

Il Congresso Internacional da Construção Metálica Il International Conference on Steel Construction

Frei Caneca Shopping & Convention Center

Novembro/November, 11 - 12 - 13, 2002 São Paulo - SP - Brasil

"PRINCIPAIS ASPECTOS DA INSPEÇÃO, REFORÇO E AUMENTO DE CAPACIDADE DE PONTES DE AÇO" (1)

"ASPECTS OF THE INSPECTION, REINFORCEMENT AND INCREASE OF THE CAPACITY OF STEEL BRIDGES" (1)

\$ 635 P

Roberto Martins Gonçalves (2)

Maximiliano Malite (3)

Toshiaki Takeya (4)

Resumo:

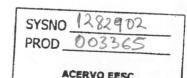
Este trabalho apresenta e discute os principais aspectos para a inspeção, reforço e aumento de capacidade de pontes de aço.

Aborda-se, neste trabalho, os procedimentos relativos às técnicas de inspeção, recuperação, reforços e aumento de capacidade, tais como: redução da carga permanente; ligação de tabuleiro de concreto às vigas de aço existentes (vigas mistas); aumento da rigidez transversal, aumento da seção dos elementos que compõem a ponte; adição ou substituição de elementos; utilização de cabos externos às pontes e sua protensão e alteração no esquema estático da ponte ou superposição de nova estrutura.

Enfatizam-se as soluções que envolvem a alteração do esquema estático, pois é a solução que melhor atende às pontes brasileiras, pontes antigas e na sua maioria rebitadas.

Palavras-chaves: pontes de aço, inspeção, recuperação de pontes

Abstract:


This paper presents and it discusses the principal aspects the inspection, reinforcement and increase of the capacity of the steel bridges.

It is approached, in this paper, the procedures to the inspection techniques, repair, reinforcements and increase of capacity, such as: reduction of the permanent load; connection of the concrete slabs to the existent steel beams; increase of the traversal rigidity, increase of the element sections; addition or substitution of elements; use of external cables to the bridges and alteration in the static system of the bridge or overlap of new structure.

Solutions that involve the alteration of the static system are emphasized, because it is the solution that to get better results to Brazilian bridges, old bridges and in most of which riveted.

Key-words: steel bridge, inspection, repair.

160103

1- INTRODUÇÃO

O transporte rodoviário e ferroviário passou por profundas modificações nas últimas décadas e hoje as cargas por eixo nos veículos e nos vagões ferroviários aumentou significativamente, consequentemente aumentando as solicitações nas pontes existentes.

A simples substituição de pontes antigas, algumas centenárias, envolve custos elevados o que justifica, na maioria dos casos, o reforço e a recuperação das pontes existentes.

A necessidade de reforçar pontes tem várias causas, da deterioração ao aumento do trem tipo, sendo que a vida útil está diretamente associada ao regime de tráfego e na manutenção realizada e este fator consiste num aspecto relegado a um segundo plano na realidade brasileira, porém é importante salientar que a deterioração de uma ponte (corrosão, fadiga, impacto de veículos e objetos, outros) é o principal fator gerador de reforços.

A simples recuperação de elementos isolados (não objeto deste trabalho) não constitui uma boa prática de recuperação e reforço estrutural sem que uma análise global de todas as possibilidades seja realizada.

A análise global das possíveis soluções deve considerar as principais técnicas destinadas a este fim: redução da carga permanente, vigas mistas, aumento da rigidez transversal, aumento da seção de elementos, adição ou substituição de elementos, reforço ou alteração de ligações e aparelhos de apoio, protensão da estrutura através de cabos externos e alteração do esquema estático da ponte existente ou a superposição de uma nova estrutura.

2- ASPECTOS RELATIVOS À INSPEÇÃO DE PONTES DE AÇO

2.1- Aspectos Gerais

A manutenção é um dos principais aspectos na vida útil de uma ponte de aço. Um programa de inspeção eficiente e bem planejado propicia não só o prolongamento da vida útil da ponte, como também evita gastos desnecessários para a recuperação ou reforços em pontes deterioradas.

A inspeção deve considerar as particularidades de cada ponte, a tipologia estrutural, os elementos de ligação, as características dos materiais utilizados, a idade e o tipo de tráfego. As inspeções podem ser dividas em:

- a) periódicas: principal objetivo avaliar de maneira sistemática e regular os principais elementos, garantindo integridade e funcionalidade;
- b) especiais: inspeções mais detalhadas, após algum problema ter sido observado, destinadas a obter informações sobre o real estado da ponte, verificar as condições de segurança de parte o do todo;
- c) cadastrais: inspeções destinadas a realizar o levantamento das características geométricas, seções transversais, estado de conservação, tipologia estrutural da estrutura e fundações, realizadas quando da ausência de projetos.

2.2- Inspeção de pontes deterioradas

A realização de inspeção especial em pontes deterioradas caracteriza-se pela urgência da recuperação em função dos tipos de deterioração observados, grau de comprometimento e informações necessárias quanto a integridade e avaliação da segurança. As principais deteriorações

ou as fontes causadoras que podem, principalmente, ser: corrosão, fadiga, afrouxamento de ligações, fundações e aparelhos de apoio, impacto de objetos.

2.3- Principais tipos de deterioração de pontes

- Corrosão

A corrosão constitui a principal causa de deterioração de pontes de aço e a figura 1 ilustra aspectos relativos onde ocorre com mais freqüência, sendo um indicativo de como inspecionar uma ponte deteriorada por corrosão.

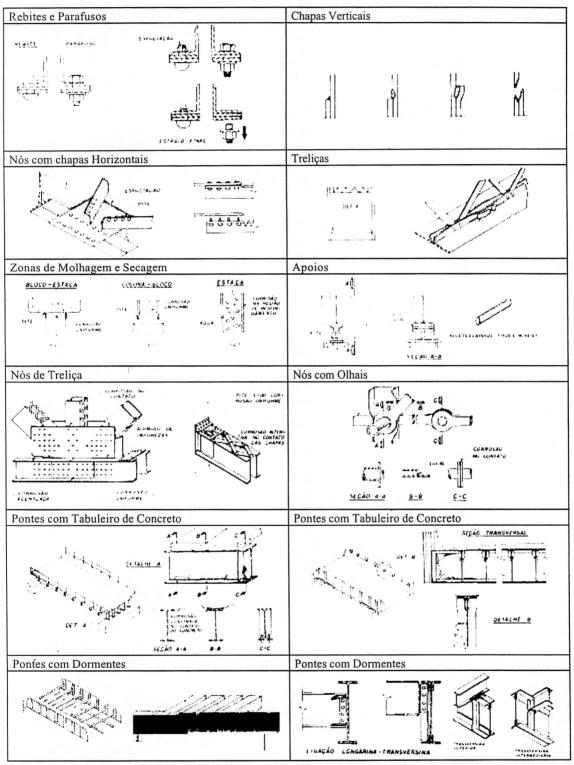
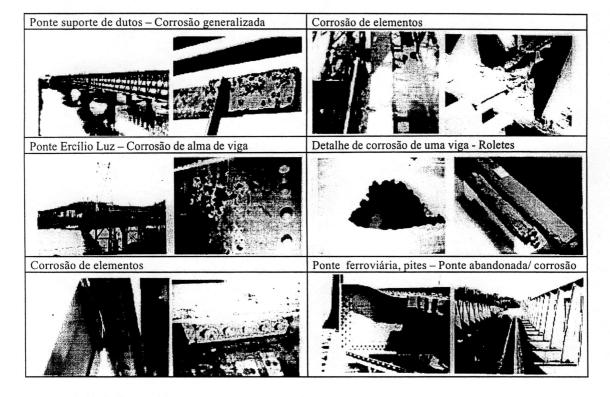



Figura 1 – Principais pontos de ocorrência de corrosão.

As fotos da Figura 2 ilustram exemplos de corrosão em elementos de ponte.

- Afrouxamento de ligações

O afrouxamento de ligações é um tipo de deterioração em pontes rebitadas e parafusadas, devido principalmente às ações móveis e como consequência de possíveis impactos e choques, sendo uma deterioração decorrente da utilização da ponte e seus efeitos são progressivos.

Basicamente este tipo de deterioração provoca deformações excessivas ou a ruptura dos elementos de ligação, com as consequências sendo função do elemento comprometido e as Figura 3 ilustram com um exemplo o problema de afrouxamento de uma ligação longarina -transversina em ponte ferroviária.

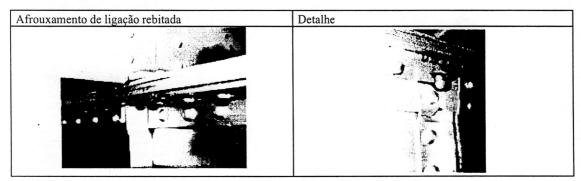
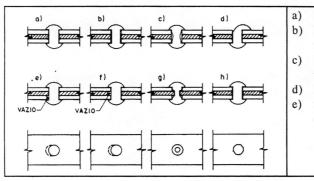



Figura 3 – Fotos afrouxamento de ligação.

Cabe salientar que o afrouxamento de rebites pode ser decorrência de defeitos observados durante a execução dos mesmos e a figura 4 ilustra possíveis defeitos de rebitagem.

- a) Rebite bem executado
- b) Folga entre rebite e chapas (diâmetro inadequado temperatura de rebitagem)
- Folga parcial entre rebite e chapas (má rebitagem temperatura de rebitagem)
- d) Má rebitagem
- e) f) g) h)Folga entre rebite e chapas (deslocamento do furo não preenchimento)

Figura 4 – Defeitos de rebitagem.

- Impacto de objetos e/ou veículos

A deterioração por impacto de objetos e veículos é um problema relativamente comum em pontes e os casos mais frequentes são devidos a: acidentes sobre as pontes, choques de veículos, choques das cargas transportadas, danos em vigas devido ao gabarito vertical, danos em pilares devido a colisão de barcos, etc.

As fotos da figura 5 ilustram alguns exemplos.

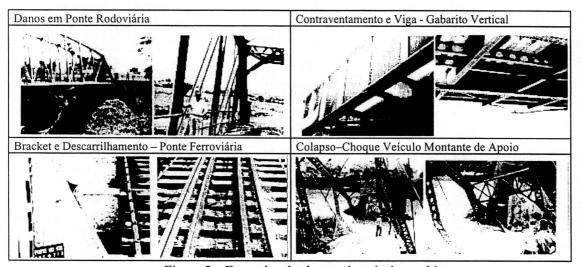


Figura 5 – Exemplos de choque de veículos e objetos.

- Aparelhos de apoio, pilares e fundação

Deterioração de aparelhos de apoio e fundações constitui um sério problema a ser avaliado tendo em vista que pode provocar o colapso da estrutura da ponte sem aviso prévio. Não é intuito deste artigo abordar com profundidade tal aspecto, porém as inspeções necessariamente devem observar com rigorosa atenção estes itens.

As figuras 6 ilustra exemplos deste tipo de deterioração.

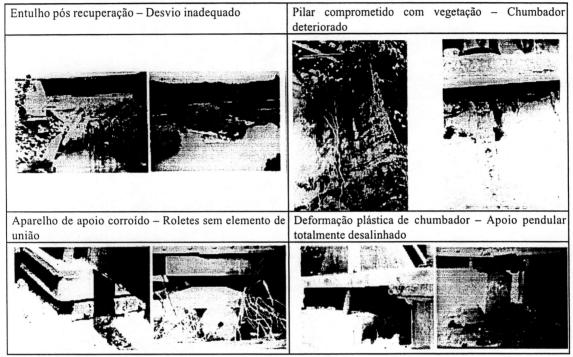


Figura 6 – Deterioração de aparelhos de apoio e pilares.

- Fadiga

Outro tipo de deterioração consiste na fadiga do aço em elementos ou ligações. É um aspecto que pode ter origem no próprio esgotamento da vida útil da ponte ou em detalhes, principalmente de ligações, que aceleram a fadiga.

A figura 7 ilustra, através de fotos, exemplos que podem ser considerados os mais comuns de ocorrer.

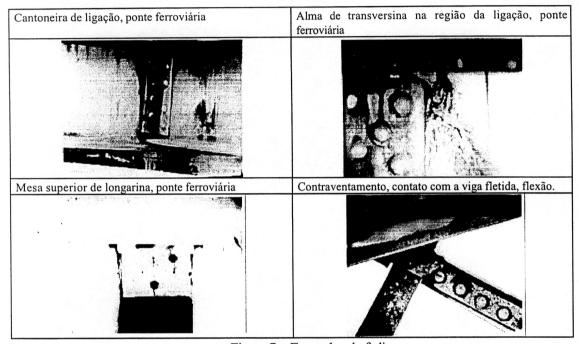


Figura 7 – Exemplos de fadiga.

3- PROCEDIMENTOS PARA AUMENTO DE CAPACIDADE DE PONTES EXISTENTES

A redução da carga permanente sobre uma estrutura reduzirá as tensões, para as pontes ferroviárias e rodoviárias, exigem-se soluções diferenciadas e particulares para cada caso.

Para as pontes ferroviárias pode ser obtida pela retirada de tubulações, passarelas ou pequenos complementos, porém a superestrutura deste tipo de ponte não permite grandes alterações.

Nas pontes rodoviárias existe a possibilidade da diminuição do peso próprio do tabuleiro através de várias soluções: diminuição da espessura da laje através da utilização da ação composta com a viga de aço, substituição do tabuleiro de concreto por grelhas de aço, etc. A substituição do tabuleiro foi usada na ponte Hercílio Luz-Florianópolis.

A ligação entre tabuleiro de concreto e o sistema de vigas (longarinas e transversinas) é um método muito eficiente para o aumento da capacidade resistente de pontes, pois o comportamento conjunto viga de aço-laje de concreto reduz consideravelmente as tensões e deslocamentos provenientes da carga móvel, em função do aumento significativo da rigidez transversal.

O comportamento como viga mista é obtido com a utilização de conectores interligando a laje de concreto existente com as vigas de aço, com a garantia de que estes conectores transmitam as tensões de cisalhamento entre os dois materiais.

As dimensões e espaçamento dos conectores dependem do fluxo de tensões de cisalhamento entre a laje e a viga de aço. Recomenda-se a norma americana AASHTO e a norma inglesa BS-5440-Part 5 para o dimensionamento de vigas mistas.

No caso de recuperação ou aumento de capacidade de pontes onde o tabuleiro é constituído de laje de concreto é necessária a execução de furos nas lajes para o posicionamento e solda dos conectores que podem ser os comumente utilizados na obtenção de vigas mistas (pino com cabeça – stud bolts, segmentos de perfil tipo U ou cantoneiras, barras redondas em forma de semi-círculo, chapas inclinadas).

Uma outra solução possível é a utilização de parafusos como conectores, como apresenta a Figura 8, onde uma máquina especial faz o corte do concreto (furo com pequeno diâmetro) e após a furação da viga de aço é fixado o parafuso com porcas e arruelas.

Uma terceira possibilidade é a utilização de pinos em espiral (pinos testados no Welding Institute-Cambridge, Inglaterra), cuja fixação é feita pela parte inferior da mesa superior onde é realizado um furo no aço e no concreto e após isto é introduzido o conector em espiral sob pressão através de um macaco hidráulico, Figura 9. A principal vantagem deste tipo de conector consiste no fato de sua colocação ser feita sem interrupção do tráfego.

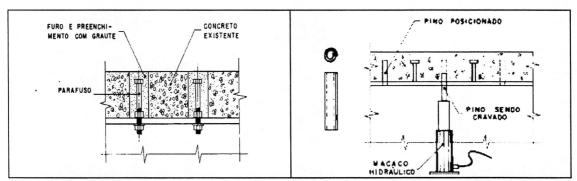


Figura 8 – Parafusos utilizados como conectores.

Figura 9 – Colocação de conectores em espiral.

O aumento da rigidez transversal de uma ponte é realizado através da introdução de sistemas de contraventamento transversais entre vigas ou pela utilização de diafragmas. Este tipo de reforço é normalmente utilizado em ponte rodoviárias quando o sistema estrutural é constituído de várias vigas principais.

O uso deste sistema de reforço para aumentar a capacidade e redistribuir as solicitações da carga móvel é recomendável para pontes em vigas e o principal objetivo é fazer com que o sistema de vigas isoladas passe a trabalhar de maneira conjunta.

O primeiro aspecto negativo deste processo consiste na necessidade de transmissão dos momentos fletores entre os novos elementos e as vigas existentes, pois as ligações necessárias para tanto, são de difícil execução e o segundo, é a eficiência deste sistema em função dos custos elevados e de uma redistribuição de momentos fletores não tão eficiente.

Este sistema passa a ser recomendado quando a ponte já apresentar problemas relativos a rigidez transversal e uma das possíveis soluções esta apresenta na Figura 10.

Figura 10 – Sistema de contraventamento entre vigas.

A alteração do esquema estático em pontes existentes deve ser realizada com o aumento do grau de hiperestaticidade, constituindo em um método extremamente eficiente para o aumento da capacidade resistente de pontes existentes.

Em função do esquema estrutural das pontes, várias soluções são passíveis de serem adotadas e, como em todos os processos de aumento de capacidade resistente, os estudos são praticamente particulares para cada ponte.

Cabe salientar que muitas vezes o processo de deterioração também é o reponsável pela limitação da capacidade/velocidade das pontes, porém as soluções para estes aspectos podem ser obtidas de maneira adequada.

A figura 11 e 12 ilustram dois exemplos de recuperação de elementos com corrosão acentuada, demonstrando que é possível obter sucesso no reparo de elementos.

Figura 11 – Recuperação montante de apoio.

Figura 12 – Recuperação de nó de apoio.

Entre as soluções mais comuns encontram-se: vigas isoladas transformadas em contínuas, apoios intermediários obtidos pela execução de novos pilares ou estruturas auxiliares, introdução de apoios intermediários através de elementos atirantados. O item seguinte deste trabalho apresenta os principais aspectos relativos à adição de vínculos externos em pontes existentes.

4- ALTERAÇÃO DO ESQUEMA ESTÁTICO DE PONTES EXISTENTES

Para cada tipologia estrutural de uma ponte existente é possível obter uma solução adequada destinada a aumentar a capacidade resistente através do aumento do grau hiperestático.

Qualquer análise para a adoção deste tipo de reforço deve considerar que a solução contemple as particularidades da estrutura a reforçar (tipologia estrutural, condições da estrutura quanto à deterioração, condições locais de aceso à ponte e seus elementos, viabilidade econômica, vida útil após o reforço, condições de inspeção, etc). O detalhamento da solução a ser adotada deve estar adequado ao modelo teórico proposto, em particular nas ligações, apoios e dimensionamento de elementos.

O principal aspecto a ser realizado, independente da solução adotada, é a compatibilização das deformações entre a estrutura existente e a de reforço, de tal forma que ocorra a garantia de um comportamento conjunto de ambas e que este comportamento seja efetivamente o idealizado no cálculo.

A alteração do esquema estático de uma ponte pode ser realizada utilizando-se de várias soluções, tais como pilares intermediários, continuidade em vigas simplesmente apoiadas, apoios intermediários pela adição de arcos (superiores ou inferiores) ou pórticos à estrutura existente, duplicação de vigas principais, utilização de apoios obtidos através de apoios atirantados (não é objeto deste trabalho), mísulas de enrijemento, etc.

Apoios intermediários são muito utilizados como solução para reforço e são simples do ponto de vista de cálculo, cuja função principal é a diminuição dos vãos e como consequência os momentos fletores (vigas) ou esforços axiais (treliças).

O aumento do grau de hiperestaticidade reduz os momentos positivos e também os deslocamentos, porém, há o aparecimento de momentos negativos e forças cortantes significativos sobre o vínculo introduzido. Deve-se considerar os seguintes aspectos:

- verificação dos elementos sujeitos à inversão do momento fletor;
- verificação da força cortante na região dos novos vínculos;
- verificação do sistema de contraventamento, adequando-os às novas situações;
- verificação dos efeitos locais da reação de apoio;
- compatibilização entre a estrutura existente e a de reforço, de tal forma a que o funcionamento de ambas ocorra de maneira conjunta (é conveniente utilizar a "eliminação" da carga permanente através de içamento da estrutura existente antes da execução dos reforços ou verificar as condições da ação permanente atuando somente na estrutura existente).

A título de exemplo, para pontes rodoviárias com 20m de vão, simplesmente apoiadas, a introdução de apoio intermediário reduz os momentos positivos para algo em torno de 65% do momento máximo e introduz momentos negativos da ordem de 55% dos momentos da viga simplesmente apoiada.

As Figuras 13 e 14 ilustram a adição de pilares intermediários em pontes ferroviárias, enfatizando que entre outras vantagens, todo o trabalho de recuperação e aumento da capacidade pode ser realizado sem a interrupção do tráfego.

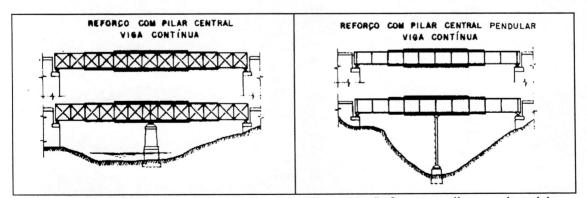


Figura 13 – Reforço com pilar central.

Figura 14 – Reforço com pilar central pendular.

A adição de vigas principais como reforço estrutural e aumento de capacidade de pontes existentes é uma solução viável e pode ser utilizada principalmente onde a introdução de apoios intermediários não é viável (em casos em que a ponte apresenta grande altura em relação ao solo). A Figura 15 ilustra este tipo de reforço.

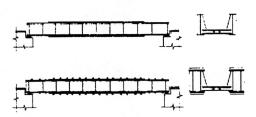
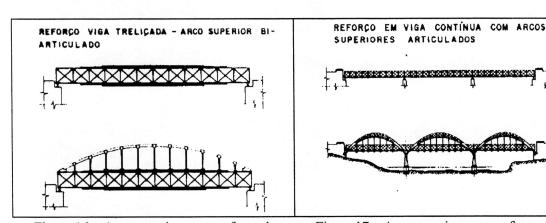


Figura 15 – Adição de vigas.

Cabe salientar que a solução de duplicação de vigas apresenta como princippais problemas a dificuldade de garantir uma distribuição efetiva das tensões e dos deslocamentos entre as vigas existentes e as de reforço e os problemas de manutenções futuras devido ao pouco espaço disponível entre as vigas.

A superposição inferior ou superior de arcos é uma solução recomendável quando a estrutura portante principal é constituída de vigas treliçadas com banzos paralelos. Normalmente superpõemse o arco na treliça existente e através de tirantes vincula-se aos nós, criando assim uma nova estrutura com aumento significativo da rigidez em relação a treliça existente. A Figura 16 e 17 ilustram duas situações de vigas treliçadas simplesmente apoiadas e contínuas, respectivamente.



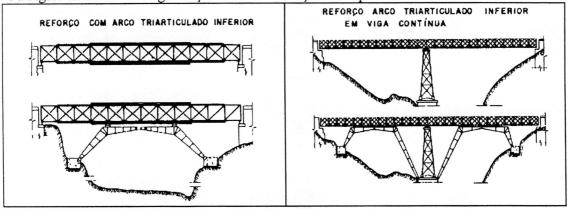

Figura 16 – Arco superior como reforço de ponte em viga treliçada simplesmente apoiada.

Figura 17 – Arco superior como reforço de ponte em viga treliçada contínua.

Pode-se utilizar arcos inferiores adicionando-se montantes deste aos nós da estrutura existente, porém esta solução exige condições de vinculação adequada ao arco e também só é recomendada quando não é possível adotar a superposição.

A introdução de pórticos inferiores responsáveis pela introdução de novos apoios às pontes em vigas ou treliças é também uma solução passível de ser adotada e recomendada quando o vão das pontes é significativo (acima de 40m de vão livre) e associado à necessidade do reforço exigir mais de um apoio como reforço.

Outro aspecto importante é que a introdução de pórticos pode ser feito externamente as pontes existentes (particularmente para as pontes ferroviárias cujas larguras não são elevadas) e também para pontes em curva pois este reforços permitem garantir um conjunto com uma grande rigidez lateral. A Figura 18 ilustra um exemplo deste tipo de reforço em viga treliçada simplesmente apoiada e a Figura 19 ilustra uma viga treliçada contínua reforçada com pórticos.

apoiada com pórticos, dois apoios intermediários.

Figura 18 - Reforço em viga treliçada simplesmente Figura 19 - Reforço em viga treliçada contínua com pórticos, quatro apoios intermediários.

É possível também utilizar tirantes retos ou poligonais como reforço transversal, não sendo objeto deste trabalho uma descrição mais detalhada sobre este método, porém é comum a utilização de mais de um tipo de reforço transversal, através do aumento do grau de hiperestaticidade.

Na Figura 20 apresenta-se um exemplo da utilização simultânea de pilares e atirantamento com vigas armadas. Trata-se da reprodução esquemática do viaduto Sinimbú, situado na Serra da Graciosa no trecho ferroviário Curitiba-Paranaguá, cujo reforço foi executado na década de trinta pelo Eng. Machado da Costa.

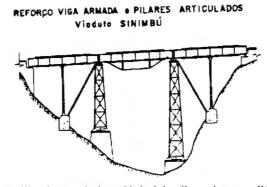


Figura 20 – Reforço utilizado no viaduto Sinimbú, pilares intermediários e viga armada.

A figura 21 ilustra vários exemplos de pontes reforçadas comalteração do esquema estático.

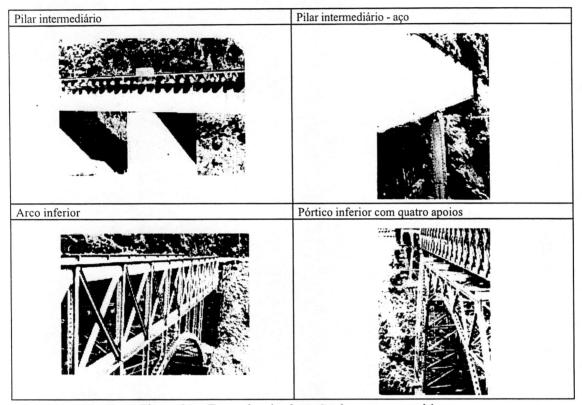


Figura 21 – Exemplos de alteração de esquema estático.

5- CONCLUSÕES

É possível estabelecer algumas conclusões a partir do relato deste trabalho:

- a) deve-se analisar os vários fatores estruturais envolvidos na tomada de decisão para a escolha do tipo de reforço a adotar:
 - características da ponte existente (tipologia estrutural; tipos de detalhes; ano de fabricação; parafusos, rebites ou solda; condições de utilização e manutenção, condições de acesso para a execução dos reforços; etc)
 - características do tráfego (rodoviário; ferroviário; volume/frequência, possibilidade e tempo de possíveis interrupções; etc)
 - características locais (características do solo; altura livre da ponte; condições de acesso dos equipamentos de montagem; fundações existentes; etc)

- b) deve-se analisar a viabilidade econômica do reforço versus substituição sendo que o estudo de viabilidade não deve desconsiderar todos os itens envolvidos (condições locais, condições meteorológicas, equipamentos necessários, tempo de interrupção disponíveis, etc)
- c) é necessário aos engenheiros de projeto o estudo de soluções já utilizadas no Brasil e em outros países em casos semelhantes, pois é comum fracassos "retumbantes", ou seja, é necessário experiência dos projetistas na recuperação e aumento de capacidade de pontes existentes em função de todas as particularidades já apontadas;

Concluindo, a recuperação e reforço de ponte deve considerar as particularidades de cada projeto, ser adequada as condições locais, permitir a sua execução e, evidentemente, ser economicamente viável.

6- AGRADECIMENTOS

Os autores agradecem o suporte financeiro da FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo e a colaboração do Eng. Raul Osório de Almeida – Construtora Roca Ltda.

7- REFERÊNCIAS

AASHTO. Standard specifications for highway bridges: with 1977-1981 interim specifications. American Association of State Highway and Transportation Officials.

American Institute of Steel Construction. Load and resistance factor design specification for structural steel buildings. Chicago, AISC, 1986. 219p.

American Railway Engineering Association. **Steel structures: chapter 15. In:** *Manual for railway engineering.* Washington, AREA, 1990.

Belenya, E. **Prestressed load-bearing metal structures**. Translated from the Russian by I.V. Savin. Moscow, Mir Publ., 1977. 463p.

Brungraber, R.J., KIM, J.B. Rehabilitation of steel truss bridges using a superimposed arch system. <u>Transportation Research Record</u>, n.950, p.146-149, 1984. (Second Bridge Engineering Conference, Minneapolis, v.1)

Costa, O.M. Estudo do reforço das pontes da Rede de Viação Paraná-Santa Catarina. Curitiba: Paranense, 1937. 40p.

Gonçalves, R.M. Alguns aspectos relativos à inspeção e recuperação de pontes de aço: ênfase em pontes ferroviárias. São Carlos, 1992. 309p. Tese (Doutorado) - Universidade de São Paulo, Escola de Engenharia de São Carlos.