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Abstract

We characterize active redundancy through compensator transform and use the reverse rule of order 2 (RR,) prop-
erty between compensator processes to investigate the problem of where to allocate a spare in a k-out-of-n:F system of
dependent components through active redundancy.
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1. Introduction

The problem of where to allocate a redundant component in a system in order to stochastically increase
the system lifetime is important in reliability theory. For instance see Boland et al. (1992), Singh and Misra
(1994), Meng (1996), Prasad et al. (1999), Kuo and Prasad (2000), Kuo et al. (2001), Bueno (2005a), among
others.

There are two common types of redundancy that are used, namely active redundancy, which stochas-
tically lead to consider the maximum of random variables, and standby redundancy, which stochastically
lead to consider the convolution of random variables. The problem of where to allocate a spare compo-
nent, is addressed in Boland et al. (1992) for either active or standby redundancy, in a k-out-of-n:G
system of independent components in order to stochastically increase the system reliability. For a k-out-
of-n:G system, Boland et al. (1992) consider stochastic ordering to shows that for active redundancy it
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is stochastically optimal always to allocate a spare to the weakest component. For standby redundancy
and under likelihood ratio ordering Boland et al. (1992) gives sufficient conditions to ensure that in a
series system the allocation should go to the weakest component while in a parallel system it should
go to the strongest.

Singh and Misra (1994) consider the same problem with another criterion of optimality and proves that
if the lifetime of the k-out-of-n system resulting from an active redundancy operation of component i is
denoted by 7} = 7(S1,...,8-1,8; VS, Si1,...,S,), then

P(t, > 1) = P(t; > 1),

provided the lifetime of component j is stochastically larger than that of component i, i.e. with respect to the
above criterion, it is preferable to allocate the active redundant component to the stochastically weakest
component for stochastically ordered component lifetimes. The problem of allocating a standby redundant
component either, in a series and parallel systems, is also considered, comparing the probabilities that one
system has a longer lifetime than the other.

Meng (1996) uses the concept of permutation equivalency (Boland et al., 1989) to shows that if two com-
ponents in a coherent system are permutation equivalent, then allocating a spare to the weaker position as
an active redundant optimally improve the system lifetime.

Clearly, in a k-out-of-n system all components are permutation equivalent and the sufficient condition of
Boland et al. (1992) is a consequence of this result.

Bueno (2005a) defined a particular form of standby redundancy which was called minimal standby
redundancy. Intuitively, the minimal standby redundancy gives to component i an additional lifetime as
it had just before the failure. Bueno (2005a) uses the reverse rule of order 2 (RR;) property between com-
pensator processes to investigate the problem of where to allocate a spare in a k-out-of-n:F system, for min-
imal standby redundancy, under dependence conditions. As in Boland et al. (1992), Bueno (2005a) proves
that for minimal standby redundancy it is stochastically optimal always to allocate a spare to the weakest
component.

In this paper, to consider the problem of where to allocate a spare component for active redundancy
under dependence conditions, we use a martingale approach to reliability theory. In Section 2 we give a
point process formulation of a coherent system and we get a compensator characterization of active redun-
dancy operation. In Section 3 we use Kwiecinski and Szekli (1991) to investigate the best active redundancy
allocation in a k-out-of-n:F system in order to increase system reliability. In Section 4 we give a constructive
example.

2. Active redundancy under dependence conditions
2.1. The point process formulation of a coherent system

We consider the vector (S,S5,...,S,) of n component lifetimes which are finite and positive random
variables defined in a complete probability space (2,3,P), with P(S; # S;) =1, for all i # j,i,j in
E={1,2,...,n}. The lifetimes can be dependent but simultaneous failures are ruled out.

The evolution of the components in time define a marked point process given through the part failure
times and the corresponding marks.

We denote by T} < T, <--- < T, the ordered lifetimes S|, S>,...,S,, as they appear in time, and by
X;=1{j: T;= §;} the corresponding marks.

As a convention we set 7, = T)4» = --- = o0 and X, = X,,4» = --- = e where e is a fictitious mark
not in E. Therefore the sequence (7}, X,,),,~1 define a marked point process.
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The mathematical formulation of our observations is given by a family of sub g-algebras of 3, denoted
by (3/),5¢, Where

3t = O_{I{T,->33X,-:j}a0 <s g tal < i < naj € E}

Intuitively, at each instant ¢z the observer knows if the events {7; < ¢, X; = j} have either occurred or not
and if they have, he knows exactly the value 7; and the mark X;.

We assume that S;, 1 < i < n are totally inaccessible J,-stopping time.

An extended and positive random variable 7 is an J,-stopping time if, and only if, {t < ¢} € T, for all
t = 0; an J,-stopping time t is called predictable if an increasing sequence (7,),>0, of J,-stopping time,
1, < 1, exists such that lim,_ .7, = 7; an J,-stopping time 7 is totally inaccessible if P(t =0 < o0) =0
for all predictable J,-stopping time ¢. For a mathematical basis of stochastic processes applied to reliability
theory see the recent book by Aven and Jensen (1999). Also, to simplify the notation, we assume that rela-
tions such as C,=, <, <, # between random variables and measurable sets, respectively, always hold with
probability one, which means that the term P — a.s. is suppressed.

The simple marked point V' j.(t) = lyr,<1x,—j 1s an J;-submartingale and from the Doob Meyer decompo-
sition we know that there exists a unique J,-predictable process (4)(7)),., called the J,-compensator of
Nj(t), with 47(0) = 0, such that N)(¢) —4;(¢) is an J,-martingale. 4/(¢) is absolutely continuous by the
totally inaccessibility of S;, 1 < i < n.

As N j(t) can only count on the time interval (7;_;, T;], the corresponding compensator Aj.(t) must vanish
outside that interval. To count the failure of component j we let N;(¢) = 3, . N’(¢) with J,-compensator
process 4;(t) = >_,.,47(¢).

The compensator process is expressed in terms of the conditional probability, given the available infor-
mation. Its generalize the classical notion of hazards. Intuitively, this corresponds to producing whether the
failure is going to occur now, on the basis of all observations available up to, but not including, the present.

The J,-stopping times S; are rarely of direct concern in reliability theory. One is more interested in the
system lifetime:

T =1(S) = min max§$;,
1<j<r iekK;
where K, 1 < j < r are the system minimal cut sets, that is, a minimal set of components whose joint failure
causes the system to fail. As {t > t} = {Ni;,Uiex, {S; > t}}, 7 is also an J,-stopping time.

Clearly component i contributes to system failure after its critical level Y, that is, the first time from
which onwards it’s failure lead to system failure (for a rigorous definition of critical level see Arjas,
1981b). It is easy to see that the critical level of a component in series with the system is the initial time
0 (a component is in series with the system when it is a unitary cut set) and the critical level of a component
in parallel with a subsystem is the subsystem lifetime.

In a forthcoming work Bueno (2005b) proposes to analyze the system lifetime after its component’s crit-
ical levels observing the family of g-algebras (Jy,,,) where

t=0°
Iy ={Ad €3I :AN{Y;+t<s} €3J,, s = 0},
the lifetimes S; = ((7;, — Y;)|3y,), i € E and the corresponding counting process
Mi(t) = 1is,cp = EIN:(Yi + £) = Ni(Y1)|3y,] = E[Ly,<ricvi00 3]
Follows that B;(¢) = E[4,(Y; + ) — 4,(Y,)|3y,] is the Ty, + r-compensator of M(¢).
To represent a coherent system as a series structure Bueno (2005b) proves the following theorem:

Theorem 2.1.1. Under the above notation the system lifetime t is almost surely equal to the series system lifetime

S = min Si.
{i:Yi<oo}
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The ideas for the above result was provided by Arjas (1981b) which gives a rigorous proof of the follow-
ing Theorem:

Theorem 2.1.2. Under the above notation, the 3;-compensator of M(t) = 1<,y is

A(t) =) At Aty — 4(Y))],
=1

where [a] © = max{a,0}.
Follows that

P(x < 1) = EIM(1)] = E[A(1)] = Y E[[di(t A7) — 4,(Y)]]

=1
and we can improve system reliability minimizing the quantities E[[A{t A 1) — A{Y;)]"] for each i,
1<i<n
In this paper we are going to specialize in a k-out-of-n:F system which functions if and only if at least

n—k+1 out of the n components functions. We denote the lifetime of a k-out-of-n:F system by
T-r(S) = Ty. Clearly, in a k-out-of-n:F system, the critical level of component i, 1 < i< nis T,_;, and fol-
lows as a Corollary of Theorem 2.1.1:

Corollary 2.1.3. The 3,-compensator process of a k-out-of-n:F system is

n

A1) =) it A1) = A(Te)]

i=1
2.2. A compensator characterization of active redundancy

An active redundancy of a component i stochastically lead to the maximum of the lifetime S; and the
spare lifetime S. If S; and S are independent and identically distributed random variables with distribution
function F,(¢) = 1 — F,(¢) the resulting lifetime, S; VV S, from an active redundancy operation of component
i has a distribution function

PS;VvS<t)=1-P(S; VS >1),

where
P(S;V S > 1) =2P(S; > t) — P(S; > 1)* = 2F;(t) — Fi(¢)".
In the case of independent components, 4;(¢) = —In P(S; > ¢|J,) on {¢ < S;}, is the J,-compensator of com-

ponent i and we can write that on {¢t < S; VvV S}
—InP(S; + 8 >t|3,) = 4,(t) — In(2 — exp[—4:(?)]),
is the J,-compensator of S; Vv S. Since that P(S; VS > ¢|J,) = exp[—4;(¢)](2 — exp[—4:(?)]).
Clearly, we are considering
3 = o{lsus<ap Lis<s, s < 8, j # 1,1 < j < m}.

Now, in the case of dependent components, we have to find a compensator approach formulation of the
active redundancy operation preserving the above intuition. We note that A7) — In(2 — exp[—A4[?)]) is
equal to
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We propose, in the general case, the following active redundant transformation:

' 2 — 2exp[—4i(s)]
Bi(t) = oi(s)dd4;(s) where o;(s) = —————2
(0= [ 2 da0 () =S
Therefore, we are looking for a probability measure Q, such that, under O, B(t) becomes the J;-compen-
sator of N(t) with respect to this modified probability measure.
This follows from Theorems 2.2.1 and 2.2.2 below.

and a;(s) =1 for j #i.

Theorem 2.2.1. The following process is a local 3,-martingale:

. A QT Ni®)
1) = (5 - expl-ato).

Proof. We consider the J,-stopping time defined by

U,=inf{t 2 0:4,(t) =n or Bi(t) = n}.

Clearly we have U, T oo as n | oc.
It is sufficient to prove that the process

< Ni(tAUy)
b= (e ) @A v

is a bounded J,-martingale. Thus the process L;(1) = > 1(v,<i<v,, 1L} (¢) is a local J,-martingale.
For any J,-stopping time U < U,, we can write

because if U < S;, we have N(U) = 0 and
e ] i e (e )
— exp [/OU <%)M( )] — 2 exp[-4,(U)] = L" (V).
IfU =S

ﬂwMYiﬁf@DM@Ki§$XSD:*RM%@WﬂW>

As the integrand exp [ N %M(uﬂ (;’gp[ f&])]) is an J,-predictable process and Nfs) — A{s) is an

J,-martingale, L] () is an J,-martingale and E[L!(U,)] = O

Theorem 2.2.2. Under the probability measure Q" defined by the Radon Nikodym derivative

do;
dp

:L?(Un)’

Bi(t) is the 3,-compensator of N(1).
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Proof. From Theorem 2.2.1, L}(¢) is a J,-martingale with E[L}(f)] = 1 and therefore L (¢) can be considered
as a density function. We denote Q! the probability measure which is defined by the Radon Nikodym deriv-
o o,
ative o3 = L} (U,).
We consider the stopped sub g-algebra F" = (J;av, ),
For any stopping time U < U, and for j = i,

Eq[B,(U)] = EIL(U)B,(U)] = E [ e dB,-(s)]

~ [ [ - ewi-aon (322 a9 < 5[ [ 2 - 2enpl-atopavics)

= Ell5,<0)(2 — 2exp[~4,(S))])] = Eg [N:(U)].
The second equality above follows by Dellacherie’s integration formula. For j # i

U U U
EalB/V) = ELOA)] = | [ 10)aa)] =£| [ i)aa0)| <[ [ 1w
0 0 0
= Ells5;<0yLi(S))] = Eg[N,;(U)],
because A (s) is an increasing natural process and L;(S; ) = L;(S;) where L(S; ) is the left limit of L{(S)). [

Remark 2.2.3. Bueno (2005a) characterizes the minimal standby redundancy through the compensator
transformation given by

Ai(s)

C =t
1 +A1(S)

t
() = / a;(s)dA;(s) where a;(s) and o;(s) =1 for j #i.
0

If we decide to make a redundancy operation in a specific component, we must ask for what type of
redundancy, either minimal standby redundancy or active redundancy, we should use in order to stochas-
tically increase the system lifetime. If the components are independent it is easy to see that the minimal
standby redundancy lifetime S; + S is stochastically larger than the lifetime S; V S produced by an active
redundancy where S is independent and identically distributed as S;.

In the dependent case, since that 2 — exp[x] < x + 1 we have that the active redundancy transformation
Aft) — In(2 — exp[—A(?)]) is larger than the minimal standby redundancy transformation Afz) —
In(1 + AL1)).

From Corollary 2.1.3 the J,-compensator process of a k-out-of-n:F system is

n

A@) = it At) — 4Ty

i=1

and since that f(x) = 271;;;“] is an increasing function of x we have

C,(t) — C,‘(kal) = Al(t) — 11’1(1 +A,(l)) — Ai(kal) + ln(l —|—A,~(Tk,|))
< 4;(t) — In(2 — exp[—A4;(2)]) — Ai(Tr—1) + In(2 — exp[—A4:(Tx_1)]) = Bi(¢t) — Bi(Ti—1)
and we consider that an active redundancy produces a weaker lifetime than a minimal standby redundancy

in the sense that the hazard process for failure of component / under an active redundancy is larger than the
hazard process for failure of component i under a minimal standby redundancy.
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Therefore, if we decide to make a redundancy operation in a specific component, for example in the

weakest component in a k-out-of-n:F system, we should use the minimal standby redundancy in order
to stochastically increases the system lifetime.

3. Active redundancy in a k-out-of-n:F system of dependent components

We are concerned with the problem of where to allocate a spare component using active redundancy in a
k-out-of-n:F system in order to optimize system reliability improvement. We denote the lifetime of a k-out-

of-n:F system by 1,.5(S) = T} where S = (S, ...,S,) is the random vector of component lifetimes and we
denote the system lifetime resulting from an active redundancy operation of component i by
T =Tr(S1, ., Sie1, 8 V.S, S, - .., S,). We count this system failure through N'(¢) = l{fi-p<f}’ a counting

process with J,-compensator A(¢), 1 < i< n.
We are going to use the following result from Kwiecinski and Szekli (1991).

Theorem 3.1 Kwiecinski and Szekli (1991). Consider two point processes N and M with corresponding
compensator processes

An(t) :An<t|t05t17'--atn71) on (TnflaTn];
B”(I) :Bn(t|50>sla--~7sn—l) on (Sn—lysn];

which are continuous in t. If A,(t) < B,(t) for all t and sq, sy, ...,5,—1 and to, ty,...,t,_1, such that s; < t;,
0<i<n-—1, then

EW(N(0)] < E[y(M(1))]

for all decreasing real and right continuous function with left hand limits \y, that is, equivalent to N <** M.

In order to compare system’s compensator we recall from the Total Positivity Theory (Karlin, 1968) the
definition of reverse rule of order 2 functions. Such definition is used to characterize the family of decreas-
ing monotone likelihood ratio property (Kotz and Johnson, 1985).

Definition 3.2. A bivariate real positive function K(x,y), —oo < x < 0o, —oo < y < 0o is reverse rule of
order 2, (RR»), if and only if

K(-xlayZ)K(xLyl) = K(xhyl)K(xZayZ)
for all —oco < x; < x, < 00, —00 < y; < yy < 00.

At this point it is important to remember Theorem 2.1.1 on the series representation of a coherent system
concluding that we only need to compare the compensator processes after the critical levels of the respective
components. Our main result is:

Theorem 3.3. If the transformation K(j, 1) = 2 — exp[ —A{1)], 1 <j < n, t € [0,00) is reverse rule of order 2
then N'(¢) <U N (1) <5+ <SUN"(0).

Proof. Follows from Theorems 2.2.1 and 2.2.2 that the active redundancy through compensator transform
of the component i is given by

50) - [ (3222 a ) ) - 2 - expl-a0)
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From Corollary 2.1.3 we have to compare system’s compensators expectation values of the form

i—1

A6 = A, (6) = AT 1)) + A44(6) = In(2 = expl=Ay(1)]) — A(Ti1) + In(2 = exp[—A,(Te_1)])

Jj=1

—|—Z H(Ti)], 1<ij<n

J=i+l1

It is sufficient to prove for i =1 and j = 2.
A1) = [4i (1) = In(2 — exp[—4, (1)]) — 41(Ts1) + In(2 — exp[—A, (Ty1)]) + 42(2) — A2(Ti 1)

+ Z Ai(Ti1)] < A1 (8) — A1(Tr-1) + A2(t) — In(2 — exp[—42(1)]) — A2(Ty-1)

+In(2 — exp[—42(Ty-1)] +Z Ai(Ti1)]

0 2 — exp[—4, ()] 2 — exp[—4(2)] 2 — exp[—4,(2)]
=4 -In (2 - exp{—m(rm]) s-hn (2 - exp[—Az<Tk1>]> (2 - exp[—Ame])

2 — exp[—4,(1)]
g (2 - eXP[—AZ(Tk—l)])

The results follows from Theorem 3.1. O

Under Theorem 3.3, we understand that it is optimal to perform active redundancy on the weakest com-
ponent of a k-out-of-n:F system. Since we never claim any relation among components in the system our
results are valid for components stochastically dependent.

As 4/0) = 0 for all i, if 2 — exp[—A )] are RR, we have A(f) > Aj¢) for all i < j and we consider com-
ponent i weaker than component j in the sense that the hazard process for failure of component i is larger
than the hazard process for failure of component ;.

In the case of components stochastically independent and under the assumption that 2 — exp[—A(¢)] are
RR, we can prove that A7) > A{) and S; <™ S; for all i < j. We have:

Corollary 3.4. Let {S,,...,S,} be the stochastically independent components lifetime of a k-out-of-n:F system
If 2 — expl —A(0)] are RR,, then S; <™ S, <™ -+ <M Sy and 1) g =>%1F > =S4 for k=1,

Example 3.5. Let {Sy,...,S,} be the stochastically independent components lifetime of a k-out-of-n:F sys-
tem. If the ith component lifetime S; in a k-out-of-n:F system has a Gamma distribution with parameters 4
andi,A>0andi=1,...,nthen S; <™ S, <™ --- <™ S, and we choose the first (i = 1) component. In this
case the first component lifetime increases from S; to S; V S where S is the spare lifetime independent and
identically distributed as S;.

4. A constructive example

We propose to find lifetimes S;, i=1,...,n, with J,-compensators A;(f) of l(sr<y such that
2 — exp[—4;(#)] has the RR, property. We consider, as in Arjas (1981a), a lifetime S; (or its distribution)
which is increasing failure rate relative to J,. However, as S, is J,-measurable, P(S; > #|3J,) = 17, and
it is not suitable for our proposal.

Then we consider a lifetime which is increasing failure rate relative to 3, where

S =0{l(sog, s<tj=1..nj# i},
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shortly S; is (IFR|J!), which means that
PUS — 1) > 5|3 L1
Clearly we also have
Fi(t)y=P(S; >1|3}) | t
Let M) be the cadlag version of the counting process
Mi(1) = E[lis,<9|3)-

Follows that M7) is a Si-submartingale with Sﬁ-compensator C{1). From Arjas (1981b), if S; is
(IFR|3J]), C{?) is a.s. convex on (0, S;]. Now, as M(7) — C{¢) is an J,-martingale, for s < ¢, we have

E[P(S; < 1|3)) — P(S; < s|3)I3]] = E[Ci(7) — Ci(5)|T]]
and therefore follows from the monotone convergence theorem that

lim E[P(S; < #|3)) — P(S; < s|3))|3}] =0,

t—s
that is,
lim [ [P(S, < %)) — P(S; < s|3)|F]dP = 0

1—s B

forall Be 3, _ '
As P(S;>13) | t, P(S;i<t3,) is left continuous and therefore J-predictable. Follows that
Ci(t) = P(S; < 1[S)).
We now turn to the J,-compensator of N;(¢) = 1;5,<4 where
N = S; \Y O'{I{S,->.v},| s < f}.
Arjas and Yashin (1988) proves that the J,-compensator of Nfz), A(t) is given by
t
1{5.>S} dC,(S) —
Ai(t)= | =2 ———=—-In(FitAS).
= [ s FinS)

We are looking for an 3J-compensator of N{i), 4;(t), a transformation of A{7) such that
2 — exp[—4j(#)]) has the RR; property. As S; is (IFR| 3}), we can conveniently choose F,(¢) as a PF, func-
tion, (a TP2 function under shift) such that 2 — exp[—4 ( )] has the RR, property. We propose the compen-
sator transform

. ' 1
0= [ SepramrT e

Now we let

Ni(t)
L0 = (semmim=i)  PHO 4]

[ [ RenAw] ) T TRepl A 2]
-1 /oep[ || sl )} Lzexp[—A,-(s)]—l) Ails) = A(s)

As N{s) — A{s) is an J,-martingale and the integrand is J,-predictable, L(¢) is a local martingale. We
suppose that L[¢) is uniformly integrable.
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However, E[L{t)] =1, L{(¢) can be considered as a density function and we can define a measure Q; by
the Radon Nikodyn derivative % = L,(S;). Therefore, applying Girsanov Theorem (Bremaud, 1981) we
have that 4;(¢) is the J,-compensator of N(¢) under the measure Q.

Follows that

2 —exp([~4;(t)]) =2 —exp U}[ mdAi(s) =expl4i(1)] = F,-l(t) )

which has the RR, property.
We define the component lifetimes S by

O(S: > 1|3,) = exp[-4:(1)], 1<i<n

To give a practical example we consider the ordered lifetimes with a conditional survival function given
by

= L=\’ i —n\’
Fltlt o t2) = exp |- (2 1) 4 (1)
(ti|t1, 12 1) exp{ 0 + 0
for n; V t;_; < t;, where t; are the ordered observations and density functions

n
[ty t) =] f @l 6, i)
i=1

- (g) (t1 ;,71),;,1 oxp {(m ;nl)ﬁ} _n2 (g) (ti;,,,i)/sfl

i=

(59 (5]

Follows that

S, b, ti) BY (t —n\ !
d4;(tlt, .. 1) == == ( ’) , L <t<t, th=0.
(a1, 12 2 F(lt,tay .- ti1) 0)\ 0 ! 0

_In particular we can take =2 in which case S; is a suitable (IFR|J)) distribution such that
F(t)t1,ta,...,t,1) is TP, (under shift) on ¢; and #;.
Therefore

t r— 2
A,-(t):—/(s—ni)dS=<T’) , >, g <t<t, th=0
n,

and

40 = /0’ m%@ — —In (2 —exp [(r —Hn,-)ZD

onn;+0830>t=mn,ti1 <t<t,ty=0,i=1,...,n where it is well defined.
Follows that we can define the component life times S; by

* ~ t_niz .
O(S" > 1|3,) =2 — exp ( 9) N 10830>1>y, i=1,....n
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Remark 4.1. In Bueno (2004) gives a constructive example for minimal standby redundancy. In this case
we must consider 4} (¢), a transformation of A¢), such that 1 + 4;(¢) has the RR, property. Bueno (2004)
proposes the compensator transform:

a0~ | " explAi(s)] dAi(s) = expld, ()] — 1

and we have 1+ 47 (1) == FL@) which has the RR, property.

5. Conclusions

We understand that, the main contribution of this paper is that, in the case of a k-out-of-n:F system with
dependent components, we can apply active redundancy as we do in the case of independence. Also, there
are cases where, in order to increases system lifetime, its better to apply minimal standby redundancy. It is
also important the use of a martingale approach to allocate an active redundant spare in a k-out-of-n:F
system of dependent components through compensator transforms.
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