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Abstract

We characterize active redundancy through compensator transform and use the reverse rule of order 2 (RR2) prop-
erty between compensator processes to investigate the problem of where to allocate a spare in a k-out-of-n:F system of
dependent components through active redundancy.
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1. Introduction

The problem of where to allocate a redundant component in a system in order to stochastically increase
the system lifetime is important in reliability theory. For instance see Boland et al. (1992), Singh and Misra
(1994), Meng (1996), Prasad et al. (1999), Kuo and Prasad (2000), Kuo et al. (2001), Bueno (2005a), among
others.

There are two common types of redundancy that are used, namely active redundancy, which stochas-
tically lead to consider the maximum of random variables, and standby redundancy, which stochastically
lead to consider the convolution of random variables. The problem of where to allocate a spare compo-
nent, is addressed in Boland et al. (1992) for either active or standby redundancy, in a k-out-of-n:G
system of independent components in order to stochastically increase the system reliability. For a k-out-
of-n:G system, Boland et al. (1992) consider stochastic ordering to shows that for active redundancy it
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is stochastically optimal always to allocate a spare to the weakest component. For standby redundancy
and under likelihood ratio ordering Boland et al. (1992) gives sufficient conditions to ensure that in a
series system the allocation should go to the weakest component while in a parallel system it should
go to the strongest.

Singh and Misra (1994) consider the same problem with another criterion of optimality and proves that
if the lifetime of the k-out-of-n system resulting from an active redundancy operation of component i is
denoted by si

k ¼ skðS1; . . . ; Si�1; Si _ S; Siþ1; . . . ; SnÞ, then
P ðsi
k > sj

kÞP P ðsj
k > si

kÞ;
provided the lifetime of component j is stochastically larger than that of component i, i.e. with respect to the
above criterion, it is preferable to allocate the active redundant component to the stochastically weakest
component for stochastically ordered component lifetimes. The problem of allocating a standby redundant
component either, in a series and parallel systems, is also considered, comparing the probabilities that one
system has a longer lifetime than the other.

Meng (1996) uses the concept of permutation equivalency (Boland et al., 1989) to shows that if two com-
ponents in a coherent system are permutation equivalent, then allocating a spare to the weaker position as
an active redundant optimally improve the system lifetime.

Clearly, in a k-out-of-n system all components are permutation equivalent and the sufficient condition of
Boland et al. (1992) is a consequence of this result.

Bueno (2005a) defined a particular form of standby redundancy which was called minimal standby
redundancy. Intuitively, the minimal standby redundancy gives to component i an additional lifetime as
it had just before the failure. Bueno (2005a) uses the reverse rule of order 2 (RR2) property between com-
pensator processes to investigate the problem of where to allocate a spare in a k-out-of-n:F system, for min-
imal standby redundancy, under dependence conditions. As in Boland et al. (1992), Bueno (2005a) proves
that for minimal standby redundancy it is stochastically optimal always to allocate a spare to the weakest
component.

In this paper, to consider the problem of where to allocate a spare component for active redundancy
under dependence conditions, we use a martingale approach to reliability theory. In Section 2 we give a
point process formulation of a coherent system and we get a compensator characterization of active redun-
dancy operation. In Section 3 we use Kwieciński and Szekli (1991) to investigate the best active redundancy
allocation in a k-out-of-n:F system in order to increase system reliability. In Section 4 we give a constructive
example.
2. Active redundancy under dependence conditions

2.1. The point process formulation of a coherent system

We consider the vector (S1, S2, . . . , Sn) of n component lifetimes which are finite and positive random
variables defined in a complete probability space ðX;I; PÞ, with P(Si 5 Sj) = 1, for all i 5 j, i, j in
E = {1, 2, . . . , n}. The lifetimes can be dependent but simultaneous failures are ruled out.

The evolution of the components in time define a marked point process given through the part failure
times and the corresponding marks.

We denote by T1 < T2 < � � � < Tn the ordered lifetimes S1, S2, . . . , Sn, as they appear in time, and by
Xi = {j : Ti = Sj} the corresponding marks.

As a convention we set Tn+1 = Tn+2 = � � � =1 and Xn+1 = Xn+2 = � � � = e where e is a fictitious mark
not in E. Therefore the sequence (Tn, Xn)nP1 define a marked point process.
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The mathematical formulation of our observations is given by a family of sub r-algebras of I, denoted
by ðItÞtP0, where
It ¼ rf1fT i>s; X i¼jg; 0 < s 6 t; 1 6 i 6 n; j 2 Eg.
Intuitively, at each instant t the observer knows if the events {Ti 6 t, Xi = j} have either occurred or not
and if they have, he knows exactly the value Ti and the mark Xi.

We assume that Si, 1 6 i 6 n are totally inaccessible It-stopping time.
An extended and positive random variable s is an It-stopping time if, and only if, fs 6 tg 2 It for all

t P 0; an It-stopping time s is called predictable if an increasing sequence (sn)nP0, of It-stopping time,
sn < s, exists such that limn!1sn = s; an It-stopping time s is totally inaccessible if P(s = r < 1) = 0
for all predictable It-stopping time r. For a mathematical basis of stochastic processes applied to reliability
theory see the recent book by Aven and Jensen (1999). Also, to simplify the notation, we assume that rela-
tions such as �, =,6, <,5 between random variables and measurable sets, respectively, always hold with
probability one, which means that the term P � a.s. is suppressed.

The simple marked point N i
jðtÞ ¼ 1fT i6t;X i¼jg is an It-submartingale and from the Doob Meyer decompo-

sition we know that there exists a unique It-predictable process ðAi
jðtÞÞtP0, called the It-compensator of

Ni
jðtÞ, with Ai

jð0Þ ¼ 0, such that N i
jðtÞ � Ai

jðtÞ is an It-martingale. Ai
jðtÞ is absolutely continuous by the

totally inaccessibility of Si, 1 6 i 6 n.
As Ni

jðtÞ can only count on the time interval (Ti�1, Ti], the corresponding compensator Ai
jðtÞ must vanish

outside that interval. To count the failure of component j we let NjðtÞ ¼
P

nP1N n
j ðtÞ with It-compensator

process AjðtÞ ¼
P

nP1An
j ðtÞ.

The compensator process is expressed in terms of the conditional probability, given the available infor-
mation. Its generalize the classical notion of hazards. Intuitively, this corresponds to producing whether the
failure is going to occur now, on the basis of all observations available up to, but not including, the present.

The It-stopping times Si are rarely of direct concern in reliability theory. One is more interested in the
system lifetime:
s ¼ sðSÞ ¼ min
16j6r

max
i2Kj

Si;
where Kj, 1 6 j 6 r are the system minimal cut sets, that is, a minimal set of components whose joint failure
causes the system to fail. As fs > tg ¼ f\16j6r[i2KjfSi > tgg, s is also an It-stopping time.

Clearly component i contributes to system failure after its critical level Yi, that is, the first time from
which onwards it�s failure lead to system failure (for a rigorous definition of critical level see Arjas,
1981b). It is easy to see that the critical level of a component in series with the system is the initial time
0 (a component is in series with the system when it is a unitary cut set) and the critical level of a component
in parallel with a subsystem is the subsystem lifetime.

In a forthcoming work Bueno (2005b) proposes to analyze the system lifetime after its component�s crit-
ical levels observing the family of r-algebras ðIY iþtÞtP0, where
IY iþt ¼ fA 2 I1 : A \ fY i þ t 6 sg 2 Is; s P 0g;
the lifetimes Si ¼ ððT i � Y iÞþjIY iÞ; i 2 E and the corresponding counting process
MiðtÞ ¼ 1fSi6tg ¼ E½N iðY i þ tÞ � NiðY iÞjIY i � ¼ E½1fY i<T i6Y iþtgjIY i �.
Follows that BiðtÞ ¼ E½AiðY i þ tÞ � AJ ðY iÞjIY i � is the IY i þ t-compensator of Mi(t).
To represent a coherent system as a series structure Bueno (2005b) proves the following theorem:

Theorem 2.1.1. Under the above notation the system lifetime s is almost surely equal to the series system lifetime
S ¼ min
fi:Y i<1g

Si.
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The ideas for the above result was provided by Arjas (1981b) which gives a rigorous proof of the follow-
ing Theorem:

Theorem 2.1.2. Under the above notation, the It-compensator of M(t) = 1{s6t} is
AðtÞ ¼
Xn

j¼1

½Aiðt ^ sÞ � AiðY iÞ�þ;
where [a]+ = max{a, 0}.

Follows that
P ðs 6 tÞ ¼ E½MðtÞ� ¼ E½AðtÞ� ¼
Xn

j¼1

E½½Aiðt ^ sÞ � AiðY iÞ�þ�
and we can improve system reliability minimizing the quantities E[[Ai(t ^ s) � Ai(Yi)]
+] for each i,

1 6 i 6 n.

In this paper we are going to specialize in a k-out-of-n:F system which functions if and only if at least
n � k + 1 out of the n components functions. We denote the lifetime of a k-out-of-n:F system by
sk:F(S) = Tk. Clearly, in a k-out-of-n:F system, the critical level of component i, 1 6 i 6 n is Tk�1, and fol-
lows as a Corollary of Theorem 2.1.1:

Corollary 2.1.3. The It-compensator process of a k-out-of-n:F system is
AðtÞ ¼
Xn

i¼1

½Aiðt ^ sÞ � AiðT k�1Þ�þ.
2.2. A compensator characterization of active redundancy

An active redundancy of a component i stochastically lead to the maximum of the lifetime Si and the
spare lifetime S. If Si and S are independent and identically distributed random variables with distribution
function F iðtÞ ¼ 1� F iðtÞ the resulting lifetime, Si _ S, from an active redundancy operation of component
i has a distribution function
P ðSi _ S 6 tÞ ¼ 1� P ðSi _ S > tÞ;

where
P ðSi _ S > tÞ ¼ 2P ðSi > tÞ � P ðSi > tÞ2 ¼ 2F iðtÞ � F iðtÞ2.
In the case of independent components, AiðtÞ ¼ � ln P ðSi > tjItÞ on {t < Si}, is the It-compensator of com-
ponent i and we can write that on {t < Si _ S}
� ln PðSi þ S > tjItÞ ¼ AiðtÞ � lnð2� exp½�AiðtÞ�Þ;

is the It-compensator of Si _ S. Since that PðSi _ S > tjItÞ ¼ exp½�AiðtÞ�ð2� exp½�AiðtÞ�Þ.

Clearly, we are considering
It ¼ rf1fSi_S6sg; 1fSj6sg; s 6 t; j 6¼ i; 1 6 j 6 ng.
Now, in the case of dependent components, we have to find a compensator approach formulation of the
active redundancy operation preserving the above intuition. We note that Ai(t) � ln(2 � exp[�Ai(t)]) is
equal to
Z t

0

dAðsÞ �
Z t

0

exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
dAiðsÞ ¼

Z t

0

2� 2 exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
dAiðsÞ.
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We propose, in the general case, the following active redundant transformation:
BjðtÞ ¼
Z t

0

ajðsÞdAjðsÞ where aiðsÞ ¼
2� 2 exp½�AiðsÞ�
2� exp½�AiðsÞ�

and ajðsÞ ¼ 1 for j 6¼ i.
Therefore, we are looking for a probability measure Q, such that, under Q, Bj(t) becomes the It-compen-
sator of Nj(t) with respect to this modified probability measure.

This follows from Theorems 2.2.1 and 2.2.2 below.

Theorem 2.2.1. The following process is a local It-martingale:
LiðtÞ ¼
2� 2 exp½�AiðSiÞ�
2� exp½�AiðSiÞ�

� �NiðtÞ

ð2� exp½�AiðtÞ�Þ.
Proof. We consider the It-stopping time defined by
Un ¼ infft P 0 : AiðtÞP n or BiðtÞP ng.

Clearly we have Un " 1 as n " 1.

It is sufficient to prove that the process
Ln
i ðtÞ ¼

2� 2 exp½�AiðSiÞ�
2� exp½�AiðSiÞ�

� �Niðt^UnÞ

ð2� exp½�Aiðt ^ U nÞ�Þ
is a bounded It-martingale. Thus the process LiðtÞ ¼
P1

n¼01fUn6t6Unþ1gL
n
i ðtÞ is a local It-martingale.

For any It-stopping time U 6 Un, we can write
LnðUÞ ¼ 1�
Z U

0

exp

Z s

0

exp½�AiðuÞ�
2� exp½�AiðuÞ�

dAiðuÞ
� �

exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
d½NiðsÞ � AiðsÞ�
because if U < Si, we have Ni(U) = 0 and
1þ
Z U

0

exp

Z s

0

exp½�AiðuÞ�
2� exp½�AiðuÞ�

dAiðuÞ
� �

exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
dAiðsÞ

¼ exp

Z U

0

exp½�AiðuÞ�
2� exp½�AiðuÞ�

� �
dAiðuÞ

� �
¼ 2� exp½�AiðUÞ� ¼ LnðUÞ.
If U P Si
1�
Z U

0

exp

Z s

0

exp½�AiðuÞ�
2� exp½�AiðuÞ�

dAiðuÞ
� �

exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
d½NiðsÞ � AiðsÞ�

¼ exp

Z Si

0

exp½�AiðuÞ�
2� exp½�AiðuÞ�

� �
dAiðuÞ

� �
2� 2 exp½�AiðSiÞ�
2� exp½�AiðSiÞ�

� �
¼ 2� 2 exp½�AiðSiÞ� ¼ LnðUÞ.
As the integrand exp
R s

0
exp½�AiðuÞ�

2�exp½�AiðuÞ� dAiðuÞ
h i

exp½�AiðsÞ�
2�exp½�AiðsÞ�

� �
is an It-predictable process and Ni(s) � Ai(s) is an

It-martingale, Ln
i ðtÞ is an It-martingale and E½Ln

i ðUnÞ� ¼ 1. h

Theorem 2.2.2. Under the probability measure Qn defined by the Radon Nikodym derivative
dQn
i

dP
¼ Ln

i ðUnÞ;
Bj(t) is the It-compensator of Nj(t).
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Proof. From Theorem 2.2.1, Ln
i ðtÞ is a It-martingale with E½Ln

i ðtÞ� ¼ 1 and therefore Ln
i ðtÞ can be considered

as a density function. We denote Qn
i the probability measure which is defined by the Radon Nikodym deriv-

ative
dQn

i
dP ¼ Ln

i ðU nÞ.
We consider the stopped sub r-algebra F n ¼ ðIt^UnÞtP0.
For any stopping time U 6 Un and for j = i,
EQn
i
½BiðUÞ� ¼ E½LiðUÞBiðUÞ� ¼ E

Z U

0

LiðsÞdBiðsÞ
� �

¼ E
Z U

0

ð2� exp½�AiðsÞ�Þ
2� 2 exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
dAiðsÞ

� �
¼ E

Z U

0

ð2� 2 exp½�AiðsÞ�ÞdNiðsÞ
� �

¼ E½1fSi6Ugð2� 2 exp½�AiðSiÞ�Þ� ¼ EQn
i
½NiðUÞ�.
The second equality above follows by Dellacherie�s integration formula. For j 5 i
EQn
i
½BjðUÞ� ¼ E½LiðUÞAjðUÞ� ¼ E

Z U

0

LiðsÞdAjðsÞ
� �

¼ E
Z U

0

Liðs�ÞdAjðsÞ
� �

¼ E
Z U

0

Liðs�ÞdNjðsÞ
� �

¼ E½1fSj6UgLiðSjÞ� ¼ EQn
i
½N jðUÞ�;
because Aj(s) is an increasing natural process and LiðS�j Þ ¼ LiðSjÞ where LðS�j Þ is the left limit of Li(Sj). h

Remark 2.2.3. Bueno (2005a) characterizes the minimal standby redundancy through the compensator
transformation given by
CjðtÞ ¼
Z t

0

ajðsÞdAjðsÞ where aiðsÞ ¼
AiðsÞ

1þ AiðsÞ
and ajðsÞ ¼ 1 for j 6¼ i.
If we decide to make a redundancy operation in a specific component, we must ask for what type of
redundancy, either minimal standby redundancy or active redundancy, we should use in order to stochas-
tically increase the system lifetime. If the components are independent it is easy to see that the minimal
standby redundancy lifetime Si + S is stochastically larger than the lifetime Si _ S produced by an active
redundancy where S is independent and identically distributed as Si.

In the dependent case, since that 2 � exp[x] 6 x + 1 we have that the active redundancy transformation
Ai(t) � ln(2 � exp[�Ai(t)]) is larger than the minimal standby redundancy transformation Ai(t) �
ln(1 + Ai(t)).

From Corollary 2.1.3 the It-compensator process of a k-out-of-n:F system is
AðtÞ ¼
Xn

i¼1

½Aiðt ^ sÞ � AiðT k�1Þ�þ
and since that f ðxÞ ¼ 1þx
2�exp½x� is an increasing function of x we have
CiðtÞ � CiðT k�1Þ ¼ AiðtÞ � lnð1þ AiðtÞÞ � AiðT k�1Þ þ lnð1þ AiðT k�1ÞÞ
6 AiðtÞ � lnð2� exp½�AiðtÞ�Þ � AiðT k�1Þ þ lnð2� exp½�AiðT k�1Þ�Þ ¼ BiðtÞ � BiðT k�1Þ
and we consider that an active redundancy produces a weaker lifetime than a minimal standby redundancy
in the sense that the hazard process for failure of component i under an active redundancy is larger than the
hazard process for failure of component i under a minimal standby redundancy.
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Therefore, if we decide to make a redundancy operation in a specific component, for example in the
weakest component in a k-out-of-n:F system, we should use the minimal standby redundancy in order
to stochastically increases the system lifetime.
3. Active redundancy in a k-out-of-n:F system of dependent components

We are concerned with the problem of where to allocate a spare component using active redundancy in a
k-out-of-n:F system in order to optimize system reliability improvement. We denote the lifetime of a k-out-
of-n:F system by sk:F(S) = Tk where S = (S1, . . . , Sn) is the random vector of component lifetimes and we
denote the system lifetime resulting from an active redundancy operation of component i by
si

k:F ¼ sk:FðS1; . . . ; Si�1; Si _ S; Siþ1; . . . ; SnÞ. We count this system failure through NiðtÞ ¼ 1fsi
k:F
6tg, a counting

process with It-compensator Ai(t), 1 6 i 6 n.
We are going to use the following result from Kwieciński and Szekli (1991).

Theorem 3.1 Kwieciński and Szekli (1991). Consider two point processes N and M with corresponding

compensator processes
AnðtÞ ¼ Anðtjt0; t1; . . . ; tn�1Þ on ðT n�1; T n�;
BnðtÞ ¼ Bnðtjs0; s1; . . . ; sn�1Þ on ðSn�1; Sn�;
which are continuous in t. If An(t) 6 Bn(t) for all t and s0, s1, . . . , sn�1 and t0, t1, . . . , tn�1, such that si 6 ti,

0 6 i 6 n � 1, then
E½wðNðtÞÞ� 6 E½wðMðtÞÞ�
for all decreasing real and right continuous function with left hand limits w, that is, equivalent to N 6st M.

In order to compare system�s compensator we recall from the Total Positivity Theory (Karlin, 1968) the
definition of reverse rule of order 2 functions. Such definition is used to characterize the family of decreas-
ing monotone likelihood ratio property (Kotz and Johnson, 1985).

Definition 3.2. A bivariate real positive function K(x, y), �1 < x < 1, �1 < y < 1 is reverse rule of
order 2, (RR2), if and only if
Kðx1; y2ÞKðx2; y1ÞP Kðx1; y1ÞKðx2; y2Þ
for all �1 < x1 < x2 < 1, �1 < y1 < y2 < 1.

At this point it is important to remember Theorem 2.1.1 on the series representation of a coherent system
concluding that we only need to compare the compensator processes after the critical levels of the respective
components. Our main result is:

Theorem 3.3. If the transformation K(j, t) = 2 � exp[�Aj(t)], 1 6 j 6 n, t 2 [0,1) is reverse rule of order 2

then N1(t) 6st N2(t) 6st � � � 6st Nn(t).

Proof. Follows from Theorems 2.2.1 and 2.2.2 that the active redundancy through compensator transform
of the component i is given by
BiðtÞ ¼
Z t

0

2� 2 exp½�AiðsÞ�
2� exp½�AiðsÞ�

� �
dAiðsÞ ¼ AiðtÞ � lnð2� exp½�AiðtÞ�Þ.
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From Corollary 2.1.3 we have to compare system�s compensators expectation values of the form
AiðtÞ ¼
Xi�1

j¼1

½AjðtÞ � AjðT k�1Þ� þ AiðtÞ � lnð2� exp½�AiðtÞ�Þ � AiðT k�1Þ þ lnð2� exp½�AiðT k�1Þ�Þ

þ
Xn

j¼iþ1

½AjðtÞ � AjðT k�1Þ�; 1 6 i; j 6 n.
It is sufficient to prove for i = 1 and j = 2.
A1ðtÞ ¼ ½A1ðtÞ � lnð2� exp½�A1ðtÞ�Þ � A1ðT k�1Þ þ lnð2� exp½�A1ðT k�1Þ�Þ þ A2ðtÞ � A2ðT k�1Þ

þ
Xn

i¼3

½AiðtÞ � AiðT k�1Þ� 6 A1ðtÞ � A1ðT k�1Þ þ A2ðtÞ � lnð2� exp½�A2ðtÞ�Þ � A2ðT k�1Þ

þ lnð2� exp½�A2ðT k�1Þ�Þ þ
Xn

i¼3

½AiðtÞ � AiðT k�1Þ�

¼ A2ðtÞ � ln
2� exp½�A1ðtÞ�

2� exp½�A1ðT k�1Þ�

� �
6 � ln

2� exp½�A2ðtÞ�
2� exp½�A2ðT k�1Þ�

� �
2� exp½�A1ðtÞ�

2� exp½�A1ðT k�1Þ�

� �

P
2� exp½�A2ðtÞ�

2� exp½�A2ðT k�1Þ�

� �
.

The results follows from Theorem 3.1. h

Under Theorem 3.3, we understand that it is optimal to perform active redundancy on the weakest com-
ponent of a k-out-of-n:F system. Since we never claim any relation among components in the system our
results are valid for components stochastically dependent.

As Ai(0) = 0 for all i, if 2 � exp[�Ai(t)] are RR2 we have Ai(t) P Aj(t) for all i 6 j and we consider com-
ponent i weaker than component j in the sense that the hazard process for failure of component i is larger
than the hazard process for failure of component j.

In the case of components stochastically independent and under the assumption that 2 � exp[�Ai(t)] are
RR2 we can prove that Ai(t) P Aj(t) and Si 6

st Sj for all i 6 j. We have:

Corollary 3.4. Let {S1, . . . , Sn} be the stochastically independent components lifetime of a k-out-of-n:F system

If 2 � exp[�Ai(t)] are RR2, then S1 6
st S2 6

st � � � 6st Sn and s1
k:FPsts2

k:FPst � � �Pstsn
k:F for k = 1, . . . , n.

Example 3.5. Let {S1, . . . , Sn} be the stochastically independent components lifetime of a k-out-of-n:F sys-
tem. If the ith component lifetime Si in a k-out-of-n:F system has a Gamma distribution with parameters k
and i, k > 0 and i = 1, . . . , n then S1 6

st S2 6
st � � � 6st Sn, and we choose the first (i = 1) component. In this

case the first component lifetime increases from S1 to S1 _ S where S is the spare lifetime independent and
identically distributed as S1.
4. A constructive example

We propose to find lifetimes S�i , i = 1, . . . , n, with It-compensators A�i ðtÞ of 1fS�i 6tg such that
2� exp½�A�j ðtÞ� has the RR2 property. We consider, as in Arjas (1981a), a lifetime Si (or its distribution)
which is increasing failure rate relative to It. However, as Si is It-measurable, P ðSi > tjItÞ ¼ 1fT i>tg and
it is not suitable for our proposal.

Then we consider a lifetime which is increasing failure rate relative to Ii
t, where
Ii
t ¼ rf1fSj>sg; s 6 t; j ¼ 1; . . . ; n; j 6¼ ig;



V. da Costa Bueno, I. Martins do Carmo / European Journal of Operational Research 176 (2007) 1041–1051 1049
shortly Si is ðIFRjIi
tÞ, which means that
P ððS � tÞþ > sjIi
tÞ # t.
Clearly we also have
F iðtÞ ¼ P ðSi > tjIi
tÞ # t.
Let Mi(t) be the cadlag version of the counting process
MiðtÞ ¼ E½1fSi6tgjIi
t�.
Follows that Mi(t) is a Ii
t-submartingale with Ii

t-compensator Ci(t). From Arjas (1981b), if Si is
ðIFRjIi

tÞ, Ci(t) is a.s. convex on (0, Si]. Now, as Mi(t) � Ci(t) is an Ii
t-martingale, for s < t, we have
E½P ðSi 6 tjIi
tÞ � P ðSi 6 sjIi

sÞjI
i
s� ¼ E½CiðtÞ � CiðsÞjIi

s�
and therefore follows from the monotone convergence theorem that
lim
t!s

E½PðSi 6 tjIi
tÞ � P ðSi 6 sjIi

sÞjI
i
s� ¼ 0;
that is,
lim
t!s

Z
B
½P ðSi 6 tjIi

tÞ � P ðSi 6 sjIi
sÞjI

i
s�dP ¼ 0
for all B 2 Ii
t.

As P ðSi > tjItÞ # t, P ðSi 6 tjIi
tÞ is left continuous and therefore Ii

t-predictable. Follows that
CiðtÞ ¼ PðSi 6 tjIi

tÞ.
We now turn to the It-compensator of N iðtÞ ¼ 1fSi6tg where
It ¼ Ii
t _ rf1fSi>sg; j s 6 tg.
Arjas and Yashin (1988) proves that the It-compensator of Ni(t), Ai(t) is given by
AiðtÞ ¼
Z t

0

1fSi>sg dCiðsÞ
F iðs�Þ

¼ � lnðF iðt ^ SiÞ.
We are looking for an It-compensator of Ni(t), A�i ðtÞ, a transformation of Ai(t) such that
2� exp½�A�j ðtÞ�Þ has the RR2 property. As Si is ðIFRjIi

tÞ, we can conveniently choose F iðtÞ as a PF2 func-
tion, (a TP2 function under shift) such that 2� exp½�A�j ðtÞ� has the RR2 property. We propose the compen-
sator transform
A�i ðtÞ ¼
Z t

0

1

2 exp½�AiðsÞ� � 1
dAiðsÞ.
Now we let
LiðtÞ ¼
1

2 exp½�AiðsÞ� � 1

� �NiðtÞ

exp½AiðtÞ � A�i ðtÞ�

¼ 1�
Z t

0

exp �
Z s

0

ð2 exp½�AiðuÞ� � 2Þ
ð2 exp½�AiðuÞ� � 1Þ dAiðuÞ

� �
ð2 exp½�AiðsÞ� � 2Þ
ð2 exp½�AiðsÞ� � 1Þ

� �
d½N iðsÞ � AiðsÞ�.
As Ni(s) � Ai(s) is an It-martingale and the integrand is It-predictable, Li(t) is a local martingale. We
suppose that Li(t) is uniformly integrable.
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However, E[Li(t)] = 1, Li(t) can be considered as a density function and we can define a measure Qi by
the Radon Nikodyn derivative dQi

dP ¼ LiðSiÞ. Therefore, applying Girsanov Theorem (Bremaud, 1981) we
have that A�i ðtÞ is the It-compensator of Ni(t) under the measure Qi.

Follows that
2� expð½�A�j ðtÞ�Þ ¼ 2� exp

Z t

0

1

2 exp½�AiðsÞ� � 1
dAiðsÞ

� �
¼ exp½AiðtÞ� ¼

1

F iðtÞ
;

which has the RR2 property.
We define the component lifetimes S�i by
QðS�i > tjItÞ ¼ exp½�A�i ðtÞ�; 1 6 i 6 n.
To give a practical example we consider the ordered lifetimes with a conditional survival function given
by
F ðtijt1; t2; . . . ti�1Þ ¼ exp � ti � gi

h

� �b

þ ti�1 � gi

h

� �b
� �
for gi _ ti�1 < ti, where ti are the ordered observations and density functions
f ðt1; t2; . . . ; tnÞ ¼
Yn

i¼1

f ðtijt1; t2; . . . ti�1Þ

¼ b
h

� �
t1 � g1

h

� �b�1

exp
t1 � g1

h

� �b
� �Yn

i¼2

b
h

� �
ti � gi

h

� �b�1

� exp � ti � gi

h

� �b

þ ti�1 � gi

h

� �b
� �

.

Follows that
dAiðtjt1; t2; . . . ; ti�1Þ ¼
f ðtjt1; t2; . . . ; ti�1Þ
F ðjt1; t2; . . . ; ti�1Þ

¼ b
h

� �
t � gi

h

� �b�1

; ti�1 6 t < ti; t0 ¼ 0.
In particular we can take b = 2 in which case Si is a suitable ðIFRjIi
tÞ distribution such that

F ðtijt1; t2; . . . ; ti�1Þ is TP2 (under shift) on ti and gi.
Therefore
AiðtÞ ¼
2

h2

Z t

gi

ðs� giÞds ¼ t � gi

h

� �2

; t > gi; ti�1 6 t < ti; t0 ¼ 0
and
A�i ðtÞ ¼
Z t

0

1

2 exp½�AiðsÞ� � 1
dAiðsÞ ¼ � ln 2� exp

t � gi

h

� �2
� �� �
on gi + 0.83h > t P gi, ti�1 6 t < ti, t0 = 0, i = 1, . . . , n where it is well defined.
Follows that we can define the component life times S�i by
QðS�i > tjItÞ ¼ 2� exp
t � gi

h

� �2
� �

; gi þ 0:83h > t P gi; i ¼ 1; . . . ; n.



Remark 4.1. In Bueno (2004) gives a constructive example for minimal standby redundancy. In this case
we must consider A�i ðtÞ, a transformation of Ai(t), such that 1þ A�i ðtÞ has the RR2 property. Bueno (2004)
proposes the compensator transform:
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A�i ðtÞ ¼
Z t

0

exp½AiðsÞ�dAiðsÞ ¼ exp½AiðtÞ� � 1
and we have 1þ A�i ðtÞ ¼¼ 1
F iðtÞ

which has the RR2 property.
5. Conclusions

We understand that, the main contribution of this paper is that, in the case of a k-out-of-n:F system with
dependent components, we can apply active redundancy as we do in the case of independence. Also, there
are cases where, in order to increases system lifetime, its better to apply minimal standby redundancy. It is
also important the use of a martingale approach to allocate an active redundant spare in a k-out-of-n:F
system of dependent components through compensator transforms.
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