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Biosensors, such as microelectrode arrays that record in vitro neuronal activity, provide powerful 
platforms for studying neuroactive substances. This study presents a machine learning workflow 
to analyze drug-induced changes in neuronal biosensor data using complex network measures 
from graph theory. Microelectrode array recordings of neuronal networks exposed to bicuculline, a 
GABAA receptor antagonist known to induce hypersynchrony, demonstrated the workflow’s ability 
to detect and characterize pharmacological effects. The workflow integrates network-based features 
with synchrony, optimizing preprocessing parameters, including spike train bin sizes, segmentation 
window sizes, and correlation methods. It achieved high classification accuracy (AUC up to 90%) and 
used Shapley Additive Explanations to interpret feature importance rankings. Significant reductions 
in network complexity and segregation, hallmarks of epileptiform activity induced by bicuculline, 
were revealed. While bicuculline’s effects are well established, this framework is designed to be 
broadly applicable for detecting both strong and subtle network alterations induced by neuroactive 
compounds. The results demonstrate the potential of this methodology for advancing biosensor 
applications in neuropharmacology and drug discovery.

Microelectrode array (MEA) biosensors with neuronal cell cultures are increasingly valuable for neurotoxicity 
screening1–4, drug testing5–7, physiology studies8–10, and disease modeling11,12. MEAs enable high-resolution, 
non-invasive monitoring of electrophysiological activity in cultured neuronal networks, providing insights into 
network behavior and pharmacological responses.

Analyzing MEA data involves extracting a range of features, from single-electrode measures like spike 
and burst rates to network-level metrics, including network burst characteristics13, synchrony14,15, and 
connectivity16,17. Connectivity analysis, in particular, enables the construction of network graphs that can be 
analyzed through complex network measures-key tools in neuroscience for studying interconnectivity and 
dynamic neuronal interactions18–22.

Traditional methods to assess drug effects on neuronal activity often rely on inferential statistics, which impose 
assumptions on data distribution, independence, and multicollinearity that may not hold in complex biological 
datasets23–25. Machine learning (ML) methods, by contrast, can uncover complex, nonlinear relationships 
without these constraints, making them well-suited for analyzing intricate patterns in biological data26.

However, ML models are often seen as “black-box” systems due to their lack of interpretability, which limits 
their application in fields like neuroscience and medicine where transparency is essential27–29. Interpretable ML 
techniques, such as SHapley Additive Explanations (SHAP) values, help address this issue by quantifying each 
feature’s contribution to predictions, allowing for biologically meaningful interpretations of ML outputs30–32.

SHAP values have been applied successfully in EEG and fMRI studies to interpret ML models using complex 
network measures33,34. Building upon this framework, we developed a machine-learning workflow designed to 
analyze spontaneous activity in in vitro neuronal networks on MEA biosensors. Our workflow systematically 
evaluates feature engineering parameters, including spike train bin sizes, segmentation window sizes, overlaps, 
and correlation methods for constructing connectivity matrices, making it adaptable to various experimental 
setups and reliable for pharmacological studies.
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To validate this workflow, we tested it on cortical neurons grown on MEAs and treated with bicuculline 
(BIC), a GABAA receptor antagonist known to disrupt inhibitory neurotransmission and increase network 
synchrony, often resulting in an epileptiform state15,35. By including complex network measures as main features 
and synchrony as a reference feature, we assessed both the detectability of the drug effect and the biological 
interpretability of the ML results.

Our approach differs from previous ML applications on MEA data, such as those aiming to predict seizure-
inducing actions36 or network development37. Our primary objective is to detect measurable drug effects and, 
crucially, to characterize these effects in biologically interpretable terms. While prior work with similar aims has 
used random forests (RF) for phenotype distinctions38 or support vector machines (SVM) for classifying drugs 
by their effects39, our workflow systematically evaluates multiple ML models, optimizes feature engineering, 
and incorporates a broad set of complex network measures. This comprehensive approach provides a nuanced 
understanding of drug effects on neuronal networks and establishes a reproducible framework for MEA 
biosensor applications in pharmacology. Furthermore, since our approach leverages ML to detect and interpret 
drug-induced effects on neuronal networks, offering advantages over traditional statistical methods by capturing 
complex nonlinear relationships without relying on prior assumptions, such as normality, independence, or 
absence of multicollinearity, ensuring robustness, scalability, and enhanced biological interpretability40.

Finally, we include a list of additional references in Appendix F that offers a broader context for network 
descriptors relevant to MEA studies and highlights potential areas for further research.

Methods
To ensure transparency and reproducibility, the implementation of our analysis pipeline is available in our 
GitHub repository: https://github.com/ManuelCiba/spike-train-ml-bic.

Electrophysiological recordings
Cell culture techniques
All animal procedures were reviewed and approved by the Animal Experiment Ethics Committee of the 
University of Tokyo (approval numbers C-12-02 and KA-14-2). The experiments were conducted in accordance 
with institutional guidelines for the care and use of laboratory animals at the University of Tokyo. The study also 
adhered to the ARRIVE guidelines for reporting animal research.

The preparation of dissociated cortical neuron cultures was based on a modified version of a previously 
published procedure41. Pregnant Wistar rats (Charles River Laboratories, Japan) were anesthetized with 
isoflurane and euthanized by decapitation using surgical scissors, a method approved by the Animal Experiment 
Ethics Committee of the University of Tokyo (approval numbers C-12-02 and KA-14-2). All procedures were 
conducted in accordance with institutional and national guidelines for animal welfare. At 19 days of gestation 
(E19), embryos were harvested and euthanized by decapitation under cold anesthesia. Cortical cells were 
extracted from the embryos and dissociated into individual cells using Trypsin (Life Technologies) at 37 °C for 
20 min. 500,000 cells were seeded at the center of each MEA dish. Prior to seeding, the surface of the MEA dishes 
was coated with polyethyleneimine (PEI) (Sigma-Aldrich) overnight.

The culture medium was composed of Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies) 
containing 10 % heat-inactivated fetal bovine serum (FBS) (Cosmo Bio), 5 % heat-inactivated horse serum (HS) 
(Life Technologies), and 5-40 U/mL penicillin/streptomycin (Life Technologies). After a 30-min incubation in 
the MEA dishes, a 1:1 mixture of fresh culture medium and medium conditioned for three days in glial cell 
cultures was added. Cell cultivation was carried out in a CO2 incubator at 37 °C with an atmosphere of 5 % CO2 
and 95 % air. Half of the culture medium was replaced every third day.

Microelectrode array (MEA) chip setup
Neuronal activity was recorded using microelectrode array (MEA) chips, enabling electrophysiological 
measurements of in vitro neuronal networks (Fig. 1). These recordings provided insights into neuronal 
connectivity and activity patterns. As shown in Fig. 1, panel (A) illustrates the MEA setup, while panel (B) 
highlights the placement of neurons around the electrodes. Panels (C) and (D) present representative spike train 
recordings from all 64 electrodes, with (C) showing a 60-s segment of spontaneous activity and (D) comparing 
neuronal activity before and after the application of 10 µM BIC.

Experimental protocol for recordings
Extracellular recordings of cortical neural networks were conducted between 21 and 54 days in vitro (div) (see 
Appendix A Table 2) in the MEA system (NF Corporation, Japan). Neural signals were recorded with a 25 kHz 
sampling frequency and band-pass filtered between 100 and 2000 Hz. All recordings were conducted in an 
incubator with a controlled level of 5 % CO2.

Before the BIC application, spontaneous activity was recorded for 10 min following a 20-min waiting period. 
After the BIC application, another 20-min waiting period was followed by a 10-min recording.

It should be noted that the same cultures were also used to test an electrical stimulation protocol (“tetanic 
stimulation” according to43) before BIC application, which had already influenced spontaneous activity. However, 
these recordings were not included in the present study. See Appendix B for a detailed protocol description.

Data preprocessing and spike detection
Initially, noisy electrodes were identified and manually excluded from further analysis (see Appendix A Table 
2). We then removed artifacts by setting portions of the raw signal to zero, specifically for a 6 ms interval before 
and a 25 ms interval after any positive peaks that exceeded a user-defined threshold unique to each MEA chip. 
(see Appendix A Table 2). After artifact removal, spike detection was performed by setting a negative threshold 
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for each electrode, calculated as -5 times the standard deviation of the artifact-free signal (Fig. 1C). Finally, 18 
data sets from 9 different MEA chips (9 controls, 9 with 10 µM BIC) containing spike time stamps (Figure A1 
Appendix A) serve as the input data for our computational workflow. The following section describes in detail 
the process of further analysis and interpretation of the data.

Machine learning workflow
We present a computational workflow to extract a set of features, incorporating complex network measures-
previously established in our prior work33,34,40,44-to describe the structural and functional network properties. 
In addition to these established measures, this study introduces synchrony as a novel component, capturing 
the dynamics of information flow within the network, thereby expanding our methodology to provide a more 
comprehensive characterization of neuronal activity.

Hereafter, these features will be the base for a two-class classification process where class 0 corresponds to 
the native neural network and class 1 to the network disturbed by the drug BIC. Finally, an inferential statistical 
evaluation of possible feature modifications, as well as a machine learning (ML) classification, including the 
SHapley Additive exPlanations (SHAP) value method to explain the result, is performed based on our previous 
workflow methodology33,34,40,44. While our prior work introduced a novel approach by leveraging complex 
network measures and machine learning, it primarily focused on the Support Vector Machine (SVM) algorithm 
for evaluation. In this study, we expand upon that methodology by systematically testing multiple ML models, 
allowing for a broader classification performance and feature importance assessment.

To interpret the contribution of each feature in our model, we employed the SHapley Additive Explanations 
(SHAP) framework45, a game-theoretic approach for feature attribution in machine learning, which values 
quantify the effect of including or excluding a feature across different feature subsets, ensuring a fair allocation 
of importance. Therefore, the SHAP value ϕj  for a given feature xj  is defined as:

	

ϕj =
∑

S⊆X\{xj }

|S|!(|X| − |S| − 1)!
|X|! [f(S ∪ {xj}) − f(S)]� (1)

Fig. 1.  Data were acquired through electrophysiological recordings of in vitro neuronal networks cultured 
on MEA chips. (A) Depicts an MEA chip with a culture dish positioned atop the microelectrode array 
(image credit:42). (B) Shows a microscopic image of four out of 64 microelectrodes (visible as black squares) 
surrounded by cultured neurons. (C) Presents a 60-s segment (out of 600 s) of spontaneous activity recorded 
from a single electrode, along with the negative threshold employed for spike detection, a key step in the 
subsequent analysis. (D) Illustrates the spike trains from all 64 electrodes for the entire 600-s recording, both 
control (left) and after the application of 10 µM BIC (right).
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where:

•	 S is a subset of features excluding xj .
•	 f(S) is the model output using only the features in S.
•	 f(S ∪ {xj}) is the model output when xj  is included.
•	 |S| is the number of features in subset S.
•	 |X| is the total number of features.

Equation (1) quantifies each feature’s contribution by computing its marginal impact across all possible 
feature subsets46,47. The marginal impact of a feature represents the difference in model output when the 
feature is included versus when it is omitted. This approach ensures a fair and consistent attribution of feature 
importance by systematically evaluating how the inclusion or exclusion of a given feature influences the model’s 
output48. By averaging this effect over all possible subsets, SHAP ensures a fair and consistent attribution of 
feature importance, accounting for interactions between features and their collective influence on predictions49.

Figure 2 illustrates the methodological workflow, divided into three parts. The first part involves the 
augmentation of the data set through data splitting; see Fig. 2A and “Connectivity matrices”. The second part 
involves feature generation. Synchrony is calculated from the spike trains, while the complex network measures 
are derived from the connectivity matrix., see Fig. 2B and “Connectivity matrices”, while the third part addresses 
the methods to reveal modifications in the network properties due to BIC, by using different ML models, see Fig. 
2C and “Connectivity matrices”.

Data augmentation
In the context of machine learning applications, working with only 18 datasets from 9 independent networks 
presents a challenge due to limited data availability. To address this, we employ a sliding window approach, 
which segments the time series into smaller sections using either non-overlapping or overlapping windows. This 
technique is widely used in ML, particularly in biomedical and neuroscience research, where data scarcity is a 
common issue33,50,51.

In our study, datasets are divided into windows of 60 s, 120 s, and 240 s, with overlap levels of 0%, 25%, 50%, 
and 75%. Machine learning algorithms are then applied to evaluate the most effective window size and overlap 
configuration for classification tasks.

It is important to note that while this approach increases the number of training instances available for ML 
models, it does not statistically inflate the sample size due to the inherent dependency between overlapping 
segments. Instead, the segmentation process enhances the models’ ability to capture temporal patterns and 
improve generalization. To account for this dependency, we explicitly incorporate grouped leave-one-out 
cross-validation (LOO-CV), ensuring that all windows from the same chip remain within a single training or 
validation set, preventing data leakage and reinforcing model robustness.

Fig. 2.  Methodology overview: (A) Data augmentation: the 600 s spike trains (without and with the drug) 
are divided into windows with varying sizes and overlaps. (B) Feature generation: synchrony and pairwise 
correlations (connectivity matrices) are computed from the segmented spike trains using various correlation 
methods. Complex network measures are then derived from these connectivity matrices. (C) Classification: 
different machine learning models are utilized for classification, followed by the interpretation of results.
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Additionally, in our analysis, the window size determines the duration of each segment extracted from the 
spike train data, while window overlap controls the percentage of shared data between consecutive windows to 
preserve temporal continuity (e.g., a 75% overlap retains 75% of the previous window’s data). The bin size defines 
the temporal resolution for grouping spike counts within each window, which directly affects the connectivity 
matrices-these matrices quantify functional connectivity using correlation metrics. Finally, complex network 
measures are extracted from these matrices, providing insight into how neuronal network dynamics are 
modulated under bicuculline exposure.

Connectivity matrices
To calculate the correlation between spike trains, binary binning was applied, assigning a value of 0 for bins 
without spikes and 1 for bins containing at least one spike. Bin sizes of 1 ms, 10 ms, and 100 ms were used to 
cover different time-scales. The pairwise correlation between spike trains was computed using various metrics 
based on our previous workflow methodology33,34,40,44, including Pearson correlation, Spearman correlation, 
and Sparse Canonical Correlation Analysis (canonical).

Furthermore, since our methodology is based on connectivity matrices rather than raw electrode counts, it is 
robust to potential imbalances in the number of active electrodes. Additionally, the extracted complex network 
measures capture topological properties of neuronal interactions, ensuring that classification performance is 
driven by network features rather than the absolute number of active electrodes.

The obtained matrices were standardized to have a mean of 0 and a standard deviation of 1 to optimize their 
use in machine learning algorithms33,52. Because our experiment used paired samples (each network recorded 
before and after drug application), we scaled each pair together to maintain the relationship between conditions. 
To account for data augmentation, for each chip all windowed recordings-both pre- and post-drug application-
were standardized collectively, ensuring consistency across the dataset while preserving the relationship between 
paired samples.

Feature extraction
In the next step, following the approach outlined in40, a complex network (or graph) was constructed from the 
correlation matrices by binarizing them with a threshold of 0.5. Subsequently, the following complex network 
measures were calculated: assortativity coefficient53,54, average degree of k-nearest neighbors (kNN)55, average 
shortest path length (APL)56, betweenness centrality (BC)57, closeness centrality (CC)58, complexity, density59, 
diameter60, eccentricity61, eigenvector centrality (EC)62, efficiency63, entropy of the degree distribution (ED)64, 
hub score65, k-core66,67, mean degree68, second moment of the degree distribution (SMD)69, and transitivity70,71.

Further, measures reflecting the number and structure of communities in the network were applied 
(described in detail in40). As these community measures must be transformed into a single scalar value to be 
included in the feature matrix, algorithms72–74 were applied to detect the largest community. The average path 
length within the largest community was calculated and a single value was received as a result. The selection 
of community detection metrics is based on the metrics used in40, which include: fastgreedy (FC)75, Infomap 
(IC)76, leading eigenvector (LC)77, label propagation (LPC)78, edge betweenness (EBC)79, spinglass (SPC)80, and 
multilevel community identification (MC)81. In addition, the spanning tree (SC) algorithm82 was used. The 
abbreviations were extended with the letter “A” (for average path length) to indicate the approach (AFC, AIC, 
ALC, ALPC, AEBC, ASPC, AMC, and ASC). The single values of the complex network measures were stored in 
a matrix, where each column represents a complex network measure (feature) and each row represents a MEA 
chip, or in our case a split window of the MEA chip. 2D matrices were created for the class with and without BIC.

A commonly used method to describe network activity and its dynamics is the measurement of synchrony. 
We applied the Spike-Contrast synchrony measure15, known for its robustness against spike detection errors 
compared to established measures15. The algorithm automatically adapts to the data, selecting the time scale that 
maximizes synchrony, resulting in a single synchrony value. The synchrony value was stored in an additional 
column of the feature matrix to combine it with the complex network measures as input for the ML-based 
workflow.

Finally, the feature matrices were standardized while keeping the paired sample relationship: The pre-drug 
features were standardized by its mean and standard deviation. The post-drug features were standardized by the 
mean and standard deviation of the pre-drug feature.

Methods to identify induced network changes
To solve the two-class problem namely the classification of the BIC and the control group, the following ML-based 
methods were applied based on the feature matrix containing complex network measures and the synchrony 
feature: SVM, k-nearest neighbors algorithm (KNN)83, logistic regression (LR)84, Random Forest (RF)85, Naive 
Bayes (NB)86, Multilayer Perceptron (MLP)87, eXtreme Gradient Boosting (XGboost)88 and Support Vector 
Machine (SVM)89.

The same augmented dataset was used across all machine learning algorithms. A grouped leave-one-out 
cross-validation (LOO-CV) approach was implemented, in which each of the 9 chips served as the validation 
set once, while data from the remaining chips were used for training. Specifically, the augmented recordings 
(pre- and post-drug) were grouped by chip, ensuring that recordings from the same chip were treated as a 
single unit in the validation process. For model selection and hyperparameter optimization, an internal grouped 
cross-validation was performed within the training set. This procedure ensures that the data from each chip is 
independently evaluated, preventing data leakage between the training and validation sets.

For ML performance evaluation, we used the Receiver Operating Characteristic (ROC) curve, which 
visualizes the relationship between true and false positive rates. The Area Under the ROC Curve (AUC) is a 
standard metric, with values ranging from 0.5 (random classification) to 1 (perfect classification). AUC was 
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calculated for each of the 9 cross-validation splits, followed by bootstrapping with 1000 iterations to compute the 
95% confidence interval (CI). To ensure robustness, we used the lower bound of the CI as the final AUC value 
for model comparison.

A possible interpretation of AUC values is as follows: an AUC of 0.5 indicates no discriminative power, 
meaning the model cannot distinguish between classes (e.g., with or without a condition); values from 0.7 to 
0.8 are typically considered acceptable; 0.8 to 0.9 indicates excellent discrimination; and values above 0.9 are 
considered outstanding90. In this study, we interpret AUC values between 0.8 and 0.9 as indicating a significant 
drug effect, with values above 0.9 considered highly significant.

To identify which features are most affected by the drug, we calculated SHAP values, which systematically 
quantify each feature’s contribution to model predictions. By varying one feature at a time while keeping others 
constant, SHAP values reveal each feature’s impact, enabling the identification and prioritization of key features. 
This method is versatile and can be applied to any machine-learning algorithm45. SHAP values use cooperative 
game theory to increase the transparency and interpretability of ML models. They quantify the interactions 
between features that lead to a classification by fairly distributing the payout among the features. This method is 
commonly used for the interpretation of black-box results—also for the interpretation of biological and medical 
data sets45,91.

In addition to the SHAP value analysis, we applied a linear mixed model (LMM) to evaluate the distributional 
differences of each feature between the two classes, specifically designed to account for dependencies introduced 
by the sliding window technique92–94. Unlike traditional tests such as the Wilcoxon test, which assumes that 
each sample is independent, the LMM allows us to model and control for repeated measurements on the same 
chips across windows, enabling a more rigorous statistical analysis95. By including the chip as a random effect, 
the LMM accounts for intra-chip variability, distinguishing genuine condition effects from noise due to repeated 
measures.

This approach is particularly suitable for our data structure, where we have two chip conditions-BIC00 
(non-BIC, control condition) and BIC10 (BIC-treated condition)-with overlapping windows within each chip 
that would violate the independence assumption of standard tests96,97. Therefore, the LMM provides a more 
reliable assessment of statistical significance by accounting for dependencies, yielding p-values for each complex 
network measure and synchrony as significance metrics. The results of these tests are detailed in “Inferential 
statistical evaluation of network features”, with statistical significance represented by the following annotations:

•	 ns: 5.00e − 02 < p <= 1.00e + 00
•	 *: 1.00e − 02 < p <= 5.00e − 02
•	 **: 1.00e − 03 < p <= 1.00e − 02
•	 ***: 1.00e − 04 < p <= 1.00e − 03
•	 ****: p <= 1.00e − 04

Results
Electrophysiological recordings
Networks of primary neurons showed spontaneous activity. Recordings were only possible for a subset of 
electrodes (out of 64) as a neuron may not cover some electrodes or the neuron is inactive. The detected spikes 
from the recorded time series data are stored in 2D matrices. Each column in these matrices corresponds to an 
electrode on the MEA chip. The rows represent the spike times of the neurons recorded by the electrodes. If 
an electrode does not record any activity, the rows of a column do not contain any values, and the electrode is 
considered inactive. The nine chips’ active electrodes per class are shown in Appendix A Figure A1. Each time 
series recorded at an active electrode represents a node in the complex network calculated from the functional 
connectivity matrix. All chips show activity, and the number of active electrodes is similar in both classes. 
Therefore, we assume that the number of electrodes does not impact the classification results.

Selection of the window size, overlapping and correlation metric
Figure A2 in Appendix C demonstrates how the choice of window size, overlap, and correlation metric impacts 
the performance of different machine learning models. For instance, smaller window overlaps of 0% or 25% 
produced optimal results for some models, such as SVM and NB. However, a 75% window overlap was chosen 
for further analysis, as it yielded better overall performance across most models.

The effect of bin size on performance was less consistent and can be seen better in Figure A3 in Appendix C. 
In this analysis, the Spike-Contrast feature was excluded because it is independent of bin size and the correlation 
method. The figure reveals that RF, SVM, and NB exhibited improved performance with a medium bin size of 
10 ms. However, for all other models, the highest performance was achieved with the smallest bin size of 1 ms. 
Among the correlation metrics, Spearman and Pearson correlations outperformed the canonical correlation, 
with both yielding nearly identical performance levels.

Based on these findings, we selected a 75% window overlap, a 1 ms bin size, and the Pearson correlation for 
further analysis, concentrating on determining the optimal window size. Figure 3 presents the test performance 
across various machine learning models for window sizes of 60 s, 120 s, and 240 s, using a 75% window overlap, 
1 ms bin size, and Pearson correlation. A single window overlap of 75% was chosen to ensure comparability 
across models while optimizing overall classification performance, preventing confounding effects from varying 
preprocessing settings and allowing for a fair assessment of model performance under a unified framework. 
Results indicated that the largest window size of 240 s improved performance for most models, except for RF, 
LR, and KNN, which performed better with a window size of 120 s. Interestingly, when the synchrony feature 
Spike-contrast was excluded from the ML workflow, RF demonstrated its best performance at a window size of 
240 s (see Appendix Figure A4 in Appendix C).
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In terms of machine learning model performance shown in Fig. 3, SVM was the top performer, closely 
followed by NB, with both achieving AUC values around 0.9. RF and XGBoost performed moderately well, with 
AUC values above 0.7. The lowest-performing models were LR, KNN, and MLP, each with AUC values below 
0.7. Notably, when the reference feature Spike-contrast was excluded, the AUC values for the best-performing 
models dropped from 0.9 to approximately 0.8, while RF slightly surpassed SVM and NB in performance (see 
attached Figure A4 in Appendix C.

In the following “SHAP values consistency”, we delve deeper into the consistency of these machine learning 
models by analyzing the SHAP values to understand better the feature importance and interpretability of the 
model’s predictions.

SHAP values consistency
We calculated the SHAP values for all machine learning models to evaluate feature importance. Figure 4 
displays the feature rankings for the two best-performing models, SVM and NB. To assess the similarity of 
feature importance across models, we computed Pearson correlation coefficients between the feature importance 
vectors, as shown in Fig. 5. The highest similarity was observed between RF and NB, with a correlation of 0.8, 
indicating strong agreement in feature importance rankings. RF and XGBoost also exhibited notable similarity, 
with a correlation of 0.64. However, most pairwise comparisons between models showed lower correlations, 
generally below 0.5.

From the SHAP rankings presented in Fig. 4, we identified the three most influential features for each model’s 
predictions. These key features are summarized in Table 1. An upward arrow (↑) indicates an increase in the 
feature metric following BIC application, while a downward arrow (↓) signifies a decrease.

The synchrony metric Spike-Contrast consistently emerged as a crucial feature across the four top-performing 
models (RF, XGBoost, SVM, and NB). Similarly, the complexity metric ranked highly for RF, XGBoost, and 
SVM. Other features demonstrated less consistency in importance across the models.

Furthermore, we also assessed potential multicollinearity among the extracted complex network features 
by calculating the Pearson correlation matrix. This analysis allowed us to identify relationships between 
network measures and ensure that redundant or highly correlated features were appropriately interpreted. The 
correlation heatmaps for both conditions (BIC00 and BIC10) are provided in Appendix D (Figure A5), offering 
a comprehensive visualization of feature dependencies. While some features exhibited high correlation values, 
our approach mitigates potential issues arising from multicollinearity by employing machine learning models 
that are inherently more robust to redundant features, such as the RF algorithm.

Inferential statistical evaluation of network features
Inferential statistical tests using LMM were conducted on all features in the test sampling to validate the SHAP-
based feature rankings. To provide further transparency, we have included additional details on the LMM 
implementation in the Appendix E, describing the modeling approach and the random effect structure. Figure 6 
highlights the features with the highest statistical significance (denoted by four stars), including Spike-Contrast, 
SMD, ED, Complexity, ASC, and Transitivity.

The results, summarized in Table 1 and Fig. 6, reveal the top three features identified by each model. 
Features such as Spike-Contrast, SMD, ED, Complexity, ASC, and Transitivity not only exhibited high statistical 
significance (four stars) but also aligned with the high SHAP values identified for the best-performing models 
(SVM and NB). Overall, features with higher statistical significance tended to be important for the machine 
learning models.

However, some inconsistencies between feature importance and statistical significance were observed. For 
example, SVM ranked the non-significant feature ALPC among its top three features, while several features with 

Fig. 3.  Test performance comparison of machine learning models as a function of window size. All other 
parameters are fixed: bin size = 1 ms, window overlap = 75 %, and correlation method = Pearson. AUC values 
represent the lower bound of the 95% confidence interval, calculated from the 9 cross-validation splits.
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one to three stars (AIC, EC, Hub-score, KNN, Assortativity, CC, and Eccentricity) were not included among the 
top three important features for any model.

Discussion
From our performance analysis (Appendix C), we observed that larger window sizes, when combined with the 
largest overlap, resulted in improved performance across most models. This can be attributed to the ability of 
larger windows to capture extensive oscillatory behaviors in neural firing rates, encompassing both rapid and 
slow fluctuations, and thus reflecting broader temporal dynamics and neural patterns98–100. It is well-known 
from studies on simulated neuronal networks that longer signal durations improve the accuracy of functional 

Fig. 5.  Correlation of SHAP values among different machine learning models. The heatmap displays the 
correlation coefficients between the median SHAP values for each model, illustrating the similarity in feature 
importance across models. Values closer to 1 (indicated in blue) signify high similarity in the importance 
assigned to features, while values closer to −1 (indicated in red) indicate opposing importance patterns. The 
color intensity reflects the strength of the correlation, providing insights into how similarly or differently the 
models interpret feature contributions.

 

Fig. 4.  Feature importance ranking for top-performing machine learning models based on SHAP values. 
For each feature, the median of the absolute SHAP value for class 1 is shown, along with min and max values 
across 9 cross-validation splits. Color coding indicates whether features decreased or increased following BIC 
application.
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connectivity estimation16. Additionally, the large overlap increases data augmentation and ensures that each 
window contains substantial signal context, further enhancing performance for most models. Only for the best 
performing models (SVM and NB) smaller window overlaps would even further improve the performance, 
showing that the optimal pre-processing parameter choices depends on the specific model.

Furthermore, the analysis revealed that the smallest bin size of 1  ms enhanced the performance of most 
models. This finding aligns with previous studies, which have shown that bin sizes around 1 ms are effective 
in capturing biologically interpretable connectivity from spike trains16. Additionally, larger bin sizes, such as 
100 ms, sometimes yielded network measures with interpretations that differed significantly from those obtained 
using 1 ms (e.g., Complexity increased due to BIC rather than decreasing).

Marginal differences of the results for different correlation metrics (Pearson and Spearman) suggest that 
these metrics may be less critical than the window size and overlap in capturing meaningful neural dynamics.

Overall, our selected parameters-window size of 240 s, window overlap of 75%, bin size of 1 ms, and the 
Pearson correlation method-can be considered a general recommendation that performed well across multiple 
machine learning models. However, we advise applying this workflow with varied preprocessing parameters 
when investigating drugs with mechanisms of action distinct from BIC, to ensure optimal parameter selection 
and robust results.

The comparison of SHAP values (summarized in Table 1 and ranked in Fig. 4) with inferential statistics from 
the LMM (Fig. 6) provided important insights into the most critical features. Spike-Contrast, our reference 
metric, stood out with both high SHAP values and strong statistical significance. It consistently ranked among 
the top three features for all models with AUC values above 0.7. This suggests that feature rankings from models 
with AUC values below 0.7 may not be reliable for biological interpretation.

In general, features with very high statistical significance (four stars) were also ranked high by SHAP values, 
indicating agreement between the two methods. However, some features ranked highly by SHAP showed no 
statistical significance, highlighting inconsistencies. These discrepancies suggest that while some features may 
be statistically significant, they do not always influence model predictions consistently across classifiers. This 
emphasizes the need for caution when interpreting biological significance solely based on SHAP rankings.

To interpret the biological implications, we focused on the two highest-ranked features from the best-
performing models (SVM and NB, with AUC values around 0.9). These features-Spike-Contrast, Complexity, 
and SMD-revealed key insights into the network changes caused by BIC:

•	 Spike-contrast: This measure of synchrony increased significantly after BIC administration and was consist-
ently ranked as highly important by SHAP (Table 1) and the LMM (Fig. 6). This aligns with prior studies 

AUC (lower CI)

RF GXboost SVM NB LR KNN MLP

P-values0.73 0.75 0.9 0.88 0.66 0.68 0.68

Spike-contrast ↑ ↑ ↑ ↑ ****

Complexity ↓ ↓ ↓ ****

ASC ↑ ↑ ****

SMD ↓ ****

ED ↑ ****

Transitivity ↓ ****

APL ↓ **

AEBC ↑ **

BC ↓ ↓ ns

ALPC ↑ ns

AFC ↑ ns

Mean degree ↓ ns

AMC ↓ ns

K-core ↑ ns

AIC ***

EC ***

Hub-score ***

Knn **

Assortativity **

CC **

Eccentricity *

Table 1.  SHAP value-based feature evaluation across machine learning models. The table highlights the top 
three features for each model. Arrows denote whether the corresponding feature was higher (↑) or lower (↓) in 
the BIC condition. The last column shows the p-values from the inferential statistical evaluation of the features, 
with four stars being the most significant and ns being the nonsignificant one. AUC values represent the lower 
bound of the 95% confidence interval, calculated from the 9 cross-validation splits.
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showing that excessive synchrony, often seen in epileptic conditions, disrupts the brain’s ability to maintain 
functional differentiation9,35,101.

•	 Complexity: A significant reduction in Complexity was observed after BIC, supported by both SHAP and 
LMM results. Complexity measures the diversity of connections in the network, with higher values indicat-
ing specialized roles for certain neurons. Reduced Complexity suggests a loss of specialization and a shift 
toward a more uniform network structure, deviating from the small-world topology typically seen in healthy 
brains102–106. Such changes are characteristic of epileptic conditions and reflect the increased synchrony 
caused by BIC107,108.

•	 SMD: Lower values of SMD indicate reduced diversity in network connections, further supporting the obser-
vation of a more homogeneous and less segregated network structure.

Overall, these results are consistent with literature showing that epilepsy and BIC-induced conditions lead to 
less segregated, more synchronized cortical networks109–111. This study confirms that BIC significantly disrupts 
cortical network organization, resulting in hallmark patterns of epilepsy. Moreover, our machine learning-
based approach successfully captured these network changes in MEA chips, demonstrating its robustness and 
reliability for analyzing neural dynamics.

Limitations
One limitation of this study is the relatively small dataset, which may affect the generalizability of the findings. To 
address this in future work, advanced data augmentation techniques such as transfer learning can be employed, 
utilizing pre-trained models on similar neural datasets to enhance model performance112. Additionally, 
expanding the dataset using a multiwell MEA system could provide a more comprehensive analysis and lead 
to more robust conclusions. Combining these approaches with a larger sample size will facilitate more nuanced 
interpretations of the effects of neuroactive substances on neural network dynamics.

Another limitation lies in the experimental design, which utilized a relatively high dosage of BIC, resulting 
in pronounced changes in spike train patterns. While this setup effectively demonstrated the workflow’s utility, 
applying the methodology to data with subtler drug effects could further highlight the advantages of the ML-
based workflow compared to traditional statistical methods.

Finally, when interpreting complex network measures in a biological context, it is important to acknowledge 
that general methods, such as Pearson and Spearman correlation, were used to estimate network connections. 
These techniques are not specific to neuroscience but were chosen to test the generalizability of the ML workflow. 
Future studies could explore alternative connectivity estimation methods more tailored to spike train data, such 
as Granger causality or transfer entropy, to enhance biological specificity and interpretation. For instance, the 

Fig. 6.  The most significant features based on LMM results across paired samples. The features with the 
highest significance (****) were Spike-contrast (a), SMD (b), ED (c), Complexity (d), ASC (e), Transitivity (f). 
The x-axis represents the two experimental conditions: BIC00 (control condition, without bicuculline) and 
BIC10 (bicuculline-treated condition).
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Total Spiking Probability Edges (TSPE) method16 has been used extensively in prior studies11,113,114 to capture 
network dynamics in spiking neural networks more effectively. TSPE not only quantifies the connection 
strength between pairs of spike trains but also distinguishes between excitatory and inhibitory connections. 
This additional information cannot be processed by the traditional complex network measures used in this 
work and requires alternative handling, such as constructing separate excitatory and inhibitory networks, as 
demonstrated in11. Whether incorporating these additional details into a machine learning workflow could be 
beneficial remains an open question for future research.

Summary of the main findings
This study highlights the potential of ML-based approaches to analyze drug-induced effects on neuronal 
networks using microelectrode biosensor data. By systematically testing preprocessing parameters, scaling 
strategies, and feature extraction methods, we established a robust workflow tailored to paired sample designs. 
Our models achieved high classification performance, with AUC values reaching up to 90%, and SHAP analysis 
provided interpretable insights into how BIC alters network properties.

The incorporation of synchrony as a reference feature validated the plausibility of SHAP-derived feature 
rankings for high-performing models (AUC > 0.7), reinforcing their reliability for biological interpretation. 
However, we caution that some highly ranked features may lack statistical significance, highlighting the need 
for integrating statistical tests, such as LMM, to prioritize biologically meaningful features. This dual approach 
enhances confidence in the derived insights while mitigating the risks of overinterpretation.

Biologically, our findings reaffirm the role of reduced cortical network integration and segregation in epileptic 
states, consistent with existing literature. This underscores the disruptive impact of BIC on neural network 
dynamics, providing a benchmark for studying other neuroactive substances.

To ensure comparability across different ML models, we standardized preprocessing, employed AUC 
as a common metric, used SHAP for feature importance analysis, and validated findings with LMM. These 
methodological safeguards ensure that key insights remain robust despite differences in ML model performance.

Future research will extend this methodology to investigate compounds with more subtle or complex 
effects, exploring their influence on neuronal connectivity and dynamics. While the present study focused on 
a compound with well-established effects, future work will aim to demonstrate the framework’s sensitivity to 
more subtle pharmacological influences. By expanding its scope, this workflow could serve as a valuable tool for 
drug discovery, neuropharmacology, and radiation biology. Specifically, it will be applied to projects analyzing 
radiation-induced effects on cells using multimodal data, including microscopy images and microelectrode 
biosensor recordings. Additionally, future studies will examine the impact of different stimulation protocols 
and cell age at the time of recording on neuronal responses, further refining the interpretability of MEA-based 
pharmacological studies. By integrating these approaches, we aim to enhance our understanding of how diverse 
compounds and radiation modulate neural networks, offering deeper insights into cellular network dynamics 
and their responses to various perturbations.

Data availability
Data requests can be directed to the corresponding authors and will be provided upon reasonable request, sub-
ject to institutional and ethical guidelines.
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