
Adding a Temporal Dimension 
to a Logic System 

MARCELO FINGER and DOV M. GABBAY 
Imperial College, Department of Computing, London, U.K. 

(Received 24 September, 1991; accepted 29 April, 1992) 

Abstract. We introduce a methodology whereby an arbitrary logic system L can be enriched 
with temporal features to create a new system T(L). The new system is constructed by 
combining L with a pure propositional temporal logic T (such as linear temporal logic with 
"Since" and "Until") in a special way. We refer to this method as "adding a temporal dimension 
to L" or ju st"temporalising L". We show that the logic system T(L) preserves several properties 
of the original temporal logic like soundness, completeness, decidability, conservativeness and 
separation over linear flows of time. We then focus on the temporalisation of first-order logic, 
and a comparison is made with other first-order approaches to the handling of time. 
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1. INTRODUCTION 

We are interested in describing the way that a system S, specified in a logic L, 
changes over time. There are two main methods for doing so. In the external 
method, snapshots of  S are taken at different moments of  time as describing 
the state of  S at those times. We can write St for the way S is at time t, and 
use L to describe St. We then externally add a temporal system that allows 
us to relate different St at different times t. 

In the internal method, instead of considering S as a whole, we observe 
how S is built up from intemal components and we transform these compo- 
nents into time dependent building blocks. The internal temporal description 
of each component will give us the temporal description of  the whole system 
S. We can assume that S can be completely described through its components 
and that the way the components are put together to make S into a whole is 
also a (possibly time varying) component. 

Both the external and the intemal methods have their counterpart in logic 
as well. A temporal logical systems with temporal connectives such as "Since" 
and "Until" is the result of externally turning classical logic into a temporal 
(time varying) system. The use of  a two-sorted predicate logic with one time 
variable in which atoms are of  the form A(t, x), with t time and x an element 
of  a domain, is an intemal way of  making classical logic into a temporal 
system. 

The purpose of  this paper is to investigate the external way of temporalis- 
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ing a logic system. In the extemal approach, we do not need to have detailed 
knowledge about the components of the system S or about the logical com- 
ponents of its description in L. We introduce a methodology whereby an 
arbitrary logic system L can be enriched with temporal features to create a 
new system T(L). The new system is constructed by combining L with a pure 
propositional temporal logic T (e.g. linear-time temporal logic with "Since" 
and "Until") in a special way. We refer to this method as "adding a temporal 
dimension to L" orjust"temporalising L". The method we use is not confined 
to temporal features only, but is a methodology of combining two logics by 
substituting one in another. Thus in the general case we can combine any two 
logic systems LI and L2 to form L1 (L2). 

In classical propositional temporal logic we add to the language of classical 
propositional logic the connectives P and F and we are able to express 
statements like "in the future a certain proposition a will hold" by constructing 
sentences of the form Fa. The idea we develop here is to apply temporal 
operators not only to propositions but also to sentences from an arbitrary 
logic system L. 

Our aim can be viewed as describing both the "statics" and the "dynamics" 
of a logic system, while still remaining in a logical framework. The "statics" 
is given by the properties of the underlying logic system L; in propositional 
temporal logic T, we already have the ability to describe the "dynamics", i.e. 
changes in time of a set of  atomic propositions. This point of  view leads us to 
combine the upper-level temporal T system with an underlying logic system 
L so as to describe the evolution in time of a theory in L and its models. 

Another more general point of view comes from the work in Gabbay 
(199 ld) about networks of logic databases. A database is considered to be 
a model of  a theory in some logic system L2 and the interaction between 
databases is modelled by another logic system L1; therefore, two basic logic 
levels can be identified, namely the local logic L2 and the global logic L1. The 
two systems are illustrated in Figure 1 with a temporal upper-level system 
T in the place of L1 and an arbitrary underlying logic system L in the place 
of Lz. 

We consider a network of databases distributed in time, as an extension 
of the more usual idea of a network of databases distributed in space. The 
underlying logic system L characterises the local behaviour of a database, i.e. 
the way queries are answered by a single element of the network. The upper- 
level logic system describes how one local system (at some moment in time) 
relates to another local system (at some other moment in time). We combine 
those two logic systems to be able to reason about the "temporal network" as 
a whole, creating a logic system T(L). The result of  this combination is the 
addition of a temporal dimension to system L, as illustrated in Figure 2. 
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(Local) 

Logic system L 

(Global) 

Temporal logic system T 

Fig. 1. Two logic levels in a database network. 

Fig. 2. The logic system T(L). 

The above point of view is not yet the most general setting for our op- 
erations. One may ask a general question: given two logics 1.1 and L2, can 
we combine them into one logic? Suppose we take a disjoint union of the 
two systems, for example a modal logic system K, with modality [31, and a 
modal logic system $4, with modality I-12. Here L1 = K and L2 = S4. Form 
a language with { []1, [32 } and the separate axioms o n  I-11 ( K  axioms) and on 
[22 ($4 axioms). What do we know about the union? What is the semantics? 
These questions have been recently investigated by Fine and Schurz (1992) 
and by Kracht and Wolter (1991), in a framework in which several indepen- 
dently axiomatisable monomodal systems were syntactically combined. The 
temporal case, however, differs from those since temporal logic is a bimodal 
system where the two modalities, one for the past and one for the future, al- 
ways interact. The methods in Kracht and Wolter (1991) do not immediately 
apply. This paper differs from the above papers in two respects. First we are 
dealing with binary connectives Since (S) and Until (U). Secondly and most 
importantly, we are not arbitrarily combining two logics but rather embed- 



206 MARCELO FINGER AND DOV M. GABBAY 

ding one logic inside the other. If we were to embed one modality within 
another in the framework above we would syntactically combine them ruling 
out the formulae containing E31 within the scope of D2. This yields what we 
call LI(L2) (D1 is externally applied to L2). The special case where L1 is a 
temporal logic T and L2 is an arbitrary logic L, gives us T(L), that we study 
in this paper. 

General combinations of logics have been addressed in the literature in 
various forms. Combinations of tense and modality were discussed in Thoma- 
son (1984), without explicitly providing a general methodology for doing so. 
A methodology for constructing logics of belief based on existing deductive 
systems was proposed by Konolige (1986); in this case, the language of the 
original system was the base for the construction of a new modal language, 
and the modal logic system thus generated had its semantics defined in terms 
of the inferences of the original system. The model theory used by Konolige, 
called a deductive model, was the connection between the original system and 
the modal one. Here we present a quite different methodology, in which the 
language, inference system and semantics of T(L) are based on, respectively, 
the language, the inference system and the semantics of T and L. Recently 
we have developed a general methodology for combining any two logics 
through fibring their semantics (Gabbay 1991a, 1992); the assumptions on 
the semantics of the candidate logics are very general and yield many known 
results. 

Extensions of temporal logic are also found in the literature. In Casanova 
and Furtado (1982) a family of formal languages was generated by means 
of certain mechanisms to define temporal modalities; the approach there was 
based on grammars and the resulting family of languages was claimed to 
be useful in expressing transition constraints for databases. Gabbay (1991b) 
mixes two predicate languages G and L, generating the language L~(G), a 
two-sorted predicate language in which one sort comes from terms originated 
in G and the other sort comes from terms originated in L; in the case that the 
original language G is supposed to describe an order relation <, the resulting 
system L~(G) can be seen as a predicate logic like approach to temporal logic. 
Such a construction corresponds to an internal way of adding a temporal 
dimension to a logic system. We propose in this work a different approach, 
in which temporal modalities are applied to an existing logic system and 
thence a temporal dimension is added. Eventually, we are going to informally 
compare the internal and external approaches in Section 7. 

The rest of the paper is organised as follows. In Section 2 we formalize 
the idea of temporalising a logic system L in terms of the S, U-temporal 
logic and we show the soundness and completeness of the resulting system 
T(L) over linear time. Section 3 shows that T(L) preserves the decidability 
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property of system L over linear time, and the complexity of the decision 
procedure is estimated. Section 4 shows that T(L) is a conservative extension 
of L. Section 5 shows that T(L) has the separation property, which is useful to 
specify how the past states of a database influence its future states. In Section 6 
we discuss the temporalisation of first-order logic as a particularly interesting 
application; two different temporalisations of first-order logic are shown, 
yielding two expressively different logics. Finally, in Section 7 we show how 
the added temporal dimension can be intemalised in first-order logic and we 
compare the temporalised approach with the intemalised first-order one. 

2. TEMPORALISING AN EXISTING LOGIC 

This section will construct T(L) out of  T and L. Our T is the temporal system 
with "Since" and "Until", described below. Our L is in general any logic 
and in particular it can be classical predicate logic. We construct T(L) by 
allowing substitution of formulae of L for the atoms of formulae of T. We are 
not allowing the substitution of formulae of T or even formulae of T(L) for 
atoms of L. Thus the temporal connectives of T are never within the scope 
of connectives of L. 

Next we first define T, both syntactically and semantically. Then we define 
T(L) syntactically and semantically and we prove soundness and complete- 
ness for T(L). 

2.1. Propositional Temporal Logics 

We present here several propositional temporal logics of "Since" and "Until"; 
these logics are defined over the same language but vary in the nature of the 
flow of time they describe. So the language is defined starting from a set of 
propositional letters 7:' and then formulas are built up from the propositional 
letters using the boolean operators -, (negation) and A (conjunction) and 
the two-place temporal operators S (since) and U (until). Other boolean 
connectives such as V (disjunction), ~ (material implication) and ~ (material 
biconditional), as well as the abbreviations -r (constant true) and A_ (constant 
false), can be defined in terms of -~ and A; similarly for other temporal 
operators like P (sometime in the past), /v (sometime in the future), H 
(always in the past) and G (always in the future) with respect to U and S. 

In the following, propositional letters are represented by p, q, r and s, and 
temporal formulae are represented by upper case letter A, B, C and D. 

DEFINITION 2.1. Syntax of propositional temporal logics. 
Let T' be a denumerably infinite set of  propositional letters. The set E s, ~ of 
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temporal propositional formulas is the smallest set such that: 
- P C Es,  u; 
- I f A a n d B a r e i n s  t h e n - ~ A a n d ( A A B )  areins 
- I f A a n d B a r e i n s  t henS(A ,B)  andU(A ,B)are ins  
The mirror image of a formula is obtained by changing U by S and vice-versa. 

[] 

The outermost pair of  brackets of  a formulas are sometimes omitted when no 
ambiguity is implied. Boolean connectives are defined in the standard way, 
while temporal operators can be defined by: 

F A  =def U(A, T) 
P A  =d~f S(A, T) 
GA =gel --F-~A 
HA-=dr -~ P-~ A 

A flow of time is an ordered pair ~ = (T, <), where T is a nonempty set 
of  time points and < is a binary relation over T. A valuation g is a function 
assigning to every time point t in T a set of  propositional letters g(t) C_ p ,  
namely the set of  proposition letters that are true at the time point t. A model 
A4 is a 3-tuple (T, < ,g) ,  where (T, <)  is the underlying flow of time and g 
is a valuation. A//, t ~ A reads the formula A holds over model A4 at time 
point t and is defined recursively as follows. 

DEFINITION 2.2. Semantics of  propositional temporal logic. 

A/l,t ~ p,p E P iff 

A/l,t ~ -~A iff 

AJ, t ~ A A B iff 

A4,t  ~ S ( A , B )  iff 

A/I,t ~ U(A ,B)  iff 

p �9 g(t) .  
it is not the case that A/t, t ~ A. 

A4, t ~ A and A4, t ~ B. 

there exists an s E T with s < t and A/l, s ~ A and 
f o r e v e r y u  E T, i f s  < u < t thenA4,  u ~ B. 

there exists an s E T with t < s and A4, s ~ A and 
for every u E T, if t < u < s then AA, u ~ B. [] 

A formula A is valid over a class/C of flows of  time, indicated by/C ~ A, if 
for every A4 whose underlying flow of time is in/C and for every time point 
t E T, A4, t ~ A. If N is a set of formulae, we write/C ~ E to indicate that 
/C ~ A for every A E N. Therefore, for different classes/C we have different 
sets of  valid formulae. 

A minimal axiomatic system for the S, U-temporal logic over a class 
/C, ~- s.v, contains the following axioms: 
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A0 

A l a  

A lb  

A2a 

A2b 

A3a 

A3b 

Note  

all classical tautologies 

C(p-~  q) -~ (U(p, r) -~ U(q, r)) 

H(p --~ q) --~ (S(p,r)  --~ S(q,r))  

G(p ~ q) ~ (u(~,p) ~ u(~, q)) 

H(p --~ q) --+ (S(r,p)  --+ S(r, q)) 

(p A U(q, ~)) -~ U(q A S(p, ~), r) 

(p A s(q, ~)) -~ s(q A u(p, ~), ~) 
that the axioms above come in pairs, represented by  a and b, such 

that one is the mirror  image of  the other. The  inference rules are: 

Subs t  Uniform Substitution, i.e. let A(q) be an axiom containing the 
propositional letter q and let B be any formula, then from t- A(q) 
infer ~- A ( q \ B )  by substituting all appearances o f  q in A by  B.  

M P  Modus ponens: f rom ~- A and ~- A ~ B infer ~- B.  

T G  Temporal  Generalisation: f rom ~- A infer ~- H A  and F- GA. 

A deduction is a finite string o f  formulae each of  which is either an axiom 
or follows from earlier formulae by  a rule of  inference. A theorem is any 
formula A appearing as a last e lement  of  a deduction, and we indicate by 

s, u A. The  axioms o f  ~- s, u can be extended by  a set o f  axioms Z so as to 
impose restrictions on the flow of  time, therefore generating the inference 
system ~- s,u (~). When  ~ is the empty set we have ~- s.u=~ - s,u~0). A set of  
formulae is consistent i f  we cannot  deduce falsity (_1_) from it. 

We say that an inference system is sound and complete with respect to a 
class/C of  flows of  t ime if  

/C ~ A i f f  t- A, 

or equivalently, 

A is consistent iff  A has a model  over/C, 

soundness corresponding to t h e / f  part and completeness I to the only if part. 
We write S,U/IC to indicate that fact. 

I f  we consider/Co, the class o f  all flows of  time, we have the following 
well known result. 

THEOREM 2.1. Soundness and Completeness of S,U//Co. 

I This is sometimes called weak completeness; strong completeness says that for any 
(possibly infinite) set of formula F, if 1" is consistent then F has a model. Strong completeness 
implies weak completeness but the converse is not true. 
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The inference system t- s, u is sound and complete with respect to the class 
ICo. 

An elegant proof of the above is given by Xu (1988). A proof of  complete- 
ness for the class of  transitive linear flows of  time, 1Ctin, is given by Burgess 
(1982) adding the following set ~ of  axioms together with their mirror images 
(b axioms). 

A4a U(p, q) ~ U(p, q A U(p, q)) 
ASa U(q A U(p, q), q) ~ U(p, q) 
A6a (U(p, q) A U(r, s)) 

(U(p A r,q A s) V U(p A s ,q A s) V U(q A r,q A s)) 

Burgess actually used an extra axiom, but Xu (1988) proved the same 
result omitting it and axiom ASb. Axioms A4ab and ASa are responsible for 
restricting the class of  flows of  time to a transitive one. The pair of axioms 
A6ab are responsible for restricting the class of  flows of  time to a linear one. 
Adding the axiom 

A7a (p A H p) ---, F H p 

and its mirror image restricts the flow of time to a discrete one. Extending 
original proofs of completeness to include new axioms over a more restricted 
flow of time is discussed by Burgess 0984).  With axioms A0-A7 we have 
soundness and completeness results for a class of  linear, discrete and transitive 
flows of  time. There are also complete axiomatisations S,U/R over the reals 
(Gabbay and Hodkinson 1990; Reynolds 1992) and S,U/Z over the integers 
(Reynolds 1992). 

2.2. Logic Systems and Their Temporalised Form 

Having defined a family of  S, U-temporal logics, we now extemally apply 
such logic systems to any other logic system L, i.e. we "temporalise" L. 

A logical system is a pair L = (L~ L, ~- i,), where/~ L is its language and 
~- L is its inference system; the set/~ L must be countable. A model for the 
logic system L is a structure WI L and we denote J~4 L ~ o~ when a formula 
o~ E/~ Lis true under the model .AA L. The class of all models of L is denoted 
by/C L and a formula o~ is said to be valid if A//L ~ o~ for all .h4 L C/C L. 

A logical system L is said to be sound if, whenever t--L o~, we have 
.A,4 L ~ o~ for all Jk4 L E/C L. The logical system L is said to be complete if, 
whenever AA L ~ o~ for all AA L E/C L, we have that ~ L o~. 

We constrain the logic system L to be an extension of classical logic, i.e. 
all propositional tautologies must be valid in it. This constraint is due to the 
fact that all S, U-temporal logics presented above are extensions of  classical 
logic and any of  them can be taken as the logic T in which we base the 
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temporalisation. We discuss later in this section what should be the case if L 
is not an extension of classical logic. 
DEFINITION 2.3. Boolean combinations and monolithic formulae. The 
set 12 L is partitioned in two sets, BC L and ML L. A formula A C 12 L belongs 
to the set of boolean combinations, BC L, iff it is built up from other formulae 
by the use of one of the boolean connectives -~ or A or any other connective 
defined only in terms of those; it belongs to the set of monolithic formula 
ML L otherwise. [] 

We can proceed then to the definition of the temporalised language. In the 
following we will use a,/3, -y . . . . .  to range over formulae of T(L). 

The result of temporalising the logic system L is the logic system T(L) 
= (12 T(L), [-- T(L)) and its models by AA T(L)" The alphabet of the temporalised 
language uses the alphabet of L plus the two-place operators S and U, if they 
are not part of the alphabet of L; otherwise, we use $2 and U2 or any other 
proper renaming. 

DEFINITION 2.4. Temporalised formulae. 
The set 12 TIL) of formulae of the logic system L is the smallest set such that: 

1. I f a  E ML L, then a E 12T(L); 
2. If a,  fl E 12 T(L) then -~a E 12 T(L) and (a A/3) E 12 T(L); 
3. If a,  /3 E 12 T(L) t hen  ~_,~(o/~/3) E 12 T(L) and  U(of , /3)  ~ 12 T(L). 

The set of maximal monolithic subformulae of a, Mort(a), is the set of 
all monolithic subformulae of a that are used to build a up by the rules 
above. D 

It is obvious from the definition above that the set 12 T(L) is denumerably 
infinite. Note that from item 1 and 2 of the definition above, it follows that 
12 L C 12 T(L). The reason to define the base case in item 1 in terms of mono- 
lithic formulae of L instead of simply defining it in terms of any formula in 
12 L is that we would have a double parsing problem. In fact, suppose an item 
11 that would state that: 

11. If a E 12 L, then ce E 12 T(L). 

Suppose we want to define a function over the set of formulae, e.g. the depth 
of the parsing tree of a formula. Consider the formula (a/x/3) E 12 L; it would 
belong to 12 T(L) both by items 11 and 2. If we parse it by 11, then its depth will 
be 0, but if we parse it by 2, its depth will be 1, i.e. depth is not a well defined 
function. To avoid such problem we introduce the restriction to monolithic 
formulae in item 1. We also note that, for instance, if [] is an operator of the 
alphabet of L and a and/3 are two formulae in 12 L, the formula []U(a,/3) is 
not in 12 TEL). 
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There is nothing to prevent us from defining the temporalisation in terms 
of some F, P-temporal language, but since the language with S and U is 
more expressive it received our preference. 

If L is an extension of classical logic, we must pay attention to some 
details before being able to describe the semantics of T(L). First, if A4 L is a 
model in the class of models of L, for every formula a E E L we must have 
either M L ~ a or M L ~ - 'a.  For example, if L is a modal logic system, 
e.g. $4, we must consider a "current world" o as part of its model to achieve 
that condition. Second, we must be careful about the semantics of boolean 
connectives in the temporalised system. The construction of temporalised 
formulae based on monolithic formulae of/~ L guarantees that the semantics 
of the boolean connectives is the same in both the upper-level temporal logic 
system T and in the temporalised system T(L). 

The language of T(L) is independent of the underlying flow of time, but 
not its semantics and inference system, so we must fix a class/C of flows of 
time over which the temporalisafion is defined; this is equivalent to fixing one 
logic T among the family of temporal logics presented above. We are then in 
a position to define the semantics of the temporalised logic system T(L). 

DEFINITION 2.5. Semantics of the temporalised logic. 
Consider a flow of time (T, <) E /C and a function 9 : T -~ /C L, mapping 
every time point in T to a model in the class of models of L. A model of T(L) 
is a triple M T(L) = (T, <,  9)  and the fact that a is tree in the model M T(L) at 
time point t is represented by A4 T(L), t ~ a. The semantics of T(L) is given 
by: 

M T(L), t ~ tY, O~ E MLL 
MT(L) , t  ~ -qOL 

M T(L), t 

M T(L), t 

iff g ( t ) = M , , a n d M ,  

iff it is not the case that .A4 T(L), t ~ a. 

iff MT(L),t  ~ aandMT(L) , t  ~ /3. 
iff there exists s E T such that s < t and 

MTIL),S ~ a and for every u E T, if 

S < Z~ < t then M ,(L),Zt ~ /3. 

iff there exists s E T such that t < s and 
M TIL),S ~ a and for every u C T, if 

t < U < sthenMr(L) ,U ~ /3. [] 

We write T(L) ~ a if, for every model A4 T(L) whose underlying flow 
of time (T, <) E /~ and for every time point t E T, it is the case that 
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The inference system of T(L)//C is given by the following: 

DEFINITION 2.6. Axiomatisation for T(L). 
- The axioms of  T/E; 
- The inference rules of  TilE; 
- For every formula a in/2 L, if F- L a then f- T(L) a. 

The third item above constitutes a new inference rule needed to preserve 
the theoremhood of formulae of  the logic system L. Therefore we call it 
Preserve.  The only inference rules we are considering in this paper are Subst,  
M P  and TG, but other rules such as the irreflexivity rule IRR,  (Gabbay and 
Hodkinson 1990), can also be added. 

The first concern about the axiomatisation is its soundness, i.e. if whenever 
~- ~(L) C~ we have T(L) ~ ol. 

THEOREM 2.2. Soundness of T(L). If  the logic system L is sound and 
S,U//C is sound over the class of flows of  time IC, then so is the logic system 
T(L)//C. 

Proof. Soundness of  S,U//C gives us the validity of the axioms over/C. As 
for the inference rules, soundness of  L guarantees that all formulae generated 
by Preserve are valid; soundness of  S,U//C guarantees that the other inference 
rules, when applied to valid formulae, always generate valid formulae. [] 

Completeness is discussed later in 2.4. Let us first present a few examples of 
the temporalisation of  an existing logic system. 

EXAMPLE 2.1. Temporalising modal logic of  belief. 
Suppose we have a propositional modal logic of  belief B = (/2 ~, f- B) with 
the modal operator B, in which Bp is intended to mean that p is a proposition 
that is believed by an agent. The axiomatisation, ~- B, is given by the basic 
modal logic system K plus the transitivity axiom 4 as one of  the introspective 
properties of belief systems in Hintikka (1962): 

All propositional tautologies 
K B(p --, q) ---, (Bp -~ Bq) 

Rules: Subst, MP, Generalisation 
+ Bp --~ B B p  

The transitivity axiom means that, if some fact is believed, it is believed 
to be believed, which represents a positive introspection of  the believing 
agent; for a discussion on modal logics of belief, see Halpem and Moses 
(1985). This system is provided with a standard Kripke semantics for modal 
logics (Hughes and Cresswell, 1968), with a set of possible worlds W, an 



214 MARCELO FINGER AND DOV M. GABBAY 

accessibility relation R and a valuation function V, so that .Z4 B = (W, R, V) 
is a model structure in which the accessibility relation Ris  transitive. Actually, 
we are considering .M B = (W, R, V, o), where o is a "current world" from 
which the observations are made, so that we may have both validity and 
safisfiability in the model theory of  B. 

Consider the temporalised logic system T(B) over the class/Co of all flows 
of  time. Its inference system ~- T(B), for example, gives us as theorems 

B(p ~ q) --, (Bp ~ Bq) 
(Bp A ~Bp) 

G B ~ ( B p  A ~Bp) 
G(Bp ---+ q) ---+ (U(Bp, Yq) ~ U(q, Bq)). 

If we have a theory F = { GBp, Bp ~ Fp, U(q, Bp) }. We construct one 
possible model AA ,(B) by choosing a flow of time with T = { a, b, c, d} mad the 
partial order < = {(a, b), (b, c), (a, c), (a, d)}. We construct the assignment 
g such that: 

g(b) = A/[~ ~ p 
g(b) = Bp  A p, 

.M ~ g(c) = ~ Bp A q and 

In the resulting model AA T(B) we have AA T(R), a ~ P as illustrated below. 

b 

Bp 

c 

Bp, q 

EXAMPLE 2.2. Temporalising propositional logic. 
Consider classical propositional logic PL -- ( s  PL, i- PL). Its temporalisation 
generates the logic system T(PL) = ( s  r(eL), i- T(PL))- 
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It is not difficult to see that 12 TIPL> = /3 s,u and }- T(PL)=[ - S, U, i.e. the tem- 
poralised version of  PL over any/C is actually the temporal logic T = S,U//C 
With respect to .AA TIL>, the function h actually assigns, for every time point, 
a PL  model. 

EXAMPLE 2.3. Temporalising S, U-temporal logic. 
If we temporalise 6ver/C the one-dimensional logic system S,U//C we get the 
logic system T(S,U) = (/~ T(S,U), ~- T(S,U)) : Te(PL)//C. In this case we have 
to rename the two-place operators S and U of the temporalised alphabet to, 
say, $2 and Ua. 

In order to obtain a model for T(S,U), we must fix a "current time", o, 
in A4 s,u = (T1, <1,gl )  , so that we can construct the model A4 a-~s,u~ = 
(Ta, <a, g2) as previously described. Note that, in this case, the flows of  time 
(T1, < 1) and (Ta, <a) need not to be the same. (T2, <a) is the flow of time of 
the upper-level temporal system whereas (771, < l )  is the flow of time of  the 
underlying logic which, in this case, happens to be a temporal logic. 

The logic system we obtain by temporalising S, U-temporal logic is the 
two-dimensional temporal logic described in Finger (1992). 

EXAMPLE 2.4. N-dimensional temporal logic. 
If we repeat the process started in the last two examples, we can construct an 
n-dimensional temporal logic Tn(PL) (its alphabet including S,~ and U~) by 
temporalising a (n - 1)-dimensional temporal logic. 

Every time we add a temporal dimension, we are able to describe changes 
in the underlying system. Temporalising the system L once, we are creating a 
way of  describing the history of  L; temporalising for the second time, we are 
describing how the history of  L is viewed in different moments of  time. We 
can go on indefinitely, although it is not clear what is the purpose of  doing so. 

The assumption that the underlying logic system L is an extension of classical 
logic allows us to make a clear distinction between boolean and monolithic 
formulae, avoiding double parsing and reconstructing the boolean formulae 
and its semantics in the temporalised system T(L). If we were to temporalise 
a logic system that is not an extension of classical logic, or any system in 
which we do not have the notion of  satisfiability, only validity, we could 
consider all its formulae as being monolithic. The problem would then be the 
different semantics of  the boolean connectives in the underlying system and 
in the upper-level (classical) temporal system, if those symbols are identical 
in both systems. The solution would be renaming the boolean connectives, 
say, in the underlying system. The applications of  such a hybrid logic system 
are not clear so, to avoid extra difficulties in the results we are going to prove, 
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we will stick to the constraint on L being an extension of  classical logic. 

2.3. The correspondence mapping 

We are now going to relate the temporalised logic system T(L) with the 
original S, U-temporal logic used as a base for the temporalisation process. 
Consider 7 ~, a denumerably infinite set of  propositional letters, and let S,U be 
the propositional temporal logic system induced by 7 ~. The following defines 
a relationship between a temporalised language 12 TOO and a propositional 
temporal language/2 s, u. 

DEFINITION 2.7. The correspondence mapping. 
Consider an enumeration Pl, P2 . . . . .  of elements of  7 ~ and consider an enu- 
meration c~1, c~2 . . . . .  of  formulae in ML L. The correspondence mapping 
c~ : /2 TIL) ~ /2 s, uiS given by: 

cr(o~) = piforeveryo~i CMLL, i = 1 , 2 . . .  
~(-,~) = -,~(~) 
~r(o~ A ~) = ~(~) A ~(~) 
~(s(~,  8)) = s(~(a) ,  ~(~)) 
~(u(~,  8)) = u(~(~) ,~(9))  [] 

The following is the correspondence lemma. 

L E M M A  2.1. The correspondence mapping is a bijection. 
Proof. By two straighforward structural inductions we can prove that ~r is 

both injective and surjective. Details are omitted. [] 

As a consequence, we can always refer to an element Q o f /2 s ,u  as cr(c~), 
because there is guaranteed to be a unique c~ C/2  T(L) such that c~ is mapped 
into Q by ~r. We can then establish a connection between consistent formulae 
in T(L)//C and in S,U/1C. 

L E M M A  2.2. If o~ is T(L)-consistent then ~r(o~) is S,U-consistent. 
Proof. Suppose cr(o 0 is inconsistent. Since all axioms and inference rules 

in S,U//~ are also in T(L)//~, the derivation of  F- s,~ a(o0 ~ _1_ can be imi- 
tated to derive F- T(L) O~ ~ _L, which contradicts c~ being T(L)-consistent. [] 

The results above are very useful for the proof of  completeness and de- 
cidability of  T(L). 
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T(L) 

S,U 

c~ consistent 

e(~) consistent I 

derived , 
completeness of T(L) 

completeness of S,U 

model for c~ 

completeness 
of L 

model for ~r (e(cQ)] 

Fig. 3. Strategy for the proof of completeness. 

2.4. Completeness ofT(L)  

We are going to show here that whenever there exists complete axiomatisation 
for S,U//C and for L, where/C C KSt,~ is any linear class of  flows of  time, 
then the temporalised logic system T(L)//C is also complete. 

The strategy of  the completeness proof is illustrated in Figure 3. We prove 
the completeness of T(L)//C indirectly by transforming a consistent formula 
of  T(L) and then mapping it into a consistent formula of  S,U. Completeness 
of S,U//C is used to find a model for the mapped formula that is used to 
construct a model for the original T(L) formula. 

The transformation function e is introduced to deal with the differences 
between deductions in S,U and T(L) due to the presence of the inference 
rule Preserve in T(L). This inference rule states that theorems in L are also 
theorems in T(L). The model theoretic counterpart of  this property that valid 
formulae in L are also valid in T(L). The idea behind the transformation e is 
to extract "valid and contradictory content" that formulae of  T(L) may have 
due to the validity or unsatisfiability of  some set of  its subformulae in L. 

DEFINITION 2.8. The t ransformat ions  r /and e. 
Given a formula ~ E Z~ T(L), consider the following sets: 

Li~(o~) = Mon(o~) U {-~fll fl E Mon(o~)} 

Inc(o~) = { A  F t F  c_ Lit(s) andF  F- L 2-} 

where Mon(~) is the set of  maximal monolithic subformulae of  cL We define 
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then the operator [] (always) and the formulae r/(a) and c(a):  

r ]~ = fl A Gfl A H/3 

~Elnc(o:) 
4 a )  = a A 

Since ~7(a) is a theorem of T(L), we have the following lemma. 

LEMMA 2.3. ~- T(L) C(a) ~ a 

If/C is a subclass of linear flows of time, we also have the following property. 

LEMMA 2.4. Let 34 s,~ be a temporal model over IC C lqin such that for 
some o E T, 34 s,v, o ~ a([]a) .  Then, for every t E T, AA s,v, t ~ o-(ma). 

Therefore, if some subset of  Lit(a) is inconsistent, the transformed for- 
mula e(a)  puts that fact in evidence so that, when cr maps it into S,U, 
inconsistent subformulae will be mapped into falsity. 

To prove the completeness of T(L)//~ given the completeness of S,U/E, 
we fix an a and assume it is a T(L)-consistent formula. We have then to 
construct a model for a over E. 

By Lemma 2.3, e(a)  is T(L)-consistent and, by Lemma 2.2, a (e (a ) )  is 
S,U-consistent. Then, by the completeness of S,U/E, there exists a model 
34 s,v = (T, <, h) with (T, <)  C /~ such that for some o C T, 34 s,v, o 

44a)). 
For every t E T, define G~(t): 

G~(t) = {~ e Lit(a) ]34  s,v,t ~ a(/3)} 

LEMMA 2.5. If a is T(L)-consistent, then for every t ~ T, G~(t) is finite 
and L-consistent. 

Proof. Since Lit(a) is finite, G~(t) is finite for every t. Suppose G, ( t )  
is inconsistent for some t, then there exist {/3a,...,/3n} _C G~(t) such 
that ~-L A/3i ~ _L. So A/3i c Ine(a) and [:;-~(A/3i) is one of the con- 
juncts of e(a).  Applying Lemma 2.4 to 34 s,u, o ~ c~(e(a)) we get that 
for every t C T, 34 s,u, t ~ - '(A a(/3i)) but by, the definition of G~, 
34 s,u, t ~ A ~r(/3i), which is a contradiction. [] 

We are finally ready to prove the completeness of T(L)/E. 
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THEOREM 2.3. Completeness for T(L). If the logical system L is com- 
plete and S,U//C is complete over a subclass of linear flows of time IC C_ ICzin, 
then the logical system T(L)//C is complete over 1C. 

Proof. Assume that ~ is T(L)-consistent. By Lemma 2.5, we have 
(T, <)  E /C and associated to every time point in T we have a finite and 
L-consistent set G~(t). By (weak) completeness of L, every G~(t) has a 
model, so we define the temporalised valuation function 9: 

9(t) = {-AdtL ] Ad t is a model of  G~ (t) } 

Consider the model A4 r(L) = (T, <,  9) over/C. By structural induction 
over/3, we show that for every/3 that is a subformula of o~ and for every time 
point t, 

A4 s, ~, t ~ or(/3) iff A/[ T(L), t ~ /3 

We show only the basic case,/3 E Mon(~). Suppose A4 s,u, t ~ or(/3); then 
/3 E G~(t) and AdtL ~ /3 ,  and hence 34 T(L), t ~ /3. Suppose 34 T(L), t ~ /3 
and assume 34 s,u,t ~ -,or(/3); then-,/3 E G~(t)and .M t ~ -,/3, which 
contradicts 34 r('0, t ~ /3; hence 3/1 s,v, t ~ cr(fl). The inductive cases are 
straightforward and details are omitted. 

So, 34 T(L) is a model for a over/C and the proof is finished. [] 

Theorem 2.3 gives us sound and complete axiomatisations for T(L) over many 
interesting classes of flows of time, such as the class of all linear flows of 
time, 1Cun, the integers and the reals. These classes are, in their S,U versions, 
decidable and the corresponding decidability of T(L) is dealt in Section 3. 
Integer and real flows of time also have the separation property, which is 
discussed in Section 5. 

3. THE DECIDABILITY OF T(L) AND ITS COMPLEXITY 

The main goal of  this section is to show that, if the logic system L is decidable 
and the logic system S,U is decidable over/C C_ ICun, then the logic system 
T(L) is also decidable over/C. We assume throughout this section that S,UHC 
is complete. 

DEFINITION 3.1. Decidability of a Logic System. 
A logic system L is said to be decidable if there exists an algorithm (a decision 
procedure) that, for every formula a E /2 L, outputs "yes" if c~ is a theorem 
in the logic system L and "no" otherwise. [] 

There are several results of  decidability of S,U over several linear classes of 
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flows of time, among which the class/Cu~ of all linear flows of  time (Burgess, 
1984), the integer and the real flows of  time (Burgess and Gurevich, 1985). 

As in the proof of  completeness, we are going to prove the decidability 
result using the correspondence mapping cr and the transformation 7. Recall 
Definition 2.8, in which the sets Mon(a),  Lit(a) and Inc(a) were all finite, 
so that we have the following result about 7(a).  

LEMMA 3.1. For any a C ~T(L), if the logic system L is decidable then 
there exists an algorithm for constructing 7(a). 

The relationship between T(L) and S,U that we need to prove the decid- 
ability of  T(L) is the following: 

LEMMA 3.2. Over a linear flow of time, for every a E s T(L), 

F- T(L) a iff ~- s,u a (7 (a )  --* oe). 

Proof. The if case comes trivially from the definition of  ~ T(L). For the 
only/f part, suppose ~- T(L) a. We prove by induction on the deduction of a 
that s , .  --' a ) .  

Basic cases: 
1. ce is obtained using the inference rule Preserve. Then 7(a)  = ~ a  and 

- - ,  a ) .  

2. a is obtained using the inference rule Subst. Suppose a was obtained by 
substituting Pi by/3i in some axiom A. Then ~- s, o a can be obtained by 
substituting a(pi) by cr(/3i) in axiom A. 

Inductive cases: 
1. a = G/3 is obtained using the inference rule TG. Note that 7(a)  = 7(/3). 

Then 
- ,  

Similarly for a = Hfl. 

by induction hypothesis 
by T(G) 
by temporal logic and a = G/3 
by the definition of  7 and/C linear 
from the two previous lines 

2. a is obtained from/7 and ~ ~ a by MP. Then 
t-s,u cr(7(fl)) ~ o-(/3) by induction hypothesis 

s,~ ~r(7(fl --* a))  --~ ~r(/3 --~ a)  by induction hypothesis 
~-s,u cr(7(fl --* a))  ~ cr(7(fl)) by the definition of  7 
~- s, u a(7(fl  ~ a))  --~ or(t) from the 3 rd and 1 ,t lines 
~- s,u ~(7(/3 --~ a))  --~ ~r(a) from the 4 ~ and 2 ~ lines 

Let p be a proposition that occurs in c@3) but not in c~(a). If we eliminate 
from c~(7(a --. 8)) all the conjuncts in which p occurs, obtaining cr(3,), 
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using the completeness of S,U//C we can get ~- s,u a(7)  --~ cr(a). If we 
do that for all such propositions, we end up with ~- s, ~ a(~7 (a) --~ a). [] 

THEOREM 3.1. Decidability of  T(L). If  L is a decidable logic system, and 
S,U is decidable over V~ C_ 1Etch, then the logic system T(L) is also decidable 
over IC. 

Proof. Consider a E s T~L~- Since L is decidable, by Lemma 3.1 there is 
an algorithmic procedure to build z/(a). Since e is a recursive function, we 
have an algorithm to construct cr(~(a) --~ a), and due to the decidability of  
S,U over/C, we have an effective procedure to decide if it is a theorem or not. 
Since/C is linear, by Lemma 3.2 this is also a procedure for deciding whether 
a is a theorem or not. = 

Once we have a decidability result, the next natural question is about the 
complexity of  the decision procedure. We briefly discuss here an upper bound 
for the complexity analysis. Let N be the number of  (boolean and modal) 
connectives in a formula, let the complexity of  the decision procedure in L 
be O ( f  L ( N ) )  and in S,U be O ( f  s,u(N)). The decision procedure for T(L) 
as given by the proof above consists of  basically two steps: 

1. constructing r~(a); 
2. deciding whether cr(z/(a) --+ a)  is a theorem or not; 

The construction of  ~(a)  involves generating all subsets of Lit(a) and 
applying the decision procedure for each subset, therefore its complexity is 
0(2 N • f L(N)). The second step is dominated by the decision procedure of  
S,U since the application of  ~r can be done in polynomial time; in the worst 
case, when all tests in L succeed, the size of  7/(a) is O(2 N) and therefore the 
decision is O(fs,  u(2m)). So an upper bound for the decision procedure for 
T(L) is given by the dominating term of  0 ( 2  N • f L(N)) and O ( f  s, ~(2N))- 
As for a lower bound for the decision procedure of  T(L), it cannot be any 
lower than the highest of  the lower bounds for S,U and L. 

4. CONSERVATIVENESS OF T(L) 

Conservativeness can be easily derived from a the soundness of S,U and the 
completeness of L, without any assumptions on the flow of time. 

DEFINITION 4.1. Conservative extension. 
A logic system L1 is an extension of a logic system L2 if s L2 C_ s L1 and 
if ~- L2 a then ~- L1 a. A logic L1 is a conservative extension of L2 if it is an 
extension of L2 such that if a E 13 t2, then ~- q a only if ~- i~ a. [] 



222 MARCELO FINGER AND DOV M. GABBAY 

We know that all complete S,U are conservative extensions of predicate 
logic PL. Clearly, T(L) is an extension of  L. We prove that it is also conser- 
vative. 
THEOREM 4.1. Conservativeness of  T(L). Let L be a complete logic system 
and S,U be sound over IC. The logic system T(L) is a conservative extension 
of  L. 

Proof. Let a E/~ L such that F- T(L) a. Suppose by contradiction that ( L a, 
SO by completeness of  L, there exists a model M L such that A/t L ~ -~a. We 
construct a temporalised model A/I ~L) = (T, < , 9 )  by making 9(t) = A4 L 
for all t E T . . M  TIL) clearly contradicts the soundness of T(L) and therefore 
that of  S,U, so ~- L a. [] 

5. SEPARATION OVER THE ADDED DIMENSION 

The separation property of  the S, U-temporal logic allows us to rewrite any 
temporal formula into a conjunction of  formulae of  the form 

past formula and present formula --~ future formula. 

Once a formula is in the format above, it can be imperatively interpreted 
against a partial temporal model according to Gabbay (1987), so that if  the 
antecedent holds in the past and present in the model, then we must execute 
the consequent in the future so as to make the formula true in the model. 
The imperative interpretation of a formula (also called the execution of a 
temporal specification) is based on an asymmetric view of the flow of time; 
in a symmetric view of time, whenever the antecedent is tree in the past and 
present, we could either make the consequent true in the future or we could 
try to falsify the antecedent itself, in both cases maintaining the validity of  
the temporal specification. In this asymmetric view of time, we discard the 
latter possibility and remain with the former as the only possibility for the 
execution of  a temporal specification. 

In this section we want to extend this imperative interpretation of  a tempo- 
ral formula over a logic system L so that, after temporalising L over a flow of 
time that is like the integers or reals, we can execute temporal specifications 
in T(L). The concept of  a separated formula is based on the notion of  a pure 
formula, so we present the definitions of  pure formula and separated formula 
for the S,U logic. 

DEFINITION 5.1. Pure formulae in S,U. 
1. A pure present formula is a boolean combination of  propositional letters. 
2. A pure past formula is a boolean combination of  formulae of  the form 

S ( a ,  r )  where a and/3 are either pure present or pure past formulae. 
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3. A pure future formula is a boolean combination of  formulae of the 
form U(~,/3) where c~ and /3 are either pure present or pure future 
formulae. D 

A separated formula is a formula that is a boolean combination of  pure for- 
mulae only. [] 

Once we have a separated formula, it can be brought to a conjunctive normal 
form, i.e. a conjunction of  disjuncts, so that each conjunct can be finally 
brought to the form: 

pure-present and pure-past ~ pure-future. 

The following is the basic result about separation over the integers. 

THEOREM 5.1. Separat ion Theorem. For any formula A E 12 s,~ there 
exists a separated formula B E 12 s, ~ such that A is equivalent to B over an 
integer-like flow of  time. 

A proof of  the separation theorem can be found in Gabbay (1987, 1991c). 
It also holds for the reals. 

The generalisation of  pure formula for a temporalised logic system T(L) 
is given below. 

DEFINITION 5.2. Pure temporalised formulae. 
1. every formula ~ E 12 L is a pure present temporalisedformula. 
2. A pure past temporalisedformula is a boolean combination of  formulae 

of  the form S(~,/3) where c~ and/3 are either pure present or pure past 
temporalised formulae. 

3. A pure future temporalisedformula is a boolean combination of  formulae 
of  the form U(o~,/3) where ~ and/3 are either pure present or pure future 
temporalised formulae. 

A separated temporalisedformula is a boolean combination of pure for- 
mulae of T(L). [] 

EXAMPLE 5.1. Temporalising a modal logic of  belief. Suppose L is the 
modal logic system of belief, with the modal operator B. Here are some 
examples of  pure temporalised formulae in T(L): 

1. Pure present: Bp --~ p, -~(p/x -~p), and any other formula of the logic L. 
2. Pure past: P(Bp)  ~ S (Bp ,  ~p). 
3. Pure future: F(Bp)  ~ ~ F p  V G ( B p  ~ -~p). 

In order to prove the separation theorem for the temporalised logic T(L) 
we will use the correspondence mapping. The basic strategy of the proof is 
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Fig. 4. Separation of T(L)-formulae via separation of S,U-formulae. 

illustrated in Figure 4. 
The following is a helpful result that will lead us to the proof of separation 

for the temporalised logic T(L). 

LEMMA 5.1. Let r be a correspondence mapping between 13 T(,~) and/3 s, u. 
rr(o~) is a separated formula in the logic S,U/ffo~ is a separated formula in 
T(L). 

Proof. From the definition of  the correspondence mapping it follows that 
if c~ is a boolean combination of o q , . . ,  an E E ~(L) then ~r(a) is a boolean 
combination of cr(~m ) , . . . ,  ~r(o~) E/3 s, v. The converse is also true since ~r is 
a bijection. 

Therefore, fo show that a is separated in T(L) iff a(ce) is separated in 
S,U, all we have to do is to prove that or(a) is a pure formula iff a is a pure 
formula. We show the proof for the only if case; t h e / f  part is completely 
analogous. 

Suppose or(a) is a pure present, then it is a boolean combination of propo- 
sitional letters. Therefore o~ is a boolean combination of  monolithic formulae 
of  L, therefore c~ is a formula of  L, and pure present in T(L). 

Suppose or(a) is pure past, then it is a boolean combination of formulae 
in/3s,  u of  the form S(cr(fl), or(7)) where cr(fl) and or(7 ) are pure present or 
pure past. Therefore o~ must be a boolean combination of formulae in 13 T(L) 
of  the form S(7,  6), where 7 and 6 are, by induction hypothesis, either pure 
present and pure past. Therefore o~ is a pure past formula in/3 T(L). 

Suppose ~r(~) is pure future, then by an argument analogous to the previ- 
ous case, ~ is a pure future formula. Therefore we have proved that if cr(c~) 
is a pure formula in E s,u, ~ is apure formula in 13 T(L). [] 
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THEOREM 5.2. Separat ion Theorem for T(L). I f  a is any formula in E T<L), 
then there exists a separated formula fl E L T~I,) such that/3 is equivalent to 
o~ over an integer-like flow of  time. 

Proof. All we have to do is to prove that if a and/3 are formulae of T(L) and 
F s,u a ( a )  ~ or(/3) then F T~L~ a ~ /3. In fact, since all axioms and inference 
rules of  S,U also belong to T(L), the deduction of ~- s,u ~r(a) +-+ a(/3) also 
leads to t- r~L~ O~ ~ /3. 

Let then a be any formula of  T(L). From the separation theorem of S,U, 
we know that there exist a separated/3, such that F s,v ~r(a) +-~ or(/3) and 
cr (/3) is separated. So by Lemma 5.1,/3 is also a separated formula equivalent 
to a. [] 

Once we have the separation property for the temporalised system T(L), we 
can rewrite any temporalised formula into a separated equivalent one of the 
form 

pure temporalised past and present ~ pure temporalised future. 

The imperative interpretation of  such a formula is the following. If the an- 
tecedent holds in past and present models of  the logic system L, then we 
execute the temporalised formula by constructing a future model (or a series 
or future models) of L so as to make the consequent true. 

Since the separation property also holds for a real flow of time, the proof 
above can be trivially adapted to a real flow of time. Note that the separation 
property for the temporalised system was obtained without any assumptions 
on the underlying logic system L, as opposed to the results of soundness, 
completeness and decidability, all of  which depend on whether the property 
holds for the underlying logic system L. 

6. TEMPORALISING FIRST-ORDER LOGIC 

In this section we examine in more detail the addition of a temporal di- 
mension to a first-order language. We will consider a first-order language 
with the quantifier V, an equality symbol =, a countable set of  variables 
X -~  { X l , X 2 , . . . } ,  a countable set of predicate symbols P = {Pl,P2,...} 
such that every predicate symbol has an associated natural number n > 0, 
called its arity, a set C of constant symbols and a set F of functional symbols; 
C and F are possibly empty. The quantifier 3 can be defined in the normal 
way as 3 = -W-~. A term is either a variable, a constant symbol or an n-ary 
function symbol applied to n terms. The notion of the set of  free variables of  
a formula is the usual one. A sentence is a formula with no free variables. 
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A first-order domain D is a non-empty set. An interpretation 77 is a map- 
ping that associates, for every constant in the language an element in the 
domain, and for every n-place predicate symbol an n-ary relation over D ~. 
An assignment function -4 is a mapping that associates every variable with 
an element of the domain. A first-order model is a pair ~4 = (79, 77). If t is a 
term, H z,'4 C 79 represents its extension over the domain 79 under interpre- 
tation Z and assignment -4. The semantics of  a first-order language is then 
defined in the usual way, where .M, -4 ~FOL O~ reads ".M is a model of the 
formula a under assignment -4": 

~/1, .4 ~Fo,. p i ( t l , . . . ,  tn) iff 

M ,  ~A ~FOL -"10/ iff 
M ,  -4 ~FOL a A /3 iff 
M ,  -4,4 ~FOL t l= t2 iff 
.~/~, -4/4 ~FOL ~/XOL iff 

([q]z,m . . . ,  [tn]z,m) 6 Z(pi), for all n- 
ary predicate symbols Pi E P. 
M, A V:FOL a. 
M,.A ~FO a a n d M ,  A ~FOL /~" 
tl 77,A ~t I,A 1 = I 2 1  �9 

for any assignment -41 which agrees 
with -4, except possibly on variable x, 

M, A' ~OL a. 

We say that a has a model M ,  and write M ~roL a, if A/l, A ~roL a for 
all assignments -4 (this is always the case when a is a sentence). 

The derivability relation, ~- mL' can be any of the existent ones for first- 
order logic. It can be an axiomatic system, but it need not. 

Since in first-order logic we have a basic distinction between sentences 
and ordinary formulae, we have to consider both cases of  adding a temporal 
dimension to monolithic sentences and to monolithic formulae in general. 

6.1. Temporalising First-Order Sentences 

If we temporalise first-order sentences, we have no problems in following 
the methodology we have developed so far. We first identify the monolithic 
sentences as those that are not in the format a A/3 or -~a. For instance, Vxp(x) 
and Vx-~(q(x) A-~q(x)) are monolithic sentences, whereas 3xp(x) (implicit 
negation) and Vxp(x) A Vy-~q(y) are boolean combinations. We then follow 
the procedure described in Section 2, obtaining the logic system T(FOs). 
Note that in TWOs) a temporal operator never occurs inside the scope of  a 
quantifier. 

The structure of the first-order models that compose the temporalised 
model deserves some special attention, since one model may differ form 
another in several different ways, as if we had various "degrees of freedom" 
in generating a temporalised version of  first-order models. Those degrees of 
freedom are illustrated in Table I. 



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 227 

TABLE I 
Degrees of freedom in temporalising first-order 
models. 

Element Fixed Variable 

Domain Constant 
domains 

Constant and Rigid 
Functional Symbols 

Predicate Symbols Rigid 

Assignment Global 

Variable 
domains 

Non-rigid 
or flexible 

Non-rigid 
or flexible 

Local 

If all first-order models that compose a temporalised model .M T(FO,~ refer 
to the same domain, a constant domain assumption is satisfied; otherwise, 
we have varying domains. We may have rigid constant and rigid functional 
symbols, i.e. they have the same interpretation in every model of the tem- 
poralised structure; they are called non-rigid or flexible otherwise. A rigid 
predicate symbol has the same interpretation at all time; otherwise it is a flex- 
ible predicate symbol. And finally, the assignment function may be global, 
i.e. all variables are assigned the same domain element in all models of the 
temporalised structure (global assignments make sense only under a constant 
domain assumption); otherwise, it is a local assignment. 

In fact, constant domains or rigid terms or predicates are not a conse- 
quence of  the temporalisation; they are, actually, further assumptions on the 
temporalised first-order model made so as to impose some external intended 
meaning of  adding a temporal dimension to a logic system. All the previously 
established results of  soundness, completeness and separation are valid for 
unconstrained T(FOs); decidability is obviously not applicable. 

Nevertheless, there is no quantification over the temporal operators in 
T(FOs), which means that the expressivity of  this logic is clearly limited. 
In the following, we examine one step further in increasing this expressivity, 
while still keeping the original idea of adding a temporal dimension to a logic 
system. 
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6.2. Temporalising First-Order Formulae 

We take now general monolithic first-order formulae as a basis for the addition 
of a temporal dimension, i.e. all first-order formulae that are not of  the form 
~ or c~A g. We generate thus the logic system T(FOf). Note that the language 
of T(FOs) is contained in the language of T(FOf). 

The particular feature that distinguishes this system from all the previously 
considered systems is that, since we are considering first-order formulae that 
may contain free variables, monolithic formulae with free variables only have 
a defined semantics over a first-order model A4FOL if a variable assignment 
function is provided, and the free variables of a first-order formula used to 
build a temporalised formula a remain free in a. 

Therefore, while constructing a model for the system T(FOf), we must 
consider the existence of a global assignment function, .,49, to cope with the 
free variables. A global assignment function makes sense only in a constant 
domain context, so we must have this assumption as well; we further assume 
that all terms are rigid. The effect of  the global assignment .Ag is to ground 
all the free variables of a temporalised formula o~. Only the interpretation of 
predicate symbols changes among the models of L in the temporalised model 
structure. We write 

.A~T(FOf) ~ OL iff  "/~T(FOf), "4 9 ~ O~ for any ,49. 

Since the construction of its temporalised model and inference system 
does not follow exactly the way other temporal systems were constructed, 
the results previously established of soundness, completeness and separation 
cannot be applied directly. 

We know that the more expressive full first-order temporal logic has no 
possible finite axiomatisation over several useful classes of linear flows of 
time like ht~, 2~, and zW, e.g. see Garson (1984), but we do have a finite 
axiomatisation for T(FOs). The logic system T(FOf) has an intermediary 
expressive power and it can be shown that T(FOf) cannot be finitely axioma- 
tised over linear flows of time that contain the natural numbers, although we 
will not do it here. Perhaps more interesting is that separation can be achieved 
for this logic through model theory. 

Since the concept of  separated formula is purely syntactic and does not 
depend on the model or the inference system, the definition of a separated 
temporalised formulae given by Definition 5.2 is also valid for T(FOI0. For 
the same reasons, the definition of a correspondence mapping ~r and the cor- 
respondence Lemma 2.1 stating that a is a bijection are also valid in T(FOf). 

DEFINITION 6.1. Corresponding Model. 
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Let J~A T(FOf) : (T, < ,  g) be a model of  T(FOO, and let A be a global assign- 
ment. We construct the valuation function g~ such that, for every time point 
t E T and for every propositional letter p = a ( a )  E P we have 

cr(oL) E g~( t ) i f fA/ l  T(FOf), ~A, t ~ O~. 

A model of the temporal logic system S,U, A/[ s,u = (T, <,  g~), is then called 
the corresponding model of A/[ T(L) under the corresponding mapping a and 
assignment .4. [] 

cr 
LEMMA 6.1. I f  .A4 s, u is the corresponding model of.A4 T(FOf) under a and 
.A then 

c r  

J ~  s ,v , t  ~ ff(OZ) / f f M  T(FOr),A, t ~ O~ 

for  every a E 13 T(L) and for every t E T. 
Proof. Straightforward by structural induction on a. [] 

THEOREM 6.1. Separation for T(FOfl. For every a E 13 T<rOr) there exists 
a separated formula /3 E 13 T(vor) such that/3 is equivalent to a over an 
integer-like flow of time. 

Proof. Let a be a correspondence mapping and r an arbitrary global 
assignment. Consider a temporalised model A/IT(FOr) = (T, <, h), (T, <) E 

r 
Z, and let A4s, U = (T, <,  9~) be its correspondent model under cr and .A. By 
Lemma 6.1, we have 

A4s, u, t ~ a(a)  aft MT(FO0, A, t ~ a (1) 

for every a E /2 T(FOf) and for every t E T. 
By the separation theorem for S,U we get that, for every formula a(~)  E 

13 s,u there exists a separated formula cr(/3) E 13 s,u such that 

MS,u, t  ( )iff MS, u, (2) 

for all time points t E T. 
By Lemma 5.1, we have that the corresponding mapping preserves sepa- 

ration, i.e. /3 is a separated formula iff ~(/3) is a separated formula and, by 
application of (1) 

M/Is,u, t ~ a(/3) iff J~T(FOf), ~A, t ~ ~ (3) 

for all time points t E T. 
Combining (1), (2) and (3) we get that, for every ~ E 13 T(FOf) there exists 

a separated/3 E 13 T(FOr) such that, for all t E T 

.A/IT(FOf) , .A, t ~ o~ iff .A/IT(FOr) , A, t ~ /3 (4) 
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Since the assignment ,4 was arbitrarily chosen and the separated/3 does 
not depend on the particular choice of .4, expression (4) holds for any global 
assignment .4, and separation for T(FOf) remains proved. [] 
We note that if we fix a current time, o, and a global assignment .4g, we can 
apply the temporalisation process to the logic system T(FOf), obtaining a 
two-dimensional temporal predicate system, T2(FOf), as a predicate version 
of the two-dimensional propositional system described in Example 2.3. 

7. INTERNALISING THE TEMPORAL DIMENSION 

There are three basic approaches to adding a temporal dimension to a logic 
system, namely: 

1. The temporal operators approach. 
2. The first-order intemalisation of the temporal dimension. 
3. A mixed approach combining the two approaches above. 

Those three different approaches are discussed in detail in Gabbay (1990) 
in the context of  propositional temporal logic. The first approach is the one 
we have been following so far. Here we briefly present the other ones in the 
context of  temporalised formulae. 

Consider the temporalised first-order formula in T(FOf) 

believed(x) ~ F happens(x) 

expressing that whatever is believed now will become true in the future. 
This statement could actually be completely coded in the original first-order 
language by adding a temporal argument to the predicates believed and 
happens. The resulting formulation would be 

believed*(t,x) --~ 3s(t  < s A happen*(s,x)).  

This process of getting rid of the temporal operators by adding a new 
temporal argument to the predicates plus some extra conditions on those 
arguments can be done systematically by an internalisationfunction �9 defined 
inductively over the structure of a formula of T(FOf) and also taking as 
argument a reference time point, generating a two-sorted predicate formula, 
one sort over time and the other sort over domain elements. We call this 
process the internalisation of the temporal dimension. The intemalisation of 
the temporal dimension is basically obtained by the standard translation of 
temporal logic into predicate logic, (e.g. van Benthem, 1983), with an extra 
argument to incorporate the temporal reference; this extra argument can be 
interpreted as the result of  Quine's "etemalisation" of first-order sentences 
(Quine, 1960). 
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In the intemalised version it is necessary to incorporate a theory expressing 
the properties of the flow of t ime/~ = (T, <)  to restore the deductive capa- 
bility of temporal formulae. However, there are several flows of time over 
which there are complete temporal axiomatisations that are not definable in 
first-order logic, e.g. the integers and the reals. 

Another way of getting to a first-order predicate logic approach to temporal 
logic, as proposed by Gabbay (1991b), is by mixing two predicate logic 
languages in the following way. Let G (for global) and L (for local) be two 
first-order languages. The two-sorted predicate language L~(G) is the result 
of  mixing the G and L (in our present notation it would be G(L~)). If we 
consider the language L~(G), then a formula of the form P*(t, Zl , . . . ,  Xn) 
means that P ( x l , . . . ,  xn) holds at time t. This language is the same language 
of the intemalised temporal dimension system. But this approach gives us 
a way of creating an intemalised logic system in a very similar way to that 
in which a temporalised system was created, i.e. as a result of  putting two 
languages together. In fact, the original languages G and L can be seen as 
two linked languages "sharing variables" in the language L~(G). One of the 
original languages, G, has the exclusivity of dealing with temporal facts, 
as the upper-level S, U-temporal logic system, whereas the language L is 
responsible only for the local behaviour at each point in the flow of time. 

The temporal operators approach to a temporalised formula can be seen 
as treating time points implicitly, always referring to a current time. The 
first-order internalisation refers explicitly to the points in the flow of time. A 
hybrid form of internalisation of the temporal dimension can be obtained by 
combining temporal operators with first-order intemalised formulae, mixing 
the explicit reference with the implicit reference of time. 

In the combined approach, every temporalised formula o~ is associated 
with a first-order atomic formula holds(t, c~), where ~ is now treated as a 
first-order term, and the free variables of (x are considered free in holds(t, c~). 
A set of  axioms is added to combine the holds(t, a) formulae with the first- 
order intemalised formulae, for example: 

holds(t, a) 
holds(t, a A/3) 
holds(t, a A ~) 
etc. 

(a)* [t], for all monolithic a E/2 L 
holds(t, a) h holds(t,/3) 
~s[s < t A holds(s, a) A Vu(s < u < t --~ holds(u,/3))] 

As in the intemalised approach, in the combined approach we still have to 
provide axioms for the flow of time. 
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CONCLUSION 

We have shown in this paper a way of composing an upper-level temporal 
logic system with a generic underlying logic system L and the resulting logic 
system T(L) was called the temporalisation of system L. We used the corre- 
spondence mapping method to prove soundness, completeness, decidability, 
conservativeness and separation for the temporalised logic system over linear 
flows of time. All those properties were initially properties of the temporal 
logic system. Many other properties remain to be analised, such as compact- 
ness, finite model property and interpolation among others; the properties 
discussed here over classes of linear flows of time remain to be expanded for 
all classes of flows of time. 

We need by no means restrict the upper-level logic system to temporal 
logic. In fact, the temporalisation presented in this paper can be generalised 
to any propositional modal logic system M in the role of the upper-level 
logic system, so as to create a modalised logic system M(L). Its language and 
inference system can be obtained following the method we used to derive the 
those of T(L), based on the monolithic formulae of L. If the logic L has a 
possible world semantics, each possible world may be substituted by a model 
of L, so as to construct a model for the system M(L) in the same way a model 
was built for T(L). The correspondence mapping method may then be used 
to study how the properties of the modal logic system M are preserved in the 
modalised logic system M(L). 

ACKNOWLEDGEMENTS 

This work benefited from the comments of Jose Fiadero, Ian Hodkinson, 
Tony Hunter, Leonardo Lazarte, Mark Reynolds, Ben Strulo and the referee. 
The work was supported by the ESPRIT project under Basic Research Action 
3096 (SPEC). Marcelo Finger was supported by the CAPES-Brazil, grant 
1481/89. 

REFERENCES 

Benthem, Johan van, 1983, The Logic of Time. Dordreeht: D. Reidel. 
Burgess, J. P. and Gurevich, Yuri, 1985, "The decision problem for linear logic," Notre Dame 

Journal of Formal Logic 26(2), 566-582. 
Burgess, John E, 1982, "Axioms for tense logic I: 'Since' and 'Until'," Notre Dame Journal 

of Formal Logic 23(4), 367-374. 
Burgess, John P., 1984, "Basic tense logic," pp. 89-133 in Handbook of Philosophical Logic, 

Volume II, D. Gabbay and F. Guenthner, eds., Dordrecht: D. Reidel. 
Casanova, M. A. and Furtado, A. L., 1982, "A family of temporal languages for the description 

of transition constraints," in 3rd Worksohp on Logical Bases for Databases, Toulouse, 
France, December. 



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 233 

Fine, Kit and Schurz, Gerhard, 1992, "Transfer theorems for stratified multimodal logics," to 
appear. 

Finger, Marcelo, 1992, "Handling database updates in two-dimensional temporal logic," to 
appear in J. of Applied Non-Classical Logic. 

Fitting, Melvin, 1990, First-Order Logic and Automated Theorem Proving. Texts and Mono- 
graphs in Computer Science. Springer-Verlag. 

Gabbay, Dov M. and Hodkinson, Ian M., 1990, "An axiomatization of the temporal logic with 
until and since over the real numbers," Journal of Logic and Computation 1(2), 229-259. 

Gabbay, Dov M., 1987, "The declarative past and the imperative future," in Coloquium on 
Temporal Logic and Specifications - Lecture Notes in Computer Sc&nce 389, B. B anieqbal 
et al., eds., Manchester: Springer-Verlag. 

Gabbay, Dov M., 1990, "Temporal logic, tense or non-tense - inaugural lecture at Imperial 
College, 17 May 1988," in Machinations - Computational Studies of Logic, Language 
and Cognition, R. Spencer-Smith and S. Torrance, eds., Ablex Publishing Co. 

Gabbay, Dov M., 1991a, "Labelled Deductive Systems - Part I," Technical Report CIS- 
Bericht-90-22, Universifftt MUnchen, Centrum fur Informations - und Sprachverar- 
beitung. 

Gabbay, Dov M., 1991b, "Modal and temporal logic programming I I I - -  metalevel features in 
the object level," in Non-Classical Logic Programming, L. F. del Cerro and M. Penttonen, 
eds., Oxford University Press. 

Gabbay, Dov M., 1991c, Temporal Logic--Mathematical Foundations and Computational 
Aspects. to appear. 

Gabbay, Dov M., 1991d, "Theoretical foundations for non-monotonic reasoning Part 2: Struc- 
tured non-monotonic theories," pp. 19-40 in SCAI 91 - Third Scandinavian Conference 
on AI.  

Gabbay, Dov M., 1992, "Fibred semantics and combinations of logics," Manuscript, Imperial 
College. 

Garson, James W., 1984, "Quantification in modal logic," pp. 249-307 in Handbook of 
Philosophical Logic, Volume II, D. Gabbay and F. Guenthner, eds., Dordrecht: D. Reidel. 

Halpern, Joseph Y. and Moses, Yoram, 1985, "A guide to the modal logics of knowledge and 
belief," pp. 480-490 in Proceedings of the 9th International Joint Conference on Artificial 
Intelligence (IJCAI-85 ). 

Hintikka, Jaakko, 1962, Knowledge and Belief, Cornel1 University Press. 
Hughes, G. E. and Cresswell, M. J., 1968, An Introduction to Modal Logic, Methuen. 
Konolige, K., 1986, A Deductive Model of Belief, Research notes in Artificial Intelligence, 

Morgan Kau fmann. 
Kracht, Marcus and Wolter, Frank, 1991, "Properties of independently axiomatizable bimodal 

logics," Journal of Symbolic Logic 56(4), 1469-1485. 
Quine, Willard Van Orman, 1960, Word and Object, MIT Press. 
Reynolds, Mark A., 1992, "An axiomatisation for until alas since over the reals without the 

IRR rule," to appear in Studia Logica. 
Thomason, Richmond H., 1984, "Combinations of tense and modality," pp. 135-165 in Hand- 

book of Philosophical Logic, Volume II, D. Gabbay and F. Guenthner, eds., Dordrecht: 
D. Reidel. 

Xu, Ming, 1988, "On some U~ S-tense logics," Journal of Philosophical Logic 17, 181-202. 


