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Summary

Effective agricultural planning requires basic soil information. In recent decades visible near-infrared diffuse
reflectance spectroscopy (vis-NIR) has been shown to be a viable alternative for rapidly analysing soil properties.
We studied 7172 samples of seven different soil types collected from several regions of Brazil and varying
in organic matter (OM) (0.2-10.3%) and clay content (0.2—99.0%). The aim was to explore the possibility
of enhancing the performance of vis-NIR data in predicting organic matter and clay content in this library
by dividing it into smaller sub-libraries on the basis of their vis-NIR spectra. We used partial least square
regression (PLSR) models on the sub-libraries and compared the results with PLSR and two non-linear calibration
techniques, boosted regression trees (BT) and support vector machines (SVM) applied to the whole library.
The whole library calibrations for clay performed well (ME (modelling efficiency) > 0.82; RMSE (root mean
squared error) < 10.9%), reflecting the influence of the direct spectral responses of this property in the vis-NIR
range. Calibrations for OM were reasonably good, especially in view of the very small variation in this property
(ME > 0.60; RMSE < 0.55%). The best results were, however, found when dividing the large library into smaller
subsets by using variation in the mean-normalized or first derivative spectra. This divided the global data set
into clusters that were more uniform in mineralogy, regardless of geographical origin, and improved predictive
performance. The best clustering method improved the RMSE in the validation to 8.6% clay and 0.47% OM,
which corresponds to a 21% and 15% reduction, respectively, as compared with whole library PLSR. For the
whole library, SVM performed almost equally well, reducing RMSE to 8.9% clay and 0.48% OM.

The accuracy of spatial maps of soil attributes is correlated pos-
itively with the density of soil observations. However, methods
used to determine texture and organic matter content in conven-
tional soil laboratories in Brazil and elsewhere are expensive and

Introduction

The efficient use of soils in agriculture requires a good under-
standing of their chemical, physical, mineralogical and biological

characteristics. Soil texture and organic matter (OM) are two time-consuming. Moreover, such analyses can generate wastes rich

important properties of soils. In tropical soils, which are typically
characterized by very small OM contents, the clay content is
regarded as an important fertility factor because of its positive
effect on nutrient supply, structure and water retention. Clay con-
tent, together with OM, directly affects the porosity, plasticity and
erodibility of soils. Both soil properties also affect soil fertility by
their capacity for binding plant nutrients and water. Organic matter
also plays an important role in the mineralization of nitrogen to
plant-available forms.
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in sodium or chromium which may pose hazards to the environment.
There is thus a need for more efficient methods to reduce the number
of soil chemical analyses and generate high-resolution soil property
maps over large areas at a reasonable cost. Visible and near-infrared
(vis-NIR) diffuse reflectance spectroscopy (400-2500nm) has
received increasing attention over the last two decades as a promis-
ing technique for soil analysis (Stenberg et al., 2010).

The absorption of vis-NIR light occurs because of overtones and
combinations of fundamental molecular effects in the mid-infrared
region and is associated with soil moisture, organic materials and
mineralogy. Because the clay fraction as analysed by traditional
methods consists mainly of minerals, vis—NIR spectra can be of
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value for predicting clay content (Stenberg ef al., 2010). Organic
matter content can be related directly to the absorption of vis-NIR
spectra through a number of functional groups such as the car-
boxyls, hydroxyls and amines (Viscarra Rossel & Behrens, 2010).
Nevertheless, the degree to which vis-NIR spectral data are capa-
ble of predicting OM content is variable between reports (Stenberg
etal.,2010).

Viscarra Rossel & Behrens (2010) pointed out that for spectro-
scopic techniques to be effective for analysing soils over large areas,
there must be a wide range of spectroscopic data from different soil
types with varying organic and inorganic components. Thus a large
number of samples are required to cover the relevant variation and
the cost of building predictive models has to be considered. Accord-
ing to Sankey et al. (2008), global to regional calibrations are more
cost-effective, but they may not provide sufficient accuracy. These
authors studied soil samples collected at three temperate sites in
Montana, USA, and obtained better predictions for some sites using
the global library augmented with local samples than by using the
local samples only. However, Wetterlind & Stenberg (2010) found
that for a range of soil properties at farms in Sweden, local cali-
brations with only 25 calibration samples out-performed both the
national library (396 samples) and subsets of the national library
consisting of the 50 samples most similar to each farm. According to
Udelhoven et al. (2003), OM (calculated as 1.72 X soil organic car-
bon) predictions can be improved by stratifying samples according
to geological conditions and deriving individual PLSR calibrations
for each region. Stenberg (2010) did not find an accurate soil organic
carbon (SOC) calibration model by using large datasets representa-
tive of Swedish agricultural soils, but these results were substan-
tially improved when sandy soils were removed from the dataset.
Similar negative effects of large sand contents were observed by
Stevens et al. (2013), who studied a broad variety of soils from
Europe. It is often suggested that libraries containing smaller soil
variations at the field scale would result in better OM predictions
than more general ones collected over larger geographical areas
(Kuang & Mouazen, 2011). Local geographical datasets have been
stated to be necessary for quantifying soil attributes (Dematté &
Garcia, 1999). However, Stenberg et al. (2010), reviewing pub-
lished predictions, found that variation in the texture or SOC vari-
ables themselves accounted for the majority of the variation in
model accuracy for these properties and the size of the geograph-
ical area had a smaller influence. Thus, attempts to improve the
prediction accuracy of a large heterogeneous spectral library may
benefit from dividing the library into smaller sub-libraries with soils
of greater similarities, regardless of the geographical origin of the
samples. Dividing a global library into smaller models based on the
variation in the spectra caused by clay minerals and SOC (because
they have the largest influence on soil vis-NIR spectra: Stenberg
et al., 2010) is therefore one potential strategy for improving pre-
dictions. McDowell ef al. (2012) compared the sub-division of a
Hawaiian (five main islands) dataset into clusters based on total car-
bon (C) content, soil order and spectral features, for the prediction
of total C. None of the sub-division strategies were better than a full
sample set strategy. This could, however, be a result of the small
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number of samples in many of the calibration clusters because the
full set comprised only 307 samples.

It is known that the soil vis-NIR spectra are largely non-specific,
consisting of weak, broad and overlapping absorption bands. For
this reason, information needs to be mathematically extracted from
the spectra in order to correlate them with soil properties, and mul-
tivariate statistics are often used to calibrate soil prediction models.
Partial least square regression (PLSR) is one of the most commonly
used techniques to analyse data of this nature. Vasques et al. (2008)
compared different techniques, such as stepwise multiple linear
regression, principal component regression, regression trees, com-
mittee trees and PLSR, to analyse spectral information related to
organic carbon and concluded that PLSR performed better than the
other methods. Interest in using non-linear data mining calibration
techniques is increasing, because relationships between soil charac-
teristics are rarely linear in nature, especially in libraries containing
a wide variety of soils. When dealing with a heterogeneous sample
set in which soil composition may vary considerably, the precision
of linear regression techniques decreases because of the non-linear
nature of the relationship between spectral data and the depen-
dent variable. Brown (2007) suggests the use of boosted regression
trees and Kovacevié et al. (2009) suggest the use of support vector
machines as a solution for handling the calibration of large hetero-
geneous sample populations.

Although soil spectroscopy has the potential to simplify soil
analysis and mapping, vis-NIR spectroscopy has not yet developed
sufficiently for practical applications, and there is less information
for tropical soils than for those in temperate regions.

Our study aims firstly to explore the possibility of enhancing
predictions of OM and clay content in a large Brazilian soil spectral
library by dividing it into smaller sub-libraries based on their
vis-NIR spectra. In the process, we also tested the effect of three
different pretreatments of the spectra; continuum removal, first
derivative and mean normalization prior to division of the library.
The second aim is to compare the total predictive performance
of the sub-models with global models using PLSR, BT and SVM
techniques. The comparison of clustering with BT and SVM
techniques with a large variable dataset to reduce problems with
heterogeneity and non-linearity has to our knowledge not yet
been done.

Materials and methods
Spectral library

For this study we used 7172 samples in the soil spectral library
made available by the Remote Sensing Laboratory at the Soil
Science Department, University of Sdo Paulo (co-author J.A.M.
Dematté). In total, chemical and spectral analyses were carried
out for 5750 auger samples collected at depths of 0-20, 40—60
and 80-100cm and for 1440 samples collected from 360 soil
profiles representing four Brazilian states (Goids, Minas Gerais,
Mato Grosso do Sul and Sdo Paulo). The soils in this spectral
library are diverse and represent several groups of soils, including
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Ferrasols, Nitisols, Acrisols, Planosols, Gleysols, Arenosol and
Cambisols (IUSS, 2006).

The samples were air-dried and ground to a particle size of <2 mm
before being submitted to chemical and spectral analyses. Sand
(2-0.05 mm), silt (0.05-0.002 mm) and clay (< 0.002 mm) con-
tents were determined by the densimeter-sedimentation method,
using 0.1 M calcium hexametaphosphate and 0.1 M sodium hydrox-
ide as dispersing agents (Gee & Bauder, 1986). Organic matter
content was determined applying the factor 1.72 to organic carbon
as determined colorimetrically after oxidation of 1 ml air-dry soil
with K,Cr,0; +H,SO,. The excess dichromate was titrated with
(NH,)2Fe(S0O,),.6H,0 (van Raij et al., 2001).

Vis-NIR measurements

The spectral reflectance of soils was measured in the vis-NIR
(350-2500 nm) range, with a spectral resolution of 3 nm (from 350
to 1000 nm) and 10 nm (from 1000 to 2500 nm), using a FieldSpec
Pro FR spectroradiometer (Analytical Spectral Devices, Boulder,
Colorado, USA). The spectrum acquisition software interpolated
reflectance data to a sampling interval of 1 nm. Approximately
15 ¢cm? of each soil sample was placed in a Petri dish. A fibre-optic
cable connected to the vis-NIR sensor was placed vertically at 8 cm
from the sample, and we measured the reflected light in an area of
approximately 15 cm? in the centre of the sample. The light source
was a S0 W halogen bulb with the beam non-collimated to the
target plan, positioned at 35 cm from the sample at a zenith angle
of 30°. As a reference standard, a white plate covered with barium
sulphate (BaSO,) was used. Each spectrum was averaged from 100
readings over 10s. All spectral measurements were carried out in
a dark room to avoid interference from stray light. Before further

analyses, soil spectra were reduced by averaging three successive
wavelengths. For further analyses we excluded the noisiest parts at
the edges of the spectrum and only considered the spectral range
from 366 to 2484 nm.

Model development

Prior to any model development the global spectral library was
randomly divided into a calibration set (CS) with 5169 samples and
a validation set (VS) with 2003 samples, corresponding to one-third
of the profiles. Layers of the same soil profile were kept together
to ensure independence between CS and VS. Figure 1 shows the
summary statistics for clay and organic matter content in the CS
and VS. For subsequent analyses we restricted the datasets to OM
content less than 6% as there were very few samples with more than
6% OM. In total, eight and five samples were removed from the CS
and VS, resulting in 5161 and 1998 samples, respectively.

The general approach in model development was that two major
lines of calibration procedures were performed and compared.
One involved simple calibrations on the calibration set as a whole
(global models), and the other one involved calibrations that were
performed cluster by cluster after the calibration set had been
divided into spectrally similar clusters (clustered models). For all
calibrations the first derivative using a second-order polynomial
Savitzky-Golay smoothing over 11 points (Savitzky & Golay, 1964)
was applied as spectral preprocessing on the absorbance spectra
(absorbance = 1/(log reflectance)). The first derivative was the best
method in an initial screening test also including multiplicative
scatter correction, moving average, median filters, standard normal
variate and mean normalization.
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Global models were calibrated on the full calibration set (CS;
n=5161). Three different calibration techniques were tested:
PLSR, SVM and BT. The PLSR technique is widely used and has
a good capacity for estimating attributes resulting from the spec-
tral behaviour of the soil (Vasques et al., 2008). It was performed
in the Unscrambler v.10.3 software using the orthogonalized PLSR
algorithm for one Y-variable (PLSR-1) and cross-validation in 50
random segments. The number of partial least-square factors was
chosen to minimize the root mean square error (RMSE) in the
cross-validation.

The SVM approach is a relatively new non-linear technique
and is used in classification and multivariate calibration problems
(Kovacevié et al., 2009). In this technique, model complexity is
limited by the learning algorithm itself, which prevents over-fitting.
In the present study the Kernel radial basis function was used, which
allows learning of non-linear decision functions (Jain et al., 2012).
Optimal model parameters that minimize the root mean square error
(RMSE) were determined by 10-fold random cross-validation of CS
with Statistica 10 software (StatSoft Inc, Tulsa, OK, USA).

The BT technique makes multiple predictions that are based on
resampling and weighting and belongs to the group of ensemble
techniques (Friedman, 2001). It has the ability to include a large
number of weak relationships in a predictive model and it is
insensitive to outliers in the calibration dataset. Moreover, BT has
a relative immunity to over-fitting (Brown, 2007). A maximum
number of seven nodes and committees of 900 trees for organic
matter and 600 for clay were used for calibrations. The number of

Global spectral library
N=7159 samples

Calibration set |
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nodes and trees was optimized to minimize the root mean square
error (RMSE) by reserving a 30% test set from CS: these analyses
were performed with Statistica 10.

Prior to clustering, three different spectral transformations were
applied and evaluated. In these cases the absorption spectra were
(i) transformed to the first derivative Savitzky-Golay (D; second
order with 11 smoothing points), (ii) mean normalized (N; dividing
each spectrum by its mean) and the reflectance spectra were
(iii) transformed to continuum removal (CR; Clark, 1999) by
determining the convex hull (ENVI 4.5; www.envi.com.br). The
main purpose of the transformations was to see if they would
divide the data differently in the clustering process and to assess
what influence this would have on the predictive performance
of calibrations for OM and clay. The procedures for calibrating
and validating clustered datasets are summarized in Figure 2 as
follows: (i) The calibration spectra were clustered with k-means
cluster analysis by their spectral features as they appear with the
three different transformations. Subsequently, PLSR calibrations
were used to produce predictive models for OM and clay in each
cluster. The models were in all cases calibrated on first derivative
spectra only, based on absorbance. (ii) To be able to allocate
unknown samples (the validation set) to one of the spectrally
defined clusters, the spectral features defining the clusters were
identified by discriminant analysis models (DA). (iii) The validation
set was clustered by the DAs in step (ii). For validation of the PLSR
models in step (i), the validation samples clustered through step (iii)
were predicted and validation statistics compared.

Validation set
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The three differently transformed datasets were submitted to a
k-means clustering algorithm with the statistical software Statis-
tica 10. This analysis starts with k£ random clusters, and then moves
objects between those clusters in order to minimize the intra-group
variability and to maximize the distances between groups. The soft-
ware iteratively moves objects in and out of clusters, minimizing the
square of the within-cluster sum of distances to get the most signif-
icant ANOVA results between clusters. For CR and first derivative
transformations four clusters were optimal and for normalized data
the optimum number of classes was five. Optimizing the number of
clusters was performed by a cross-validation procedure to minimize
the misclassification. PLSR models were calibrated cluster-wise to
test the influence of different transformations for clustering on total
prediction performance. For these calibrations the first derivative
Savitzky-Golay transformations of absorption spectra were used
independently of transformation used for clustering.

Validation

All predictions of OM and clay content by global (PLSR, BT and
SVM) and clustered models were validated using the predefined
validation set (VS; n=1998).

For the clustered models, the validation sample had first to be
assigned to one of the clusters. Thus, the success of this assignment
step was included in the validation of calibrations. Discriminant
analysis models, one for each transformation, were developed to
define the spectral features that separate the clusters. The Euclidian
metric distance method in Statistica 10 was used to separate the
predefined classes. For computational reasons, the analyses were
performed on dimensionally compressed data. Thus, score vectors
from the 10 first principal components of a PCA based on the
calibration set were used. Scores for the validation samples were
calculated by projecting the transformed spectral data on the PCA
based on the calibration set. Each validation sample was then
assigned to one of the clusters for each transformation by the
corresponding discriminant analysis model (Figure 2). Principal
components and scores were calculated by the NIPALS algorithm
in Unscrambler 10.3.

Finally, the modelling efficiency (ME), the root mean squared
error (RMSE) and the ratio of performance to deviation (RPD)
were used to compare the results, calculated by using the
Equations (1)—(3). The ME indicates the proportion of the total
variation explained by the model (the 1:1 line) and includes the
relationship between measured and predicted values as well as sys-
tematic errors. In Equations (1)—(3) where y denotes the measured
value and y the predicted value, n is the number of samples and
SD is the standard deviation of laboratory-measured values for the
property in question.

> (yi-5i)
ME =1~ . )
D <yi—ﬁ>

i=1

RMSE = \/%Z (yi—9i), @)
i=1

and
RPD = SD/RMSE. (3)

To achieve combined prediction results (CPR) of the clustered
models ME, RMSE and subsequently RPD were calculated after
merging predictions of all clusters to the full VS. The RPD values
are included for comparative evaluations. We did not allocate
predictions according to any published performance thresholds
based on RPDs as the required accuracy needs to be evaluated for
each application and should not be dependent on the size of the
standard deviation.

As mentioned earlier, organic matter and especially clay minerals
and iron-oxides (which are also included in the clay fraction) have
a large influence on the vis-NIR spectra and are therefore expected
to also influence the clustering. To indicate the difference in OM
and clay content between clusters, Kruskal-Wallis ANOVAs by ranks
and median test, including pair-wise post-hoc comparisons of mean
ranks, were run on the calibration set in Statistica 10.

Results and discussion

Global calibrations: prediction accuracy obtained with PLSR,
BT and SVM techniques

The validation results of the global predictions produced using
the PLSR, BT and SVM methods are summarized in Figure 3.
In general, we observed better results with SVM and the boosted
regression trees technique than with PLSR. The SVM and BT
methods performed equally well for OM, reducing RMSEv by 13%
when compared with PLSR. For clay, SVM reduced RMSEv by
almost twice as much as BT and by 18% when compared with
PLSR. These results agree with Brown (2007), who compared BT
and PLSR techniques for analysing soil properties with vis-NIR and
found BT to be the superior approach. These authors used 4184
diverse, well-characterized and largely independent soil samples.
The BT technique tends to be resistant to the effects of outliers
and can handle missing values and correlated variables. It also
allows the inclusion of a potentially large number of irrelevant
predictors (Jalabert ef al., 2010). On the other hand, Viscarra
Rossel & Behrens (2010), using 1104 samples from four regions in
Australia, and Vasques et al. (2008), using 554 samples collected
in profiles to a depth of 180 cm in north-central Florida, observed
that BT and regression trees models produced the worst results
among many multivariate techniques, including PLSR, when tested
for total carbon, organic carbon and clay. Viscarra Rossel & Behrens
(2010) also found SVM to be about equal to PLSR, while Pierna
& Dardenne (2008) found that SVM was superior to PLSR for
predicting total N, total C and CEC in a validation set of 207 soils
from a calibration set of 618 cultivated Belgian soils. Stevens et al.
(2013) also found that SVM was better for organic C predictions
when they compared several data mining calibration techniques on
adiverse sample set of 20 000 samples covering most soil types (but
divided into subsets according to land cover) in the EU.
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The spectral library data were divided into spectrally defined clus-
ters of different sizes and samples depending on the transformation
employed (CR, first derivative or mean normalized; Table 1). All
cluster medians within a transformation differed significantly from
each other for either OM or clay and in most cases for both. Typi-
cally the differences between clusters were larger for clay than for
OM. The standard deviation was less than in the total dataset in
many clusters (Figure 1), but not in all. The reductions of SD were
generally larger in clay than in OM. These results were expected
as OM and especially clay minerals have a large influence on the
spectra.

The validation statistics calculated from the combined predic-
tion results (CPR) of all validation samples in all clusters by
the respective pre-transformations (CPR-N, CPR-D and CPR-CR,
respectively) showed that transforming the data by using the first
derivative and mean normalization prior to cluster analysis provided
slightly more accurate models than transforming the data by contin-
uum removal (Table 2).

We observed a larger improvement in accuracy of predictions for
clay than for OM with clustered models, with a largest reduction
of the RMSEv of 15 and 21% for OM and clay, respectively.
The combined prediction results with mean normalization (CPR-N)
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Table 1 Calibration and validation set statistics for the clusters acquired by cluster k-means and discriminant analysis, respectively

N 25% 75% Median SD N 25% 75% Median SD
Transformations Classes Calibration set Validation set
OM / %
Normalized 1 807 0.8 2.0 1.3 1.0 308 0.8 1.8 1.1 0.9
2 788 0.9 1.8 1.3 1.0 336 0.8 1.8 1.2 0.9
3 657 1.0 2.0 14 0.8 297 1.0 2.2 1.5 0.9
4 1035 1.1 2.3 1.7 0.9 395 1.2 2.3 1.7 0.9
5 1874 0.7 1.5 1.0 0.8 662 0.6 1.3 1.0 0.7
Derivative 1 933 0.8 2.5 1.5 1.1 377 0.8 2.5 1.3 1.1
2 456 0.8 1.8 1.3 0.7 189 0.8 1.8 1.3 0.7
3 1101 1.1 2.3 1.6 0.9 404 1.1 2.3 1.6 0.8
4 2671 0.8 1.5 1.0 0.7 1028 0.7 1.5 1.0 0.7
CR 1 745 1.1 2.3 1.7 0.9 289 1.2 2.3 1.6 0.8
2 740 1.0 2.3 1.5 1.0 312 1.0 2.3 1.5 1.0
3 2086 0.7 1.5 1.0 0.8 794 0.7 1.5 1.0 0.8
4 1590 0.9 1.8 1.3 0.9 603 0.8 1.8 1.2 0.9
Clay / %
Normalized 1 807 22.0 64.0 30.0 23.6 308 20.0 64.8 28.4 24.6
2 788 12.0 33.7 16.0 24.4 336 12.0 20.0 15.8 20.6
3 657 44.0 78.0 61.0 20.7 297 41.5 78.0 60.0 20.6
4 1035 46.0 75.0 67.0 18.7 395 44.6 75.0 64.0 17.9
5 1874 15.6 25.1 20.0 20.3 662 16.0 24.0 19.3 17.1
Derivative 1 933 25.5 82.0 64.0 27.8 377 24.0 81.0 60.0 28.0
2 456 36.0 59.0 47.5 15.8 189 32.5 59.0 44.0 16.6
3 1101 44.0 75.0 66.0 19.3 404 41.0 75.0 63.0 19.5
4 2671 14.0 24.0 18.0 18.9 1028 14.0 24.0 18.0 17.5
CR 1 745 44.0 75.0 66.0 19.0 289 44.4 74.0 63.0 17.4
2 740 38.0 69.0 55.0 20.4 312 32.2 67.0 51.0 21.4
3 2086 18.0 68.0 24.0 26.1 794 18.0 63.0 23.4 25.5
4 1590 12.7 26.9 17.4 21.0 603 12.3 25.7 16.0 20.8

N, D and CR mean normalization, first derivative and continuum removal transformations, respectively.

are shown in Figure 4. McDowell et al. (2012) also used mean
normalization for a Hawaiian dataset of 307 samples, but in contrast
to our results they did not find any significant improvement by
k-means clustering on total C predictions. This may be because of
their small number of samples that were divided in both validation
and calibration sets as well as in clusters. Potential advantages
with clustering may have been dominated by unstable calibrations.
For clustering, McDowell et al. (2012) also focused on spectral
bands known to be absorbed by organic compounds. This may
have resulted in clusters with reduced diversity in carbon-related
properties, but with retained diversity in other characteristics such
as mineralogy.

When normalization was used as a preprocessing treatment, the
global spectral library was divided into five clusters. For clay the
independent validation results for clusters 2 and 5 provided the
largest values of RPD and ME, followed by clusters 1, 3 and 4; for
OM the values were largest in clusters 1 and 2, followed by 3, 5
and 4.

The success of assigning the validation samples to the right
cluster by discriminant analyses on normalized data is indicated in
Figure 5(a,b), which shows the clusters’ positions and distribution
in PCA scores of calibration and validation samples. In addition, the
proportional size distributions between clusters were very similar in
CS and VS (Table 1).

In our study, the additional step of assigning validation samples
to the right cluster in the prediction process, which is required
in a real situation with unknown samples, did not increase the
overall prediction error substantially. We observed that calibration
and cross-validation results (which do not involve sample-to-cluster
assignment) and independent validation results (which do) did
not differ more for the clustered models than for the global
PLSR models (Table 3). If the assignment of validation samples
to clusters increased the prediction error substantially, a larger
difference for the clustered models would have been expected. In
fact, SVM and BT had the largest differences between calibration
and independent validation, indicating some degree of over-fitting,
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Table 2 Summary statistics of validation results of calibrations for clay (%) and OM (%) using an independent validation dataset

Clay OM
Preprocessing Cluster Number of samples ME RMSEv RPD ME RMSEv RPD
Normalized 1 308 0.86 9.2 2.7 0.77 0.45 2.0
2 336 0.89 6.8 3.0 0.75 0.44 2.0
3 297 0.80 9.2 2.2 0.68 0.50 1.8
4 395 0.55 12.0 1.5 0.57 0.57 1.6
5 662 0.87 6.1 2.8 0.64 0.40 1.8
CPR-N 1998 0.88 8.6 3.0 0.71 0.47 1.9
First derivative 1 377 0.88 9.6 2.9 0.79 0.50 2.2
2 189 0.88 8.9 1.9 0.50 0.52 1.3
3 404 0.64 11.7 1.7 0.55 0.56 1.4
4 1028 0.83 7.3 2.4 0.70 0.40 1.8
CPR-D 1998 0.88 8.8 29 0.71 0.47 1.9
CR 1 289 0.52 12.1 1.4 0.59 0.53 1.5
2 312 0.73 11.1 1.9 0.63 0.61 1.6
3 794 0.88 8.8 2.9 0.65 0.46 1.7
4 603 0.86 7.7 2.7 0.64 0.51 1.8
CPR - CR 1998 0.86 9.5 2.7 0.66 0.51 1.8
PLS All 1998 0.82 10.9 24 0.60 0.55 1.6
BT All 1998 0.86 9.6 2.7 0.70 0.48 1.9
SVM All 1998 0.89 8.9 2.9 0.69 0.48 1.9

Bold values represent the full validation set and are comparable across all methods.

The validation samples assigned to each cluster were based on discriminant analyses. PLSR, BT and SVM refer to non-clustered models obtained by partial
least squares regression, boosted regression trees and support vector machines, respectively; CPR - N, CPR - D and CPR - CR refer to combined prediction
results (CPR) with mean normalization (N), first derivative (D) and continuum removal (CR) as transformation applied prior to clustering, respectively.
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but as the validation statistics were still substantially better than PLS
the effect was not large.

We compared our results with the standard deviations and RMSE
or R? of most large-scale published datasets with all three values
available (Stenberg et al. (2010) (Figure 6). In most studies the
R? values obviously correspond to our ME values. Because the
relationship between SD and RMSE is strong, it is more relevant to
compare results with other studies by this relationship rather than
simply comparing RMSE, R? or RPD values. We observe that our
ME value for global PLSR is less than expected from previously

Measured OM / %

predictions obtained from partial least square
regression (CPR - N).

published data, but not so for global SVM and BT. Values of RMSE
were, on the other hand, more or less as expected, but while global
PLSR and CR clustering were slightly above the regression line, the
other methods were slightly below the line, which indicates a com-
paratively more successful result than those previously published.
Similarly, predictions of clay were equal to, or slightly better than,
what could be expected from the standard deviation of 25% clay in
the global library. This is based on the strong correlation between
standard deviations and RMSE values in published texture data by
Stenberg et al. (2010), corresponding to that for OM in Figure 6.

© 2014 British Society of Soil Science, European Journal of Soil Science, 65, 718729



726 S. R. Araiijo et al.

Figure 5 Scores of the three first principal
components of PCAs of the calibration (a) and
validation (b) sets. Numbers 1-5 correspond
to clusters 1-5 from k-means clustering in the
calibration set and v1-v5 as validation samples
were allocated to clusters.

Table 3 Prediction results of cross-validation (RMSEcv) and independent validation (RMSEV) of clay (%) and OM (%)

Clay OM
Models RMSEc RMSEcv RMSEv RMSEc RMSEcv RMSEv
CPR-N 8.3 8.6 8.6 0.48 0.50 0.47
CPR-D 8.0 8.5 8.8 0.47 0.49 0.47
CPR - CR 8.4 8.8 9.5 0.48 0.50 0.51
PLS 104 10.4 10.9 0.57 0.57 0.55
BT 7.9 - 9.6 0.40 - 0.48
SVM 7.5 - 8.9 0.43 - 0.48

PLSR, BT and SVM refer to non-clustered models obtained by partial least squares regression, boosted regression trees and support vector machines,
respectively; CPR - N, CPR - D and CPR - CR refer to combined prediction results (CPR) with mean normalization (N), first derivative (D) and continuum

removal (CR) as pre-transformation treatments, respectively.

Soil spectra

Bands around 1100, 1600, 1700, 2000 and 2300 nm have been iden-
tified as being particularly important for SOC and total N calibration
(Malley et al., 2000; Stenberg, 2010). Although we observed
spectral features in these regions by removing the continuum
from the average reflectance spectra of the classes, these features
were not enhanced with increasing OM content, as observed by
Stenberg (2010).This may be explained by the small concentra-
tions, and the narrow range, of OM values in the current library
(Table 1).

The mean spectral curves of clusters based on mean normalization
spectra were analysed in detail as these classes provided the
best regression model results (Table 3). The spectral features
were, however, studied by continuum-removed spectra and not
by the mean normalized ones (Figure 7). From Figure 7 it can
be observed that soil mineralogy had a substantial influence on
spectral clustering, as discussed in the next paragraph. This is not
surprising as clay minerals together with organic matter have large
influences on soil spectra (Stenberg et al., 2010). As the OM content
is very small in this dataset, clay mineralogy should dominate.
Apparently, the more homogenous mineralogical clusters allowed
improved overall prediction accuracy. Clay predictions gained the
most from clustering and this may be because this fraction in our

soil library was a mixture of both iron oxides and clay minerals,
with fundamentally different features in the vis-NIR region. It is
probably also this non-linearity that is analysed better by global
data mining techniques than by global PLS. On the other hand, our
results do not support the explanation that a reduction in SD caused
by clustering should improve prediction accuracy, as indicated by
Figure 6. There is no obvious relationship between cluster SDs in
Table 1 and RMSE:s in Table 2.

The 1400 and 1900 nm bands are associated with water vibra-
tions connected to bonds of lattice layers as hydrated cations (struc-
tural), combined with water adsorbed on the particle surfaces. In all
clusters we observed absorptions caused by charge transfers near
400-780nm, which are indicative of the presence of iron oxides
(Sherman & Waite, 1985). In turn, bands near 489 and 530 nm are
attributed to absorptions edges of intense charge transfer absorp-
tions that occur in the UV (Sherman & Waite, 1985). The reduced
reflectance observed around 510—560 nm (Figure 7b) suggests that
soils belonging to clusters 1, 2, 4 and 5 have larger haematite con-
tents than cluster 3 (Dematté & Garcia, 1999). Scheinost et al.
(1998) reported that the most intense absorption band for haematite
occurred at 521-565 and 870 nm, clearly separated from the more
yellowish Fe oxides (479—-499 and 930 nm). In fact, the mean spec-
tral reflectance of cluster 3 had a shift to the right near 900 nm
and to the left near 500 nm, which indicates a greater presence of

© 2014 British Society of Soil Science, European Journal of Soil Science, 65, 718729



25

R2=0.88 o
20 4 RMSE = 0.23+0.285D

RSME / %

OIIIIII
0o 1 2

Standard Deviation / %

3 4 5 6 7

Vis-NIR prediction by clustering or data mining calibration 727

(b)

1.0

Cbé’ooo § o
0.8 - [eXe) o

5} o

3

o o
064 e

b
o

A b

0 1 2 3 4 5 6 7

Standard Deviation / %
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goethite than haematite (Figure 7c¢). For soil clays, it is known that
kaolinite (1:1) and 2:1 minerals have characteristic patterns near
1400 and 2200 nm because of the vibrations of molecules of OH of
their structures (Hunt & Salsbury, 1970). Different minerals have,
however, different signatures. Kaolinite minerals have a shoulder
near 2200 nm that does not occur when there is a predominance of
a 2:1 mineral in the soil (Dematté et al., 2006). This shoulder is
more pronounced for cluster number 3, indicating greater propor-
tions of 1:1 minerals (Figure 7c). Hunt & Salisbury (1970) argued
that the intensity of the kaolinite trait at 2200 nm is associated

Wavelength / nm

2200 2300 ses when the global data were submitted to mean

normalization. Numbers 1-5 refer to clusters 1-5.
Full-range spectra (a) and enlargements (b—d).

with the dioctahedral layers of the mineral structure. Although the
absorption near 2345 nm may represent illite or mixtures of smectite
and illite (Post & Noble, 1993), we observed only a slight difference
in reflectance between clusters 3 and 4 and the other clusters in this
region (Figure 7a).

Conclusions

The general predictive models for clay were good, which reflects
the influence of the direct spectral responses of this property in
the NIR range. Organic matter predictions were reasonably good,
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especially with clustering and in view of the very small variation in
OM contents in the dataset.

The division of the large library into smaller subsets using
variation in the mean-normalized spectra or first derivative spectra
were the best alternatives for using vis-NIR spectra to quantify
soil attributes in tropical soils by partial least square regressions.
An alternative would be to use boosted regression trees or support
vector machines for the whole library, which were almost as good
and are more straightforward methods as the clustering and cluster
assignment steps are avoided. While clustering reduced RMSEv by
21 and 15% for clay and OM, respectively, the corresponding values
for SVM were reduced by 18 and 13% when compared with PLSR.
This suggests that clustering and data mining calibration techniques
are preferable over global PLS to handle non-linearity in large and
complex datasets.

Clustering divided the global dataset into more mineralogically
uniform clusters, regardless of geographical origin, and improved
prediction. The additional step of assigning the validation samples
to the correct cluster in the prediction process (clustered models) did
not increase the overall prediction error. It was possible to identify
regions of the vis-NIR spectrum that showed absorption features
from water, iron oxides and clay minerals that seemed to be largely
responsible for the cluster divisions.
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