 

(4) ==> (1) : Since ,r• o 1 = iL and I is injective, Lis a subspace of C(Km, Y). 

On the other hand, Y is separable and so by a result of Banach ((Ba]), isometric 
to a closed subspace of C([0,11). From this we obtain that C(Km, Y) is a subspace of 
C(Km, C((0,11)), which is isomorphic to C(Km x [O, 1)). But Km x (0, 1] is metrizable which 
in turn implies that C(Km, Y) is separable. Thus, the same must be true of its subspace L, 
concluding the proof. 6. 

Theorem 1 : If 1( is a separable Pm compact and X a Pm Banach space, C(K, X) is Pm. 

Proof: Let D = {dn ; n 2: 1} be a dense subset of K and f : {0,1] --+ C(K, X) a 
bounded Pettis integrable function. 

For each n ;?: 1, we define d: : (0,1] --+ X by d~(t) = f(t)(dn)• It is easy to see that 
d: is bounded and Pettis integrable because it is the composition off and the operation of 
calculation at dn. 

Since X is Pm, there is C ~ [0,1], .>tC = 1, such that LJn2:t d:(C) is separable. If 
Y = span Un> i d;(C), we have that Y is separable. Consequently, proceding just as in the 
proof of (2) Implies (3) in Proposition 1, there is a countable family of continuous linear 
functionals in X* which is total in Y. 

For each n 2:: 1, consider the function hn : [0,1] ---+ C(K) given by hn(t) = x: o f(t). 
Each hn is bounded and Pett.is integrable; since K is Pm, there is B ~ [0,1], .>tB = 1, such 
that Z = spanU0 ~ 1 hn(B) ~ C(K) is separable. Let W = {o-n: n 2: 1} be a dense set in Z. 

Now consider A = B n C ~ [0,1], B and C as above. Then >.A = 1 and we will show 
that L = f(A) is separable, using the conditions in Proposition 1.3. 

(a) It's clear t hat D being dense in K, Y being closed and that V n and t E A 
J(t)(dn) = d:(t) E Y, forces f(t) ~ Y, for all t in A. 

b) Let be p, q E K such that o-n(p) = o-n(q), V n 2: 1. Then x: o J(t)(p) = x: o f(t)(q), 
V n 2: 1. Since {x~: n ;?: l} is total in Y, we get f(t)(p) = f (t)(q), Vt E A. 

This ends the proof. 6 

Corollary 1 : a) If K 1 , ... , Kn are separable Pm compacts, then 1{1 x ... x Kn is Pm. 

b) If [( is a Pm rompact and X a separable Banach space then C(K, X) is Pm. 

33 



c) If K1 and K 2 are Pm compact spaces and K1 is separable then the tensor product 

C(Ki) ® C(I<2 ) is Pm. 

Proof : a) It follows from Theorem 1 that C(K1, C(K2)) is Pm; but this space is 

isometric to C(K1 x K2). Thus, K1 x K2 is Pm. Induction will complete the proof of (a). 

b) By Banach's theorem, Xis isometric to a closed subspace of C((0,1]) and so C(K, X) 

is isometric to a subspace of C(K, C([0,1])). This space is isomorphic to C(K x [0,1]), in 

turn isomorphic to C([0,1], C(K)), which is Pm by Theorem 1. 

c) lt'sufficient to remember ([S], pg.357) that C(K1) ® C(K2) is isometric to 

C(K1 , C(K2)) and then apply Theorem 1. 6. 

Theorem 2 Let be ( Kn)n>t a family of compacts such that, every finite product of the Kn 's 

is Pm. Then I(= ft~
1 

I<n, as well as every continuous image of K, is Pm. 

Proof: Notation wiB be as in Lemma 1, except that we write Ph ai, 'Pi and 1ri for the 

maps corresponding to the finite subset J = {l, ... , j}. For the definition of all 'Pi and ?rj, 

we fix y = (Yn) in K. By Proposition 8.1, it's sufficient to verify that K is Pm. 

Let f : [0,1] -4 C(K) be a bounded Pettis integrable function. For j ~ 1, consider 

hj = Oj o 71'j of. Then hj is Pettis integrable and hj{t)((xn)) = /(t)(x1, • .. , Xj, (Yi)i>j); thus 

Im hj is isometric to a subspace of C(K1 x ... x Kj). By hypothesis, K1 x ... x Ki is Pm and 

so there is Aj ~ [0,1] such that AAj = 1 and hj{Aj) is separable. 

Set A = n. Ai. Then AA = 1 and Z = U ·>i hj{ A) C C(K) is separable. Let 
J>l J _ -

D = {gn : n ~ 1rbe a dense subset of Z. We will prove that f(A) ~ Zand consequently, it 

must be separable. The mea.surability of f is then clear. 

Fix t E A and c: > 0. Then there is g E C(K), depending only on the coordinates below 

some j ~ 1, such that llf(t) - 911 < c:/3. 

In particular, we have IJ(t) (x1, . .. ,xj,(Yi)i>j)-9(x1,•••,xj,(Yi)i>j)I < c:/3, 

V (xi) E IL~j Ki; thus, one has llhj(t) - 911 < e/3. 

On the other hand, since hj{t) E Z, there is 9r E D such that llhj(t) - 9rll < e/3. 

These inequalities clearly imply 11/(t) - 9rll < e. Since Z is closed and e arbitrary, we 

conclude f(A) ~ Z, ending the proof. 6. 

Corollary 2 : Let (K;)iEI be a family of compact and I(= ILE
1
Ki. Are equivalent : 

{1} /( is Pm; (2) (a) VF~ I, F finite, fLEFKi is Pm ; 

(b) [( has property P. 

Proof: (1) implies (2) is a direct consequence of Proposition 8.1. 

(2) =? (1) : By Theorem 8.1 we can write a bounded Pettis integrable f as 

f = !1 + h where these maps have the properties described in its statement. Since K 

has property P and his a null function (Theorem 8.1 item (v)), we have that f = j 1 A-ae. 
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On the other hand, by item (iv) in the same result, / 1 (and thus f) can be considered as 
a map into a countable product of components of K. An application of Theorem 2 yields 
the measurability of / 1 and consequently, that of f. l::,. 

Proposition 8.3, Corollary 1 and the preceding result give 

Corollary 3 : Any product of separable Pm compacts is Pm. 

10 Some asp ects of Pm t heory u nder -,CH + MA 

In the previous sections we used the continuum hypothesis ( CH) to obtain a number 
of results. Here, the independence of some of these statements from ZFC will be discussed, 
using Martin's axiom (MA) and the negat ion of CH. A convenient reference for Martin's 
axiom is [K]. A formulation of MA can be stated as 

MA : In a CCC compact Hausdorff space, the union of a family of meager sets with 
cardinality o < 2No is a meager set. 

It is known that t here are models of ZFC set theory (Zermelo - Fraenkel with Axiom 
of Choice) satifying MA in which CH is false. The following consequence of Martin's axiom 
will be important in what follows. 

Theorem 1 {see [Kl) : (MA) If 1/ is a cardinal number s1tch that 1/ < 2No then the union 
of 1/ subsets of IR of Lebesgue m easure zero has m easure zero. /::,. 

In section 6 we proved t hat if X is a Banach space which have spp and the null Pettis 
integral property then X is Pm. The proof did not use CH and so this result holds true 
under -,CH + MA. Thus, with a proof analogous to that of Corollary 6.1 we can show 

Theorem 2 : Let X be a Banach space and T/ an infinite cardinal such that the union of 17 
subsets in {0,1} of Lebesgue m easure zero has m easure zero. If X has a total subset O ~ X* 
with lf21 :$ TJ, then X has property P. If X also has the spp, then Xis Pm. /::,. 

Consequently, 

Corollary 1 (-,CH + MA) : A Banach space with density 17 < 2N° has property P. If it 
also has the spp, then it is Pm. 

Proof : It is enough to recall that a Banach space with density TJ < 2No has a total 
subset n ~ X* such that IOI = 17 . By MA, the union of 17 subsets of measure zero in [0,1] 
has measure zero and thus we can apply Theorem 2 to conclude. /::,. 

In section 7, it was proved that CH implied that a WCG space is Pm iff it is separable. 
In section 5 it was shown that, under CH, an abstract L P space, 1 < p < oo, is Pm iff it is 
separable. Furthermore, we had observed that the continuum hypothesis implied that a non 
CCC compact space did not have property P. These statements are all independent of ZFC 
since we can apply Corollary 1 to get 
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Corollary 2 (,CH + MA) : For ~1 ::; T/ < 2No, lp(r,), 1 ::; p < oo, eo(17) are Pm and 
C([O, 17}) has property P. Moreover, C([O, w1}) is Pm. D. 

Nevertheless, the following result shows that the class of nonseparable Pm WCG spaces 
in a model of-, CH+ MA is not 'very large'. Notation is as set down in section 7. 

Proposition I (,CH+ MA) : If Xis WCG and dens X 2': c then Xis not Pm. 

Pro of: By Proposition 7.1, we may assume that dens X = c. Thus dens*X = c and 
therefore, c = dens X = dens* X ::; dens X* ::; ( densXt = c, and we get dens X* = c. 

Let {x\: A< c} be a dense subset in X*, and H;. = (x\)-1(0), V ,\ < c. 

Just as in the proof of Proposition 7.3, for every o: < c, we can find Xo: E n,\<aH,\, with 

llxall = 1. 

Fix a bijection h : [0,1) ~ [O, c), t - At, and consider f : [0,1) ~ X, given by 
J(t) = X).

1
• f is bounded, in fact llf(t)II = 1, Vt E [0,1]. Moreover, given to E [0,1), we have 

At > At0 ==} X). EH>, ==} x\ (x,\) = 0 ==} x\ o f(t) = 0. 
I lo A10 t Ato 

Since l{t: >.t::;Ato}I S IAtol < c, by MA, µ{t: At S At0 } = 0. To conclude, one can now 
proceed as in the proof of Theorem 7.2. D. 
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