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Abstract

We expand our previous study of replicated gauge configurations in lattice SU(Nc) Yang–Mills
theory—employing Bloch’s theorem from condensed matter physics—to construct gauge-
fixed field configurations on significantly larger lattices than the original, or primitive, one.
We present a comprehensive discussion of the general gauge-fixing problem, identifying
advantages of the replicated-lattice approach. In particular, the consideration of Bloch
waves leads us to a visualization of the extended gauge-fixed configurations in terms of
(color) magnetization domains. Moreover, we are able to explore features of the method to
optimize the evaluation of gauge fields in momentum space, furthering our knowledge of
the “allowed momenta”, an issue that has hindered wider applications of this approach
up to now. Interestingly, our analysis yields both a better conceptual understanding of the
problem and a more efficient way to compute the desired large-volume observables.

Keywords: lattice QCD; algorithms and theoretical developments; correlation functions;
vacuum structure and confinement

1. Introduction
We study the problem of fixing the so-called minimal Landau gauge in Yang–Mills

theory using a replicated gauge-field configuration on an extended lattice Λz, obtained
by copying—m times along each direction—the link configuration defined on the original
lattice Λx [1]. We employ periodic boundary conditions (PBCs), both for the original and
for the extended lattice. This setup is then used for the evaluation of the gluon propagator
in pure gauge theory, aiming at explaining and understanding the results obtained from
numerical simulations of the propagator in the infrared regime for two, three, and four
space-time dimensions [2–4]. We recall that this methodwas first proposed by D. Zwanziger
in Ref. [5], as a way to take the infinite-volume limit in lattice gauge theory in two steps.

In a previous study [1], we worked out the numerical implementation of the method
and conducted a feasibility test—in two and three dimensions—applying it to the gauge-
fixing problem and evaluating the lattice gluon propagator in momentum space D(⃗k ) for
the SU(2) case. We thus obtained results for two- and three-dimensional lattices of sides up
to 16 times larger than the original one, corresponding to lattice volumes respectively up to
a few hundred and a thousand times larger than the starting one. We also verified good
agreement when comparing D(⃗k ) with numerical data obtained by working directly on a
large lattice of the same size as the extended lattice Λz. These results are shown in the two
plots of Figure 1 in Ref. [1]. This exercise proved very promising since the computational
cost could be greatly reduced, but there were a few unresolved issues, which we now
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address. More specifically, we found that a nonzero gluon propagator could be obtained
only for certain values of momenta. These “allowed” momenta included the ones given
by the discretization on the original (small) lattice Λx, but it was not clear to us if (and
which) other momenta could also produce a nonzero value for D(⃗k ). We also obtained
that the gluon propagator at zero momentum was strongly suppressed when evaluated on
Λz, a result that we interpreted just qualitatively, as a peculiar effect due to the extended
gauge transformations. At that time, we could not offer, for either of these two results,
a robust analytic explanation, which would complete our conceptual description of the
proposed approach. In point of fact, achieving such a comprehension is essential also for
a more efficient application of the method. Indeed, in Ref. [1], while thermalization and
gauge fixing were carried out—in the numerical code—using only the original lattice Λx,
we still needed to use the (gauge-fixed) gauge field defined on the extended lattice Λz for
the evaluation of the gluon propagator. Clearly, a better understanding of the setup and its
properties must allow the entire numerical implementation of the method to be based on
variables defined solely on Λx, in order for the computational cost to be independent of the
replica factor m. This is the main goal of the present work.

The manuscript is organized as follows. In Section 2, we review—for general SU(Nc)
gauge theory in the d-dimensional case—the numerical problem of imposing the minimal-
Landau-gauge condition for a thermalized link configuration {Uµ(x⃗)} on a lattice Λx,
with PBCs, as well as the definition of the (lattice) gluon propagator in momentum space
D(⃗k ). Even though most of the topics discussed in this section are well known, the pre-
sentation is useful in order to set the notation and prepare the ground for our analysis of
the replicated-lattice case. In particular, we explicitly address the invariance of the lattice
formulation under translations and global gauge transformations, which will be important
for our later discussion. Then, in Section 3, we extend the analysis to the case of a replicated
field configuration, i.e., we discuss the minimal Landau gauge on the extended lattice
Λz with PBCs, providing a more detailed description than the one presented in Ref. [1].
Specifically, after recalling the usual demonstration of Bloch’s theorem for a crystalline
solid and its more relevant consequences, we review the proof presented in Refs. [1,5],
highlighting the properties of the translation operator T and the role played by global
transformations. This analysis naturally suggests a new interpretation of the gauge-fixing
condition for the extended lattice Λz, which is presented in Section 4. It also permits the
visualization of the gauge-fixed configurations in terms of “domains”, which will be later
identified with different values of an effective (color) magnetization. Afterwards, we show,
in Section 5, which gauge-fixed link variables are nonzero on the extended lattice when
evaluated in momentum space. This is, of course, the essential ingredient to predict which
momenta have a nonzero gluon propagator D(⃗k ). From our presentation it will be clear
that, for the majority of the momenta k⃗ , the gluon propagator is indeed equal to zero.
On the other hand, the allowed momenta, i.e., the momenta for which a nonzero D(⃗k ) is
obtained, include, but are not limited to, the momenta determined by the discretization on
the original (small) lattice Λx. However, as we will see, the allowed momenta that are not
defined on Λx depend on the outcome of the numerical gauge fixing, i.e., they are usually
different for different gauge-fixed configurations. Hence, in a numerical simulation, they
usually show very poor statistics. We also carefully analyze, in Section 5.4, the evaluation
of the gluon propagator at zero momentum, as well as its limit for large values of the
parameter m. Some of the analytic results presented in Section 5 are tested numerically in
Section 6, where we also illustrate the color-magnetization domains for the different lattice
replicas and we present our conclusions. Finally, details about the Cartan sub-algebra for
the SU(Nc) group are reported in Appendix A.
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2. Minimal Landau Gauge with PBCs
Let us first consider the usual minimal-Landau-gauge condition for Yang–Mills theory

in the d-dimensional case and for the SU(Nc) gauge group, on a lattice Λx with volume
V = Nd and PBCs (see for example Ref. [6]). The gauge-fixing condition is imposed by
minimizing—with respect to the gauge transformation {h(x⃗)}—the functional [5]

EU [h] ≡ Tr
2Nc dV

d

∑
µ=1

∑
x⃗Λx


1⊥ − Uµ(h; x⃗)

 
1⊥ − Uµ(h; x⃗)

† (1)

=
ℜ Tr
Nc dV

d

∑
µ=1

∑
x⃗Λx


1⊥ − Uµ(h; x⃗)


. (2)

Here, Tr is the trace (in color space), † stands for the Hermitian conjugate, ℜ selects the real
part, the vector x⃗ has integer components xµ from 1 to N, and the transformed gauge link
is given by

Uµ(h; x⃗) ≡ h(x⃗)Uµ(x⃗) h(x⃗+ êµ)†, (3)

where the (thermalized) link configuration {Uµ(x⃗)} is kept fixed, and êµ is the unit vector in
the positive µ direction. BothUµ(x⃗) and the gauge-transformation variable h(x⃗) are SU(Nc)
matrices in the fundamental Nc × Nc representation, and we denote by 1⊥ the Nc × Nc

identity matrix. As discussed below, this ensures a lattice implementation of the familiar
Landau-gauge condition in the continuum, i.e., the condition of null divergence for the
gauge field.

Let us impose periodicity by requiring that

Uµ(x⃗+ Nê) = Uµ(x⃗) (4)

and
h(x⃗+ Nê) = h(x⃗) (5)

for µ,  = 1, . . . , d. Combining these two conditions in (3), we obtain that

Uµ(h; x⃗+ Nê) = Uµ(h; x⃗), (6)

i.e., the gauge-transformed link variables Uµ(h; x⃗) are also periodic1 on Λx.
Note that the minimizing functional EU [h] is non-negative2 and, due to the cyclicity

of the trace, it is invariant under global gauge transformations h(x⃗) = v  SU(Nc). At the
same time, Equation (1) tells us that the minimal-Landau-gauge condition selects on each
gauge orbit—defined by the original link configuration {Uµ(x⃗)}—the configuration whose
distance from the trivial vacuum Uµ(x⃗) = 1⊥ is minimal [5]. Of course, there may be more
than one minimum {Uµ(h; x⃗)} of EU [h] for a given {Uµ(x⃗)}, corresponding to different
solutions of the minimization problem. Indeed, it is well-known that—both on the lattice
and in the continuum formulation—there are multiple solutions to the general Landau-
gauge-fixing problem along each gauge orbit, i.e., multiple configurations {Uµ(h; x⃗)}
corresponding to a null divergence of the gauge field [8–11]. These are called Gribov
copies. Let us remark that not all such copies will be also (local, or relative) minima of EU [h]
since the minimal-Landau-gauge condition is more restrictive than the general one. The
set of all local minima of the functional EU [h] defines the first Gribov region Ω. It includes
representative configurations of all gauge orbits, as well as some of their Gribov copies,
while the remaining ones lie outside of Ω.

Clearly, if the configuration3 {Uµ(h; x⃗)} is a local minimum of the functional EU [h],
the stationarity condition implies that its first variation with respect to the matrices {h(x⃗)}
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be zero. This variation may be conveniently obtained [5,12] from a gauge transformation
h(x⃗) → R(τ; x⃗) h(x⃗), with R(τ; x⃗) close to the identity and taken in a one-parameter
subgroup of the gauge group SU(Nc). We thus write

R(τ; x⃗) ≡ exp

i τ

N2
c−1

∑
b=1

b(x⃗) tb

≈ 1⊥ + i τ

N2
c−1

∑
b=1

b(x⃗) tb, (7)

where the parameter τ is real and small. Here, tb are the N2
c − 1 traceless Hermitian

generators of the SU(Nc) gauge group, and the factors b(x⃗) are also real. About this, we
recall that SU(Nc) is a real Lie group and that its Lie algebra su(Nc) is also real [13]. Then,

we can write any element g  SU(Nc) as g = exp

i ∑b 

b tb

, with b  R, ensuring that

g† = g−1. At the same time, the condition Tr (tb) = 0 implies that det(g) = 1. We consider
generators tb to be normalized such that

Tr (tbtc) = 2 bc, (8)

which is the usual normalization condition satisfied by the Pauli matrices, in the SU(2) case,
and by the Gell-Mann matrices, in the SU(3) case.

Using this one-parameter subgroup, we may regard EU [h] as a function EU [h](τ) of τ.
Its first derivative with respect to τ is then given, at τ = 0, by

EU [h]
′
(0) =

ℜ Tr
Nc dV ∑

b, µ, x⃗

− i

b(x⃗) tb Uµ(h; x⃗) − Uµ(h; x⃗) b(x⃗+ êµ) tb



=
2ℜ Tr
Nc dV ∑

b, µ, x⃗

b(x⃗) tb

2 i


Uµ(h; x⃗) − Uµ(h; x⃗− êµ)


, (9)

where x⃗  Λx, the color index b takes values 1, . . . ,N2
c − 1 and µ = 1, . . . , d. At the same

time, we define the gauge-fixed (lattice) gauge field Aµ(h; x⃗) using the relation

Aµ(h; x⃗) ≡ 1
2 i


Uµ(h; x⃗)−U†

µ(h; x⃗)

traceless

(10)

=
1
2 i


Uµ(h; x⃗)−U†

µ(h; x⃗)

− 1⊥ Tr

2 i Nc


Uµ(h; x⃗)−U†

µ(h; x⃗)


(11)

=
1
2 i


Uµ(h; x⃗)−U†

µ(h; x⃗)

− 1⊥ ℑ Tr

Nc


Uµ(h; x⃗)


, (12)

where ℑ selects the imaginary part of a complex number. Also, we write

Aµ(h; x⃗) ≡ ∑
b

Ab
µ(h; x⃗) t

b, (13)

so that, recalling Equation (8), the color components Ab
µ(h; x⃗) are given by

Ab
µ(h; x⃗) =

1
2
Tr


Aµ(h; x⃗) tb


. (14)

Then, since the generators tb are traceless, it is evident that the term proportional to
the identity matrix 1⊥ in Equations (11) and (12) does not contribute to Ab

µ(h; x⃗), see
Equation (14), i.e.,

Ab
µ(h; x⃗) = Tr


tb


Uµ(h; x⃗)−U†

µ(h; x⃗)
4 i


= ℜ Tr


tb

Uµ(h; x⃗)
2 i


. (15)
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We may thus rewrite the first derivative of the minimizing functional from Equation (9) as

EU [h]
′
(0) =

2
Nc dV ∑

b, µ, x⃗

b(x⃗)

Ab
µ(h; x⃗) − Ab

µ(h; x⃗− êµ)

, (16)

which provides a nice analogy with the continuum case as shown next.4

Of course, if {Uµ(h; x⃗)} is a stationary point of EU [h](τ) at τ = 0, we must have

EU [h]
′
(0) = 0 (19)

“along” any direction ∑b 
b(x⃗)tb, i.e., for every set of b(x⃗) factors. This implies that the

lattice divergence


·Ab


(h; x⃗) ≡

d

∑
µ=1


Ab
µ(h; x⃗)− Ab

µ(h; x⃗− êµ)


(20)

of the gauge-fixed gauge field Aµ(h; x⃗) is zero, i.e.,


·Ab


(h; x⃗) = 0 ∀ x⃗, b, (21)

and the gauge field Aµ(h; x⃗) is transverse. The above Equations (20) and (21) give the
lattice formulation of the usual Landau gauge-fixing condition in the continuum and, due
to Equation (8), are clearly equivalent to

(·A)(h; x⃗) = 0 ∀ x⃗ (22)

with, see Equations (13) and (20),

(·A)(h; x⃗) ≡
d

∑
µ=1


Aµ(h; x⃗)− Aµ(h; x⃗− êµ)


=

N2
c−1

∑
b=1

tb

·Ab


(h; x⃗). (23)

Let us stress that the gauge transformation {h(x⃗)} depends onNp ≡ V (N2
c − 1) free param-

eters b(x⃗) and the minimization process enforces the corresponding Np constraints (21).
Clearly, since the link variables Uµ(h; x⃗) satisfy PBCs, the same is true for the gauge

fields Aµ(h; x⃗), defined in Equations (10)–(12). Thus, it is convenient to consider the Fourier
transform (see [14])

Ab
µ(h; k⃗ ) ≡ ∑

x⃗Λx

Ab
µ(h; x⃗) exp


−2i

N


k⃗·x⃗+ kµ

2


, (24)

where the wave-number vectors k⃗ have integer components kµ, which are usually restricted
to the so-called first Brillouin zone5 kµ = 0, 1, . . . ,N−1. Let us notice that, according to this
definition, the contribution to the Fourier transform coming from the link between x⃗ and
x⃗+ êµ is calculated at its midpoint x⃗+ êµ/2. For later convenience, let us also define the
Fourier transform of the gauge link

Uµ(h; k⃗ ) ≡ ∑
x⃗Λx

Uµ(h; x⃗) exp

−2i

N


k⃗·x⃗


. (25)
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Now, in order to write down the inverse Fourier transform, we recall that, in one
dimension (and with k taking values 0, 1, . . . ,N−1), we find [15,16]

N

∑
x=1

e−
2i
N k x =

N−1

∑
x=0


e−

2i
N k

x
=

1 − [ exp (−2i k/N) ]N

1 − exp (−2i k/N)
= 0 (26)

for k ̸= 0. Thus, the above expression is equal to N (k, 0), where ( , ) stands for the
Kronecker delta function. Analogously, in the d-dimensional case, we have

∑
x⃗Λx

e−
2i
N k⃗·⃗x =

d

∏
=1


N

∑
x=1

e−
2i
N kx


= Nd (⃗k, 0⃗ ) = V (⃗k, 0⃗ ), (27)

where (⃗k, 0⃗ ) is a shorthand for ∏d
=1 (k, 0). Conversely, we have

∑
k⃗Λx

e
2i
N k⃗·⃗x = V (x⃗, 0⃗ ), (28)

where Λx stands for the first Brillouin zone (for the Λx lattice). Hence, it is straightforward
to verify that the inverse Fourier transform, corresponding to Equation (24), is given by

Ab
µ(h; x⃗) ≡ 1

V ∑
k⃗Λx

Ab
µ(h; k⃗ ) exp


2i
N


k⃗·x⃗+ kµ

2


. (29)

As mentioned above, the term ikµ/N in the exponent of Equation (24) is obtained by
considering the gauge field at the midpoint x⃗+ êµ/2 of a lattice link.6 This term is essential
in order to show that, in momentum space, Equation (21) becomes

0 =
1
V ∑

k⃗Λx

d

∑
µ=1

Ab
µ(h; k⃗ ) exp


2i
N

k⃗·x⃗

2 i sin


 kµ
N


, (30)

yielding (for each k⃗ ) the lattice transversality condition

d

∑
µ=1

Ab
µ(h; k⃗ ) pµ (⃗k ) = 0, (31)

where

pµ (⃗k ) ≡ 2 sin

 kµ
N


(32)

are the components of the lattice momentum p⃗ (⃗k ) [15,16]. Indeed, without the factor
exp (ikµ/N), we would obtain the condition

d

∑
µ=1

Ab
µ(h; k⃗ )


1 − cos


2 kµ
N


+ i sin


2 kµ
N

 
= 0, (33)

which looks very different from the Landau gauge condition in the continuum.
Actually, one can verify that Equations (31) and (33) have the same (formal) continuum

limit [14] but with different discretization errors. To this end, we write

2 kµ
N

= a
2 kµ
a N

≡ a p̂µ, (34)

where a is the lattice spacing and p̂µ is now a continuum momentum in physical units,
and take the limit a → 0 with p̂µ kept fixed. We find, in both cases, that the termmultiplying
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Ab
µ(h; k⃗ ) is proportional to p̂µ, yielding the desired transversality condition. However, in the

first case the discretization error is of order a2, while in the second it is of order a. Moreover,
Equation (32) provides a more natural definition of the lattice-momentum components
than the expression in square brackets in Equation (33) since

p2 (⃗k ) =
d

∑
µ=1

p2µ (⃗k ) ≡
d

∑
µ=1

4 sin2

 kµ
N


(35)

are the eigenvalues of (minus) the usual lattice Laplacian

−∆(x⃗, y⃗) ≡
d

∑
µ=1


2 (x⃗, y⃗) − (x⃗+ êµ, y⃗) − (x⃗− êµ, y⃗)


, (36)

corresponding to the plane-wave eigenvectors exp

−2 i⃗k·y⃗/N


.

2.1. Numerical Gauge Fixing

In order to minimize EU [h] numerically, it is sufficient to implement an iterative
algorithm that monotonically decreases the value of the minimizing functional. Indeed,
since EU [h] is bounded from below, an algorithm of this kind is expected to converge. As
the simplest approach, one can sweep through the lattice Λx and apply—for each lattice
site x⃗—a convenient update

h(x⃗) → h′(x⃗) = r(x⃗) h(x⃗), (37)

where r(x⃗)  SU(Nc), while keeping all the other matrices h(x⃗) fixed. In other words,
a single-site update at x⃗ corresponds to {h(x⃗)} → {h′(x⃗)}, where the new set of
gauge transformations is unaltered except for applying r(x⃗) to h(x⃗) as above. From
Equations (2) and (3), we see that the corresponding change EU [h′] − EU [h] in the minimiz-
ing functional due to this update is given by

ℜ Tr
Nc dV

d

∑
µ=1


Uµ(h; x⃗) + Uµ(h; x⃗−êµ)† − r(x⃗)Uµ(h; x⃗) − Uµ(h; x⃗−êµ) r(x⃗)†



=
ℜ Tr [w(x⃗) ]

Nc dV
− ℜ Tr [ r(x⃗)w(x⃗) ]

Nc dV
, (38)

with

w(x⃗) ≡
d

∑
µ=1


Uµ(h; x⃗) + Uµ(h; x⃗−êµ)†


. (39)

Then, for the change to be negative, the single-site update must satisfy the inequality

−ℜ Tr [ r(x⃗)w(x⃗) ] ≤ −ℜ Tr [w(x⃗) ] . (40)

Common possible choices7 for r(x⃗)—usually written as a linear combination of the
identity matrix 1⊥ and of the matrix w(x⃗)—can be found in Refs. [18–22]. In particular,
in the SU(2) case, the matrix w(x⃗) is proportional to an SU(2) matrix. On the contrary, in the
general SU(Nc) case, it is simply an Nc × Nc complex matrix, and one needs to project this
matrix onto the gauge group (see Refs. [18,22]). Let us note that, from the point of view
of the organization of the numerical algorithm, one does not need to store both the gauge
transformation {h(x⃗)} and the link configuration {Uµ(x⃗)}. Indeed, every time a single-site
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update (37) is performed, one can modify the gauge configuration directly, by evaluating
the products8

Uµ(h; x⃗) → r(x⃗)Uµ(h; x⃗) and Uµ(h; x⃗− êµ) → Uµ(h; x⃗− êµ) r(x⃗)†, (41)

for each direction µ = 1, . . . , d. An iteration of the method corresponds to a full sweep of
the lattice, applying the above single-site updates at each point x⃗ .

As a check of convergence of the (iterative) minimization algorithm after t sweeps
over the lattice, one can “monitor” the behavior of several different quantities9 [19–21], e.g.,

∆E ≡ EU [h; t] − EU [h; t− 1], (42)

(A)2 ≡ 1
(N2

c − 1)V ∑
b

∑
x⃗Λx


·Ab


(h; x⃗)

2
, (43)

ΣQ ≡ 1
N ∑

b, µ, xµ


Qb

µ(h; xµ)− Qb
µ(h)

2
/ ∑

b, µ


Qb
µ(h)

2
, (44)

where all quantities are evaluated using the gauge-transformed configuration {Uµ(h; x⃗)},
the color index b takes values 1, . . . ,N2

c − 1 and, as always throughout this work, µ =

1, . . . , d and xµ = 1, . . . ,N. In Equation (44) above, we define

Qb
µ(h; xµ) ≡ ∑

x
 ̸=µ

Ab
µ(h; x⃗) (45)

and
Qb
µ(h) ≡ 1

N ∑
xµ

Qb
µ(h; xµ) =

1
N ∑

x⃗
Ab
µ(h; x⃗) . (46)

One can check that, if the Landau-gauge-fixing condition (21) is satisfied, then
Qb

µ(h; xµ) must be independent of xµ. Indeed, from Equations (20) and (21), we obtain10

0 = ∑
x

 ̸=µ


·Ab


(h; x⃗) = ∑

x
 ̸=µ

d

∑
σ=1


Ab
σ(h; x⃗)− Ab

σ(h; x⃗− êσ)


= ∑
x

 ̸=µ


Ab
µ(h; x⃗)− Ab

µ(h; x⃗− êµ)

+∑

x
 ̸=µ

∑
σ ̸=µ


Ab
σ(h; x⃗)− Ab

σ(h; x⃗− êσ)

, (47)

for any µ = 1, . . . , d and xµ = 1, . . . ,N. Here, the first term on the r.h.s. is simply given by
Qb

µ(h; xµ)−Qb
µ(h; xµ − 1) , while the second one may be written as

∑
σ ̸=µ



 ∑

x
 ̸=µ,σ

∑
xσ


Ab
σ(h; x⃗)− Ab

σ(h; x⃗− êσ)




. (48)

Let us stress that, in the above formulae, the coordinate xµ is fixed and all other coordinates
are summed over. In particular, in Equation (48), we single out the sum over the coordinate
xσ. This makes it evident that, with respect to this coordinate, one has a telescopic sum,
yielding (for each direction σ ̸= µ)

∑
x

 ̸=µ,σ


Ab
σ(h; x⃗)


xσ=N

− Ab
σ(h; x⃗)


xσ=0


. (49)
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Then, when PBCs are imposed along the direction σ, the last expression cancels out and
we get

Qb
µ(h; xµ) = Qb

µ(h; xµ − 1), (50)

i.e., the “charges” Qb
µ(h; xµ) are constant, they do not depend on xµ, for any direction µ.

Also, note that the quantity (A)2 is invariant under global gauge transformations
v  SU(Nc). Indeed, from Equations (3) and (11) we have that, for h(x⃗) → v h(x⃗), the gauge
field Aµ(h; x⃗) changes as

Aµ(h; x⃗) → v Aµ(h; x⃗) v† (51)

and the same form holds for the transformation of (·A)(h; x⃗), see Equation (23). The
above statement then follows if we write, see Equation (8),

(A)2 ≡ Tr
2 (N2

c − 1)V ∑
x⃗Λx


(·A)(h; x⃗)

2
(52)

and use the cyclicity of the trace. This result is expected if we interpret Equation (16) as a
directional derivative of the minimizing functional EU [h] along the “direction” specified by

the vector with components b(x⃗) so that

·Ab


(h; x⃗) are the (color) components of its

gradient. Then, since EU [h] is invariant under global gauge transformations,11 one should
have that the magnitude of its gradient—which quantifies the steepness of the minimizing
function at a given point in the link-configuration space—is also invariant under such

global transformations, even though its components

·Ab


(h; x⃗) are not.

Similarly, we can write ΣQ as

ΣQ =
1
N

d

∑
µ=1

N

∑
xµ=1

Tr

Qµ(h; xµ)− Qµ(h)

2
/

d

∑
µ=1

Tr

Qµ(h)

2
, (53)

with

Qµ(h; xµ) ≡
N2
c−1

∑
b=1

tb Qb
µ(h; xµ) and Qµ(h) ≡

N2
c−1

∑
b=1

tb Qb
µ(h). (54)

Then, clearly we have invariance under a global gauge transformation v, see
Equations (45) and (46), since Qµ(h; xµ) → v Qµ(h; xµ) v† and Qµ(h) → v Qµ(h) v†.

We see, therefore, that all the three quantities proposed to monitor the convergence of
the algorithm, given in Equations (42)–(44), are invariant under a global gauge transforma-
tion, just as the minimizing functional in Equation (1).

2.2. Gluon Propagator

The lattice space-time gluon propagator is defined as12

Dbc
µ(x⃗1, x⃗2) ≡


Ab
µ(h; x⃗1) A

c
(h; x⃗2)


, (55)

where ⟨ · ⟩ stands for the path-integral (Monte Carlo) average. If we impose translational
invariance, i.e., if we consider the quantity Dbc

µ(x⃗1− x⃗2) ≡ Dbc
µ(x⃗1, x⃗2), corresponding to

total momentum conservation, we can also write

Dbc
µ(x⃗) =


Ab
µ(h; x⃗) A

c
(h; 0⃗ )


=

1
V ∑

x⃗2Λx


Ab
µ(h; x⃗+ x⃗2) Ac

(h; x⃗2)

. (56)
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Then, the associated (double) Fourier transform Dbc
µ (⃗k1, k⃗2) is diagonal in momentum

space, see Equation (24), i.e.,

Dbc
µ (⃗k1, k⃗2) = ∑

x⃗1,⃗x2

Dbc
µ(x⃗1−x⃗2) exp


−2i

N


k⃗1 ·


x⃗1 +

êµ
2


+ k⃗2 ·


x⃗2 +

ê
2



= ∑
x⃗, x⃗2

Dbc
µ(x⃗) exp


−2i

N


k⃗1 ·


x⃗+

êµ
2


+


k⃗2 + k⃗1


·x⃗2 + k⃗2 ·

ê
2



= V (⃗k1 + k⃗2, 0⃗ ) ∑
x⃗

Dbc
µ(x⃗) exp


−2i

N


k⃗1 ·


x⃗+

êµ
2


+ k⃗2 ·

ê
2



= V (⃗k1, −⃗k2) ∑
x⃗

Dbc
µ(x⃗) exp


−2i

N
k⃗1 ·


x⃗+

êµ
2
− ê

2


, (57)

where we defined x⃗ ≡ x⃗1 − x⃗2 (with x⃗, x⃗1, x⃗2  Λx) and we used Equation (27). Thus,
after setting k⃗ ≡ k⃗1 = −⃗k2, we can write

Dbc
µ (⃗k, −⃗k ) = V ∑

x⃗
Dbc

µ(x⃗) exp

−2i

N


k⃗·x⃗+ kµ − k

2


≡ V Dbc

µ (⃗k ) (58)

and

Dbc
µ(x⃗) =


Ab
µ(h; x⃗) A

c
(h; 0⃗ )


=

1
V ∑

k⃗Λx

Dbc
µ (⃗k ) exp


2i
N


k⃗·x⃗+ kµ − k

2


, (59)

as can be seen by substituting the rightmost expression above into Equation (58) and using
Equation (27). This defines, in a natural way, the inverse Fourier transform for the gluon
propagator. Note that it is also in agreement with the corresponding definition given in the
case of the gauge field in Equation (29) since it is equivalent to

Dbc
µ (⃗k , −⃗k ) = ∑

x⃗,⃗x2


Ab
µ(h; x⃗+ x⃗2) Ab

µ(h; x⃗2)


exp

−2i

N


k⃗·(x⃗+ x⃗2 − x⃗2) +

kµ − k
2



=


Ab
µ(h; k⃗ ) Ac

(h; −⃗k )

, (60)

where we substitute (56) into Equation (58), apply the translation x⃗+ x⃗2 → x⃗ (with x⃗2 fixed)
before summing over x⃗  Λx, and use (24).

At the same time, due to global color invariance and to the transversality condition (31),
the Landau-gauge propagator must be given by (see Ref. [23])

Dbc
µ(x⃗) =

bc

V


D(⃗0 ) µ + ∑

k⃗Λx
k⃗ ̸=⃗0

D(⃗k ) exp

2i
N

k⃗·x⃗

Pµ (⃗k ) exp


i


kµ − k



N


, (61)

where 0⃗ is the wave-number vector with all null components, µ stands for the Kronecker
delta function of the lattice directions and

Pµ (⃗k ) ≡

µ − pµ (⃗k ) p (⃗k )

p2 (⃗k )


(62)
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is the usual transverse projector, see Equation (32). In particular, note that

Dbb
µµ(x⃗) =

D(⃗0 )
V

+ ∑
k⃗Λx
k⃗ ̸=⃗0

D(⃗k )
V

exp

2i
N

k⃗·x⃗

Pµµ (⃗k ), (63)

where the repeated indices do not imply summation. Then, the scalar function D(⃗0 ) can be
evaluated, for example, using Equations (27) and (63), yielding13

D(⃗0 ) ≡ 1
d (N2

c − 1) ∑b, µ
∑
x⃗
Dbb

µµ(x⃗) =
1
N ∑

b,µ
∑
x⃗, x⃗2


Ab
µ(h; x⃗+x⃗2) Ab

µ(h; x⃗2)


=
1
N ∑

b, µ

 
∑
x⃗

Ab
µ(h; x⃗)

2
, (64)

where we also use Equation (56) and, in the last step, we apply again the translation
x⃗ + x⃗2 → x⃗ (with x⃗2 fixed). As always, in the sums, we have µ = 1, . . . , d , the color
index b takes values 1, . . . ,N2

c − 1 and x⃗, x⃗2  Λx. We also define the normalization factor
N ≡ d(N2

c − 1)V. Similarly, we have

D(⃗k ) ≡ 1
(d− 1) (N2

c − 1) ∑b,µ
∑
x⃗

Dbb
µµ(x⃗) exp


−2i

N
k⃗·x⃗



=
1
N ′ ∑

b,µ
∑
x⃗,⃗x2


Ab
µ(h; x⃗+ x⃗2) Ab

µ(h; x⃗2)


exp

−2i

N
k⃗·(x⃗+ x⃗2 − x⃗2)



=
1
N ′ ∑

b,µ


∑
x⃗
Ab
µ(h; x⃗) exp


−2i

N
k⃗·x⃗


∑
x⃗2

Ab
µ(h; x⃗2) exp


2i
N

k⃗·x⃗2


(65)

=
1
N ′ ∑

b,µ


∑
x⃗
Ab
µ(h; x⃗) cos


2
N

k⃗·x⃗
2

+


∑
x⃗
Ab
µ(h; x⃗) sin


2
N

k⃗·x⃗
2

, (66)

where we use one more time the translation x⃗ + x⃗2 → x⃗ and we define
N ′ ≡ (d− 1)(N2

c − 1)V.
Let us remark that the above expressions, obtained in the lattice formulation, are

essentially the same as in the continuum, with only a few subtleties. In particular, in the
continuum, the scalar quantities D(⃗0 ) and D(⃗k ) depend only on the magnitude k of the
wave-number vector k⃗ (or of the corresponding momentum p  k) and are usually denoted
by D(0) and D(k). This notation is also very often employed in lattice studies. Here,
however, we prefer to keep explicitly the dependence of the gluon propagator on the
components of k⃗ for two (related) reasons. Firstly, due to the breaking of the rotational
symmetry [24], it is no longer true that the lattice results for the gluon propagator are just a
function of k. Secondly, when representing D(⃗k ) as a function of p2 (⃗k ), see Equation (35),
it is necessary to consider all the components of k⃗—and not simply its magnitude k—since
p2 is not proportional to k2. Let us also recall [25] that the factor d−1 in the denominator of
the expression for D(⃗k ) comes from

d

∑
µ=1

Pµµ (⃗k ) = d−1 (67)

and tells us that, for each value of b, there are only d−1 linearly independent components
Ab
µ(h; k⃗ ) due to the Landau-gauge-fixing condition, see Equation (31). At the same time,
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the factor d in the denominator of the expression for D(⃗0 ) reflects the fact that the same
equation does not impose any constraint on the gauge field for k⃗ = 0⃗. Also note that
Equation (66) is invariant14 under the reflection k⃗ → −⃗k or, more generally, under the
reflection k⃗ → −⃗k+ Nêµ.

The gluon-propagator functions D(⃗0 ) and D(⃗k ) can also be written in terms of the
momentum-space gauge field Ab

µ(h; k⃗ ), see Equation (24), yielding

D(⃗0 ) =
1
N ∑

b, µ


Ab
µ(h; 0⃗ )

2 
=

1
2N ∑

µ

Tr


Aµ(h; 0⃗ )
2 

(68)

and, see Equation (65),

D(⃗k ) =
1
N ′ ∑

b, µ, x⃗,⃗x2


Ab
µ(h; x⃗) exp


−2i

N


k⃗·x⃗+ kµ

2


Ab
µ(h; x⃗2) exp


2i
N


k⃗·x⃗2+

kµ
2



=
1
N ′ ∑

b, µ


Ab
µ(h; k⃗ ) Ab

µ(h; −⃗k )


=
1

2N ′ ∑
µ

Tr

Aµ(h; k⃗ ) Aµ(h; −⃗k )


, (69)

where we use (8) and the definition

Aµ(h; k⃗ ) ≡
N2
c−1

∑
b=1

tb Ab
µ(h; k⃗ ), (70)

in analogy with Equation (13). At the same time, Equation (24) implies that

Aµ(h; k⃗ ) =
N2
c−1

∑
b=1

tb ∑
x⃗Λx

Ab
µ(h; x⃗) exp


−2i

N


k⃗·x⃗+ kµ

2


. (71)

Then, given that the generators tb of the SU(Nc) group are chosen to be Hermi-
tian and the components Ab

µ(h; x⃗) are real—see the comment below Equation (7) [or
Equation (15)]—we have 

Aµ(h; k⃗ )
†

= Aµ(h; −⃗k ). (72)

Thus, we can also write Equation (69) as

D(⃗k ) =
1

2N ′
d

∑
µ=1

Tr


Aµ(h; k⃗ )

Aµ(h; k⃗ )

† 
. (73)

Finally, when considering a global gauge transformation v, Aµ(h; k⃗ ) transforms—see
Equations (13), (51) and (71)—as

Aµ(h; k⃗ ) → v Aµ(h; k⃗ ) v†, (74)

so that the scalar functions D(⃗0 ) and D(⃗k ) are invariant under such (global) gauge trans-
formations. In other words, the Landau-gauge gluon propagator has the same invariance
of the minimal-Landau-gauge condition and of the quantities (42)–(44), shown in the
last section.

3. Minimal Landau Gauge on the Extended Lattice
Here we define the extended-lattice version of the gauge-fixing problem presented in

the previous section, highlighting the similarities with Bloch’s theorem and discussing the
corresponding result for the minimal Landau gauge in Yang–Mills theory. More specifically,
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after describing the setup, we review, in Section 3.1, the statement of the theorem in
solid-state physics, summarizing its demonstration. Then, in Section 3.2, we outline the
analogous result for the gauge-fixing case, while in Section 3.3 we present its proof. Our
notation for Cartan sub-algebras and other mathematical details that are relevant in the
gauge-theory case are given in Appendix A.

Following refs. [1,5], we consider a thermalized link configuration {Uµ(x⃗)}, for the
SU(Nc) gauge group in d dimensions, defined on a lattice Λx with volume V = Nd and
PBCs. Then, we extend this configuration by replicating it m times along each direc-
tion, yielding a configuration on the extended lattice Λz, with lattice volume mdV. We
parametrize the sites of Λz by

z⃗ ≡ x⃗ + N y⃗, (75)

where x⃗  Λx and y⃗ belongs to the index lattice15 {Λy: yµ = 0, 1, . . . ,m− 1}, so that the
components zµ take values 1, 2, . . . ,mN. We also denote by Λx

(⃗y) each of the md (identical)
replicas of the original lattice Λx, specified by the y⃗ index coordinates. By construction,
{Uµ (⃗z )} is invariant under translations by N in any direction.

Then, as was performed in the previous section for the original lattice Λx, we impose
the minimal-Landau-gauge condition on Λz, i.e., we minimize the functional

EU [g] ≡ ℜ Tr
Nc dmd V

d

∑
µ=1

∑
z⃗Λz


1⊥ − Uµ(g; z⃗ )


, (76)

Uµ(g; z⃗ ) ≡ g(⃗z )Uµ (⃗z ) g(⃗z+ êµ)† (77)

with respect to the gauge transformation {g(⃗z )}, while keeping the link configuration
{Uµ (⃗z )} fixed. Here, g(⃗z ) are SU(Nc) matrices subject to PBCs on the extended lattice
Λz, i.e.,

g(⃗z+mNêµ) = g(⃗z ). (78)

The resulting gauge-fixed field configuration is, of course, transverse on Λz, and it
is also invariant under a translation by mNêµ. Indeed, as mentioned above, by construc-
tion of Λz, we have U (⃗z + Nêµ) = U (⃗z ) = U (⃗z + mNêµ) for µ,  = 1, . . . , d. Then,
from Equations (77) and (78), we get

U(g; z⃗+mNêµ) = U(g; z⃗ ). (79)

We thus have invariance under a translation by mNêµ —i.e., PBCs on Λz—for the trans-
formed gauge field. On the other hand, the original invariance under a translation by
Nêµ is lost after the gauge-fixing process since the gauge transformation {g(⃗z )} does not
have it.

3.1. Bloch’s Theorem for a Crystalline Solid

As explained in Ref. [1], the extended-lattice problem defined above on Λz is very
similar to the setup usually considered in the proof of Bloch’s theorem [26] for an (ideal)
crystalline solid in d dimensions. Indeed, the index lattice Λy corresponds to a finite cubic
Bravais lattice, with m unit cells in each direction, equipped with PBCs. Equivalently,
this Bravais lattice is a simple cubic lattice, with cells indexed by vectors y⃗  Λy. At
the same time, the original lattice Λx may be viewed as a primitive cell of the Bravais
lattice. Let us recall that, in state-solid physics, the primitive cell is defined as the d-
dimensional volume spanned by the (orthogonal) primitive vectors lêµ, where l is the
length of the cell, i.e., a vector r⃗ restricted to the primitive cell is written as l∑d

µ=1 rµ êµ,
with rµ  [0, 1). Finally, the thermalized lattice configuration {Uµ (⃗z )}, invariant under
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translation by N y⃗ = N∑d
µ=1 yµ êµ with y⃗  Λy, corresponds (for example) to a periodic

electrostatic potential U(⃗r ), invariant under translations by any vector R⃗ = l ∑d
µ=1 Rµ êµ of

the Bravais lattice, where the integer components Rµ take values 0, 1, . . . ,m− 1.
Bloch’s theorem states that the solution of the Schrödinger equation for this problem,

i.e., the wave function (⃗r ) for an electron in such a periodic potential, can be expressed as
a combination of so-called Bloch states—or Bloch waves—given by a plane wave (over the
whole lattice) modulated by a function, which is obtained as a (periodic) solution to the
restricted unit-cell problem. More precisely, let us denote by (⃗r ) any function defined on
the considered crystalline cubic lattice and by L = lm the physical size of the lattice. Then,
the use of PBCs, i.e., the condition (⃗r ) = (⃗r+ Lêµ) for any direction µ, implies that (⃗r )
can be (Fourier) expanded in plane waves exp (2i k⃗ ·⃗r/L) with

exp


2i

k⃗ ·Lêµ
L


= exp


2i kµ


= 1. (80)

This tells us that the components of k⃗ are integer numbers (i.e., kµ  Z) and that, when
they are restricted to the first Brillouin zone, we have16 kµ  [−m/2,m/2), yielding
discrete Fourier momenta kµ ≡ 2kµ/(lm)  [−/l,/l). Then, with this restriction,
the allowed plane waves have components kµ +mKµ, with Kµ  Z , i.e., they can be written
as exp [2i (⃗k +m K⃗ ) ·⃗r/L ]. Here, the vector m K⃗/L = ∑d

µ=1 Kµ êµ/l corresponds to the
so-called reciprocal lattice, i.e., it is such that

exp


2i

m K⃗
L

·R⃗


= exp


2i

d

∑
µ=1

Kµ Rµ


= 1 (81)

for any translation vector R⃗ of the Bravais lattice, yielding

exp


2i


k⃗ +m K⃗

L


·R⃗


= exp


2i

k⃗
L
·R⃗


= exp


2i

d

∑
µ=1

kµ Rµ

m


, (82)

with k⃗ in the first Brillouin zone.
With this setup, one can prove Bloch’s theorem (see the first proof in Ref. [26]) by

using the properties of the translation operator

T (R⃗)(⃗r ) = (⃗r+ R⃗). (83)

In particular, we need to recall the relation

T (R⃗) T (R⃗ ′ ) = T (R⃗ ′ ) T (R⃗) = T (R⃗+ R⃗ ′ ), (84)

valid for all vectors R⃗ and R⃗ ′ on the Bravais lattice. Hence, the translation opera-
tors form an Abelian group, with the trivial identity element T (⃗0 ) and the inverse
element T −1(R⃗) = T (−R⃗). At the same time, it is evident that any plane wave
exp [2i (⃗k +m K⃗ ) ·⃗r/L]—with fixed k⃗ (restricted to the first Brillouin zone) and K⃗ as
above—is an eigenfunction of T (R⃗) with eigenvalue exp (2 i⃗k ·R⃗/L), see Equation (82).
Thus, in the most general case, we have the eigenvectors

T (R⃗) ⃗k (⃗r ) = ⃗k (⃗r+ R⃗) = exp


2i

k⃗
L
·R⃗


⃗k (⃗r ) (85)
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with

⃗k (⃗r ) = ∑
K⃗

c⃗k (K⃗ ) exp


2i


k⃗ +m K⃗

L


·⃗r


, (86)

where k⃗ is fixed and taken in the first Brillouin zone, while K⃗ refers to vectors of the
reciprocal lattice. The last result is usually written as

⃗k (⃗r ) = exp


2i

k⃗
L
·⃗r

∑
K⃗

c⃗k (K⃗ ) exp


2i

m K⃗
L

· r⃗


≡ exp


2i

k⃗
L
·⃗r

u⃗k (⃗r ), (87)

where the function u⃗k (⃗r ) trivially satisfies, see Equation (81), the condition

u⃗k (⃗r+ R⃗) = u⃗k (⃗r ) . (88)

Hence, u⃗k (⃗r ) is effectively specified by vectors r⃗ in the primitive cell and may be obtained
from a restricted version of the original problem.

The proof of Bloch’s theorem is as follows. The Hamiltonian H for the crystalline solid
is, by hypothesis, invariant under a translation by R⃗, i.e., H commutes with T (R⃗). Then,
one can choose the eigenstates ⃗k (⃗r ) of T (R⃗) to also be eigenstates of H, i.e.,

H ⃗k (⃗r ) = λ⃗k ⃗k (⃗r ). (89)

Equivalently, by using Equation (87), one can define [26]

H ⃗k (⃗r ) = λ⃗k exp


2i

k⃗
L
·⃗r

u⃗k (⃗r ) ≡ exp


2i

k⃗
L
·⃗r


Hk⃗ u⃗k (⃗r ) (90)

and consider, instead of the original problem (89) on the Bravais lattice and with the
Hamiltonian H, the new problem

Hk⃗ u⃗k (⃗r ) = λ⃗k u⃗k (⃗r ), (91)

which is restricted to a single primitive cell and subject to the BCs (88). In the general case,
one expects the last eigenvalue problem to have infinite solutions (indexed by n), i.e., we
can write

Hk⃗ u⃗k ,n (⃗r ) = λ⃗k ,n u⃗k ,n (⃗r ) . (92)

Clearly, Hk⃗ depends17 on the (discretized) components kµ ≡ 2kµ/(lm) 
[−/l,/l). Hence, when one considers the infinite-volume limit m → +, the new
Hamiltonian depends on the (now continuous) parameters kµ and one expects the energy
levels λ⃗k ,n to be also a continuous function of these parameters. Then, for each n, these
values constitute a so-called energy band, leading to the description of the solid in terms of
a band structure.

3.2. Bloch’s Theorem for the Gauge-Fixing Problem

The above setup applies—in a rather straightforward manner—also to the gauge
link configuration on the extended lattice Λz. The main difference is that, here, the prim-
itive cell, i.e., the original lattice Λx, is also discretized, since it is given by the vectors
x⃗ = a∑d

µ=1 xµ êµ, where a is the lattice spacing and the components xµ take integer values in
[1,N]. Thus, in the above formulae for the crystalline solid, we just have to substitute the
magnitude l with Na (and, therefore, L with mNa). Then, after setting the lattice spacing
equal to 1, as usually performed in lattice gauge theory, we find that the vectors of the
Bravais lattice become R⃗ = N∑d

µ=1 Rµ êµ, with Rµ = 0, 1, . . . ,m− 1. Finally, by combining
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the original lattice Λx with the index lattice Λy, we recover our notation for Λz, identifying
the components Rµ with yµ and r⃗ with z⃗ = x⃗+ Ny⃗. In particular, we find that the generic
plane waves exp [2i k⃗ ′ ·⃗z/(mN)] are written in terms of wave-number vectors with com-
ponents k′µ = kµ +mKµ, as above. However, as stressed before (see note 5), instead of the
symmetric interval around 0 usually taken for the first Brillouin zone, here we consider
integers kµ in the interval [0,m− 1] and Kµ in [0,N−1].

In analogy with the Bloch theorem described in the previous section, one can prove
(see Appendix F of Ref. [5] and Section 3.3 below) that the gauge transformation g(⃗z ) that
minimizes the functional EU [g]—see Equations (76) and (77)—defined for the extended
lattice through z⃗ = x⃗+ Ny⃗ can be written as

g(⃗z ) = exp


i

d

∑
µ=1

Θµ zµ
N


h(x⃗), (93)

where h(x⃗) = h(x⃗ + Ny⃗) has the periodicity of the original lattice Λx and the matrices Θµ

belong to a Cartan sub-algebra of the su(Nc) Lie algebra, i.e., they commute. In Appendix A
we discuss the main properties of these matrices, which can be written as

Θµ =
Nc−1

∑
b=1

bµ t
b
C, (94)

where bµ (µ = 1, . . . , d) are real parameters and the matrices tbC are the generators of the
Cartan sub-algebra of su(Nc), which has dimension Nc−1.

As a result of Equation (93) above and the cyclicity of the trace, the minimizing
functional EU [g] in Equation (76) becomes

EU [g] =
ℜ Tr

Nc dmd V

d

∑
µ=1

∑
z⃗Λz


1⊥ − Uµ(h; x⃗) e−i

Θµ
N


, (95)

which is independent of y⃗. Thus, we can write

EU [g] ≡ EU,Θ[h] =
ℜ Tr
Nc dV

d

∑
µ=1

∑
x⃗Λx


1⊥ − Uµ(h; x⃗) e−i

Θµ
N


(96)

and define

EU,Θ[h] ≡
ℜ Tr
Nc d

d

∑
µ=1


 1⊥ − Zµ(h)

e−i
Θµ
N

V


, (97)

where
Zµ(h) ≡ ∑

x⃗Λx

Uµ(h; x⃗) (98)

is the zero mode of the (gauge-transformed) link variable Uµ(h; x⃗) in a given direction,
and it is evident that the numerical minimization can now be carried out on the original
lattice Λx. At the same time, imposing PBCs on Λz in Equation (93), we see that the
expression (with no summation over the index µ)

exp

i
Θµ zµ
N


, (99)

evaluated for zµ = mN, should be equal to

exp

imΘµ


=


exp


iΘµ

 m
= 1⊥. (100)
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Thus, the matrices Θµ have eigenvalues of the type 2nµ/m, where nµ is an integer.
Equivalently, the matrices exp (iΘµ) have eigenvalues exp (2inµ/m).

By comparing Equation (93) with Equation (87), and also Equation (100) with
Equation (80), it is evident that the matrices Θµ play the role of the momentum k⃗ in
the crystalline-solid problem. It is also interesting to observe that, from the numerical point
of view, the minimizing functional (97) and (98) can be interpreted as the usual minimiz-
ing functional (2) on the lattice Λx, using a periodic gauge transformation h(x⃗), together
with an “extended” (i.e., nonperiodic) gauge transformation exp (i∑d

=1 Θ x/N). The
functional EU,Θ[h], however, still depends (implicitly) on the size m of the index lattice
Λy through Equation (100). One should also note that the substitution of the original
minimizing function EU [g], which considers the gauge transformation g(⃗z ) on the extended
lattice Λz, with the modified minimizing function EU,Θ[h], which is restricted to the original
lattice Λx and depends on the Θµ matrices (see again Equations (97) and (98)), is completely
analogous to the substitution of the eigenvalue problem (89) with the problem (91). The
main difference is that, while the vector k⃗ is fixed in the Hamiltonian Hk⃗ , the matrices Θµ

are chosen by the minimization algorithm (see Section 6 below). On the other hand, one
could also consider—in analogy with the usual condensed matter approach—a given (fixed)
set of matrices Θµ and look (for example) at the different18 “Gribov copies” corresponding
to different solutions {h(x⃗)} of the small-lattice problem (96) defined by fixed Θµ’s.

We should note here that we are using the same notation as in Section 2 for the solution
{h(x⃗)}, meaning a periodic gauge transformation—i.e., effectively restricted to the small
lattice Λx—that solves the optimization problem defined by the minimizing functional on
Λx. However, one must remember that, in the extended-lattice problem, the corresponding
functional does not depend only on {Uµ(x⃗)} and {h(x⃗)}, but also on {Θµ}. In fact, as it is
evident from Equation (93), here the gauge transformation h(x⃗) is not just the restriction of
g(⃗z ) to the small lattice Λx, but it is the solution to the modified small-lattice problem (96).
Hence, if we want to relate the two objects, we might say that the transformation {h(x⃗)}
in Section 2 is the minimum of EU,Θ[h] with all matrices Θµ trivially given by 1⊥. This
distinction will be made clearer in the next few sections.

3.3. Proof of Equation (93)

Expression (83) can of course be applied also to the lattice setup considered in Section 3.2.
For example, the translation operator T (Nêµ) acts on U (⃗z ) and g(⃗z ) by shifting them to
the site z⃗+ Nêµ, i.e.,

T (Nêµ)U (⃗z ) = U (⃗z+ Nêµ), (101)

T (Nêµ) g(⃗z ) = g(⃗z+ Nêµ). (102)

Moreover, the use of PBCs, see Equations (78) and (79), implies that

T (mNêµ) =

T (Nêµ)

m
= 1⊥, (103)

where 1⊥ is the identity operator. Also, with our setup, the effect of T (Nêµ) in Equation (101)
is simply that of the identity.

In order to prove Equation (93), a key point is that the minimizing problem for the
extended lattice, defined by the functional in Equation (76), is invariant if we consider a shift
of the lattice sites z⃗ by N in any direction µ since this amounts to a simple redefinition of the
origin for the extended lattice Λz. This implies that, if g(⃗z ) is a solution of the minimizing
problem satisfying the BCs (78), then g ′ (⃗z ) = g(⃗z + Nêµ) is (trivially) a solution too,
satisfying the same BCs. Moreover, these two solutions select the same local minimum
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within the first Gribov region. At the same time, as already stressed above, due to cyclicity
of the trace, EU [g] is invariant under global gauge transformations v, and the same is
true for the quantities introduced in Equations (42)–(44), when applied to the extended
lattice Λz. Note that this corresponds to left multiplication19 of the solution to the gauge-
fixing problem by a fixed group element, mapping {g(⃗z )} onto {v g(⃗z )}. Thus, the gauge
transformation {g(⃗z )}—i.e., a given minimum solution—is always determined modulo a
global (left) transformation, and (with our setup) remains a solution under translations by
N in any direction.

The above observation needs some comments. In particular, we recall that, in Ref. [5],
the proof of Equation (93) is presented only for the absolute minima (of the minimiz-
ing functional) that belong to the interior of the so-called fundamental modular region.
Indeed, as shown in Appendix A of the same reference, these minima are unique, i.e.,
non degenerate, implying that the gauge transformation {g(⃗z )} connecting the (unfixed)
thermalized configuration {Uµ (⃗z )} to the (gauge-fixed) absolute minimum {Uµ(g; z⃗ )} is
unique, modulo a global gauge transformation. However, as stressed at the end of the Bloch
waves section of Ref. [1], even in the case of local minima one can make the (reasonable)
hypothesis that a specific realization of one of these minima also corresponds to a specific
and unique transformation {g(⃗z )} (up to a global transformation) when considering a
given configuration {Uµ (⃗z )}. Indeed, this has been verified numerically (see Ref. [27])
for small lattice volumes and for the local minima of the minimizing functional (2). We
thus assume, as in Ref. [1], that the local minima of EU [g] also define unique gauge trans-
formations. In other words, here we are considering truly degenerate local minima, i.e.,
connected by a nontrivial gauge transformation, as different minima. Also, we assume
that—at least for numerical simulations on finite lattice volumes—these degenerate minima
will not have identical values of the quantities characterizing the minimum solution, such
as E ,∆E , (A)2 and ΣQ, described20 in Section 2 (see also Section 4.3 below). As a matter
of fact, at the numerical level, the only degeneracy that can likely occur is the trivial one, i.e.,
when the corresponding link configurations are related by a global gauge transformation.

Based on the above discussion, we proceed to prove Equation (93) by writing

T (Nêµ) g(⃗z ) =

T (êµ)

N g(⃗z ) = g(⃗z+ Nêµ) = g ′ (⃗z ) = sµ g(⃗z ), (104)

where sµ is a z⃗-independent SU(Nc) matrix. This is the main hypothesis considered in
Refs. [1,5] and it is supported by our arguments above, i.e., that a shift of {g(⃗z )} by N along
a given direction µ produces an equivalent solution, and can therefore be parametrized as
left multiplication by a fixed element sµ of the group. Then, due to Equation (84), we have
that the sµ’s are commuting SU(Nc) matrices, i.e., they can be written as exp (iΘµ), with Θµ

given in Equation (94). Also, due to the PBCs for Λz, we need to impose the condition (103).
Hence, the relations

T (mNêµ) g(⃗z ) =

T (Nêµ)

m g(⃗z ) = smµ g(⃗z ) (105)

and
T (mNêµ) g(⃗z ) = g(⃗z+mNêµ) = g(⃗z ) (106)

yield
smµ = 1⊥. (107)

We stress that the action of the translation operator T (Nêµ) in Equation (104), i.e.,
the matrix sµ = exp (iΘµ), depends on the solution {g(⃗z )} to which it is applied, i.e.,
the parametrization of the matrices Θµ is determined by the considered solution of the
gauge-fixing problem, see also the comment below Equation (110).
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The above Equation (104) is the matrix analogue of the eigenvalue Equation (85)
[for R⃗ = Nêµ and l → N, so that L → mN]. Indeed, instead of the wave function ⃗k (⃗r ),
Equation (104) applies to a solution {g(⃗z )} of the minimizing problem EU [g], corresponding
to a specific local minimum. Also, on the r.h.s. of the equation, the matrix sµ appears21

instead of the phase exp (2i kµ/m), i.e., the corresponding eigenvalue in Equation (85).
Moreover, the action of the translation operators T (Nêµ) in Equation (104) can likewise be
expressed in terms of phase factors, if we write the gauge transformation g(⃗z ) as

g(⃗z ) =
Nc

∑
i,j=1

gij (⃗z ) Wij, (108)

where the matrices Wij = wiw†
j are defined in Appendix A.2 of Appendix A and gij (⃗z )

denotes the coefficient of Wij in the expansion of g(⃗z ). Then, we immediately find22

T (Nêµ) g(⃗z ) = sµ g(⃗z ) = exp (iΘµ) g(⃗z ) =
Nc

∑
i,j=1

e2in
i
µ/m gij (⃗z ) Wij, (109)

with integer niµ, so that each coefficient gij (⃗z )Wij gains a phase factor exp (2i niµ/m).
These factors are the usual eigenvalues τµ of the translation operator T (Nêµ) that satisfy

the relation (τµ)m = 1, implying that they can be written as τµ = exp

2i k ′µ/m


with

k ′µ  Z . In particular, in the first Brillouin zone, we have τµ = exp

2i kµ/m


with kµ = k ′µ

(mod m).
The above result

g(⃗z + Nêµ) = exp(iΘµ) g(⃗z ) (110)

is already equivalent to one of the usual formulations of the Bloch theorem (see Equa-
tion (8.6) in Ref. [26]). Indeed, by paraphrasing the statement in Ref. [28], we can say that

For any solution g(⃗z ) of the minimizing problem EU [g] there exists a set of commuting
matrices Θµ such that the translation by a vector Nêµ is equivalent to multiplying the
solution by the factor exp(iΘµ).

This provides a way to construct the solution g(⃗z )—at a point z⃗ of the extended
lattice Λz—as the successive application of exp(iΘµ) to g(x⃗), which is the same solution
but restricted to the primitive cell Λx. Hence, by taking into account the displacement,
from point x⃗ , along each direction µ—given by the indices yµ—we can write

g(⃗z ) = g(x⃗+ Ny⃗) = exp


i

d

∑
=1

Θ y


g(x⃗) . (111)

We stress that the above expression tells us that the extended-lattice solution g(⃗z )
is obtained by successive “block-rotations” of the primitive-cell portion of the solu-
tion g(x⃗): each time we move to a neighboring cell along the direction µ, the solution
picks up a factor exp(iΘµ). As a consequence, by substituting Equation (111) into the
expressions (76) and (77) and in analogy with the discussion presented in Section 3.2 above,
the minimization problem is broken down (due to cyclicity of the trace) into md copies of
the minimization problem23

ℜ Tr
Nc dV

d

∑
µ=1

∑
x⃗Λx


1⊥ − g(x⃗)Uµ(x⃗) g(x⃗+ êµ)†


. (112)
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For each of these copies, it corresponds to the minimization of the original functional for
the lattice Λx, i.e., the expression in Equation (2) [with g(x⃗) instead of h(x⃗)] but with the
boundary condition (see Equation (110) with z⃗ = x⃗),

g(x⃗ + Nêµ) = exp(iΘµ) g(x⃗) . (113)

Thus, the function g(x⃗) is not a solution to the usual gauge-fixing problem restricted to the
primitive cell Λx—which would correspond to a periodic function under translations by N
in all directions—but is closely related to it by the above rotations.

We now note that the BCs (113) may be incorporated automatically if we write, in
analogy with the usual proof of the Bloch theorem [26,28],

g(x⃗) = exp


i

d

∑
=1

Θ x
N


h(x⃗), (114)

where h(x⃗) is a solution to the gauge-fixing problem restricted to Λx, redefined24 in
terms of a modified gauge-transformed link configuration {Uµ(h; x⃗) exp(−iΘµ/N)}, see
Equation (96). In this way, the condition (113) is clearly satisfied. Moreover, it is straight-
forward to verify that the function h(x⃗) is periodic on Λx. Indeed, by inverting (114),
i.e., by writing

h(x⃗) = exp


−i

d

∑
=1

Θ x
N


g(x⃗), (115)

we have that

h(x⃗ + Nêµ) = exp


−i

d

∑
=1

Θ x
N


exp (−iΘµ) g(x⃗ + Nêµ)

= exp


−i

d

∑
=1

Θ x
N


g(x⃗) = h(x⃗), (116)

where we use (113) and the fact that the matrices Θ commute with each other. Therefore,
the above Equation (114) provides the desired solution to the modified minimization
problem on Λx, written in terms of the periodic function h(x⃗), up to choice of parameters
for the Θµ matrices, which are also fixed by the minimization problem.25

This completes our proof of Equation (93), which may also be written as

g(⃗z ) = exp


i

d

∑
=1

Θ z
N


h(⃗z ), (117)

where the function h(⃗z ) is defined on the extended lattice but has periodicity under trans-
lations by N in all directions, i.e., it is a “clone” of the primitive-cell solution h(x⃗) above.
Hence, as performed for the original Bloch theorem, we can write the solution g(⃗z ) as a
product of a “plane wave” by a (periodic) solution of a modified version of the primitive-
cell problem.

4. The Minimizing Problem Revisited
Using the analogue of Bloch’s theorem, i.e., Equation (93), the gauge-transformed link

variable (77) is given by

Uµ(g; z⃗ ) = exp


i

d

∑
=1

Θ z
N


Uµ(h; x⃗) exp


−i

Θµ

N


exp


−i

d

∑
=1

Θ z
N


, (118)
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with h(x⃗) discussed in the previous two sections and recalling the general expression
for a gauge-transformed link, Equation (3). Since h(x⃗) satisfies PBCs with respect to the
original lattice Λx, it is clear that {Uµ(h; x⃗)} is also a periodic, gauge-transformed link
configuration on Λx. Thus, the effect of the index lattice is completely encoded in the
exponential factors and in the matrices Θµ. Let us stress that, even though we use the
same notation26 considered in Section 2, in the present case {Uµ(h; x⃗)} is not transverse
on Λx. Indeed, transversality27 applies to {Uµ(g; z⃗ )}, taken for the extended lattice Λz.
By considering the relation (75) we can, however, rewrite the above result in a different
way, i.e.,

Uµ(g; z⃗ ) = Uµ(g; x⃗, y⃗) = exp


i

d

∑
=1

Θ y


Uµ(l; x⃗) exp


−i

d

∑
=1

Θ y


, (119)

where the y⃗ coordinates characterize the replicated lattice Λ(⃗y)
x and we define a “local”

version of the transformed gauge link

Uµ(l; x⃗) = l(x⃗)Uµ(x⃗) l(x⃗+ êµ)†

≡ exp


i

d

∑
=1

Θ x
N


Uµ(h; x⃗) exp


−i

Θµ

N


exp


−i

d

∑
=1

Θ x
N


(120)

where the gauge transformation restricted to Λx, see Equation (93), is given as

l(x⃗) = exp


i

d

∑
=1

Θ x
N


h(x⃗). (121)

Similarly, we can write28

Uµ(l; x⃗− êµ) ≡ exp


i

d

∑
=1

Θ x
N


exp


−i

Θµ

N


Uµ(h; x⃗− êµ)


exp


−i

d

∑
=1

Θ x
N


. (122)

Let us point out that the quantity l(x⃗) is actually a redefinition of g(x⃗) in (114), which
is however never extended to Λz. This is performed to single out the Λx portion of the
solution g(⃗z ) and will be important from now on in our analysis. In particular, we make use
of the fact that both l(x⃗) and h(x⃗) “exist” only on Λx, and are therefore simply replicated
identically to other cells Λx

(⃗y). We stress, however, that the properties of these two small-
lattice gauge transformations differ: indeed, while l(x⃗) is the nonperiodic solution of the
minimization problem defined by the original functional EU [l] on Λx, see Equation (128)
below, h(x⃗) is the periodic solution of the modified minimization problem (96), which
depends on the Θµ’s. Thus, {Uµ(l; x⃗)} is transverse on Λx and {Uµ(h; x⃗)} is not as already
mentioned above.

The definition of l(x⃗) implies that, see Equation (113),

l(x⃗+ Nêµ) = exp (iΘµ) exp


i

d

∑
=1

Θ x
N


h(x⃗+ Nêµ)

= exp (iΘµ) exp


i

d

∑
=1

Θ x
N


h(x⃗) = exp (iΘµ) l(x⃗), (123)
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yielding

Uµ(l; x⃗+ Nê) = l(x⃗+ Nê)Uµ(x⃗+ Nê) l(x⃗+ Nê + êµ)†

= exp (iΘ) l(x⃗)Uµ(x⃗) l(x⃗+ êµ)† exp (−iΘ)

= exp (iΘ)Uµ(l; x⃗) exp (−iΘ), (124)

which is reminiscent of the so-called twisted BCs [29] with constant transition matrices29

Ω = exp (iΘ). One should also note that, if we expand the link variable Uµ(l; x⃗) in terms
of the Wij matrices, as done in the previous section for the g(⃗z ) matrices, we can rewrite
Equation (124) as30

Uµ(l; x⃗+ Nê) =
Nc

∑
i,j=1

Uij
µ (l; x⃗+ Nê) Wij =

Nc

∑
i,j=1

e2i(n
i
−nj)/m Uij

µ (l; x⃗) Wij, (125)

where ni, n
j
 are integers. Hence, the coefficients of Uµ(l; x⃗) satisfy toroidal BCs (see

Appendix A.3 in Ref. [16])

Uij
µ (l; x⃗+ Nê) = e2i(n

i
−nj)/m Uij

µ (l; x⃗), (126)

which, depending on the values of ni and nj
, include periodic as well as anti-periodic BCs,

given respectively by e2i(n
i
−nj)/m = 1 and e2i(n

i
−nj)/m = −1.

The above Equation (119) implies that gauge-fixed configurations in different repli-

cated lattices Λ(⃗y)
x differ only by the exponential factors exp (±i∑d

=1 Θ y), which cor-

respond to a global gauge transformation within each Λ(⃗y)
x . Moreover, we have that

{Uµ(l; x⃗)} is transverse on each replicated lattice Λ(⃗y)
x . Indeed, by noting that

Tr

Uµ(l; x⃗)


= Tr


Uµ(h; x⃗) exp


−i

Θµ

N


, (127)

we can rewrite Equation (96) as

EU [g] = EU,Θ[h] = EU [l] ≡
ℜ Tr
Nc dV

d

∑
µ=1

∑
x⃗Λx


1⊥ − Uµ(l; x⃗)


(128)

and, therefore, {Uµ(l; x⃗)} is transverse31 when the functional EU [l] is minimized.
We can summarize these results by saying that, with the consideration of the extended

lattice Λz, we trade the periodic transverse link configuration {Uµ(h; x⃗)} on the original
lattice Λx—in the small-lattice problem—with the nonperiodic, but still transverse, link
configuration {Uµ(l; x⃗)}, also defined on Λx.32 Moreover, this transverse link configuration

is replicated on each Λ(⃗y)
x , indexed by the yµ coordinates, and then globally rotated using

the gauge transformation exp (i∑d
=1 Θ y), see Equation (119), in such a way that PBCs

are satisfied on Λz. One could visualize this lattice setup by making an analogy with
some of the works by M.C. Escher, such as those called Metamorphosis I, II and III (see,
for example, [30]), in which one starts from a simple geometrical form, e.g., a square,
and replicates it several times on a plane by adding a small rotation (and a distortion) at
each step. As already stressed in note 23, the description of the gauge-fixed configuration—
in terms of {Uµ(l; x⃗)} and of global rotations exp (i∑d

=1 Θ y)—naturally singles out
domains, which can be characterized (for example) in terms of color magnetization as
performed in Section 6.
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The above observations have important consequences also for the type of Gribov
copies that one can obtain when using the extended lattice Λz in our setup. Indeed, they
are essentially given by the Gribov copies that can be found on the original lattice Λx

where, however, the transverse link configuration {Uµ(l; x⃗)} is now nonperiodic. As a
consequence, the set of local minima generated by the usual small-lattice gauge-fixing
procedure, i.e., by the gauge transformation {h(x⃗)} as in Section 2, are (in principle) not
related to the local minima generated by the new gauge-fixing approach, i.e., by the gauge
transformation {l(x⃗)}. In fact, one should recall that {h(x⃗)} in the extended problem is
also (implicitly) determined by the Θ matrices, and vice versa, through the minimization
process. Moreover, due to the extra freedom allowed by the Bloch waves (see note 25),
we expect

EU [l] = EU,Θ[h] ≤ EU [h] (129)

for a fixed (thermalized) gauge-link configuration {Uµ(x⃗)}. At the same time, not much
can be said about a comparison of different Gribov copies due to the {l(x⃗)} gauge trans-
formation and those obtained by gauge fixing a configuration that is directly thermalized
on the extended lattice Λz, i.e., which has (at any step) an invariance under translation by
mNêµ only.

4.1. The Transversality Condition

We turn now to the constraints imposed by the minimization of the functional EU [l].
Our goal is to obtain expressions for observables constructed from the transformed gauge
links Uµ(l; x⃗), both to characterize the transversality condition, i.e., to obtain the gauge-
fixing criteria from the minimizing functional EU [l], and to define the quantities that will be
measured in our simulations. However, since we want to explore the similarities between
the minimization problem on the extended lattice and the original problem on the small
lattice Λx (as addressed in Section 2), we also express our results in terms of the periodic
transformation {h(x⃗)}, stressing that it now refers to the modified minimization condition
depending on the matrices Θµ. To this end, we note that these matrices (detailed in
Appendix A) are conveniently parametrized in terms of an SU(Nc) matrix v and a set of
integers {nj

µ} characterizing the plane waves.
We first recall that, see Equations (97) and (98),

EU [g] = EU [l] = EU,Θ[h]

=
ℜ Tr
Nc d

d

∑
µ=1



 1⊥ −


∑

x⃗Λx

h(x⃗)Uµ(x⃗) h†(x⃗+ êµ)


e−i

Θµ
N

V



 (130)

and that, when the matrices Θµ are written in the basis {Wij = wi w†
j = v† Mij v} intro-

duced in Appendix A.2, we have, see Equation (A25),

e−i
Θµ
N = v† Tµ(mN; {nj

µ}) v, (131)

where the diagonal matrix Tµ(mN; {nj
µ}) has elements

Tµ jj ≡ exp


−2i

nj
µ

mN


. (132)

Then, from the above equations it is evident that, when analyzing the consequences of
the gauge-fixing condition, we have to treat differently the gauge transformations h(x⃗)
and v, which depend on real parameters,33 and the transformation T(mN; {nj

µ}), which is
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defined in terms of the integer parameters nj
µ. In particular, the minimizing functional (130)

is quadratic with respect to the matrix elements hij(x⃗) (see also Appendix C.3 in Ref. [31])
and vij, and has to satisfy the (also quadratic) constraints h(x⃗) h†(x⃗) = v v† = 1⊥. At the

same time, EU,Θ[h] depends nonlinearly on the (integer) parameters nj
µ, which are subject

to the linear constraint (A32). Thus, the minimizing problem we are interested in is a
mixed-integer nonlinear optimization problem, which can be formulated as [32]

min
x, n

f (x, n) (133)

with
f :


Rdr ×Zdi


, x  Ωr ⊂ Rdr , and n  Ωi ⊂ Zdi , (134)

where the subsets Ωr and Ωi (respectively of dimensions dr and di) are determined by the
constraints imposed on the real variables x and on the integer variables n. It is important
to stress that, in these cases, the determination of the global minimum is, in general,
an NP-hard problem.

In order to obtain an explicit expression for the stationarity condition imposed by
the minimization of EU,Θ[h], let us first examine the case in which the matrices Θµ are
fixed. For this, we can repeat the analysis carried out in Section 2 and consider the gauge
transformation h(x⃗) → R(τ; x⃗) h(x⃗) with the one-parameter subgroup (7). Hence, we
obtain, see Equation (130),

EU,Θ[h]
′
(0) =

ℜ Tr
Nc dV ∑

b, µ, x⃗

− i

b(x⃗) tb Uµ(h; x⃗) e−i

Θµ
N − e−i

Θµ
N Uµ(h; x⃗)b(x⃗+ êµ) tb



=
2ℜ Tr
Nc dV ∑

b, µ, x⃗

b(x⃗) tb

2 i


Uµ(h; x⃗) e−i

Θµ
N − e−i

Θµ
N Uµ(h; x⃗− êµ)


, (135)

which should be compared to Equation (9). Here, as usual, x⃗  Λx, the color index b takes
values 1, . . . ,N2

c − 1 and µ = 1, . . . , d. The above expression is also equal to

2ℜ Tr
Nc dV ∑

b, µ, x⃗

b(x⃗)
2 i

ei∑
Θx
N


tb Uµ(h; x⃗) e−i

Θµ
N − e−i

Θµ
N Uµ(h; x⃗− êµ)tb


e−i∑

Θx
N , (136)

since the external factors exp (±i∑d
=1 Θ x/N) are simplified by using the cyclicity of

the trace. Then, the first derivative of the minimizing functional—with respect to {h(x⃗)}
and considering fixed Θµ’s—can be written in terms of the link variables Uµ(l; x⃗), see
Equation (120), as

EU,Θ[h]
′
(0) =

2ℜ Tr
Nc dV ∑

b, µ, x⃗

b(x⃗)
2 i


t̃ b(x⃗)Uµ(l; x⃗) − Uµ(l; x⃗− êµ) t̃ b(x⃗)



=
2ℜ Tr
Nc dV ∑

b, µ, x⃗

b(x⃗) t̃ b(x⃗)
2 i


Uµ(l; x⃗) − Uµ(l; x⃗− êµ)


, (137)

where we define the new set of Hermitian and traceless generators34

t̃ b(x⃗) ≡ exp


i

d

∑
=1

Θ x
N


tb exp


−i

d

∑
=1

Θ x
N


. (138)
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Now, we impose the stationarity condition EU,Θ[h]
′
(0) = 0, which must hold for any

set of parameters b(x⃗). Clearly, this means that, for each lattice site x⃗ and color index b,
we have the condition

ℜ Tr
d

∑
µ=1

t̃ b(x⃗)
2 i


Uµ(l; x⃗) − Uµ(l; x⃗− êµ)


= 0 . (139)

In analogy with Equations (10) and (23), let us define

Aµ(l; x⃗) ≡ 1
2 i


Uµ(l; x⃗) − U†

µ(l; x⃗)

traceless

(140)

=
1
2 i


Uµ(l; x⃗)−U†

µ(l; x⃗)

− 1⊥ Tr

2 i Nc


Uµ(l; x⃗)−U†

µ(l; x⃗)


(141)

and

(·A)(l; x⃗) ≡
d

∑
µ=1


Aµ(l; x⃗)− Aµ(l; x⃗− êµ)


. (142)

We can nowwrite theminimization condition (139) above in terms of color components
of the gauge-field gradient, using the site-dependent generators in Equation (138) as


·Ab


(l; x⃗) = Tr


t̃ b(x⃗)

(·A)(l; x⃗)
2


= 0 ∀ x⃗, b , (143)

by noting, see Equation (141), that

Tr

t̃ b(x⃗)

Aµ(l; x⃗)
2


= Tr


t̃ b(x⃗)


Uµ(l; x⃗) − U†

µ(l; x⃗)
4 i


= ℜ Tr


t̃ b(x⃗)

Uµ(l; x⃗)
2 i


(144)

and

Tr

t̃ b(x⃗)

Aµ(l; x⃗ − êµ)
2


= ℜ Tr


t̃ b(x⃗)

Uµ(l; x⃗ − êµ)
2 i


. (145)

Hence, the Np = V (N2
c − 1) constraints needed to characterize the stationary point of

EU,Θ[h](τ), with respect to the gauge transformation {h(x⃗)}—obtained in Equation (139)
and rewritten in Equation (143)—may be interpreted as a transversality condition for
the color components of the gauge-transformed gauge field Aµ(l; x⃗) as will be defined
below. Actually, as already mentioned, to implement these conditions in practice, it is
convenient35 to write the above expressions in terms of Uµ(h; x⃗) and Θµ. We then get,
from Equation (144),

Tr

t̃ b(x⃗)

Aµ(l; x⃗)
2


= Tr


tb

4 i


Uµ(h; x⃗) e−i

Θµ
N − ei

Θµ
N U†

µ(h; x⃗)


= ℜTr


tb Uµ(h; x⃗) e−i

Θµ
N

2i


, (146)
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using Equation (120) and the definition (138). In like manner, see Equations (122) and (145),
we have

Tr

t̃ b(x⃗)

Aµ(l; x⃗ − êµ)
2


= Tr


tb

4 i


e−i

Θµ
N Uµ(h; x⃗− êµ)−U†

µ(h; x⃗− êµ) ei
Θµ
N



= ℜ Tr


 tb

e−i
Θµ
N Uµ(h; x⃗− êµ)

2 i


. (147)

Notice that, contrary to Equations (144) and (145), the expressions on the r.h.s. of
Equations (146) and (147) are written in terms of the original (site-independent) generators
{tb} and involve only Uµ(h; x⃗) and Θµ. They are the natural choice to be employed in a
numerical simulation. Of course, the above connection between the expressions in terms of
{t̃ b(x⃗)} and of {t b} can also be seen directly after rewriting Equation (143) as

0 = Tr

t̃ b(x⃗)

(·A)(l; x⃗)
2


= Tr


tb

e−i∑
Θ x
N (·A)(l; x⃗) ei∑

Θ x
N

2


, (148)

where the r.h.s. is in agreement with Equation (135), see also Equations (120) and (122).
Using the above results and in analogy with Section 2, we can define the color compo-

nents of the gauge-transformed gauge field as

Ab
µ(l; x⃗) ≡ Tr


t̃ b(x⃗)

Aµ(l; x⃗)
2



= ℜ Tr

t̃ b(x⃗)

Uµ(l; x⃗)
2 i


= ℜTr


tb Uµ(h; x⃗) e−i

Θµ
N

2i


 (149)

and

Ab
µ(l; x⃗ − êµ) ≡ Tr


t̃ b(x⃗)

Aµ(l; x⃗ − êµ)
2


= ℜ Tr


t̃ b(x⃗)

Uµ(l; x⃗ − êµ)
2 i



= ℜ Tr


 tb

e−i
Θµ
N Uµ(h; x⃗− êµ)

2 i


, (150)

which imply the relations

Aµ(l; x⃗) =
N2
c−1

∑
b=1

Ab
µ(l; x⃗) t̃

b(x⃗) and Aµ(l; x⃗ − êµ) =
N2
c−1

∑
b=1

Ab
µ(l; x⃗ − êµ) t̃ b(x⃗), (151)

since {t̃ b(x⃗)} is a basis of the su(Nc) Lie algebra. Then, Equation (143) can be written as

d

∑
µ=1


Ab
µ(l; x⃗)− Ab

µ(l; x⃗− êµ)

= 0 ∀ x⃗, b (152)

and it is also equivalent to the transversality condition

(·A)(l; x⃗) =
d

∑
µ=1


Aµ(l; x⃗)− Aµ(l; x⃗− êµ)


= 0 ∀ x⃗ . (153)

One should stress that the above expressions are valid only “locally”, i.e., when evalu-
ating the lattice divergence of the gauge field at site x⃗ , and that they have to be modified
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accordingly when moving to the next site, e.g., when evaluating

·Ab


(l; x⃗ + êµ). In par-

ticular, we consider a new set of generators {t̃ b(x⃗)} for each site x⃗ , where the divergence is
evaluated, and these generators are used both to define Ab

µ(l; x⃗) and Ab
µ(l; x⃗ − êµ), in terms

of the matrices Uµ(l; x⃗) and Uµ(l; x⃗ − êµ). Indeed, the lattice divergence is just a simple
(backward) discretization of the usual continuum divergence and, when written explicitly
for the color components of the gauge field, it should be based on the same generators at
points x⃗ and x⃗− êµ, namely {t̃ b(x⃗)}. This is the origin of the different expressions obtained
for the gauge field at site x⃗ and at site x⃗ − êµ—respectively Equations (144) and (145), or
Equations (146) and (147)—considering that the generators t̃ b(x⃗) are defined as a function
of x⃗ , and that the generators tb do not generally commute with the matrices Θµ. At the

same time, note that the combination Uµ(h; x⃗) e−i
Θµ
N or, equivalently, e−i

Θµ
N Uµ(h; x⃗), also

appears in the minimizing functional (96), which enforces the transversality condition
on the lattice Λx but applied to this modified link configuration, see the comment below
Equation (114).

Of course, as performed in Section 5, a more natural approach would be to consider
an expansion in the basis {Wij}, which is constructed using the common eigenvectors of
the matrices Θµ. Then the matrices Θµ are diagonal, see Equation (A24), and we obtain a
unique definition of the gauge-field components at x⃗ and x⃗ − êµ. Here, however, we work
with the color components in order to obtain expressions that can be easily compared with
those presented in Section 2. Indeed, all the expressions above clearly reduce to the ones in
Section 2 in the trivial case Θµ = 1⊥ for all µ.

As for the minimization with respect to the matrices Θµ, it does not introduce

any other constraint, even though—when varying the parameters vij and nj
µ (see

Equations (131) and (132))—we need to verify the inequalities imposed by the considered
definition of local minimum, see Equations (133) and (134). This becomes evident if we
consider the stationarity condition for the whole (extended) lattice Λz, i.e.,

0 = (·A)(g; z⃗ ) = (·A)(g; x⃗+ y⃗N)

=
d

∑
µ=1

Aµ(g; x⃗+ y⃗N) − Aµ(g; x⃗+ y⃗N − êµ), (154)

which enforces the Np,m = Vmd(N2
c − 1) constraints expected36 from the minimization of

EU [g]. At the same time, we know that

Aµ(g; z⃗ ) = Aµ(g; x⃗+ y⃗N)

≡ 1
2 i


Uµ(g; x⃗+ y⃗N)−U†

µ(g; x⃗+ y⃗N)

traceless

(155)

= exp


i

d

∑
=1

Θ y


Uµ(l; x⃗)−U†

µ(l; x⃗)
2 i



traceless

exp


−i

d

∑
=1

Θ y


(156)

= exp


i

d

∑
=1

Θ y


Aµ(l; x⃗) exp


−i

d

∑
=1

Θ y


(157)

where we use Equations (119), (120) and (140), and similarly37 for Aµ(g; z⃗ − êµ) = Aµ(g; x⃗+
y⃗N − êµ). Hence, we find that

(·A)(g; z⃗ ) = exp


i

d

∑
=1

Θ y


(·A)(l; x⃗) exp


−i

d

∑
=1

Θ y


(158)
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and it is evident that Equation (154) does not add any information to Equation (153).
In summary, the transversality condition for the lattice gauge field Aµ(g; z⃗ ) defined

in (155) is imposed by requiring the small-lattice field Aµ(l; x⃗), defined in (140), to be
transverse. This can be verified by using the expressions in Equations (143), (152) or (153).

4.2. The Limit m → +

We consider now the limit of m going to infinity, i.e., when the eigenvalues
exp (2in̄µ/m) of the matrices exp (iΘµ)—with n̄µ = nµ (mod m)  [0,m− 1]—can be
written as exp (2iϵµ) with the real (continuous) parameters ϵµ ≡ n̄µ/m taking values
in the interval [0, 1). Then, as noticed in Ref. [5], the minimization process imposes also
the stationarity condition with respect to variation of the Θµ matrices. In this case, it is
convenient to consider Equation (130) with the matrices Θµ written in terms of the Car-
tan generators {tbC}, as in Equation (94). Next, we can consider small variations of the
parameters bµ, i.e., write the matrices

Θ ′
µ =

Nc−1

∑
b=1

tbC

bµ + τ bµ


= Θµ + τ

Nc−1

∑
b=1

tbC 
b
µ, (159)

where bµ are general parameters and τ is small, so that

e−i
Θ′
µ
N ≈ e−i

Θµ
N


1⊥ − i

τ

N

Nc−1

∑
b=1

tbC 
b
µ


. (160)

Hence, by imposing a null first variation of the minimizing functional with respect to
τ, as above, we must have, see Equations (97) and (98),

0 =
ℜ Tr
Nc d

d

∑
µ=1


i Zµ(h)

e−i
Θµ
N

V N

Nc−1

∑
b=1

tbC 
b
µ


 =

ℜ Tr
Nc d N V ∑

µ, b
tbC 

b
µ


i Zµ(h) e−i

Θµ
N


(161)

and we find

0 = ℜ Tr

tbC


i Zµ(h) e−i

Θµ
N


=

1
2
Tr


i tbC


Zµ(h) e−i

Θµ
N − ei

Θµ
N Z†

µ(h)


(162)

for all µ and b since the equality must hold for any set of parameters {bµ}. Finally, using
Equation (98) we obtain

0 = Tr


tbC
2i ∑

x⃗Λx


Uµ(h; x⃗) e−i

Θµ
N − ei

Θµ
N U†

µ(h; x⃗)


, (163)

which can be written as,38 see Equation (146),

Qb
µ(l) ≡ ∑

x⃗Λx

Ab
µ(l; x⃗) = 0. (164)

At the same time, we can define, see Equation (140),

Qµ(l) ≡ ∑
x⃗Λx

Aµ(l; x⃗) (165)

so that
Qb

µ(l) =
Tr
2


tbC Qµ(l)


, (166)

where we use Equation (149) and the definition (138).



Universe 2025, 11, 273 29 of 56

The above gauge-fixing condition tells us that the color components of the gauge field
Aµ(l; x⃗), corresponding to the generators tbC of the Cartan sub-algebra, have zero constant
mode in the infinite-volume limit m → +, yielding

Nc−1

∑
b=1

Qb
µ(l) t

b
C = 0. (167)

Then, using the result obtained at the end of Appendix A.2 of Appendix A, see
Equations (A44)–(A46), which relates the coefficients mi—in the expansion of a matrix
MC of the Cartan sub-algebra, such as the (null) expression in Equation (167), relative to the
generators tiC—with its coefficients ajj in the basis of the matrices Wjj, we can also write,
see Equation (164),

Qjj
µ (l) =

Nc−1

∑
i=1

Qi
µ(j)


Rij  j − Ri(j−1)  j−1


= 0 (168)

for the coefficients Qjj
µ (l) of Qµ(l), which implies

Nc

∑
j=1

Qjj
µ (l)Wjj = 0 . (169)

We will comment again on this outcome in Section 5.4. For the moment we only
stress that the condition (164)—or (167) — is weaker than the one presented in Ref. [5],
which, however, has been obtained considering the absolute minimum of the minimizing
functional EU,Θ[h]. Per contra, here we prefer to focus on a minimizing condition that can
be verified in a numerical simulation, given that—in the general case—we have access only
to the local minima of EU,Θ[h].

4.3. Convergence of the Numerical Minimization

The numerical convergence of a gauge-fixing algorithm can be checked, also
when using the extended lattice Λz, by considering the three quantities defined in
Equations (42)–(44). Moreover, as for the minimizing functional EU [l] = EU,Θ[h], they can
be evaluated on the original lattice Λx, (essentially) without the need to consider the whole
extended lattice Λz. For the quantity ∆E , this has already been proven in Equation (97). In
the case of (A)2 we can write, as in Equation (52),

(A)2 ≡ Tr
2 (N2

c − 1)md V ∑
z⃗Λz


(·A)(g; z⃗ )

2

=
1
md ∑

y⃗Λy


Tr

2 (N2
c − 1)V ∑

x⃗Λx


(·A)(g; x⃗+ y⃗N)

2


(170)

and use the expression for (·A)(g; x⃗ + y⃗N) reported in the previous section, see
Equation (158). Then, due to the trace, it is clear that the exponential factors
exp (±i∑d

=1 Θy) cancel for each site x⃗ . In particular—after evaluating the trace—there
is no dependence on the y⃗ coordinates in Equation (170) and we have

(A)2 =
Tr

2 (N2
c − 1)V ∑

x⃗Λx


(·A)(l; x⃗)

2
=

1
(N2

c − 1)V ∑
x⃗Λx

N2
c−1

∑
b=1


·Ab


(l; x⃗)

2
, (171)
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with

·Ab


(l; x⃗) defined in Section 4.1. The above result is, of course, expected since the

gauge-fixed gauge configuration {Aµ(l; x⃗)} is transverse on each replicated lattice, for any
lattice site x⃗ .

Finally, see Equations (44) and (53), for the quantity

ΣQ =
1

mN

d

∑
µ=1

N2
c−1

∑
b=1

mN

∑
zµ=1


Qb

µ(g; zµ)− Qb
µ(g)

2
/

d

∑
µ=1

N2
c−1

∑
b=1


Qb
µ(g)

2

=
1

mN

d

∑
µ=1

mN

∑
zµ=1

Tr

Qµ(g; zµ)− Qµ(g)

2
/

d

∑
µ=1

Tr

Qµ(g)

2
, (172)

we define

Qb
µ(g; zµ) ≡ ∑

z
 ̸=µ

Ab
µ(g; z⃗ ) and Qb

µ(g) ≡ 1
mN

mN

∑
zµ=1

Qb
µ(g; zµ), (173)

in analogy with Section 2.1. On the other hand, similarly to Equation (15), we can write

Qb
µ(g; zµ) = ℜ Tr ∑

z
 ̸=µ

Uµ(g; z⃗ ) tb

2 i
(174)

so that we can use the expression

Qb
µ(g; zµ) = ℜ Tr


Qµ(g; zµ) tb

2 i


(175)

with, see Equation (119),

Qµ(g; zµ = xµ+Nyµ) = ∑
z

 ̸=µ

Uµ(g; z⃗ ) = ∑
y=1,m
 ̸=µ

exp


i

d

∑
=1

Θ y


Qµ(l; xµ) exp


−i

d

∑
=1

Θ y


(176)

and
Qµ(l; xµ) ≡ ∑

x=1,N
 ̸=µ

Uµ(l; x⃗). (177)

Then, it is evident from the above equations that, in the evaluation of ΣQ, we do not
need a full loop over the extended lattice Λz, but it suffices to consider a loop over Λx (see
the last equation), followed by a loop overΛy, see the r.h.s. of Equation (176). Thus, the com-
putational cost is still of order V (if md ∼< V). Let us stress that the quantities Qµ(l; xµ)
are not constant on Λx since the transverse gauge-fixed link configuration {Uµ(l; x⃗)} is
nonperiodic and, therefore, when repeating the steps in Equation (47), the second term is
different from zero, see also Equations (48) and (49). As a consequence, we cannot expect

to write ΣQ by averaging only over the fluctuations

Qb

µ(l; xµ)− Qb
µ(l)

2
, where

Qb
µ(l; xµ) ≡ ∑

x
 ̸=µ

Ab
µ(l; x⃗) and Qb

µ(l) ≡ 1
N

N

∑
xµ=1

Qb
µ(l; xµ). (178)

On the contrary, the quantities Qb
µ(g; zµ) in Equation (175) are independent of zµ since

Uµ(g; z⃗ ) is periodic in Λz and the gauge field Aµ(g; z⃗ ) is transverse. Therefore, for the

evaluation of ΣQ, we need to consider the global rotations exp

i∑d

=1 Θy

, on each



Universe 2025, 11, 273 31 of 56

replicated lattice Λ(⃗y)
x , see Equation (176), and we cannot avoid the double sum, i.e., the

sum over the y coordinates in Equation (176) and the sum over the x coordinates in
Equation (177).

5. Link Variables in Momentum Space and the Gluon Propagator
The formulae discussed in Section 2.2 for the gluon propagator in momentum space

D(⃗k )—when the usual lattice Λx is considered—clearly apply also to the case of the
extended lattice Λz, simply by exchanging the sum over x⃗  Λx with the sum over z⃗  Λz

and, correspondingly, the sum over k⃗  Λx with the sum over k⃗ ′  Λz, i.e., the wave-
number vectors have now components k ′µ = 0, 1, . . . ,mN−1 (when restricted to the first
Brillouin zone). However, in order to understand the impact of the extended lattice on the
evaluation of the gluon propagator (see Section 5.4 below), it is useful to first evaluate the
Fourier transform

Uµ(g; k⃗ ′ ) ≡ ∑
z⃗Λz

Uµ(g; z⃗ ) exp

− 2i
m N


k⃗ ′ ·⃗z


(179)

of Uµ(g; z⃗ ), for µ = 1, . . . , d. Notice that this definition is based on the extended lattice,
differing from the small-lattice definition (25) in the range of the sum and in the exponential
factor. Also, it is natural to consider the coefficients39

Uij
µ (g; z⃗ ) ≡ w†

i Uµ(g; z⃗ )wj (with i, j = 1, 2, . . . ,Nc) (181)

in the basis of the common eigenvectors wj of the Cartan generators and of the matrices
Θµ, see Equations (A21), (A29) and (A30). More exactly, we use

exp

−iΘµ


wj = exp


−2i

m
nj
µ


wj (182)

as well as

w†
i exp


iΘµ


= w†

i exp

2i
m

niµ


, (183)

and find, see also Equations (75) and (119),

Uij
µ (g; z⃗ ) = w†

i exp


i

d

∑
=1

Θ y


Uµ(l; x⃗) exp


−i

d

∑
=1

Θ y


wj

= exp

−2i

m

d

∑
=1


nj
 − ni


y


w†
i Uµ(l; x⃗)wj

≡ exp

−2i

m

d

∑
=1


nj
 − ni


y


Uij

µ (l; x⃗) (184)

where, recalling Equation (120) and that the Θµ’s commute with each other,

Uij
µ (l; x⃗) = w†

i exp


i

d

∑
=1

Θ x
N


Uµ(h; x⃗) exp


−i

Θµ

N
− i

d

∑
=1

Θ x
N


wj

= exp


− 2i
m N


d

∑
=1


nj
 − ni


x + nj

µ


w†
i Uµ(h; x⃗)wj

= exp


− 2i
m N


d

∑
=1


nj
 − ni


x + nj

µ


Uij

µ (h; x⃗). (185)
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Then, we obtain

Uij
µ (g; k⃗ ′ ) ≡ w†

i
Uµ(g; k⃗ ′ )wj (186)

= ∑
z⃗Λz

Uij
µ (g; z⃗ ) exp


− 2i
m N


k⃗ ′ ·⃗z


(187)

= Uij
µ


l;

k⃗ ′

m


∑

y⃗Λy

exp

−2i

m

d

∑
=1


k ′ + nj

 − ni

y


(188)

= Uij
µ


l;

k⃗ ′

m


d

∏
=1


m−1

∑
y=0

exp

−2i

m


k ′ + nj

 − ni

y


, (189)

where we use Equations (179) and (184). We also introduce the coefficients of the Fourier
transform Uµ(l; k⃗ ′/m) of the matrix Uµ(l; x⃗) on the Λx lattice, see Equation (25), given by

Uij
µ


l;

k⃗ ′

m


= ∑

x⃗Λx

Uij
µ (l; x⃗) exp


− 2i
m N


k⃗ ′ ·x⃗



= ∑
x⃗Λx

Uij
µ (h; x⃗) exp


− 2i
m N


d

∑
=1


k ′ + nj

 − ni

x + nj

µ


, (190)

where we make use of the expression (185). Thus, from Equations (27) and (189), we find
that Uij

µ (g; k⃗ ′ ) is zero unless the quantity k ′ + nj
 − ni is a multiple of m, for every direction

, and in this case we have

Uij
µ (g; k⃗ ′ ) = md Uij

µ


l;

k⃗ ′

m


. (191)

In order to better understand the above result, we note that the integers k ′ can be
written as

k ′ = k + K m, (192)

where k  [0,m− 1] and K  Z . This is the decomposition we choose for representing
the wave numbers of the Fourier momenta on the extended lattice for the gauge-fixing
problem, as explained at the beginning of Section 3.2, and it is completely analogous to
the one introduced for the crystalline-solid problem in Section 3.1. In particular, for k⃗ ′

in the first Brillouin zone, corresponding to k ′  [0,mN−1], we have K in the interval
[0,N−1].40 Indeed, this implies that the vector with components 2k ′/(mN) becomes the
sum of two terms, 2k/(mN) and 2K/N, with the latter one—corresponding to 2K⃗/N
(with K = 0, 1, . . . ,N−1)—belonging to the reciprocal lattice since exp (2i K⃗·R⃗/N) = 1
for any translation vector R⃗ = Ny⃗ = N∑d

µ=1 yµ êµ. At the same time, the former one—

i.e., 2⃗k/(mN) (with k = 0, 1, . . . ,m − 1)—is generated by the translation operator T .

In fact, as already noted in Section 3.3, the coefficients gij (⃗z ) of g(⃗z ) in the Wij basis

become multiplied by the phase exp

2iniµ/m


under a translation by R⃗ = Nêµ, see

Equation (109), in agreement with the above observation if we identify kµ with niµ.

The same observation applies to the integers41 nj
 and ni such that we can write

nj
 ≡ n̄j

 +m nj
, (193)
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with n̄j
µ  [0,m− 1] and nj

  Z (and similarly for ni). This implies that the quantity

 ≡ k + n̄j
 − n̄i = mod


k ′, m


+ mod


nj
 − ni, m


, (194)

where the difference n̄j
 − n̄i is a fixed integer in the interval [−m+ 1,m− 1], must be an

integer multiple of m, in order to produce a nonzero value in Equation (189). Therefore,
since k is non-negative and smaller than m, we may have42

 =




0 if n̄j

 − n̄i ≤ 0,

m if n̄j
 − n̄i is positive .

(196)

Clearly, in both cases there is only one value of k =  − (n̄j
 − n̄i) that makes

k ′ + nj
 − ni an integer multiple of m, i.e., such that

k ′ + nj
 − ni = m


K +



m
+ nj

 − ni

, (197)

with /m equal to 0 or 1. It is also evident that, for any direction , this result does
not depend on the value of K and we have, for any given vector K⃗, a set of nonzero
coefficients. In this sense, for the purpose of determining which coefficients Uij

µ (g; k⃗ ′ ) are

nonzero, see Equation (189), we can think of  as a “function” of n̄
j
 − n̄i as detailed above

(see also note 42), in such a way that momenta k⃗ ′ = k⃗ + mK⃗ corresponding to nonzero
coefficients will have general K⃗ and specific combinations for k⃗ , determined from (194).
Thus, if we define

Uij
µ


l;

k⃗ ′

m


≡ Uij

µ (l; k⃗, K⃗ ), (198)

we can collect these nonzero coefficients—with different values of k⃗—in families indexed
by the vectors K⃗. Finally, when the relation (197) is satisfied (for any direction —with a
suitable choice for k ′—and with /m = 0, 1) we can write, see Equation (190),

Uij
µ


l;

k⃗ ′

m


= exp


−2i nj

µ

mN


∑

x⃗Λx

Uij
µ (h; x⃗) exp


−2i

N

d

∑
=1


K +



m
+ nj

 − ni

x


. (199)

Thus, considering the above result and Equation (191), we see that, if the Fourier
transform Uµ(g; k⃗ ′ ) of the link variables on the extended lattice Λz, evaluated for the wave-
number vector k⃗ ′, is nonzero, i.e., if Equation (197) is verified, then its evaluation is always
reduced to a Fourier transform on the original latticeΛx for a modified wave-number vector,
with components K + /m+ nj

 − ni. It is important to stress again that—while we can
choose K⃗ freely—the vector ⃗ depends on the considered indices i and j of the coefficients.

5.1. The Diagonal Elements

The results obtained in the previous section greatly simplify when43 i = j, i.e., when
nj
 − ni = 0, so that the coefficients Ujj

µ (g; k⃗ ′ ) are nonzero for, see Equation (194),

 = k = 0, (200)

yielding k′ = 0, m, 2m, . . . , (N−1)m = K m. Then, we find, see Equation (199),

Ujj
µ


l;

k⃗ ′

m


= exp


−2i nj

µ

mN


∑

x⃗Λx

Ujj
µ (h; x⃗) exp


−2i

N
K⃗ ·x⃗


= exp


−2i nj

µ

mN


Ujj
µ (h; K⃗ ), (201)
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where
Ujj
µ (h; K⃗ ) ≡ ∑

x⃗Λx

Ujj
µ (h; x⃗) exp


−2i

N


K⃗·x⃗


(202)

is the usual Fourier transform44 (on the original lattice Λx) of U
jj
µ (h; x⃗), see Equation (25).

At the same time, the components of the lattice momenta are given by

p (⃗k ′ ) ≡ 2 sin

 k′
mN


= 2 sin


 K

N


, (203)

i.e., they coincide exactly45 with the values allowed on the original Λx lattice, see
Equation (32) with k substituted by K.

One should also note that the case i = j is the only one relevant for the evalua-
tion of the minimizing functional—see (in this order) Equations (128), (A29), (A26), (190)
and (202)—since

EU [l] = 1− ℜ Tr
Nc dV

∑
µ,x⃗

Uµ(l; x⃗) = 1− ℜ Tr
Nc dV

∑
µ,x⃗

Nc

∑
i,j=1

Uij
µ (l; x⃗)Wij

= 1−∑
µ,x⃗

Nc

∑
j=1

ℜUjj
µ (l; x⃗)

Nc dV
= 1− ℜ

Nc dV
∑
µ

Nc

∑
j=1

exp

−2i nj

µ

mN


Ujj
µ (h; 0⃗ ), (205)

where µ = 1, . . . , d and x⃗  Λx.

5.2. Fixed Wave-Number Vectors

The above results clarify for which values of k⃗ ′ a given coefficient Uij
µ (g; k⃗ ′ ) is nonzero.

Now we can invert the question and try to understand which coefficients are nonzero
for a given (chosen) momentum k⃗ ′. Indeed, note that, in a numerical evaluation of the
gluon propagator using lattice simulations, the considered momenta k⃗ ′ are usually fixed a
priori. The integers ni, on the other hand, will be selected to minimize the functional EU [l]
and we can analyze which combinations are expected to produce a nonzero value for the
propagator. For example, if (at least) one component k ′ of k⃗ ′ is equal to zero, it is evident
that only the diagonal elements (i.e., i = j) are usually different from zero, given that the
factor, see Equation (189),

m−1

∑
y=0

exp

−2i

m


nj
 − ni


y


=

m−1

∑
y=0

exp

−2i

m


n̄j
 − n̄i


y


(206)

is always equal to zero for i ̸= j, unless46 n̄i = n̄j
, see again Equation (26). This result

is even stronger when k ′ = 0 for more than one direction, i.e., it would be even more
unlikely in this case to have a nonzero coefficient when i ̸= j. Thus, when evaluating the
zero-momentum gluon propagator, one should recall that, except in a fortuitous event
with n̄i = n̄j

 for all  = 1, . . . , d, when i ̸= j, usually the only nonzero coefficients
of the zero-momentum link variables are the diagonal ones (i.e., i = j), given by, see
Equations (191) and (201) with K⃗ = 0⃗,

Ujj
µ (g; 0⃗ ′ ) = md exp


−2i nj

µ

mN


Ujj
µ (h; 0⃗ ). (207)

For the same reason, if the vector k⃗ ′ has (for example) all equal components, i.e.,

k ′ = k+ Km for  = 1, 2, . . . , d, (208)
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where k and K are fixed integers with values (respectively) in [0,m− 1] and [0,N−1], then
a nondiagonal coefficient Uij

µ (g; k⃗ ′ ) (with i ̸= j) could be nonzero only in the unlikely

event that, for all  = 1, . . . , d, the differences n̄j
 − n̄i are either equal to −k or to m−k

so that the value of  = k + n̄j
 − n̄i = k+ n̄j

 − n̄i, see Equation (196), is either 0 or m
for all directions . On the other hand, as seen in the previous section, all the diagonal
elements are (always) different from zero for k ′ = Km (i.e., k = 0) since the factors in
Equation (189) become

m−1

∑
y=0

exp

−2i

m
k ′ y


=

m−1

∑
y=0

exp

−2i K y


= m. (209)

5.3. Gauge Field in Momentum Space

We can now apply the outcomes obtained in the previous section to the eval-
uation of the gauge field, given in terms of the gauge-transformed gauge link, see
Equations (10) and (140), as

Aµ(g; z⃗ ) ≡ 1
2 i


Uµ(g; z⃗ )−U†

µ(g; z⃗ )

traceless

=
1
2 i


Uµ(g; z⃗ )−U†

µ(g; z⃗ )

− 1⊥ Tr

Nc


Uµ(g; z⃗ )−U†

µ(g; z⃗ )


(210)

or of its coefficients Aij
µ(g; z⃗ ), in momentum space. As a first step, we need to consider

how Equations (186)–(190) become modified when evaluating the Fourier transform of the
coefficients,47 see, for example, Equation (A30),


U†

µ(g; z⃗ )
ij

= w†
i U

†
µ(g; z⃗ )wj =


w†

j Uµ(g; z⃗ )wi

∗
=


Uji

µ (g; z⃗ )
∗
. (211)

In particular, using Equation (184) we can write


U†

µ(g; z⃗ )
ij

= exp

−2i

m

d

∑
=1


nj
 − ni


y

 
Uji

µ (l; x⃗)
∗
, (212)

with, see Equation (185),


Uji

µ (l; x⃗)
∗

= exp

− 2i
m N

 d

∑
=1


nj
 − ni


x − niµ

  
Uji

µ (h; x⃗)
∗

. (213)

Then, the difference 
Uµ(g; z⃗ ) − U†

µ(g; z⃗ )
ij

(214)

is simply given, see Equations (184) and (212), by

exp

−2i

m

d

∑
=1


nj
 − ni


y

 
Uij

µ (l; x⃗) − Uji
µ (l; x⃗)

∗ 
. (215)

Thus, if we write, in analogy with Equation (24),

Aµ(g; k⃗ ′ ) ≡ ∑
z⃗Λz

Aµ(g; z⃗ ) exp


− 2i
m N


k⃗ ′ ·⃗z +

k ′µ
2


, (216)
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and similarly for the coefficients Aij
µ(g; k⃗ ′ ), we find that, see Equations (188), (210), (215)

and (A30),

Aij
µ(g; k⃗ ′ ) = ∑

z⃗Λz


Uµ(g; z⃗ )−U†

µ(g; z⃗ )
ij
− ij TrNc


Uµ(g; z⃗ )−U†

µ(g; z⃗ )


2i
e
− 2i

m N


k⃗ ′·⃗z+ k ′µ

2



 ∑
y⃗Λy

exp

−2i

m

d

∑
=1


k ′ + nj

 − ni

y


, (217)

which is again null, see Equation (197), unless the relation

k ′ + nj
 − ni = m


K +



m
+ nj

 − ni


(218)

is verified (for every direction ) with /m = 0, 1 determined by n̄j
 − n̄i, see

Equation (195). In this case, the r.h.s. in Equation (217) is equal to md. Here we use
the fact that the trace term is multiplied by the identity, see Equation (210), which has
coefficients ij. Also note that we are writing the gauge field in momentum space as a
linear combination of the (Nc × Nc) matrices Wij = wi w†

j (with i, j = 1, . . . ,Nc) and that

Tr

wi w†

j


= ij, see Equation (A26). Also, as detailed below, the trace term does not

depend on y⃗, in agreement with the overall exponential factor in (217).
As for the second factor in Equation (215), it is equal to

exp


− 2i
m N

d

∑
=1


nj
 − ni


x

 
e−

2injµ
mN Uij

µ (h; x⃗) − e
2i niµ
mN Uji

µ (h; x⃗)
∗

, (219)

where we use Equations (185) and (213). At the same time, for the trace term
in (210) and (217) we have, see Equations (119) and (120),

1
2i

Tr

Uµ(g; z⃗ )−U†

µ(g; z⃗ )


=
1
2i

Tr

Uµ(l; x⃗)−U†

µ(l; x⃗)


=
1
2i

Tr

Uµ(h; x⃗) e−i

Θµ
N − ei

Θµ
N U†

µ(h; x⃗)

. (220)

Hence, noting again Tr

Wij = ij, the above trace can be written as

Nc

∑
j=1

1
2i


Ujj

µ (h; x⃗) e−
2injµ
mN − e

2injµ
mN Ujj

µ (h; x⃗)
∗


=
Nc

∑
j=1

ℑ

Ujj

µ (h; x⃗) exp


−2i nj

µ

mN


, (221)

which can also be obtained by summing Equation (219) for j = i and dividing the result by
2 i. This yields

Aij
µ(l; x⃗) = w†

i Aµ(l; x⃗)wj = w†
i
1
2 i


Uµ(l; x⃗) − U†

µ(l; x⃗)

traceless

wj

= exp


− 2i
mN

d

∑
=1

(nj
 − ni) x


1
2i


Uij

µ (h; x⃗) e−
2injµ
mN

− e
2iniµ
mN Uji

µ (h; x⃗)
∗  − ij

Nc

Nc

∑
l=1

ℑ

Ull

µ (h; x⃗) e
−2inlµ
mN


(222)
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where we use Equations (219) and (221). Then, by recalling Equation (157), it is evident
that the coefficient of proportionality in Equation (217) is given by

Aij
µ


l;

k⃗ ′

m


= ∑

x⃗Λx

exp

− 2i
mN

k⃗ ′ ·

x⃗+

êµ
2


Aij
µ(l; x⃗), (223)

which is the usual small-lattice definition of the Fourier transform of Aij
µ(l; x⃗), i.e.,

Equation (24), for the wave-number vector k⃗ ′/m. By collecting the above results, we
end up with the expression48

Aij
µ(g; k⃗ ′ ) = md Aij

µ


l;

k⃗ ′

m


= md ∑

x⃗Λx

e−
2i
N


k⃗ ′
m


·

x⃗+

êµ
2


Aij
µ(l; x⃗). (225)

Therefore, besides the factor md and the modified wave-number vector k⃗ ′/m with
components, see Equations (193) and (218),

k ′µ = m

Kµ +

µ

m
+ nj

µ − niµ

− nj

µ + niµ = m

Kµ +

µ

m


− n̄j

µ + n̄iµ, (226)

the only difference—with respect to the computation on the original lattice Λx, see
Equations (12) and (24)—is represented by the phase factors in Equation (222), which are a
direct consequence of the dependence of the gauge transformation on the Θµ matrices.

Finally, as already stressed in Appendix A.2, see comment below Equation (A27),
the N2

c coefficients entering the linear combination of the Wij = wj w†
i matrices are not all

independent, when considering an element of the su(Nc) Lie algebra. Moreover, with our
convention, the gauge field is Hermitian. Then, if we write

Aµ(l; x⃗) =
Nc

∑
i,j=1

WijAij
µ(l; x⃗) (227)

we obtain, see Equation (A35), that the coefficients Aij
µ(l; x⃗) are complex numbers such that

Aij
µ(l; x⃗)

∗
= Aji

µ(l; x⃗), (228)

which can be verified directly from Equation (222). The above result gives, see
Equation (225),

Aij
µ(g; k⃗ ′ )

∗
= md Aij

µ(l; k⃗ ′/m)
∗
= md Aji

µ(l; −⃗k ′/m) = Aji
µ(g; −⃗k ′ ). (229)

At the same time, we have


Aµ(l; k⃗ ′/m)

†
=

Nc

∑
i,j=1

Aij
µ(l; k⃗ ′/m)

∗
Wij†

=
Nc

∑
i,j=1

Aji
µ(l; −⃗k ′/m) Wji = Aµ(l; −⃗k ′/m) (230)

and 
Aµ(g; k⃗ ′ )

†
= md


Aµ(l; k⃗ ′/m)

†
= md Aµ(l; −⃗k ′/m) = Aµ(g; −⃗k ′ ), (231)

i.e., Equation (72) is verified also on the extended lattice Λz.
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5.4. Gluon Propagator on the Extended Lattice

In order to evaluate the gluon propagator on Λz, it is convenient to start from
Equations (68) and (69), which now are written as

D(⃗0 ′ ) =
Tr

2N md

d

∑
µ=1


Aµ(g; 0⃗ ′ )

2
(232)

and

D(⃗k ′ ) =
Tr

2N ′ md

d

∑
µ=1


Aµ(g; k⃗ ′ ) Aµ(g; −⃗k ′ )


, (233)

where the normalization factors N and N ′ are defined in Section 2.2. At the same time,
one can easily evaluate the trace after expanding the gauge-field matrices in the basis
Wij = wi w†

j , yielding

D(⃗k ′ ) =
1

2N ′ md

d

∑
µ=1

Nc

∑
i,j=1


Aij
µ(g; k⃗ ′ ) Aji

µ(g; −⃗k ′ )


=
md

2N ′
d

∑
µ=1

Nc

∑
i,j=1


Aij
µ(l; k⃗ ′/m) Aji

µ(l; −⃗k ′/m)


=
md

2N ′
d

∑
µ=1

Nc

∑
i,j=1

  Aij
µ(l; k⃗ ′/m)


2 

, (234)

where we use (in this order) Equations (A27), (225) and (229). However, as discussed
above—in order to be different from zero—each coefficient Aij

µ(l; k⃗ ′/m) requires a specific
value for the wave-number vector k⃗ and, hence, for the wave-number vector k⃗ ′ = k⃗+mK⃗,
for a given K⃗ , see Equations (194), (218) and (226). Conversely, for fixed k⃗, only some of the
coefficients entering the expression (234) contribute to the gluon propagator. On the other
hand, for each choice of k⃗, we have the freedom to choose among Nd different vectors K⃗. In
particular, as shown in Section 5.2, if we consider k ′ = mK, with K either equal to zero
or to a fixed value K in the interval [1,N−1], then (most likely) the gluon propagator is
given by

D(⃗k ′ ) ≈ md

2 (d− 1) (N2
c − 1)V

d

∑
µ=1

Nc

∑
j=1

 Ajj
µ (l; K⃗ )


2

, (235)

i.e., only the diagonal elements contribute to it, with a null vector ⃗, see again Equa-
tion (194). At the same time, from Equation (203), we also know that the corresponding
gluon propagator can be considered a function of the lattice momenta with components

p (⃗k ′ ) = 2 sin

 K

N


=




0, or,

2 sin

 K
N


.

(236)

This observation is in agreement with our findings in Ref. [1], where indeed momenta
k⃗ ′ of the type (k ′, 0, 0, . . . , 0), (k ′, k ′, 0, . . . , 0), . . . , (k ′, k ′, k ′, . . . , k ′), with k ′ = k+mK, have
produced nonzero results only for k = 0. From Equation (235) it is also evident that,
in order to compare a result obtained on the extended lattice Λz with a result obtained on
the original lattice Λx, we have to consider D(⃗k ′ )/md, which is again in agreement with
the findings presented in the same reference.
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Similarly, for the case of zero momentum, we have

D(⃗0 ) =
md

2N
d

∑
µ=1

Nc

∑
i,j=1

  Aij
µ(l; 0⃗ )


2 

(237)

and each matrix element appearing on the r.h.s. is nonzero, see Equation (194), only if
n̄i = n̄j

 (for any  = 1, . . . , d). Thus, also in this case, the main contribution to the gluon
propagator comes from the diagonal coefficients, i.e.,

D(⃗0 ) ≈ md

2 d (N2
c − 1)V

d

∑
µ=1

Nc

∑
j=1


Ajj
µ (l; 0⃗ )

2 
, (238)

where we use the result, see below Equation (A35), that the coefficients Ajj
µ (l; x⃗) are real.

Note that the above approximation should become more and more valid in the limit of
m → +, given that the probability of having n̄i = n̄j

 is equal to 1/m, if we imagine that
both n̄i and n̄j

 have equal probability of taking one of the possible values 0, 1, . . . ,m− 1.
Moreover, using Equation (223) we can write

Ajj
µ (l; 0⃗ ) = ∑

x⃗Λx

Ajj
µ (l; x⃗), (239)

which are the jj coefficients of the matrix Qµ(l), defined in Equation (165), so that

Ajj
µ (l; 0⃗ ) = w†

j Qµ(l)wj = Qjj
µ (l). (240)

Therefore, Equation (168) [see also Equation (164)] implies that all gauge-fixed con-
figurations (on the extended lattice Λz, for m → +) should be characterized by a gauge
field with almost null zero-mode coefficients Ajj

µ (l; 0⃗ ) and, consequently, by a strongly
suppressed zero-momentum gluon propagator D(⃗0 ). This result was already proven in
Ref. [5] for the case of an absolute minimum of the minimizing functional EU [g]. Here,
we have shown that it applies also to any local minimum of EU [g], in agreement with our
numerical findings in Ref. [1]. However, as already suggested in the caption of Figure 1
of the same reference, this suppression is simply a peculiar effect of the extended gauge
transformations in the limit of large m—as shown above—and not a physically significant
result. To further support this conclusion, we recall that null zero modes for the gauge
fields in minimal Landau gauge are also obtained on a finite lattice with free boundary
conditions (FBCs) [33]. In the present work, the BCs for the link variablesUµ(l; x⃗) are given
by Equation (124), i.e., they are not free but they are more general than the usual PBCs. In
particular, as m → +, we find that the toroidal BCs (126) applied to the coefficients of the
link variables yield

Uij
µ (l; x⃗+ Nē) = e

2i
m


njµ−niµ


Uij

µ (l; x⃗) = e
2i
m


n̄jµ−n̄iµ


Uij

µ (l; x⃗)

→ e2i

ϵ
j
µ−ϵiµ


Uij

µ (l; x⃗), (241)

where the real parameters ϵjµ, ϵiµ  [0, 1) have already been defined in Section 4.2, and we
use Equation (193). Clearly, for each direction µ and for each coefficient (with indices i and
j), there are—in principle—different BCs, even though they are not completely independent
of each other. Hence, the BCs considered for the gauge field Uµ(l; x⃗) are somewhat in
between the PBCs for the gauge field Uµ(h; x⃗) and the FBCs of Ref. [33], and it seems
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reasonable to us that one finds the zero modes of the nonperiodic gauge field Uµ(l; x⃗) to be
(much) more suppressed than those of the periodic gauge field Uµ(h; x⃗).

6. Numerical Simulations and Conclusions
Numerical simulations can be easily implemented using the Bloch setup considered

in this work (see also Ref. [1]). To this end, one just needs to generate a thermalized
d-dimensional link configuration {Uµ(x)} with periodicity N, i.e., for a lattice volume
V = Nd with PBCs. As for the minimization of the functional EU [g] = EU,Θ[h], defined in
Equations (3), (97) and (98), it can be performed recursively, using two alternating steps:

(a) The matrices Θµ are kept fixed as one updates the matrices h(x⃗) by sweeping through
the lattice using a standard gauge-fixing algorithm [18–22]. In particular, one can
again consider a single-site update (37), where the matrix r(x⃗) should satisfy the
inequality (40) with, see Equation (135),

w(x⃗) ≡
d

∑
µ=1


Uµ(h; x⃗) e−iΘµ/N + U†

µ(h; x⃗− êµ) eiΘµ/N

, (242)

which should be compared to Equation (39).
(b) The matrices Zµ(h) are kept fixed in Equation (97), as one selects the matrices Θµ,

belonging to the Cartan sub-algebra, see Equation (94), in such a way that they
minimize the quantities

−ℜ Tr
e−iΘµ/N

V
Zµ(h) (243)

and satisfy the condition (100) as in Equation (A25). We note that, for this minimization
step, one usually does not employ a simple multiplicative update as in Equation (37).
The main problem is that the minimizing functional is quadratic in the matrix v. On
the other hand, the dependence on the integer parameters nj

µ is rather trivial.

From the above discussion, it is also evident that, contrary to the situation described
in Section 2.1 (for the implementation of the usual minimal-Landau-gauge condition),
the organization of the numerical algorithm is slightly more complicated when considering
the extended lattice Λz. Indeed, since the gauge transformation h(x⃗) and its update r(x⃗)
do not commute (in general) with the Θµ matrices, it is no longer true that we can write the
single-site update as

exp


i

d

∑
=1

Θ x
N


h(x⃗) = l(x⃗) → r(x⃗) l(x⃗). (244)

Instead, we need to consider the update

l(x⃗) → exp


i

d

∑
=1

Θ x
N


r(x⃗) h(x⃗), (245)

which preserves the Bloch-function structure. Thus, we can still make use of the multiplica-
tive updates reported in Equation (41) but, besides the link configuration {Uµ(h; x⃗)}, we
need to store (separately) the matrices Θµ. In fact, Equation (95) illustrates that it is suffi-
cient (and necessary) to know {Uµ(h; x⃗)} and {Θµ} in order to carry out the minimization
process. Let us notice that, as is the case for the usual minimizing functional, EU,Θ[h] is
bounded from below. Hence, any iterative algorithm that ensures minimization at each
step is expected to converge. Indeed, we did not encounter any convergence problems in
our tests of the method.
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More details about the numerical implementation of this algorithm will be discussed
in a future work. Here, we only present the numerical checks we have performed to
confirm the results obtained in Section 5. In particular, in Figures 1 and 2 we show the
“spectrum” of the gluon propagator or, to be more specific, the allowed momenta, i.e., the
momenta for which a nonzero gluon propagator D(⃗k ) is obtained. To this end we recall
that—when considering Λx—the lattice momenta p2 (⃗k) = ∑d

µ=1 p
2
µ (⃗k ) have components

pµ (⃗k ) = 2 sin

 kµ/N


, see Equations (32) and (35), where N is the lattice side and, due

to the symmetry of p2 (⃗k) under the reflection k⃗ → −⃗k + Nêµ (see Section 2.2), we just
need to consider kµ = 0, 1, . . . ,N/2 (when N is even). Then, it is easy to verify that,
for N = 4 and d = 3, there are only seven different momenta (with degeneracy). Similarly,
for N = 8 and d = 3, there are 25 different momenta (with degeneracy). These momenta—
which we call here original momenta—are shown (in blue) in the right column of plots
(a) and (b) of Figures 1 and 2, respectively for the N = 4 and N = 8 case. At the same
time, for N = 128 (and again d = 3), there are about 45,000 different momenta (with
degeneracy), which are shown (in magenta) in the left column of plots (a) and (b) of both
figures.49 Finally, on the right column of plot (b) of Figures 1 and 2 we show, in green
and in red, the allowed momenta obtained by considering two different configurations
for, respectively, the lattice V = (4 × 32)3 and V = (8 × 16)3, using the Bloch-wave
setup described above. As one can easily see, the allowed momenta always include the
original momenta, as well as other momenta that are configuration-dependent. Moreover,
we considered the condition k ′ + nj

 − ni  m, see Equation (197), which should be
satisfied by the allowed momenta. This was checked using one configuration for the lattice
volumes V = (16× 8)3 and V = (32× 4)3, and two configurations for each of the setups
V = (8× 16)3 and V = (4× 32)3. In total, for these six configurations, we found that
there were slightly more than 16,000 allowed momenta. Of these, a little less than 6000
are the lattice momenta that can be considered also on the small (original) lattice. In all
cases, we checked that Equation (197) is indeed verified for the nonzero values of the
gluon propagator.
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Figure 1. In plot (a), on the left, we show the original momenta for the lattices V = 1283 (left column)
and V = 43 (right column). The same momenta are reported in plot (b), on the right, together with
the allowed momenta, obtained by considering two different configurations for the lattice setup
V = (4× 32)3, i.e., with N = 4 and m = 32. All simulations were performed using the SU(2) gauge
group at  = 3.0.
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Figure 2. In plot (a), on the left, we show the original momenta for the lattices V = 1283 (left column)
and V = 83 (right column). The same momenta are reported in plot (b), on the right, together with
the allowed momenta, obtained by considering two different configurations for the lattice setup
V = (8× 16)3, i.e., with N = 8 and m = 16. All simulations were performed using the SU(2) gauge
group at  = 3.0.

We also stress that the explanation presented in Section 5.4 about the suppression of
D(⃗0 ), in the limit m → , is essentially in agreement with the intuitive argument presented
in Ref. [1]. To see this, using Equations (222) and (239), we can write

Ajj
µ (l; 0⃗ ) = ∑

x⃗Λx


1
2i


Ujj

µ (h; x⃗)e−
2injµ
mN − e

2injµ
mN Ujj

µ (h; x⃗)
∗− 1

Nc

Nc

∑
l=1

ℑ

Ull

µ (h; x⃗) e
−2inlµ
mN


, (246)

i.e., we are evaluating the diagonal jj coefficients of the matrix, see Equation (98),

1
2i


Zµ(h) e−i

Θµ
N − ei

Θµ
N Z†

µ(h)

− 1⊥ ℑTr

Nc


Zµ(h)e−i

Θµ
N



=
1
2i


Zµ(h) v† Tµ v− v† T†

µ v Z
†
µ(h)


− 1⊥ ℑTr

Nc


Zµ(h) v† Tµ v


, (247)

where Tµ is a shorthand notation for the diagonal matrices Tµ(mN; {nj
µ}), see

Equations (131) and (132). Hence, with wj = v† êj, we end up with the expression

Ajj
µ (l; 0⃗ ) = ê†j

v Zµ(h) v† Tµ − T†
µ v Z†

µ(h)v†

2 i
êj −

ℑTr
Nc


Zµ(h) v† Tµ v



= ê†j
Vµ − V†

µ

2 i
êj −

ℑTr
Nc

Vµ, (248)

where we define Vµ ≡ v Zµ(h) v† Tµ. At the same time, in order to impose the gauge-fixing
condition, we need to maximize the quantity, see Equation (97),

ℜ Tr
d

∑
µ=1

Zµ(h) e−i
Θµ
N = ℜ Tr

d

∑
µ=1

Zµ(h) v† Tµ v = ℜ Tr
d

∑
µ=1

Vµ . (249)

Intuitively, this maximization can be easily achieved if one finds a global rotation v
such that the (rotated) zero modes v Zµ(h) v† become close to diagonal matrices. Then,

given that in the limit m →  the discretized parameters nj
µ/mN become continuous,50

one should be able to use the diagonal matrices Tµ = Tµ(mN; {nj
µ})—whose elements are

Tµ jj = exp (−2inj
µ/mN)—to bring the matrices Vµ as close as possible to real diagonal
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matrices. As a consequence, both terms in Equation (248) should be close to zero, implying
Ajj
µ (l; 0⃗ ) ≈ 0 and D(⃗0 ) ≈ 0, see Equations (238). This is an artifact of the method and does

not have a physical meaning. Let us recall that, as may be seen in Figure 1 of Ref. [1], the use
of Bloch waves introduces a discontinuity in the gluon propagator at zero momentum,
an effect that was previously not completely understood.

As we noted in Section 4, gauge-fixed link configurations within each replicated lattice

Λ(⃗y)
x are rotated, transformed by global group elements defined by the cell index y⃗, see

Equation (119). The same applies to the gauge-fixed gauge-field configurations {Aµ(l; x⃗)},
see Equation (157). It is then natural to consider, on each replicated lattice Λ(⃗y)

x , the average
color magnetization M⃗µ (⃗y) with (color) components51

Mb
µ (⃗y) =

1
V ∑

x⃗Λx

Ab
µ(g; x⃗+ y⃗N), (251)

which is related to the gluon propagator at zero momentum since, see Equation (216),

Ab
µ(g; 0⃗

′ ) = V ∑
y⃗Λy

Mb
µ (⃗y), (252)

so that Equation (232) implies by the expression

D(⃗0 ′ ) =
Tr

2md N
d

∑
µ=1


Aµ(g; 0⃗ ′ )

2
=

V2

md N
d

∑
µ=1

N2
c−1

∑
b=1


∑

y⃗Λy

Mb
µ (⃗y)

2
, (253)

where N ≡ d(N2
c − 1)V has been defined in Section 2.2. We show in Figures 3 and 4

the vectors M⃗3 (⃗y) of the color magnetization, obtained in a simulation for the SU(2) case
and with lattice volume V = (64× 4)3 at  = 3.0. The vector components stand for the
different values of the color index, i.e., Mb

3 (⃗y), for b = 1, 2, 3. One can clearly see the effect
of the Bloch waves. In particular, the average magnetization may appear “smooth” along a
certain direction when moving from one cell to the next, but a suitably chosen projection
reveals the modulated behavior as expected. For example, in Figure 4, M3

µ (⃗y) does not
change when crossing a boundary, while M1

µ (⃗y) and M2
µ (⃗y) are rotated (see Figure 5).

Thus, each cell Λ(⃗y)
x may be seen as a domain, and the domain walls are characterized

by the cell boundaries. As discussed in Ref. [35], the zero-momentum gluon propagator
can be interpreted as a magnetic susceptibility. For d = 3 and 4, numerical simulations
show—in the infinite-volume limit—zero magnetization and nonzero susceptibility. This
can be associated to randomly oriented magnetization domains. Our setup, based on Bloch
waves, allows us to “impose” such domains, while reproducing (see plots in Ref. [1]) the
gluon-propagator results of the standard large-volume simulation. Of course, it would be
very interesting to be able to characterize similar domain structures in a usual simulation.

Finally, we present our conclusions. Our main finding is that the gluon propagator
D(⃗k ′ ) is nonzero only for the allowed momenta and, in these cases, its value comes from
some of the coefficients Aij

µ(g; k⃗ ′ ), with all the other coefficients being equal to zero. Hence,
we now completely understand the math behind the use of Bloch waves in minimal
Landau gauge and we can perform the whole simulation (thermalization, gauge fixing
and evaluation of the gluon propagator) in the small “unit cell” Λx. At the moment, we
modified our numerical codes to incorporate the new results presented here and performed
preliminary tests. These will be used to guide the thorough numerical investigation of
the method for the evaluation of the gluon propagator. In this way, we hope to be able to
produce large ensembles of data,52 even considering small unit cells and large values of m.
In particular, we want to find the minimum value of the lattice size N of Λx for which the
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momentum-space gluon propagator D(⃗k ′ ), evaluated on Λz using the Bloch setup with a
factor m, is still in agreement with numerical data obtained by working directly on a lattice
of size mN (see results in Ref. [1]). More in general, we want to check the dependence of
D(⃗k ′ ) on N, while keeping the product mN fixed. Clearly, since we know that finite-size
effects in the gluon propagator are relevant only in the infrared regime, it is essential
to consider all allowed momenta in these numerical simulations. Indeed, the momenta
given by the discretization on the original (small) lattice Λx are insufficient to adequately
probe the infrared limit when N is small. Having more data should also help clarify the
role of the {Uµ(h,Θ; x⃗)} “domains” and of the “magnetization” described above. Later
on, we plan to extend this analysis to the ghost propagator. Furthermore, one may also
try to relate the present approach to early studies of replicated lattices, which computed
gauge-independent quantities such as the hadron spectrum [36,37].
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Figure 3. Average color “magnetization” M⃗3 (⃗y) on each replicated lattice Λ(⃗y)
x for the pure-SU(2)

case and lattice volume V = (64× 4)3, at  = 3.0. In this case, the index lattice Λy is a 43 lattice, and
y⃗ has components yµ = 0, 1, 2, 3 with µ = 1, 2, 3. Also note that the color components Mb

3 (⃗y) (with
b = 1, 2 and 3) are represented along the corresponding spatial directions µ = 1, 2, 3.
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Figure 4. Average color “magnetization” M⃗3 (⃗y) on each replicated lattice Λ(⃗y)
x for the pure-SU(2)

case and lattice volume V = (64× 4)3, at  = 3.0. In this case, the index lattice Λy is a 43 lattice and
y⃗ has components yµ = 0, 1, 2, 3 with µ = 1, 2, 3. Also note that the color components Mb

3 (⃗y) (with
b = 1, 2 and 3) are represented along the corresponding spatial directions µ = 1, 2, 3. Here we show
the data presented in Figure 3 with coordinate y2 = 0, projected on the y1−y3 plane. Consequently,
we are also showing only the b = 1, 3 color components.
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Figure 5. Average color “magnetization” M⃗3 (⃗y) on each replicated lattice Λ(⃗y)
x for the pure-SU(2)

case and lattice volume V = (64× 4)3, at  = 3.0. In this case the index lattice Λy is a 43 lattice, and
y⃗ has components yµ = 0, 1, 2, 3 with µ = 1, 2, 3. Also note that the color components Mb

3 (⃗y) (with
b = 1, 2 and 3) are represented along the corresponding spatial directions µ = 1, 2, 3. Here we show
the data presented in Figure 3 with coordinate y3 = 0, projected on the y1−y2. Consequently, we are
also showing only the b = 1, 2 color components.
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Appendix A. Cartan Sub-Algebra
In this appendix we discuss properties related to the matrices Θµ, introduced in

Section 3.2, see Equation (94). Recall that these matrices belong to the Cartan sub-algebra
of su(Nc) and must satisfy the periodicity condition (100), which implies that their eigen-
values be given by 2nµ/m, where nµ is an integer. We start by describing a gen-
eral parametrization for the Nc − 1 generators of the Cartan sub-algebra in the SU(Nc)
case [13,38,39], and then comment on possible advantages of other bases. We also compare
our setup with that considered in Ref. [5]. As can be seen in Section 5, and in particular in
Sections 5.3 and 5.4, some of these properties are central to obtain an analytic expression
for the gluon propagator using the gauge-fixed configuration on the extended lattice Λz.

We recall that we have chosen the N2
c − 1 traceless generators tb of the su(Nc) Lie

algebra to be Hermitian. Since the Cartan generators {tC} are mutually commuting, i.e.,
[taC, tbC] = 0 (for a, b = 1, . . . ,Nc − 1), they can be simultaneously diagonalized. For example,
in the SU(Nc) case, we can consider as diagonal Cartan generators (in the fundamental
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representation) the Nc − 1 linearly independent, Nc × Nc Hermitian and traceless matrices
Hi (i = 1, . . . ,Nc − 1) defined by [39]

Hi
jk =  i jk


ij − (i+1)j


, (A1)

with  i real and j, k = 1, . . . ,Nc. Note that, besides being diagonal, the matrix Hi only has
nonzero elements in rows/columns i and i+ 1 and these two elements have opposite signs,
enforcing the tracelessness condition. In particular, for Nc = 2, the matrix H1 is given by
1 times the third Pauli matrix σ3. For the SU(3) case, after setting 1 = 2 = 1, we have

H1 =



1 0 0
0 −1 0
0 0 0


 and H2 =



0 0 0
0 1 0
0 0 −1


. (A2)

Since they are diagonal, the above generators Hi have—as common eigenvectors—the
unit vectors53 êj [whose components are given by (êj)k = jk], with eigenvalues

λi
j =  i


ij − (i+1)j


, where again j = 1, . . . ,Nc.

More in general, since the matrices Hi are diagonal, we may define the Cartan genera-
tors by any combination

Di =
Nc−1

∑
l=1

Ril Hl , (A3)

where R is an invertible (Nc−1)× (Nc−1) matrix. For example, in the SU(3) case, with the
Gell-Mann choice for the generators of the group algebra, the Cartan sub-algebra is spanned
by the matrices D1 = H1 and D2 = (H1 + 2H2)/

√
3—usually denoted by λ3 and λ8—

instead of H1 and H2 given in Equation (A2). This corresponds to changing the basis with
the matrix

R =


1 0
1√
3

2√
3


. (A4)

In order to generalize the above bases containing Pauli and Gell-Mann matrices to the
SU(Nc) case (see Appendix A1 in Ref. [15]), we may consider54 the matrices

Di =


2

i(i+ 1)


i

∑
l=1

l Hl


, (A6)

with i = 1, . . . ,Nc−1. Note that, just as Hi, the matrices Di are diagonal.55 Their eigenvec-
tors are also êj but with eigenvalues56

ij =
Nc−1

∑
l=1

Ril λl
j = Rij  j − Ri(j−1)  j−1. (A7)

Also, recall that, while j takes values from 1 to Nc, the indices of the matrix Ril and of the
constants  i only go from 1 to Nc−1. Thus, for j = 1 we have i1 = Ri1 1 and for j = Nc

we find iNc
= −Ri(Nc−1) Nc−1.

Finally, it is rather evident [13,39] that, if HC is a Cartan sub-algebra and v is any
element of the Lie group, the conjugate v−1 HC v is another Cartan sub-algebra. Thus, for the
SU(Nc) group, we can consider as matrices tbC the set {v† Db v}, with common eigenvectors
{wj = v† êj for j = 1, . . . ,Nc}—which are orthonormal since w†

j wk = ê†j êk = jk—and

the eigenvalues bj given above, where we switch back to the usual index b for the color
degrees of freedom. This illustrates the expansion in Equation (94).
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Appendix A.1. Comparison with Reference [5]

We note that Ref. [5] defines theΘµ matrices, belonging to a generic Cartan sub-algebra,
as an expansion in terms of the generators tb of the SU(Nc) algebra, i.e.,

Θµ =
N2
c−1

∑
b=1

bµ t
b, (A8)

with real parameters bµ (µ = 1, . . . , d), subject to the condition


Θµ, Θ


=

N2
c−1

∑
b,c=1

bµ 
c



tb, tc


= 2 i

N2
c−1

∑
a,b,c=1

f abc bµ 
c
 ta = 0, (A9)

where we denote by f abc the structure constants of the su(Nc) Lie algebra. Now, since the
matrices ta are linearly independent, the above equality implies that

N2
c−1

∑
b,c=1

f abc bµ 
c
 = 0, (A10)

for any a = 1, . . . ,N2
c − 1.

In the SU(2) case, for example, for which the Cartan sub-algebra is one dimensional
and the structure constants f abc are given by the completely anti-symmetric tensor ϵabc, we
find that the above condition is equivalent to saying that the three-dimensional vectors ⃗µ
and ⃗ must be parallel57 for any µ, . This can be easily achieved [5] with

Θµ = rµ
3

∑
b=1

qb tb, (A11)

where rµ and qb are real parameters. As a matter of fact, by factoring bµ = rµ qb, i.e.,
by imposing that the vectors ⃗µ are all proportional to the vector q⃗, it is evident that
Equation (A10) is satisfied since ∑3

b,c=1 f abcqbqc = 0. Note that matrices Θµ defined in this
way are not necessarily diagonal. On the other hand, they are mutually commuting since
they are proportional to the same matrix ∑3

b=1 qb tb. One can also write

Θµ = rµ v† σ3 v, (A12)

where v  SU(2) and σ3 is the third Pauli matrix, which is diagonal. Indeed, Equations (A11)
and (A12) are completely equivalent.58

Hence, the above parametrization (A12) is clearly in agreement with the previously
discussed setup, and we can say that the expansion used in Ref. [5] corresponds to a trans-
formation v−1 HC v of the Cartan sub-algebra given by σ3. Note that, using Equation (A12),
the matrices Θµ trivially have eigenvectors

v†

1
0


(A14)

and

v†

0
1


(A15)

with eigenvalues ± rµ.
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In like manner, in the SU(3) case, which has rank two, we can write [5]

Θµ = rµ,3
8

∑
b=1

qb3 t
b + rµ,8

8

∑
b=1

qb8 t
b (A16)

with real parameters rµ,3, rµ,8, qb3 and qb8, i.e., we now factor bµ = rµ,3 qb3 + rµ,8 qb8. This
yields, see Equation (A10),

8

∑
b,c=1

f abc qb3 q
c
8

rµ,3 r,8 − rµ,8 r,3


= 0, (A17)

where we use the (obvious) relation f abc = − f acb. Clearly, since the above expression must
be valid for any values of the parameters rµ,3 and rµ,8, wemust select two commutingmatrices

λ3 =
8

∑
b=1

qb3 t
b and λ8 =

8

∑
c=1

qc8 t
c (A18)

to parametrize the expansion of Θµ so that

1
2
Tr


ta


λ3, λ8


=

8

∑
b,c=1

f abc qb3 q
c
8 = 0. (A19)

Then, we recover again our definition for Θµ—in terms of diagonal matrices and the
transformation v−1 HC v—if we consider

Θµ = rµ,3 λ3 + rµ,8 λ8 = v†

rµ,3 λ3 + rµ,8 λ8


v, (A20)

where λ3 and λ8 are the two diagonal Gell-Mann matrices and v  SU(3).

Appendix A.2. New Basis for the Lie Algebra

As already noted above, the matrices Θµ—which belong to the Cartan sub-algebra
and are written in terms of the basis tbC = v†Dbv — have eigenvectors wj = v† êj (for
j = 1, . . . ,Nc), with eigenvalues given by

Θµ wj =


Nc−1

∑
b=1

bµ 
b
j


wj ≡ 

j
µ wj =

2 nj
µ

m
wj, (A21)

where the parameters bµ refer to the expansion in Equation (94), bj is defined in

Equation (A7) and, in the last step, we impose the constraint (100), i.e., that nj
µ be integers.

Then, it is natural to consider a new basis for Θµ, with matrices defined as an outer
product of these eigenvectors, i.e.,

Wij ≡ wi w†
j = v† êi ê†j v ≡ v† Mij v, (A22)

where the matrix element lm of Wij is given by (wi)l (w†
j )m (for l,m = 1, . . . ,Nc). Sim-

ilarly, we have also defined the Nc × Nc matrix Mij = êi ê†j , whose elements are sim-

ply59 (Mij)lm = iljm. In this way, considering Θµ = ∑i,j c
ij
µ Wij, we can left multiply

Equation (A21) by w†
i to obtain the expansion parameters

cijµ = w†
i Θµ wj = iµ 

ij =
2 niµ
m

ij (A23)
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in the Wij basis. As expected, they are nonzero only for i = j, since the eigenvectors wi

form an orthonormal set. Thus, we can write

Θµ =
Nc

∑
j=1


j
µ Wjj =

Nc

∑
j=1

2 nj
µ

m
v† Mjj v (A24)

and

exp

i
Θµ

N


= v† exp


Nc

∑
j=1

2i nj
µ

mN
Mjj


v, (A25)

which are important results for our analysis in Sections 3.3 and 4. Of course, when v = 1⊥—
or, equivalently, when considering the basisMij—thematrices in Equations (A24) and (A25)
are diagonal.

Let us stress that the matrices Wij trivially satisfy the trace condition60

Tr

Wij


= Tr


wi w†

j


= w†

j wi = ij (A26)

and the orthonormality relations

Tr

Wij Wlm† 

= Tr

Wij Wml


= Tr


wi w†

j wm w†
l


= jm Tr


wi w†

l


= jm il , (A27)

where we use61 Wlm†
= Wml , the orthonormality of the w’s and (A26). Hence, the N2

c
matrices Wij are indeed a basis for any Nc × Nc matrix, which is—as seen in Section 5—
the most natural one to consider when analyzing the impact of the index lattice on the
evaluation of the gluon propagator. On the other hand, elements of the (real) SU(Nc) Lie
group—as well as of the corresponding su(Nc) Lie algebra—are written in terms of N2

c −1
real independent parameters. Therefore, when using this basis, the N2

c coefficients entering
the linear combination of the Wij matrices are not all independent. As a matter of fact,
a generic matrix

A =
Nc

∑
i,j=1

Aij Wij, (A29)

where the coefficients Aij are given, see Equation (A23), by

Aij = w†
i A wj, (A30)

is (in general) not traceless due to Equation (A26). Thus, for the su(Nc) Lie algebra, we
have to enforce the constraint

0 = Tr A =
Nc

∑
j=1

Ajj, (A31)

yielding the relation, see Equation (A24),

0 =
Nc

∑
j=1


j
µ =

2
m

Nc

∑
j=1

nj
µ (A32)

for the Θµ matrices. Of course, this condition is automatically satisfied if the jµ eigenvalues
are given, see Equations (A7) and (A21), by


j
µ =

Nc−1

∑
b=1

bµ 
b
j =

Nc−1

∑
b=1

bµ


Rbj  j − Rb(j−1)  j−1


, (A33)
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which implies

Nc

∑
j=1


j
µ =

Nc−1

∑
j=1

Nc−1

∑
b=1

bµ R
bj  j −

Nc

∑
j=2

Nc−1

∑
b=1

bµ R
b(j−1)  j−1 = 0. (A34)

Indeed, when written in terms of the coefficients bµ, see Equation (94), the matrices Θµ

depend on d (Nc−1) free parameters; on the other hand, when they are written using
the nj

µ coefficients, see Equation (A24), we have d Nc free parameters, subject to the d
constraints (A32).

Besides being traceless, an element of the SU(Nc) Lie algebra should also be (with our
convention) Hermitian. Hence, if we impose A† = A in Equation (A29), we find


Aij

∗
= Aji, (A35)

given that

Wij† = Wji, see note 61. (Here, ∗ denotes complex conjugation.) The last

result, together with Equation (A31), implies that the diagonal coefficients Ajj are real and
that only Nc−1 of them are independent. At the same time, from Equation (A35), we find
that there are only Nc (Nc−1)/2 independent complex off-diagonal elements, yielding a
total of (Nc − 1) + (N2

c − Nc) = N2
c −1 free real parameters (as expected). We stress that

the coefficients Aij are not the matrix elements of A, which are given by the expression

Alm =
Nc

∑
i,j=1


Wij


lm

Aij (A36)

with 
Wij


lm

=
Nc

∑
k,n=1


v†


lk


Mij


kn

vnm =

v†


li
vjm = v∗il vjm, (A37)

so that one has (as always for a Hermitian matrix)

A∗
lm =

Nc

∑
i,j=1


Wij

∗

lm


Aij

∗
=

Nc

∑
i,j=1


v∗il vjm

∗ Aij
∗

=
Nc

∑
i,j=1

v∗jm vil A
ji =

Nc

∑
j,i=1


Wji


ml

Aji = Aml . (A38)

Finally, Equation (A24) tells us that we can easily relate the Cartan sub-algebra, defined
by the diagonal matrices in Equations (A1) and (A3) above, with the matrices Mjj (or the
matrices Wjj). Indeed, given that (Mjj)lm = jljm, we can write (for i = 1, . . . ,Nc−1)

Hi =  i

Mii − M(i+1)(i+1)


(A39)

so that

Di =
Nc−1

∑
j=1

Rij  j

Mjj − M(j+1)(j+1)


(A40)

and

tiC = v† Di v =
Nc−1

∑
j=1

Rij  j

Wjj − W(j+1)(j+1)


. (A41)

In particular, if we set  j = 1 in Equation (A40) and we use the matrix R defined in
Equation (A5), the matrices Di recover the generalized diagonal Gell-Mann matrices, see
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Equation (A6). It is interesting that, using the matrices Mij, we can easily define also the
generalized nondiagonal Gell-Mann matrices (see again Appendix A1 in Ref. [15])

tb = Mij + Mji (A42)

and
tb = −i


Mij − Mji


, (A43)

with i, j = 1, . . . ,Nc and i < j. Note that there are Nc(Nc−1)/2 symmetric matrices (A42),
Nc(Nc−1)/2 anti-symmetric matrices (A43), and Nc−1 diagonal matrices tiC = Di, for a
total of N2

c − 1 (Hermitian and traceless) generators.
The above results imply that the (generic) matrix

MC ≡
Nc−1

∑
i=1

mi tiC =
Nc−1

∑
i=1

mi
Nc−1

∑
j=1

Rij  j

Wjj − W(j+1)(j+1)


, (A44)

which is in the Cartan sub-algebra, can also be written as

MC =
Nc

∑
j=1

ajj Wjj (A45)

with62

ajj =
Nc−1

∑
i=1

mi

Rij  j − Ri(j−1)  j−1


. (A46)

However, one should stress that, on the l.h.s. of the above equation, the index j takes
(integer) values in the interval [1,Nc], while, on the r.h.s., the indices j and j−1 of R and of
 are always restricted to the interval [1,Nc − 1]. This implies the relations

a11 =
Nc−1

∑
i=1

mi Ri1 1 (A47)

a22 =
Nc−1

∑
i=1

mi

Ri2 2 − Ri1 1


(A48)

a33 =
Nc−1

∑
i=1

mi

Ri3 3 − Ri2 2


(A49)

. . . (A50)

a(Nc−1)(Nc−1) =
Nc−1

∑
i=1

mi

Ri(Nc−1) Nc−1 − Ri(Nc−2) Nc−2


(A51)

aNcNc = −
Nc−1

∑
i=1

mi Ri(Nc−1) Nc−1, (A52)

which trivially ensure the constraint (A31).

Notes
1 We stress that, in order to have periodicity for the original and for the gauge-transformed link configurations, we only need the

gauge transformation to be periodic up to a global center element zµ per direction (see [7]). We do not consider this possibility here.
2 One can easily show that the minimum value of EU [h] is equal to zero, corresponding to Uµ(h; x⃗) = 1⊥.
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3 Usually, in order to simplify the notation, the gauge-fixed link configuration {Uµ(h; x⃗)} is redefined simply as {Uµ(x⃗)}. Here,
however, we prefer to keep the dependence on the gauge transformation {h(x⃗)} explicit, for better comparison of the setup on
the original lattice Λx with that attained on the extended lattice Λz (see Sections 3–5).

4 Equivalently, one could note, in Equation (9), that

ℜTr

tbUµ(h; x⃗)/i


= ℜTr


tbUµ(h; x⃗)/i

†
= ℜTr


−tbU†

µ(h; x⃗)/i

. (17)

This allows us to write

EU [h]
′
(0) = ∑

b, µ, x⃗

2b(x⃗)
Nc dV

ℜTr


tb
Uµ(h; x⃗)−U†

µ(h; x⃗)
4 i

−
Uµ(h; x⃗−êµ)−U†

µ(h; x⃗−êµ)
4 i


, (18)

which naturally suggests the definition (10), see also Equation (15), for the (gauge-transformed) gauge field.
5 One could also take kµ = −N/2,−N/2+ 1, . . . ,N/2−1 for even N and kµ = −(N−1)/2,−(N−3)/2, . . . , (N−1)/2 for odd N

or, equivalently, kµ = −N/2,−N/2+ 1, . . . , (N/2)− 1 for general N, where x is the largest integer less than or equal
to x and x is the smallest integer greater than or equal to x. This convention, however, would make the formulae—and the
corresponding numerical code—more cumbersome (see also notes 16 and 40).

6 Of course, it should be specified in all formulae that the gauge field relative to the lattice point x⃗ is actually evaluated at x⃗+ êµ/2,
e.g., by writing Uµ(h; x⃗) ≡ exp


i Aµ(h; x⃗+ êµ/2)


. This is especially relevant when considering the Fourier transform, as in

Equation (24), and in the (lattice) weak-coupling expansion [17]. Here, however, in order to keep the notation simpler, we do not
indicate this explicitly.

7 Note that the inequality (40) is linear in the updating matrix r(x⃗). This makes the minimization problem within the chosen
approach rather simple.

8 Of course, in a numerical simulation, one should verify that these transformations of the link variables do not spoil their unitarity
due to accumulation of roundoff errors.

9 Note that, compared to Refs. [19–21], here we have slightly changed the definition of ΣQ, in order to have a quantity that is
invariant under global gauge transformations.

10 This proof is equivalent to the usual proof that a continuity equation implies a conserved charge.
11 This, of course, implies that ∆E is also invariant under global gauge transformations.
12 Here, in order to simplify the notation, we do not make explicit the dependence of the gluon propagator on the gauge transforma-

tion {h(x⃗)}.
13 The formulae reported here are those usually employed in lattice numerical simulations. However, it is evident that, in the

evaluation of these scalar functions, one could also make use of the off-diagonal Lorentz components of Dbb
µ(x⃗). The evaluation

of these (off-diagonal) components can be useful for analyzing the breaking of rotational symmetry on the lattice [14].
14 The same invariance applies to the magnitude of the lattice momenta p2 (⃗k ), see Equations (32) and (35).
15 Note that in [1] we referred to Λy as the “replica” lattice.
16 Here, in order to simplify the notation, we consider an even value for the integer m. For m odd, the integers kµ take values in the

interval [−(m− 1)/2, (m− 1)/2]. (See also note 5).
17 In particular, the explicit form of Hk⃗ corresponds to a “shifted” kinetic term (by the momentum k⃗ ) plus the periodic potential

U(⃗r ), defined for the primitive cell [26].
18 Let us notice that the usual Gribov copies are defined for the extended lattice Λz by general local minima, obtained for different

values of {Θµ} and {h(x⃗)}.
19 In this sense, right multiplication by v does not produce an equivalent solution, since {g(⃗z )} is not necessarily a solution to the

gauge-fixing problem defined by applying a global gauge transformation v to the original link configuration, i.e., in general
{g(⃗z )} does not minimize the functional E when the link configuration is vUµ (⃗z ) v†.

20 Clearly, these quantities are unaffected by a shift of the origin. Also, as discussed above, they are invariant under global gauge
transformations. On the other hand, we are not considering here the possibility that nontrivially different solutions might have
all identical numerical values for these quantities, when performing a numerical simulation.

21 Based on this analogy, it is natural that the matrices sµ be characteristic of the considered solution {g(⃗z )}.
22 Here, we used the definition gij (⃗z ) = w†

i g(⃗z )wj, as in Equation (A30), and the property (A21) of the matrices Θµ. See also
Equations (182) and (183).

23 At the same time, the gauge-fixed link configuration {Uµ(g; z⃗ )} can also be visualized as made up of md domains, related by
block-rotations (see discussion in Sections 4 and 6).

24 This is discussed in detail in the next section.
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25 But this is precisely what enlarges the set of solutions and allows a more efficient way to deal with the extended-lattice problem.
As said at the end of the previous section, an approach closer to the one usually employed in condensed matter theory would
require to consider a given (fixed) set of matrices Θµ and use the minimization procedure only to determine h(x⃗).

26 See also the comment in the last paragraph of Section 3.2.
27 Here we mean the property (20)–(21), i.e., the fact that the Landau-gauge condition—applied to the lattice gauge fields defined by

the gauge-link configuration and now written for the (gauge-fixed) links on Λz—is satisfied. One of the goals of this section is to
understand what this implies for the gauge field when restricted to the original lattice Λx.

28 Note that in Equations (120) and (122) the external factors, i.e., exp

±i∑d

=1 Θ x/N

, are the same. The implied expressions for

Uµ(h; x⃗) and Uµ(h; x⃗− êµ) are clearly compatible with each other and in principle there is no need to define them separately. This
is performed for later convenience since these expressions are used for the (gauge-fixed) gauge field entering the transversality
condition. See, in Section 4.1, Equations (143), (152) or (153), and note 37.

29 However, in that case, one needs to satisfy the relation Ωµ Ω = zµ Ω Ωµ, where the constants zµ are elements of the center of
the group. Then, since the Θ are commuting matrices, we have (in our case) the trivial condition zµ = 1 for any µ and , i.e.,
no twist.

30 The proof follows the same steps explained in note 22.
31 We will address the transversality condition in detail in the next section. See also note 27.
32 Or, equivalently, with the periodic and not transverse configuration {Uµ(h; x⃗)} obtained from the modified minimization

problem (96), determined by the Θµ’s.
33 The matrix elements of h(x⃗) and v are complex when considering the SU(Nc) gauge group. Here, we will consider separately the

real and imaginary parts of hij(x⃗) and vij.
34 This is a similarity transformation which preserves the orthogonality relation (8) and the structure constants f abc of the su(Nc)

Lie algebra. Moreover, it does not change the Cartan generators {tbC} (see Appendix A), which trivially commute with the Θµ

matrices.
35 See also the beginning of Section 6, where it is stressed that, in the numerical code, it is more natural to save the values of Uµ(h; x⃗)

and Θµ, instead of the values of Uµ(l; x⃗).
36 Clearly, the value of Np,m is independent of the way in which we write the gauge transformation {g(⃗z )}, i.e., as a Bloch function

or as a general transformation, as long as g(⃗z )  SU(Nc).
37 Clearly, similar expressions hold for Aµ(g; x⃗+ y⃗N − êµ), which can be written in terms of Uµ(l; x⃗ − êµ) or of Aµ(l; x⃗− êµ), see

Equations (122) and (140).
38 We stress that, even though we are using here the same index b to denote the color components with respect to the generators tb

of the Lie algebra, the constraint in Equation (163) is written in terms of color components with respect to the Cartan generators
tbC. The same holds for the color components of Qµ(l) and Aµ(l; x⃗) in the Equations (164) and below.

39 Equivalently, we can say that we write the matrix Uµ(g; z⃗ ) as a linear combination of the matrices Wij = wi w†
j = v† Mij v,

introduced in Appendix A.2. This yields

Uµ(g; z⃗ ) =
Nc

∑
i,j=1

Uij
µ (g; z⃗ )Wij = v†


Nc

∑
i,j=1

Uij
µ (g; z⃗ )Mij


v. (180)

40 One should also note that, if instead of the nonsymmetric interval [0,mN−1] one contemplates the symmetric interval k ′ 
[−(mN/2), (mN/2)− 1] for mN even (see note 5 for the general case), this decomposition applies with k  [−(m/2), (m/2)− 1]
and K  [−(N−1)/2, (N−1)/2], at least for m even and N odd, and with slightly different formulae for m odd and/or N even.
Thus, the use of the nonsymmetric interval (around the origin) makes our notation much simpler and straightforward.

41 Here, we suppose that the integers nj and ni have been fixed, either by the numerical minimization of EU,Θ[h] or set a priori (as in
the case of fixed matrices Θµ).

42 Of course, the values of k and  also depend on the (considered) indices i, j. Here, however, in order to simplify the notation,
we do not make this dependence explicit. More specifically, we could define

 =
sgn(n̄j − n̄i)


1+ sgn(n̄j − n̄i)



2
m, (195)

after the phases nj have been chosen, and then pick k given by Equation (194) for every , in order to obtain nonzero coefficients
Uij
µ (g; k⃗ ′/m) in Equation (189). In the above expression we indicate with sgn(x) the sign function, which has values ±1 or zero

according to whether x ⋚ 0.
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43 Here, we call “diagonal” the coefficients with i = j—when using the basis {Wij} — even though these coefficients do not
necessarily contribute to the diagonal elements of the corresponding matrix, given that (Wjj)lm = v∗jl vjm, see Equation (A37). On

the other hand, all entries of the matrix Mjj = vWjj v† = êj ê†j are null with the exception of the diagonal entry with indices jj
(which is equal to one).

44 We stress that this is the result expected from condensed matter physics, where the Fourier transform of the periodic potential
U(⃗r ) is nonzero only when considering wave-number vectors on the reciprocal lattice (see the second proof of Bloch’s theorem in
Ref. [26]).

45 On the other hand, this result applies only approximately when considering a generic coefficient Uij
µ (g; k⃗ ′ ) for which k ̸= 0. As a

matter of fact, if k ≪ mN (recall that k  [0,m− 1]), we have

p (⃗k ′ ) ≡ 2 sin

 k′
mN


= 2 sin


 (k + Km)

mN


≈ 2 sin


 K

N


. (204)

46 Recall that n̄j and n̄i take values 0, 1, . . . ,m− 1, so that their difference is an integer number in the interval [−m+ 1,m− 1].
47 Note that Uµ(g; z⃗ ) is a unitary matrix, which is written here in terms of the basis {Wij}.
48 Of course, once the nonzero coefficients Aij

µ(g; k⃗ ′ ) have been evaluated, one can also obtain the color components Ab
µ(g; k⃗ ′ ) with

respect to the generators {tb} using the relation

Ab
µ(g; k⃗

′ ) =
Nc

∑
i,j=1

Aij
µ(g; k⃗ ′ )

Tr
2


tb Wij


. (224)

49 Of course, in this case the plot resembles a “continuum spectrum”.
50 By looking at the matrix elements Tµ jj, it is clear that the integers njµ can always be limited to the interval [0,mN − 1]. Then,

in the limit m → +, the parameters njµ/mN are real numbers belonging to the interval [0, 1).
51 Following Ref. [34] one can prove that the quantity

M =
1

d (N2
c − 1)md ∑

b,µ

 ∑
y⃗

Mb
µ (⃗y)




(250)

should vanish—in Landau gauge and in the infinite-volume limit—at least as fast as the inverse lattice side. The volume
dependence of M has been analyzed in detail in two, three and four space-time dimensions in Ref. [35].

52 To this end, it may be useful to move part of the simulation from CPUs to GPUs. For example, this may allow a systematic
investigation of the gluon propagator’s dependence on the possible choices for the Θµ matrices, as well as a more detailed study
of the zero-momentum discontinuity of the propagator at large values of m.

53 Let us point out that this is the same notation as the one used in the main text for the unit vectors in the d-dimensional Euclidean
space, but clearly we refer here to color indices (in the fundamental representation).

54 Equivalently, we can use Equation (A3) with the matrix

R =




1 0 0 0 . . .
1√
3

2√
3

0 0 . . .
1√
6

2√
6

3√
6

0 . . .
1√
10

2√
10

3√
10

4√
10

. . .

. . . . . . . . . . . . . . .



, (A5)

i.e., with matrix elements Ril = l


2
i(i+1) for l ≤ i and Ril = 0 otherwise.

55 For the choice in Equation (A6) we have the matrix elements Di
jj =


2

i(i+1) 
1 for j = 1, Di

jj =


2
i(i+1)


j j − (j− 1) j−1


for

j = 2, . . . , i, Di
jj = −i  i


2

i(i+1) for j = i+ 1, and Di
jj = 0 otherwise.

56 We recall that each vector j, with components ij, corresponds to a weight (of the Cartan generators) [13,38,39].
57 Indeed, in this case, considering the vector components aµ and a, with a = 1, 2, 3, the expression in Equation (A10) corresponds

to ⃗µ × ⃗ = 0, where × indicates the usual cross product.
58 This is a general result: any element of the su(Nc) Lie algebra is conjugate to an element of a Cartan sub-algebra (see, for exam-

ple, [39] and references therein). In the case of the SU(2) group, one can check this directly if tc are the three Pauli matrices σc.
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Indeed, by writing v as v01⊥+ i⃗σ · v⃗, where 1⊥ is the 2× 2 identity matrix and v20 + v⃗2 = 1, one recovers Equation (A11)—starting
from Equation (A12)—by using the relation

σiσj = 1⊥ ij + i
3

∑
k=1

ϵijkσk. (A13)

59 In other words, all the entries of Mij are null with the exception of the entry with indices i, j, which is equal to 1.
60 Of course, similar expressions apply to the basis Mij = êi ê†j .
61 The property

Wij† = Wji (A28)

can be seen directly from the definition (A22). Thus, we see that each matrix Wij is not Hermitian, unless i = j.
62 A linear relation among the coefficients ajj and mi is, of course, expected for any change of basis in the Cartan sub-algebra.
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