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Abstract. We introduce a methodology whereby an arbitrary logic system L can be enriched
with temporal features to create a new system T(L). The new system is constructed by
combining L with a pure propositional temporal logic T {such as linear temporal logic with
“Since” and “Until”) in a special way. We refer to this method as “adding a temporal dimension
to L” or just “temporalising L.”. We show that the logic system T(L) preserves several properties
of the original temporal logic like soundness, completeness, decidability, conservativeness and
separation over linear flows of time. We then focus on the temporalisation of first-order logic,
and a comparison is made with other first-order approaches to the handling of time.
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1. INTRODUCTION

We are interested in describing the way that a system &, specified in a logic L.,
changes over time. There are two main methods for doing so. In the external
method, snapshots of § are taken at different moments of time as describing
the state of S at those times. We can write S; for the way S is at time ¢, and
use L to describe §;. We then externally add a temporal system that allows
us to relate different S; at different times ¢.

In the internal method, instead of considering S as a whole, we observe
how & is built up from internal components and we transform these compo-
nents into time dependent building blocks. The internal temporal description
of each component will give us the temporal description of the whole system
8. We can assume that S can be completely described through its components
and that the way the components are put together to make § into a whole is
also a (possibly time varying) component.

Both the external and the internal methods have their counterpart in logic
as well. A temporal logical systems with temporal connectives such as “Since”
and “Until” is the result of externally turning classical logic into a temporal
(time varying) system. The use of a two-sorted predicate logic with one time
variable in which atoms are of the form A(t, z), with ¢ time and z an element
of a domain, is an internal way of making classical logic into a temporal
system.

The purpose of this paper is to investigate the external way of temporalis-
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ing a logic system. In the external approach, we do not need to have detailed
knowledge about the components of the system & or about the logical com-
ponents of its description in L. We introduce a methodology whereby an
arbitrary logic system L can be enriched with temporal features to create a
new system T(L). The new system is constructed by combining L with a pure
propositional temporal logic T (e.g. linear-time temporal logic with “Since”
and “Until”) in a special way. We refer to this method as “adding a temporal
dimension to L” or just “temporalising L.”’. The method we use is not confined
to temporal features only, but is a methodology of combining two logics by
substituting one in another. Thus in the general case we can combine any two
logic systems L and Ly to form L (Lo).

In classical propositional temporal logic we add to the language of classical
propositional logic the connectives P and F' and we are able to express
statements like “in the future a certain proposition a will hold” by constructing
sentences of the form Fa. The idea we develop here is to apply temporal
operators not only to propositions but also to sentences from an arbitrary
logic system L.

Our aim can be viewed as describing both the “statics™ and the “dynamics”
of a logic system, while still remaining in a logical framework. The “statics”
is given by the properties of the underlying logic system L; in propositional
temporal logic T, we already have the ability to describe the “dynamics”, i.e.
changes in time of a set of atomic propositions. This point of view leads us to
combine the upper-level temporal T system with an underlying logic system
L so as to describe the evolution in time of a theory in L and its models.

Another more general point of view comes from the work in Gabbay
(1991d) about networks of logic databases. A database is considered to be
a model of a theory in some logic system 1., and the interaction between
databases is modelled by another logic system Ly; therefore, two basic logic
levels can be identified, namely the local logic L, and the global logic L. The
two systems are illustrated in Figure 1 with a temporal upper-level system
T in the place of L; and an arbitrary underlying logic system L in the place
of Lz.

We consider a network of databases distributed in time, as an extension
of the more usual idea of a network of databases distributed in space. The
underlying logic system L characterises the local behaviour of a database, i.e.
the way queries are answered by a single element of the network. The upper-
level logic system describes how one local system (at some moment in time)
relates to another local system (at some other moment in time). We combine
those two logic systems to be able to reason about the “temporal network” as
a whole, creating a logic system T(L). The result of this combination is the
addition of a temporal dimension to system L, as illustrated in Figure 2.
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Fig. 1. Two logic levels in a database network.
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Fig. 2. The logic system T(L).

The above point of view is not yet the most general setting for our op-
erations. One may ask a general question: given two logics v; and 12, can
we combine them into one logic? Suppose we take a disjoint union of the
two systems, for example a modal logic system K, with modality O;, and a
modal logic system S4, with modality O,. Here L,; = K and L = $4. Form
a language with {O;, O, } and the separate axioms on 0; (K axioms) and on
O, (S4 axioms). What do we know about the union? What is the semantics?
These questions have been recently investigated by Fine and Schurz (1992)
and by Kracht and Wolter (1991), in a framework in which several indepen-
dently axiomatisable monomodal systems were syntactically combined. The
temporal case, however, differs from those since temporal logic is a bimodal
system where the two modalities, one for the past and one for the future, al-
ways interact. The methods in Kracht and Wolter (1991) do not immediately
apply. This paper differs from the above papers in two respects. First we are
dealing with binary connectives Since (S) and Until (U). Secondly and most
importantly, we are not arbitrarily combining two logics but rather embed-
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ding one logic inside the other. If we were to embed one modality within
another in the framework above we would syntactically combine them ruling
out the formulae containing O; within the scope of 0. This yields what we
call Li(Ip) (O; is externally applied to L,). The special case where Ly is a
temporal logic T and L is an arbitrary logic L, gives us T(L), that we study
in this paper.

General combinations of logics have been addressed in the literature in
various forms. Combinations of tense and modality were discussed in Thoma-
son (1984), without explicitly providing a general methodology for doing so.
A methodology for constructing logics of belief based on existing deductive
systems was proposed by Konolige (1986); in this case, the language of the
original system was the base for the construction of a new modal language,
and the modal logic system thus generated had its semantics defined in terms
of the inferences of the original system. The model theory used by Konolige,
called a deductive model, was the connection between the original system and
the modal one. Here we present a quite different methodology, in which the
language, inference system and semantics of T(L) are based on, respectively,
the language, the inference system and the semantics of T and L. Recently
we have developed a general methodology for combining any two logics
through fibring their semantics (Gabbay 1991a, 1992); the assumptions on
the semantics of the candidate logics are very general and yield many known
results.

Extensions of temporal logic are also found in the literature. In Casanova
and Furtado (1982) a family of formal languages was generated by means
of certain mechanisms to define temporal modalities; the approach there was
based on grammars and the resulting family of languages was claimed to
be useful in expressing transition constraints for databases. Gabbay (1991b)
mixes two predicate languages G and L, generating the language L3 (G), a
two-sorted predicate language in which one sort comes from terms originated
in G and the other sort comes from terms originated in L; in the case that the
original language G is supposed to describe an order relation <, the resulting
system LZ(G) canbe seen as a predicate logic like approach to temporal logic.
Such a construction corresponds to an internal way of adding a temporal
dimension to a logic system. We propose in this work a different approach,
in which temporal modalities are applied to an existing logic system and
thence a temporal dimension is added. Eventually, we are going to informally
compare the internal and external approaches in Section 7.

The rest of the paper is organised as follows. In Section 2 we formalize
the idea of temporalising a logic system L in terms of the .S, U-temporal
logic and we show the soundness and completeness of the resulting system
T(L) over linear time. Section 3 shows that T(L) preserves the decidability
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property of system L over linear time, and the complexity of the decision
procedure is estimated. Section 4 shows that T(L) is a conservative extension
of L. Section 5 shows that T(L) has the separation property, which is useful to
specify how the past states of a database influence its future states. In Section 6
we discuss the temporalisation of first-order logic as a particularly interesting
application; two different temporalisations of first-order logic are shown,
yielding two expressively different logics. Finally, in Section 7 we show how
the added temporal dimension can be internalised in first-order logic and we
compare the temporalised approach with the internalised first-order one.

2. TEMPORALISING AN EXISTING LOGIC

This section will construct T(L) out of T and L.. Our T is the temporal system
with “Since” and “Until”, described below. Our L is in general any logic
and in particular it can be classical predicate logic. We construct T(L) by
allowing substitution of formulae of L for the atoms of formulae of T. We are
not allowing the substitution of formulae of T or even formulae of T(L) for
atoms of L. Thus the temporal connectives of T are never within the scope
of connectives of L.

Next we first define T, both syntactically and semantically. Then we define
T(L) syntactically and semantically and we prove soundness and complete-
ness for T(L).

2.1. Propositional Temporal Logics

We present here several propositional temporal logics of “Since” and “Until”;
these logics are defined over the same language but vary in the nature of the
flow of time they describe. So the language is defined starting from a set of
propositional letters P and then formulas are built up from the propositional
letters using the boolean operators — (negation) and A (conjunction) and
the two-place temporal operators S (since) and U (until). Other boolean
connectives such as V (disjunction), — (material implication) and « (material
biconditional), as well as the abbreviations T (constant true) and _L (constant
false), can be defined in terms of — and A; similarly for other temporal
operators like P (sometime in the past), F' (sometime in the future), H
(always in the past) and G (always in the future) with respectto U and S.

In the following, propositional letters are represented by p, g, r and s, and
temporal formulae are represented by upper case letter A, B, C and D.

DEFINITION 2.1. Syntax of propositional temporal logics.
Let P be a denumerably infinite set of propositional letters. The set £ g y of
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temporal propositional formulas is the smallest set such that:

- PCLsu

— IfAand Barein Ly, then ~Aand (AA B)arein L y;

— IfAand Barein Ly, then S(A, B) and U(A, B) are in L g y.

The mirror image of a formula is obtained by changing U by .S and vice-versa.
m]

The outermost pair of brackets of a formulas are sometimes omitted when no
ambiguity is implied. Boolean connectives are defined in the standard way,
while temporal operators can be defined by:

FA =45 U(A,T)
PA =45 S(A,7T)
GA =gy ~F-A
HA =45 ~P-A

A flow of time is an ordered pair F = (7, <), where T is a nonempty set
of time points and < is a binary relation over 7'. A valuation g is a function
assigning to every time point ¢ in 7" a set of propositional letters g(t) C P,
namely the set of proposition letters that are true at the time point ¢t. A model
M is a3-tuple (T, <, g), where (T, <) is the underlying flow of time and g
is a valuation. M, t = A reads the formula A holds over model M at time
point ¢ and is defined recursively as follows.

DEFINITION 2.2. Semantics of propositional temporal logic.

Mt =p,pePiff pegt).

Mt l=-A iff itisnot the case that M, ¢ |= A.

Mt =EAAB iff Mtk Aand M,t = B.

M, t = S(A, B) iff there exists an s € T with s < t and M, s = A and
foreveryu € T, if s < u < ¢t then M, u = B.

M,t = U(A,B)iff there exists an s € T with ¢t < s and M, s = A and
foreveryu € T,if t < u < sthen M, u |= B. o

A formula A is valid over a class K of flows of time, indicated by K |= A, if
for every M whose underlying flow of time is in X and for every time point
t €T, M,t = A. If ¥ is a set of formulae, we write K |= X to indicate that
K |= Aforevery A € X. Therefore, for different classes X we have different
sets of valid formulae.

A minimal axiomatic system for the S, U-temporal logic over a class
K, = s,u, contains the following axioms:
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A0 all classical tautologies

Ala G(p — q) — (U(p,7) — U(g,7))
Alb H(p — q) — (S(p,7) — S(g,71))
A2a G(p — q) — (U(r,p) — U(r,q))
A2b H(p — q) — (S(r,p) — S(r,9))
A3a (pAU(g,r)) = U(gAS(p,7),7)
A3b (pAS(g,7)) — S(gAUl(p,1),7)

Note that the axioms above come in pairs, represented by a and b, such
that one is the mirror image of the other. The inference rules are:

Subst Uniform Substitution, i.e. let A(g) be an axiom containing the
propositional letter ¢ and let B be any formula, then from + A(q)
infer = A(q\ B) by substituting all appearances of ¢ in A by B.

MP Modus ponens: from - A and - A — B infer - B.

TG Temporal Generalisation: from - A infer - HA and - GA.

A deduction is a finite string of formulae each of which is either an axiom
or follows from earlier formulae by a rule of inference. A theorem is any
formula A appearing as a last element of a deduction, and we indicate by
t=s,u A. The axioms of -5 y can be extended by a set of axioms X so as to
impose restrictions on the flow of time, therefore generating the inference
system F gy =) When ¥ is the empty set we have b5 y=F g y«). A set of
formulae is consistent if we cannot deduce falsity (L) from it.

We say that an inference system is sound and complete with respect to a
class K of flows of time if

KE Aiff - A,
or equivalently,
A is consistent iff A has a model over £,

soundness corresponding to the if part and completeness ! to the only if part.
We write S,U/K to indicate that fact.

If we consider Ky, the class of all flows of time, we have the following
well known result.

THEOREM 2.1. Soundness and Completeness of S,U/Ko.

! This is sometimes called weak completeness; strong completeness says that for any
(possibly infinite) set of formula I', if T is consistent then IT" has a model. Strong completeness
implies weak completeness but the converse is not true.
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The inference system & y is sound and complete with respect to the class
Ko.

An elegant proof of the above is given by Xu (1988). A proof of complete-
ness for the class of transitive linear flows of time, KCj;,,, is given by Burgess
(1982) adding the following set ¥ of axioms together with their mirror images
(b axioms).

Ada U(p,q) — Ulp,¢ AU(p,q))

ASa U(gAU(p,q),q) — U(p,q)
A6a (U(p,q) AU(r,s)) —
(UpAr,gAs)VUDAs,qAs)VU(gAT,qAS))

Burgess actually used an extra axiom, but Xu (1988) proved the same
result omitting it and axiom ASb. Axioms A4ab and A5a are responsible for
restricting the class of flows of time to a transitive one. The pair of axioms
A6ab are responsible for restricting the class of flows of time to a linear one.
Adding the axiom

A7a (pANHp)— FHp
and its mirror image restricts the flow of time to a discrete one. Extending
original proofs of completeness to include new axioms over a more restricted
flow of time is discussed by Burgess (1984). With axioms A0-A7 we have
soundness and completeness results for a class of linear, discrete and transitive
flows of time. There are also complete axiomatisations S,U/R over the reals
(Gabbay and Hodkinson 1990; Reynolds 1992) and S,U/Z over the integers
(Reynolds 1992).

2.2. Logic Systems and Their Temporalised Form

Having defined a family of .S, U-temporal logics, we now externally apply
such logic systems to any other logic system L, i.e. we “temporalise” L.

A logical system is a pair L = (£ ,F ), where £ is its language and
k. is its inference system; the set £, must be countable. A model for the
logic system L is a structure M ;, and we denote M |, |= « when a formula
a € L ,is true under the model M . The class of all models of L is denoted
by K ¢ and a formula « is said to be valid if M | = aforall M | € K ..

A logical system L is said to be sound if, whenever - «, we have
My = aforall M € K. The logical system L is said to be complete if,
whenever M ,, |= a forall M | € K |, we have that -, a.

We constrain the logic system L to be an extension of classical logic, i.e.
all propositional tautologies must be valid in it. This constraint is due to the
fact that all .S, U-temporal logics presented above are extensions of classical
logic and any of them can be taken as the logic T in which we base the
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temporalisation. We discuss later in this section what should be the case if LL
is not an extension of classical logic.

DEFINITION 2.3. Boolean combinations and monolithic formulae. The
set £, is partitioned in two sets, BC | and ML . A formula A € £ | belongs
to the set of boolean combinations, BC y, iff it is built up from other formulae
by the use of one of the boolean connectives — or A or any other connective
defined only in terms of those; it belongs to the set of monolithic formula

¢

ML | otherwise. , o

We can proceed then to the definition of the temporalised language. In the
following we will use «, £, v, .. ., to range over formulac of T(L).

The result of temporalising the logic system L is the logic system T(L)
= (L 1wy, 1)) and its models by M 1. The alphabet of the temporalised
language uses the alphabet of L plus the two-place operators S and U, if they
are not part of the alphabet of L; otherwise, we use .S, and U, or any other
proper renaming.

DEFINITION 2.4. Temporalised formulae.
The set £ 1 of formulae of the logic system L is the smallest set such that:
1. fa € ML ,then o € L rqy;
2. Ifo, B € Lygythen ~a € Lpgy and (a A B) € Ly
3. fa, B € Lrq,then S(a, B) € L 4qyand U(w, B) € L 1q,-
The set of maximal monolithic subformulae of o, Mon(a), is the set of
all monolithic subformulae of « that are used to build « up by the rules
above. a

It is obvious from the definition above that the set £ 1y, is denumerably
infinite. Note that from item 1 and 2 of the definition above, it follows that
Ly C L gqy. The reason to define the base case in item 1 in terms of mono-
lithic formulae of L instead of simply defining it in terms of any formula in
L ¢ is that we would have a double parsing problem. In fact, suppose an item
1’ that would state that:
1" fa < EL, then o € ﬁT(L)-

Suppose we want to define a function over the set of formulae, ¢.g. the depth
of the parsing tree of a formula. Consider the formula (a A 8) € £ y; it would
belong to £ 1y, both by items 1’ and 2. If we parse it by 1/, then its depth will
be 0, but if we parse it by 2, its depth will be 1, i.e. depth is not a well defined
function. To avoid such problem we introduce the restriction to monolithic
formulae in item 1. We also note that, for instance, if O is an operator of the
alphabet of L and o and 3 are two formulae in £, the formula OU (¢, 8) is
notin L .
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There is nothing to prevent us from defining the temporalisation in terms
of some F, P-temporal language, but since the language with S and U is
more expressive it received our preference.

If L is an extension of classical logic, we must pay attention to some
details before being able to describe the semantics of T(L). First, if M pisa
model in the class of models of L, for every formula o € £ | we must have
either M |, = a or M | = —a. For example, if L is a modal logic system,
e.g. S4, we must consider a “current world” o as part of its model to achieve
that condition. Second, we must be careful about the semantics of boolean
connectives in the temporalised system. The construction of temporalised
formulae based on monolithic formulae of £ ;, guarantees that the semantics
of the boolean connectives is the same in both the upper-level temporal logic
system T and in the temporalised system T(L).

The language of T(L) is independent of the underlying flow of time, but
not its semantics and inference system, so we must fix a class K of flows of
time over which the temporalisation is defined; this is equivalent to fixing one
logic T among the family of temporal logics presented above. We are then in
a position to define the semantics of the temporalised logic system T(L).

DEFINITION 2.5. Semantics of the temporalised logic.

Consider a flow of time (7', <) € K and a function ¢ : T — K ., mapping
every time point in 7" to a model in the class of models of L. A model of T(L.)
isatriple M 1o, = (T, <, g) and the fact that « is true in the model M T at
time point ¢ is represented by M 1, ¢ = a. The semantics of T(L) is given
by:

Moyt Ea,a e MLy iff g(t) =M and M |= o

My, t E - iff it is not the case that M 14, t |= .
MT(L),t|:(Oé/\,6) iff MT(L),t]=aandMT(L),tl=,8.
M ray,t = S(e, B) iff there exists s € T such that s < ¢ and

M rqy, s = o and for every u € T, if
s < u < tthen M rqy, u = O

M ray,t EU(, B) iff there exists s € T such that ¢ < s and
My, 8 = o and for every u € T, if
t<u<sthen My, u = 8. o

We write T(L) = « if, for every model My, whose underlying flow
of time (T, <) € K and for every time point ¢ € T, it is the case that
M T(L),t |: .
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The inference system of T(L)/X is given by the following:

DEFINITION 2.6. Axiomatisation for T(L).

—  The axioms of T/X;

—  The inference rules of T/K;

— Forevery formula cin £, if by athenb 54,y o o

The third item above constitutes a new inference rule needed to preserve
the theoremhood of formulae of the logic system L. Therefore we call it
Preserve. The only inference rules we are considering in this paper are Subst,
MP and TG, but other rules such as the irreflexivity rule IRR, (Gabbay and
Hodkinson 1990), can also be added.

The first concemn about the axiomatisation is its soundness, i.e. if whenever
Fray o we have T(L) = .

THEOREM 2.2. Soundness of T(L). If the logic system L is sound and
S,U/K is sound over the class of flows of time K, then so is the logic system
TLYK.

Proof. Soundness of S,U//C gives us the validity of the axioms over K. As
for the inference rules, soundness of L guarantees that all formulae generated
by Preserve are valid; soundness of S,U/X guarantees that the other inference
rules, when applied to valid formulae, always generate valid formulae. o

Completeness is discussed later in 2.4. Let us first present a few examples of
the temporalisation of an existing logic system,

EXAMPLE 2.1. Temporalising modal logic of belief.

Suppose we have a propositional modal logic of belief B = (L g,F ) with
the modal operator B, in which Bp is intended to mean that p is a proposition
that is believed by an agent. The axiomatisation, | 5, is given by the basic
modal logic system K plus the transitivity axiom 4 as one of the introspective
properties of belief systems in Hintikka (1962):

B(p — q) — (Bp — By) + Bp — BBp

All propositional tautologies
K
Rules: Subst, MP, Generalisation

The transitivity axiom means that, if some fact is believed, it is believed
to be believed, which represents a positive introspection of the believing
agent; for a discussion on modal logics of belief, see Halpern and Moses
(1985). This system is provided with a standard Kripke semantics for modal
logics (Hughes and Cresswell, 1968), with a set of possible worlds W, an
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accessibility relation R and a valuation function V, so that M = (W, R, V)
is amodel structure in which the accessibility relation Ris transitive. Actually,
we are considering M 3 = (W, R, V, 0), where o is a “current world” from
which the observations are made, so that we may have both validity and
satisfiability in the model theory of B.

Consider the temporalised logic system T(B) over the class Ko of all flows
of time. Its inference system - 1), for example, gives us as theorems

B(p — q) — (Bp — Bq)

~(Bp A =Bp)

GB-(Bp A —Bp)

G(Bp — q) — (U(Bp, Bq) — U(q, By)).

If we have a theory I = {G'Bp, Bp — Fp,U(q, Bp)}. We construct one
possible model M r g, by choosing a flow of time withT" = {a, b, ¢, d} and the
partial order < = {(a, b), (b,¢), (a,¢), (a,d)}. We construct the assignment
g such that:

g(O) =M% Ep

g9(b) = MbB = Bp Ap,

g(c) = M5 E Bp Agand

g(d) = M% = Bp

In the resulting model M 15y we have M 1), a |= T as illustrated below.

b c
o))
a BP:P Bpa q
P d
Bp

EXAMPLE 2.2. Temporalising propositional logic.
Consider classical propositional logic PL = (L p., I p). Its temporalisation
generates the logic system T(PL) = (£ vy, F 1gev)-
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It is not difficult to see that £ 1y = L 5y and b ppry=t g, v, i.€. the tem-
poralised version of PL over any X is actually the temporal logic T = S,U/K.
With respect to M 1, the function h actually assigns, for every time point,
a PL. model.

EXAMPLE 2.3. Temporalising S, U-temporal logic.

If we temporalise over K the one-dimensional logic system S,U/K we get the
logic system T(S,U) = (L 1s,u), I 1,1y) = T2(PL)/K. In this case we have
to rename the two-place operators .S and U of the temporalised alphabet to,
say, 57 and Us.

In order to obtain a model for T(S,U), we must fix a “current time”, o,
in Mgy = (T1,<1,91) , so that we can construct the model M ¢ vy =
(T, <2, g2) as previously described. Note that, in this case, the flows of time
(71, <1) and (7%, <2) need not to be the same. (T3, <;) is the flow of time of
the upper-level temporal system whereas (77, <1) is the flow of time of the
underlying logic which, in this case, happens to be a temporal logic.

The logic system we obtain by temporalising .S, U-temporal logic is the
two-dimensional temporal logic described in Finger (1992).

EXAMPLE 2.4. N-dimensional temporal logic.
If we repeat the process started in the last two examples, we can construct an
n-dimensional temporal logic T”(PL) (its alphabet including S,, and U,,) by
temporalising a (n — 1)-dimensional temporal logic.

Every time we add a temporal dimension, we are able to describe changes
in the underlying system. Temporalising the system L once, we are creating a
way of describing the history of L; temporalising for the second time, we are
describing how the history of L is viewed in different moments of time. We
can go on indefinitely, although it is not clear what is the purpose of doing so.

The assumption that the underlying logic system L is an.extension of classical
logic allows us to make a clear distinction between boolean and monolithic
formulae, avoiding double parsing and reconstructing the boolean formulae
and its semantics in the temporalised system T(L). If we were to temporalise
a logic system that is not an extension of classical logic, or any system in
which we do not have the notion of satisfiability, only validity, we could
consider all its formulae as being monolithic. The problem would then be the
different semantics of the boolean connectives in the underlying system and
in the upper-level (classical) temporal system, if those symbols are identical
in both systems. The solution would be renaming the boolean connectives,
say, in the underlying system. The applications of such a hybrid logic system
are not clear so, to avoid extra difficulties in the results we are going to prove,
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we will stick to the constraint on L being an extension of classical logic.

2.3. The correspondence mapping

We are now going to relate the temporalised logic system T(L) with the
original .S, U-temporal logic used as a base for the temporalisation process.
Consider P, a denumerably infinite set of propositional letters, and let S,U be
the propositional temporal logic system induced by P. The following defines
a relationship between a temporalised language L 1, and a propositional
temporal language L s v.

DEFINITION 2.7. The correspondence mapping.

Consider an enumeration pi, p2, ..., of elements of P and consider an enu-
meration «j, o3, ..., of formulac in ML ,. The correspondence mapping
o1 Lrwy — L yis given by:

Q

o) = p;foreveryo; e ML, i =1,2...
o(—a) = —o(a)

(
(

Uga AB) = a(a) Ao (h)
(

Q

S(e, B)) = S(o(a),0(B))
U, B8)) = Ulo(a),o(B)) D

1

g

The following is the correspondence lemma.

LEMMA 2.1. The correspondence mapping is a bijection.
Proof. By two straighforward structural inductions we can prove that ¢ is
both injective and surjective. Details are omitted. o

As a consequence, we can always refer to an element Q of L y as o(«),
because there is guaranteed to be a unique oo € £ 1y such that « is mapped
into @ by o. We can then establish a connection between consistent formulae
in T(L)/K and in S,U/K.

LEMMA 2.2. If « is T(L)-consistent then o(c) is S,U-consistent.

Proof. Suppose o () is inconsistent. Since all axioms and inference rules
in S,U/K are also in T(L)/K, the derivation of ¢ y o{a) — L can be imi-
tated to derive - 1y o — L, which contradicts « being T(L)-consistent. o

The results above are very useful for the proof of completeness and de-
cidability of T(L).
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derived

T(L) « consistent model for «

completeness of T(L) -

completeness
e(a) consistent of L

. completeness of S,U
S,U |o(e(e))consistent model for o (e(a))

Fig. 3. Strategy for the proof of completeness.

2.4. Completeness of T(L)

We are going to show here that whenever there exists complete axiomatisation
for S,U/K and for L, where K C K, is any linear class of flows of time,
then the temporalised logic system T(L)/K is also complete.

The strategy of the completeness proof is illustrated in Figure 3. We prove
the completeness of T(L)/K indirectly by transforming a consistent formula
of T(L) and then mapping it into a consistent formula of S,U. Completeness
of S,U/K is used to find a model for the mapped formula that is used to
construct a model for the original T(L) formula.

The transformation function ¢ is introduced to deal with the differences
between deductions in S,U and T(L) due to the presence of the inference
rule Preserve in T(L). This inference rule states that theorems in L are also
theorems in T(L). The model theoretic counterpart of this property that valid
formulae in L are also valid in T(L). The idea behind the transformation ¢ is
to extract “valid and contradictory content” that formulae of T(L.) may have
due to the validity or unsatisfiability of some set of its subformulae in L.

DEFINITION 2.8. The transformations n and ¢.
Given a formula o € £ 3, consider the following sets:
Lit(a) = Mon{a)U {-3| 8 € Mon(a)}
Incla) = {/\I‘ |T C Lit(a)and T o, L}

where M on(«a) is the set of maximal monolithic subformulae of . We define
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then the operator O (always) and the formulae 7(«) and ¢(a):

08 = 8 AGB A HB

n(a) = A 0-8
BEIne(a)

e(a) = aAn(a)

Since 77(«) is a theorem of T(L), we have the following lemma.
LEMMA 2.3. 4, e(a) < «
If K is a subclass of linear flows of time, we also have the following property.

LEMMA 2.4. Let M sy be a temporal model over K C Ky, such that for
some o € T, M y,0 |= 0(Da). Then, for everyt € T, M y,t = 0(Dw).

Therefore, if some subset of Lit(«) is inconsistent, the transformed for-
mula (o) puts that fact in evidence so that, when o maps it into S,U,
inconsistent subformulae will be mapped into falsity.

To prove the completeness of T(L)/XC given the completeness of S,U/K,
we fix an o« and assume it is a T(L)-consistent formula. We have then to
construct a model for « over K.

By Lemma 2.3, ¢(«) is T(L)-consistent and, by Lemma 2.2, o(e(«)) is
S,U-consistent. Then, by the completeness of S,U/KX, there exists a model
My = (T, <, h) with (T, <) € K such that for some 0 € T, M y,0 E
o(e(@)).

Forevery t € T, define G, (¢):

Ga(t) = {8 € Lit{a) | M5y, t = 0(0)}

LEMMA 2.5. If « is T(L)-consistent, then for every t € T, G,(t) is finite
and L-consistent.

Proof. Since Lit(«) is finite, G,(¢) is finite for every ¢. Suppose G/(t)
is inconsistent for some ¢, then there exist {f1,...,0,} C G,(t) such
that H AB; — L. So AB: € Inc(a) and O~(A 3;) is one of the con-
juncts of e(«). Applying Lemma 2.4 to M y,0 = o(e(a)) we get that
for every t € T, Mgy, t = =(Ao(8;)) but by, the definition of G,,
M u,t = Ao(B;), which is a contradiction. o

We are finally ready to prove the completeness of T(L)/K.



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 219

THEOREM 2.3. Completeness for T(L). If the logical system L is com-
plete and S,U/K is complete over a subclass of linear flows of time K C Ky,
then the logical system T(L)/K is complete over K.

Proof. Assume that « is T(L)-consistent. By Lemma 2.5, we have
(T, <) € K and associated to every time point in 7" we have a finite and
L-consistent set G,(t). By (weak) completeness of L, every G,(t) has a
model, so we define the temporalised valuation function g:

g(t) = {M? | M’ is amodel of G, (t)}

Consider the model My, = (T, <, g) over K. By structural induction
over [, we show that for every g that is a subformula of & and for every time
point ¢,

M s,Uat |: 0’(,3) iffMT(Lht |= /3

We show only the basic case, 8 € Mon(c). Suppose M s y,t = o(3); then
B € Go(t) and M, = B, and hence M 1), t = B. Suppose My, t = 3
and assume M g y,t = —0o(B); then =3 € G4(t) and M?, = -, which
contradicts M ¢, ¢ = §; hence M 5 y,t |= o(8). The inductive cases are
straightforward and details are omitted.

So, M 1, is a model for a over K and the proof is finished. o

Theorem 2.3 gives us sound and complete axiomatisations for T(L.) overmany
interesting classes of flows of time, such as the class of all linear flows of
time, Ky, the integers and the reals. These classes are, in their S,U versions,
decidable and the corresponding decidability of T(L) is dealt in Section 3.
Integer and real flows of time also have the separation property, which is
discussed in Section 5.

3. THE DECIDABILITY OF T(L) AND ITS COMPLEXITY

The main goal of this section is to show that, if the logic system L is decidable
and the logic system S,U is decidable over K C Kj;,, then the logic system
T(L) is also decidable over K. We assume throughout this section that S,U/X
is complete.

DEFINITION 3.1. Decidability of a Logic System.

Alogic system L is said to be decidable if there exists an algorithm (a decision
procedure) that, for every formula o € £, outputs “yes” if «v is a theorem
in the logic system L and “no” otherwise. =

There are several results of decidability of S,U over several linear classes of
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flows of time, among which the class Kj;,, of all linear flows of time (Burgess,
1984), the integer and the real flows of time (Burgess and Gurevich, 1985).

As in the proof of completeness, we are going to prove the decidability
result using the correspondence mapping ¢ and the transformation 7. Recall
Definition 2.8, in which the sets Mon(«), Lit(«) and Inc(a) were all finite,
so that we have the following result about 7( ).

LEMMA 3.1. For any o € Ly, if the logic system L is decidable then
there exists an algorithm for constructing n(c).

The relationship between T(L) and S,U that we need to prove the decid-
ability of T(L) is the following:

LEMMA 3.2. Over a linear flow of time, for every o € L 1,
- T(L) aiff s, U (7(7](0{) — C\().

Proof. The if case comes trivially from the definition of Ty For the
only if part, suppose k-, . We prove by induction on the deduction of «
that -5 y o(n(a) — «).

Basic cases:

1. « is obtained using the inference rule Preserve. Then (o) = =—« and
Fsuvo(——a— ).

2. «ais obtained using the inference rule Subst. Suppose o was obtained by
substituting p; by §; in some axiom A. Then |- y « can be obtained by
substituting o (p;) by o(8;) in axiom A.

Inductive cases:

1. o= G 1is obtained using the inference rule TG. Note that 5(a) = 7(3).
Then

Fs,uo(n(a)) — o(B) by induction hypothesis
FsuGlo(n(a)) —o(8)) by T(G)

Fsuv Glo(n(a))) — o(a) by temporal logic and o = G3
Fsvo(n(e)) — G(o(n(a))) by the definition of 7 and K linear
Fsuvon(a) — a) from the two previous lines
Similarly for & = Hf.

2. «ais obtained from 3 and 8 — a by MP. Then
Fsuo®(B)) — a(B) by induction hypothesis
Fsuvo®(8 — a)) — (8 — «) by induction hypothesis
Fsuo@n(8— a)) = a(n(B)) by the definition of 7
Fsvo®(B— a)) — o(B) from the 3 ™ and 1 * lines
Fs,vo®(8 — a)) — o(a) from the 4 ® and 2 ™ lines
Let p be a proposition that occurs in o(4) but not in (). If we eliminate
from o(n(a — 3)) all the conjuncts in which p occurs, obtaining o (),
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using the completeness of S,U/K we can get b5y o(y) — o(a). If we
do that for all such propositions, we end up with -5 v o(n(a) — a). o

THEOREM 3.1. Decidability of T(L). If L is a decidable logic system, and
S,U is decidable over K C Ky, then the logic system T(L) is also decidable
over K.

Proof. Consider a € L rq,. Since L is decidable, by Lemma 3.1 there is
an algorithmic procedure to build 7(«). Since ¢ is a recursive function, we
have an algorithm to construct o(n(a) — «), and due to the decidability of
S,U over K, we have an effective procedure to decide if it is a theorem or not.
Since K is linear, by Lemma 3.2 this is also a procedure for deciding whether
« is a theorem or not. o

Once we have a decidability result, the next natural question is about the
complexity of the decision procedure. We briefly discuss here an upper bound
for the complexity analysis. Let N be the number of (boolean and modal)
conmectives in a formula, let the complexity of the decision procedure in L
be O(fL(N)) and in S,U be O(f s,u(INV)). The decision procedure for T(L)
as given by the proof above consists of basically two steps:

1. constructing n(«);

2. deciding whether o(n{a) — «) is a theorem or not;

The construction of 7(«) involves generating all subsets of Lit(«) and
applying the decision procedure for each subset, therefore its complexity is
O@2N x fL(V)). The second step is dominated by the decision procedure of
S,U since the application of o can be done in polynomial time; in the worst
case, when all tests in L succeed, the size of n(«) is O(2") and therefore the
decision is O(fs y(2"V)). So an upper bound for the decision procedure for
T(L) is given by the dominating term of O(2" x f(N)) and O(f s v(2™)).
As for a lower bound for the decision procedure of T(L), it cannot be any
lower than the highest of the lower bounds for S,U and L.

4. CONSERVATIVENESS OF T(L)

Conservativeness can be easily derived from a the soundness of S,U and the
completeness of L, without any assumptions on the flow of time.

DEFINITION 4.1. Conservative extension.

A logic system L is an extension of a logic system L if £, C £,, and
if -y, athent a. Alogic Ly is a conservative extension of L if it is an
extension of Ly such thatif o € £1,, thent | aonlyift, a. o
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We know that all complete S,U are conservative extensions of predicate
logic PL. Clearly, T(L) is an extension of L. We prove that it is also conser-
vative,

THEOREM 4.1. Conservativeness of T(L). Let L be a complete logic system
and S,U be sound over K. The logic system T(L) is a conservative extension
of L.

Proof.Leta € Ly suchthatF 7, a. Suppose by contradiction that i/ , «,
so by completeness of L, there exists a model M ;, suchthat M |, = —a. We
construct a temporalised model M ., = (T, <, g) by making ¢g(t) = M,
forall t € T'. M 1, clearly contradicts the soundness of T(L) and therefore
that of S,U,so -, . 0

5. SEPARATION OVER THE ADDED DIMENSION

The separation property of the S, U-temporal logic allows us to rewrite any
temporal formula into a conjunction of formulae of the form

past formula and present formula — future formula.

Once a formula is in the format above, it can be imperatively interpreted
against a partial temporal model according to Gabbay (1987), so that if the
antecedent holds in the past and present in the model, then we must execute
the consequent in the future so as to make the formula true in the model.
The imperative interpretation of a formula (also called the execution of a
temporal specification) is based on an asymmetric view of the flow of time;
in a symmetric view of time, whenever the antecedent is true in the past and
present, we could either make the consequent true in the future or we could
try to falsify the antecedent itself, in both cases maintaining the validity of
the temporal specification. In this asymmetric view of time, we discard the
latter possibility and remain with the former as the only possibility for the
execution of a temporal specification.

In this section we want to extend this imperative interpretation of a tempo-
ral formula over a logic system L so that, after temporalising L. over a flow of
time that is like the integers or reals, we can execute temporal specifications
in T(L). The concept of a separated formula is based on the notion of a pure
formula, so we present the definitions of pure formula and separated formula
for the S,U logic.

DEFINITION 5.1. Pure formulae in S,U.
1. A pure present formula is a boolean combination of propositional letters.
2. A pure past formula is a boolean combination of formulae of the form
S(a, §) where « and § are either pure present or pure past formulae.
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3. A pure future formula is a boolean combination of formulae of the
form U(a,3) where o and 3 are either pure present or pure future
formulae. o

A separated formula is a formula that is a boolean combination of pure for-
mulae only. o

Once we have a separated formula, it can be brought to a conjunctive normal
form, i.e. a conjunction of disjuncts, so that each conjunct can be finally
brought to the form:

pure-present and pure-past — pure-future.

The following is the basic result about separation over the integers.

THEOREM 5.1. Separation Theorem. For any formula A € Ly there
exists a separated formula B € L sy such that A is equivalent to B over an
integer-like flow of time.

A proof of the separation theorem can be found in Gabbay (1987, 1991c).
It also holds for the reals.

The generalisation of pure formula for a temporalised logic system T(L)
is given below.

DEFINITION 5.2. Pure temporalised formulae.

1. every formula «« € L, is a pure present temporalised formula.

2. A pure past temporalised formula is a boolean combination of formulae
of the form S(«, 8) where o and 3 are either pure present or pure past
temporalised formulae.

3. Apure future temporalised formula is aboolean combination of formulae
of the form U(«, 3) where « and 3 are either pure present or pure future

temporalised formulae.
A separated temporalised formula is a boolean combination of pure for-
mulae of T(L). o

EXAMPLE 5.1. Temporalising a modal logic of belief. Suppose L is the
modal logic system of belief, with the modal operator B. Here are some
examples of pure temporalised formulae in T(L):
1. Pure present: Bp — p, =(p A —p), and any other formula of the logic L.
2. Pure past: P(Bp) — S(Bp, —p).
3. Pure future: F(Bp) — —FpV G(Bp — —p).
In order to prove the separation theorem for the temporalised logic T(L)
we will use the correspondence mapping. The basic strategy of the proof is
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Fig. 4. Separation of T(L)-formulae via separation of S,U-formulae.

illustrated in Figure 4.
The following is a helpful result that will lead us to the proof of separation
for the temporalised logic T(L).

LEMMA 5.1. Let o be a correspondence mapping between L v, and L g y.
o(w) is a separated formula in the logic S,U iff « is a separated formula in
T(L).

Proof. From the definition of the correspondence mapping it follows that
if v is a boolean combination of ¢, ... a, € Ly, then o(«) is a boolean
combination of o(ay),...,0{a) € L y. The converse is also true since o is
a bijection.

Therefore, fo show that « is separated in T(L) iff o(«) is separated in
S,U, all we have to do is to prove that o(«) is a pure formula iff « is a pure
formula. We show the proof for the only if case; the if part is completely
analogous.

Suppose o(«) is a pure present, then it is a boolean combination of propo-
sitional letters. Therefore « is a boolean combination of monolithic formulae
of L, therefore « is a formula of L, and pure present in T(L).

Suppose o(«) is pure past, then it is a boolean combination of formulae
in £ g,y of the form S(o (), o(7y)) where o(3) and o(~y) are pure present or
pure past. Therefore o must be a boolean combination of formulae in £ 1,
of the form S(~, §), where « and § are, by induction hypothesis, either pure
present and pure past. Therefore « is a pure past formula in £ 1.

Suppose o () is pure future, then by an argument analogous to the previ-
ous case, « is a pure future formula. Therefore we have proved that if o(«)
is a pure formula in £ 5 y, o is a pure formula in £ 1y,. o
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THEOREM 5.2. Separation Theorem for T(L). If a is any formula in L 1,
then there exists a separated formula B € Ly, such that 3 is equivalent to
o over an integer-like flow of time.

Proof. All we have to dois to prove thatif o and Jare formulae of T(L) and
Fsuo(a) « o(f)thent rqy o « B.In fact, since all axioms and inference
rules of S,U also belong to T(L), the deduction of b ¢ y o() <« o(f) also
leadsto b pqy o & .

Let then « be any formula of T(L). From the separation theorem of S,U,
we know that there exist a separated 3, such that 4 y o(a) < o(f) and
o () is separated. So by Lemma 5.1, 3 is also a separated formula equivalent
to a. o

Once we have the separation property for the temporalised system T(L), we
can rewrite any temporalised formula into a separated equivalent one of the
form

pure temporalised past and present — pure temporalised future.

The imperative interpretation of such a formula is the following. If the an-
tecedent holds in past and present models of the logic system L, then we
execute the temporalised formula by constructing a future model (or a series
or future models) of L so as to make the consequent true.

Since the separation property also holds for a real flow of time, the proof
above can be trivially adapted to a real flow of time. Note that the separation
property for the temporalised system was obtained without any assumptions
on the underlying logic system L, as opposed to the results of soundness,
completeness and decidability, all of which depend on whether the property
holds for the underlying logic system L.

6. TEMPORALISING FIRST-ORDER LOGIC

In this section we examine in more detail the addition of a temporal di-
mension to a first-order language. We will consider a first-order language
with the quantifier V, an equality symbol =, a countable set of variables
X = {z1,x2,...}, a countable set of predicate symbols P = {p1,p2,...}
such that every predicate symbol has an associated natural number n > 0,
called its arity, a set C of constant symbols and a set I of functional symbols;
C and F' are possibly empty. The quantifier 3 can be defined in the normal
way as 9 = —=V-. A term is either a variable, a constant symbol or an n-ary
function symbol applied to n terms. The notion of the set of free variables of
a formula is the usual one. A sentence is a formula with no free variables.
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A first-order domain D is a non-empty set. An interpretation 7 is a map-
ping that associates, for every constant in the language an element in the
domain, and for every n-place predicate symbol an n-ary relation over D™.
An assignment function 4 is a mapping that associates every variable with
an element of the domain. A first-order model is a pair M = (D, 7). If tisa
term, [t]%* € D represents its extension over the domain D under interpre-
tation Z and assignment .A. The semantics of a first-order language is then
defined in the usual way, where M, A |=_ o reads “M is a model of the
formula « under assignment A"

M, A pi(ty,.. o ta) iff ([U]54,. . [t € Z(pi), for all n-
ary predicate symbols p; € P.

M A= o iff M, A, o

MAE ahp ifft MJAlE  ocandM,AE_ 8.

M, A }==FOL ti=t iff [[tl]]I’A = IItz]]I’A.

M, A Via iff for any assignment A’ which agrees
with A, except possibly on variable z,
MA = o

We say that o has a model M, and write M |=_
all assignments A (this is always the case when « is a sentence).

The derivability relation, I ,,, can be any of the existent ones for first-
order logic. It can be an axiomatic system, but it need not.

Since in first-order logic we have a basic distinction between sentences
and ordinary formulae, we have to consider both cases of adding a temporal
dimension to monolithic sentences and to monolithic formulae in general.

a,if M, A l=__ afor

FOL

6.1. Temporalising First-Order Sentences

If we temporalise first-order sentences, we have no problems in following
the methodology we have developed so far. We first identify the monolithic
sentences as those that are not in the format oA 8 or . For instance, Vap(z)
and Vz—(q(z) A —q(z)) are monolithic sentences, whereas Jzp(z) (implicit
negation) and Vep(x) A Vy—q(y) are boolean combinations. We then follow
the procedure described in Section 2, obtaining the logic system T(FOs).
Note that in T(FOs) a temporal operator never occurs inside the scope of a
quantificr.

The structure of the first-order models that compose the temporalised
model deserves some special attention, since one model may differ form
another in several different ways, as if we had various “degrees of freedom”
in generating a temporalised version of first-order models. Those degrees of
freedom are illustrated in Table I.



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 227

TABLE 1
Degrees of freedom in temporalising first-order
models.
Element Fixed Variable
Domain Constant  Variable
domains domains
Constant and Rigid Non-rigid
Functional Symbols or flexible

Predicate Symbols  Rigid Non-rigid
or flexible

Assignment Global Local

If all first-order models that compose a temporalised model M y o5, refer
to the same domain, a constant domain assumption is satisfied; otherwise,
we have varying domains. We may have rigid constant and rigid functional
symbols, i.e. they have the same interpretation in every model of the tem-
poralised structure; they are called non-rigid or flexible otherwise. A rigid
predicate symbol has the same interpretation at all time; otherwise it is a flex-
ible predicate symbol. And finally, the assignment function may be global,
i.e. all variables are assigned the same domain element in all models of the
temporalised structure (global assignments make sense only under a constant
domain assumption); otherwise, it is a local assignment.

In fact, constant domains or rigid terms or predicates are not a conse-
quence of the temporalisation; they are, actually, further assumptions on the
temporalised first-order model made so as to impose some external intended
meaning of adding a temporal dimension to a logic system. All the previously
established results of soundness, completeness and separation are valid for
unconstrained T(FOs); decidability is obviously not applicable.

Nevertheless, there is no quantification over the temporal operators in
T(FOs), which means that the expressivity of this logic is clearly limited.
In the following, we examine one step further in increasing this expressivity,
while still keeping the original idea of adding a temporal dimension to a logic
system.
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6.2. Temporalising First-Order Formulae

We take now general monolithic first-order formulae as a basis for the addition
of a temporal dimension, i.e. all first-order formulae that are not of the form
= or A 3. We generate thus the logic system T(FOf). Note that the language
of T(FOs) is contained in the language of T(FOf).

The particular feature that distinguishes this system from all the previously
considered systems is that, since we are considering first-order formulae that
may contain free variables, monolithic formulae with free variables only have
a defined semantics over a first-order model Mg, if a variable assignment
function is provided, and the free variables of a first-order formula used to
build a temporalised formula ¢ remain free in a.

Therefore, while constructing a model for the system T(FOf), we must
consider the existence of a global assignment function, Ag, to cope with the
free variables. A global assignment function makes sense only in a constant
domain context, so we must have this assumption as well; we further assume
that all terms are rigid. The effect of the global assignment .4, is to ground
all the free variables of a temporalised formula . Only the interpretation of
predicate symbols changes among the models of L in the temporalised model
structure. We write

Moy | a0 iff Mygor), Ag = o for any A,.

Since the construction of its temporalised model and inference system
does not follow exactly the way other temporal systems were constructed,
the results previously established of soundness, completeness and separation
cannot be applied directly.

We know that the more expressive full first-order temporal logic has no
possible finite axiomatisation over several useful classes of linear flows of
time like IR, Z, and IN, c.g. see Garson (1984), but we do have a finite
axiomatisation for T(FOs). The logic system T(FOf) has an intermediary
expressive power and it can be shown that T(FOf) cannot be finitely axioma-
tised over linear flows of time that contain the natural numbers, although we
will not do it here. Perhaps more interesting is that separation can be achieved
for this logic through model theory.

Since the concept of separated formula is purely syntactic and does not
depend on the model or the inference system, the definition of a separated
temporalised formulae given by Definition 5.2 is also valid for T(FOf). For
the same reasons, the definition of a correspondence mapping ¢ and the cor-
respondence Lemma 2.1 stating that ¢ is a bijection are also valid in T(FOf).

DEFINITION 6.1. Corresponding Model.
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Let M rgory = (T, <, g) be amodel of T(FOf), and let A be a global assign-
ment. We construct the valuation function g, such that, for every time point
t € T and for every propositional letter p = o(«) € P we have

U(a) € ga(t) iff M T(For)a«A, t ‘_—_ .

A model of the temporal logic system S,U, M’ , = (T, <, g, ), is then called
the corresponding model of M r, under the corresponding mapping ¢ and
assignment A. o

LEMMA 6.1. If M’ ,, is the corresponding model of M ror, under o and
A then

Mds,uat }Z U(a) iff M 1o, At i= «

for every oo € L 1y and for everyt € T.
Proof. Straightforward by structural induction on a. o

THEOREM 6.1. Separation for T(FOf). For every o € L 1gory there exists
a separated formula B € L ygory Such that B is equivalent to o over an
integer-like flow of time.

Proof. Let o be a correspondence mapping and A an arbitrary global
assignment . Consider a temporalised model Myory = (T, <, h), (T, <) €
Z, and let M;’,U = (T, <, g ) be its correspondent model under ¢ and A. By
Lemma 6.1, we have

Mgy, t = 0(a) iff Mo, At = Q)

forevery o € L rgory and forevery t € T'.
By the separation theorem for S,U we get that, for every formula o(a) €
L ¢ v there exists a separated formula o(§) € L 5 y such that

Mgyt = oa) iff Mgy, t = o(B) )

for all time points ¢t € T'.

By Lemma 5.1, we have that the corresponding mapping preserves sepa-
ration, i.e. 3 is a separated formula iff o(f3) is a separated formula and, by
application of (1)

M;,U’t ': O'(ﬂ) iff MT(FOf)a Aat I—': /8 (3)

for all time points ¢ € T'.
Combining (1), (2) and (3) we get that, for every a € L ror) there exists
a separated 8 € L pgor) such that, forallt € T

MT(FOF)? At E aiff MT(FOf), At g )
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Since the assignment .4 was arbitrarily chosen and the separated 3 does
not depend on the particular choice of A, expression (4) holds for any global
assignment .4, and separation for T(FOf) remains proved. a
We note that if we fix a current time, o, and a global assignment .4, we can
apply the temporalisation process to the logic system T(FOf), obtaining a
two-dimensional temporal predicate system, T2(FOf), as a predicate version
of the two-dimensional propositional system described in Example 2.3.

7. INTERNALISING THE TEMPORAL DIMENSION

There are three basic approaches to adding a temporal dimension to a logic
system, namely:

1. The temporal operators approach.

2. The first-order internalisation of the temporal dimension.

3. A mixed approach combining the two approaches above.

Those three different approaches are discussed in detail in Gabbay (1990)
in the context of propositional temporal logic. The first approach is the one
we have been following so far. Here we briefly present the other ones in the
context of temporalised formulae.

Consider the temporalised first-order formula in T(FOf)

believed(z) — F happens(x)

expressing that whatever is believed now will become true in the future.
This statement could actually be completely coded in the original first-order
language by adding a temporal argument to the predicates believed and
happens. The resulting formulation would be

believed® (t,x) — 3s(t < s A happen™(s,x)).

This process of getting rid of the temporal operators by adding a new
temporal argument to the predicates plus some extra conditions on those
arguments can be done systematically by an internalisation function x defined
inductively over the structure of a formula of T(FOf) and also taking as
argument a reference time point, generating a two-sorted predicate formula,
one sort over time and the other sort over domain elements. We call this
process the internalisation of the temporal dimension. The internalisation of
the temporal dimension is basically obtained by the standard translation of
temporal logic into predicate logic, (e.g. van Benthem, 1983), with an extra
argument to incorporate the temporal reference; this extra argument can be
interpreted as the result of Quine’s “eternalisation” of first-order sentences
(Quine, 1960).
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In the internalised version it is necessary to incorporate a theory expressing
the properties of the flow of time K = (T, <) to restore the deductive capa-
bility of temporal formulae. However, there are several flows of time over
which there are complete temporal axiomatisations that are not definable in
first-order logic, e.g. the integers and the reals.

Another way of getting to a first-order predicate logic approach to temporal
logic, as proposed by Gabbay (1991Db), is by mixing two predicate logic
languages in the following way. Let G (for global) and L (for local) be two
first-order languages. The two-sorted predicate language L (G) is the result
of mixing the G and L (in our present notation it would be G(L})). If we
consider the language L}(G), then a formula of the form P*(¢,z1,...,x,)
means that P(xzy, ..., z,) holds at time ¢. This language is the same language
of the internalised temporal dimension system. But this approach gives us
a way of creating an internalised logic system in a very similar way to that
in which a temporalised system was created, i.e. as a result of putting two
languages together. In fact, the original languages G and L can be seen as
two linked languages “sharing variables” in the language L](G). One of the
original languages, G, has the exclusivity of dealing with temporal facts,
as the upper-level S, U-temporal logic system, whereas the language L is
responsible only for the local behaviour at each point in the flow of time.

The temporal operators approach to a temporalised formula can be seen
as treating time points implicitly, always referring to a current time. The
first-order internalisation refers explicitly to the points in the flow of time. A
hybrid form of internalisation of the temporal dimension can be obtained by
combining temporal operators with first-order internalised formulae, mixing
the explicit reference with the implicit reference of time.

In the combined approach, every temporalised formula « is associated
with a first-order atomic formula holds(t, ), where « is now treated as a
first-order term, and the free variables of « are considered free in holds(t, o).
A set of axioms is added to combine the holds(t, o) formulae with the first-
order internalised formulae, for example:

holds(t, o) < {(a)*[t], for all monolithic o € L,

holds(t,a A B} — holds(t,a) A holds(t, 3)

holds(t,a A B) « 3Fs[s <t A holds(s,a) AVu(s < u <t — holds(u, 3)))
etc.

As in the internalised approach, in the combined approach we still have to
provide axioms for the flow of time.
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CONCLUSION

We have shown in this paper a way of composing an upper-level temporal
logic system with a generic underlying logic system L and the resulting logic
system T(L) was called the temporalisation of system L. We used the corre-
spondence mapping method to prove soundness, completeness, decidability,
conservativeness and separation for the temporalised logic system over linear
flows of time. All those properties were initially properties of the temporal
logic system. Many other properties remain to be analised, such as compact-
ness, finite model property and interpolation among others; the properties
discussed here over classes of linear flows of time remain to be expanded for
all classes of flows of time.

We need by no means restrict the upper-level logic system to temporal
logic. In fact, the temporalisation presented in this paper can be generalised
to any propositional modal logic system M in the role of the upper-level
logic system, so as to create a modalised logic system M(L). Its language and
inference system can be obtained following the method we used to derive the
those of T(L), based on the monolithic formulae of L. If the logic L has a
possible world semantics, each possible world may be substituted by a model
of L, so as to construct a model for the system M(L) in the same way a model
was built for T(L). The correspondence mapping method may then be used
to study how the properties of the modal logic system M are preserved in the
modalised logic system M(L).
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