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Abstract. In this work, we develop a numerical framework, using the finite element method, to perform two-
dimensional analysis of solids with thermo-elastic constitutive model, subject to large displacements and large
strains. Both the thermo-elastic model and the heat conduction equation are derived from the first and second
laws of thermodynamics, where the latter is expressed by the Clausius-Duhem inequality. The formulation uses
the concept of Helmholtz free energy, from which the stress and the entropy are derived. The elastic and thermal
parts of deformations are distinguished by two main strategies: the additive decomposition of the Green-Lagrange
strain tensor, and the multiplicative decomposition of the deformation gradient. For each, both the linear and
exponential thermal expansion laws are considered, and a neo-Hookean model is applied for the elastic part.
Numerical examples are proposed to show the differences and limitations of the applied models on moderate and
large strain levels.
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1 Introduction

The additive decomposition is already well established within the field of non-linear thermo-elasticity, as
can be seen, for instance, in Holzapfel [1], Truesdell et al. [2] and Parkus [3]. The concept of multiplicative
decomposition, on the other hand, emerged originally from elasto-plastic models, and was first introduced for the
thermo-elastic case in Stojanović et al. [4]. The same idea was presented independently in the works of Lu and
Pister [5] and Imam and Johnson [6], and since then developed and largely applied in finite deformation models
(see, for instance, Mićunović [7] and Vujošević and Lubarda [8]). In this work, we present both the additive and
multiplicative decompositions within a numerical scope, with the aid of the finite element method. The aim is to
investigate the limitations of each model, and different thermal expansion laws, applied to cases with moderate and
large strain levels. In order to do that, representative numerical examples are presented and discussed.

2 Thermo-elastic model

In this work, we apply a total Lagrangian description of the thermo-mechanical problem, i.e., we use as
reference the initial undeformed configuration of the solid. Let F denote the deformation gradient from the initial
to the deformed configuration. Then, the Green-Lagrange strain is given by E = 1

2 (FTF − I), where I is the
second order identity tensor. The work-conjugate of E is the Second Piola-Kirchhoff Stress, denoted here by S.

The first and second laws of thermodynamics form the basis for a thermodynamically-based constitutive
model. The first, also known as law of conservation of energy, can be written, using the principle of rate of work,
as

ψ̇ + ρ0

(
T η̇ + Ṫ η −R

)
= S : Ė−∇0 · q0, (1)

where ψ denotes the Helmholtz free energy (per unit volume in the initial configuration), ρ0 the density in the
initial configuration, T the temperature, η the entropy per unity mass, R the internal heat produced per unit time
and unit mass, q0 the heat flux in the initial configuration, and ∇0 the gradient vector in the initial configuration.
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As for the second law of thermodynamics, it can be written in the form of the Clausius-Duhem inequality,
which gives

S : Ė− ψ̇ − ρ0Ṫ η −
1

T
q0 ·∇0T ≥ 0. (2)

For thermo-elastic models, the Helmholtz free energy can be written entirely in terms of the Green-Lagrange
strain (E) and the temperature (T ), which means the rate of the Helmholtz free energy can be written as

ψ̇ =
∂ψ

∂E
: Ė +

∂ψ

∂T
Ṫ , (3)

and therefore the first and second laws of thermodynamics can be rewritten as(
S− ∂ψ

∂E

)
: Ė−

(
∂ψ

∂T
+ ρ0η

)
Ṫ + ρ0 (R− T η̇)−∇0 · q0 = 0, (4)(

S− ∂ψ

∂E

)
: Ė−

(
∂ψ

∂T
+ ρ0η

)
Ṫ − 1

T
q0 ·∇0T ≥ 0. (5)

Since these relations must the fulfilled for arbitrary thermodynamic processes, i.e., arbitrary values of Ė and Ṫ , it
follows that:

S =
∂ψ

∂E
, η = − 1

ρ0

∂ψ

∂T
, ρ0 (R− T η̇)−∇0 · q0 = 0 and

1

T
q0 ·∇0T ≤ 0. (6)

The first two equations are the constitutive relations, and the third is the equation of heat conduction. For the
constitutive equations, it may be convenient to decompose the Helmholtz free energy additively into a mechanical
part, denoted as ψm, and a thermal part, denoted as ψt. The later depends only on the temperature, while ψm
depends only on the mechanical strain. However, the way in which the mechanical strain is obtained will depend
on the type of decomposition applied, as discussed in the next subsections.

2.1 Additive decomposition

In linear thermo-elasticity, one of the most commonly adopted models is based on the additive decompo-
sition of the engineering strain into a mechanical and a thermal component. For the non-linear case, an usual
generalization of this concept is the additive decomposition of the Green-Lagrange strain:

E = Em + Et (7)

in which Em represents the mechanical parcel, associated with the constitutive law, and Et represents the thermal
parcel, associated with a thermal expansion law. In this work, we apply the linear and exponential expansion laws,
given, respectively, by

λt = 1 + α(T − T0), and (8)

λt = eα(T−T0) (9)

where λt is the thermal stretch ratio, α is the thermal expansion coefficient of the material, and T0 is the reference
temperature. For isotropic materials, Et can be calculated by the relation Et = 1

2 (λ2
t − 1)I, in which I is the

identity tensor.
In order to account for large strain problems, a neo-Hookean constitutive model is applied in this work. The

mechanical component of the Helmholtz free energy in the initial configuration is written as

ψm =
Λ

2
ln Jm +G (trCm − 3− ln Jm) , (10)

where Λ andG are the Lamé parameters, which can be calculated from the Young’s Modulus (E) and the Poisson’s
ratio (ν), Cm = 2Em + I is the mechanical right Cauchy-Green deformation tensor, and Jm =

√
detCm is the

mechanical Jacobian (or volumetric strain). By using eq. (10) and applying the kinematic relation from eq. (7), the
Second Piola-Kirchhoff stress for this model is given by:

S =
∂ψm
∂E

=
∂ψm
∂Em

:
�
�
�∂Em

∂E
=
∂ψm
∂Em

= Λ(lnJm)C−1
m +G(I−C−1

m ). (11)
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2.2 Multiplicative decomposition

The multiplicative decomposition is based on the existence of an intermediate configuration Ωt, in which
only thermal strains are present. From this, we denote by Ft the thermal deformation gradient, mapping from the
initial configuration to Ωt, and by Fm the mechanical deformation gradient, mapping from Ωt to the deformed
configuration. Thus, by a simple composition of functions, one concludes that the total deformation gradient is
given by F = FmFt. For isotropic materials, however, Ft = λtI, i.e., the multiplicative decomposition can be
written simply as

F = λtFm, (12)

which results in the following kinematic relations:

Em =
1

2
(FTmFm − I) = λ−2

t E +
1

2
(λ−2
t − 1)I = λ−2

t (E−Et). (13)

Analogously to the previous model, the thermal stretch ratio λt can be given both by a linear or an exponential
thermal expansion law (eqs. (8) and (9), respectively). As can be noted from eq. (13), for infinitely small thermal
deformations (i.e., λt ≈ 1), the multiplicative decomposition is approximately equivalent to the additive.

An important remark of the multiplicative decomposition is the fact that the elastic constitutive law is defined
in the intermediate configuration instead of the initial configuration. Therefore, in order to be consistent with the
total Lagrangian framework previously discussed, one must take into account the volumetric deformations between
the initial and intermediate configurations (see Vujošević and Lubarda [8]). With that in mind, the mechanical
Helmholtz free energy is now written as

ψm = λ3
t

[
Λ

2
ln Jm +G (trCm − 3− ln Jm)

]
. (14)

By deriving eq. (14) and using the kinematic relation given in eq. (13), the Second Piola-Kirchhoff stress is given
by

S =
∂ψm
∂Em

:
∂Em
∂E

=
∂ψm
∂Em

λ−2
t = λt

[
Λ(ln Jm)C−1

m +G(I−C−1
m )
]
. (15)

3 Equation of heat conduction

Let cE = ρ0T
∂η
∂T be the specific heat capacity of the material per unit volume in the initial configuration, and

Cte = ρ0
∂η
∂E . Then, the equation of heat conduction, introduced in eq. (6), can be rewritten as

∇0 · q0 + TCte : Ė + cE Ṫ = ρ0R. (16)

In most materials, the term TCte : Ė has a much lower order of magnitude when compared with the other terms,
and therefore it will be neglected in this work. We also assume that cE is a constant parameter, which can be
achieved by setting an appropriate expression for ψt.

The relation between heatflux and temperature is given by the Fourier’s law, q = −k · ∇T , where k is
the thermal conductivity parameter, and ∇T is the gradient of temperature in the deformed configuration. We
note that, in this context, q is given in its Eulerian form, i.e., taking as reference the deformed configuration.
However, it can be related to q0 by the equation q0 = (detF)F−1 · q. After integrating eq. (16) in the initial
volume, multiplying by a variation of temperature δT , performing certain algebraic manipulations, and applying
the Fourier’s law, the equation of heat conduction can be written in the following global variational form:∫

Ω0

(K0 ·∇0T ) · (∇0δT )dV0 +

∫
Ω0

cE Ṫ δTdV0 +

∫
Γ0

q̄0δTdS0 −
∫

Ω0

ρ0RδTdV0 = 0 (17)

where K0 = k(detF)C−1 is the Lagrangian conductivity matrix, Ω0 is the initial volume of the solid, and q̄0 is a
prescribed heatflux in the boundary Γ0. Equation (17) is solved in this work by the finite element method. A more
detailed description of the heat transfer problem applied to FEM can be seen, for instance, in Dhondt and Sons [9].

4 Numerical examples

For the numerical implementation of the model, the mechanical and thermal problems are solved indepen-
dently and coupled iteratively by a strong partitioned approach (see Matthies et al. [10]). The mechanical problem
is solved by a position based finite element method, where geometrical and physical non-linearities are considered
(see Coda [11], Coda and Paccola [12] and Sanches and Coda [13] for more details). The same finite element
discretization is used to solve the heat conduction equations.
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4.1 Isostatic beam under thermal and mechanical loads

In this example, we consider a bi-supported beam with geometry, mesh and parameters presented in Fig. 1.
This beam is subject to variations of temperature −∆T and ∆T in the upper and lower boundaries, respectively,
and an uniformly distributed mechanical load p. Two different analysis are considered for this example: in the first,
only the thermal loads are applied, i.e., p = 0, and ∆T = 25◦C. In the second analysis, we apply a mechanical
load p = 2 kN/m2 and a variation of temperature ∆T = 15◦C. For both cases, the additive and multiplicative
decompositions, as well as the linear and exponential thermal expansion laws, are considered.

10m

1m

p

ΔT

Analysis parameters:
• Steady state (cE = 0)
• Static analysis
• 100 step, with ΔT and p

evolving linearly
Thermal parameters:
• k = 103 W/(m ºC)

• α = 0.01 /ºC

Mechanical parameters:

• Neo-Hookean/Plane stress
• E = 1000 kN/m2

• ν = 0.4

Mesh: 180 elements (T10) / 910 nodes

-ΔT

10m

1m

ΔT = 25 ºC

Considerações:
• Regime permanente (cE = 0)
• Análise estática
• 100 passos com ΔT

crescendo linearmente.

Propriedades térmicas:
• k = 103 W/(m ºC)
• α = 0,01 /ºC

Propriedades mecânicas:
• Modelo neo-Hookeano / EPT
• E = 1000 kN/m2

• ν = 0,4

Malha: 180 elementos T10 / 910 nós

ΔT = -25 ºC

Figure 1. Geometry, mesh and parameters for the beam under thermal and mechanical loads example

The final deformed configuration for all cases considered are shown in Fig. 2. As expected from a isostatic
structure, the first case (purely thermal load) results in no reaction forces. However, one can still notice self-
balanced residual stresses due to incompatibilities between the displacements and purely thermal deformations,
which can be seen mostly in the cases where a linear thermal expansion law is applied. The exponential law, on
the other hand, provides a better compatibility in this regard, since the resulting residual stresses are negligible.
Finally, for the second analysis case, also shown in Fig. 2, not only the deforming behavior is different, but the
stress values are more significant than the previous case, due to the introduction of mechanical forces.

Figure 2. Final deformed configuration of the beam example for two different load cases, with component σ11 of
Cauchy stress displayed in color map. (a) Additive decomposition with linear thermal expansion law; (b) Addi-
tive decomposition with exponential law; (c) Multiplicative decomposition with linear law and (d) Multiplicative
decomposition with exponential law.
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In Fig. 3 we show the evolution of the vertical displacement and horizontal component of Green-Lagrange
strain (E11), both in the middle point of the beam’s lower boundary. For the purely thermal load case, there are no
significant differences between the additive and multiplicative decompositions, since the mechanical deformations
are residual, i.e., the total deformations are mostly thermal for this case. However, major differences between the
linear and exponential expansion laws can be seen in this case, specially in the strain graph. The opposite can be
noted in the second analysis case: since the thermal deformations are smaller, the difference between the expansion
laws is less evident. However, as consequence of the introduction of mechanical forces, the mechanical strain is in
the same order of magnitude as the thermal strain, and therefore the role of the choice of decomposition is more
significant, as can be seen mainly in the strain results.
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Figure 3. Evolution of vertical displacement and component E11 of Green-Lagrange strain for the beam example

4.2 Large deformation cube

In this section, a large deformation example is proposed to better evidence the relevance of the proper choice
of decomposition. It consists of an overheated cube, initially at 600◦C, subject to heat transfer with the ambient (at
25◦C) via convection (see Fig. 4). The convection is applied as precribed heatflux, using Newton’s law of cooling:
q̄ = h(T − Text), where h is the heat transfer coefficient, and Text is the temperature of the ambient.

Again, both the additive and multiplicative decompositions are applied, together with linear and exponential
thermal expansion laws. However, in the cases where additive decomposition or linear law are applied, the high
compressive strains resulted in negative Jacobian at given points of the analysis, causing convergence problems.
For the case with additive decomposition and linear law, the error occurred in step 11 (t = 2.75 s); For the case
with additive decomposition and exponential law, in step 34 (t = 8.5 s); and for the multiplicative decomposition
with linear law, in step 151 (t = 37.75 s). The only case where no errors occurred was the one with multiplicative
decomposition and exponential law, which, as expected, is more suitable for problems with large compressive
strains. The results for each analysis are shown in Fig. 5 up to the step with convergence problem. The deformed
configurations for the case with multiplicative decomposition and exponential law are shown in Fig. 6, together
with the values of the horizontal component of Cauchy stress (σ11).
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T0 = 600 ºC

Thermal problem:

1m

1m

Mechanical problem:

Text = 25 ºC 
h = 2·103 W/(m2 ºC)

Mesh: Analysis parameters:
•  Static analysis
•  Δt = 0.25s (400 steps) 
Thermal parameters:
• k = 103 W/(m ºC)
• cE = 5·104 J/(kg ºC)
• ρ0 = 1 kg/m3

• α = 0.001715 /ºC 
Mechanical parameters:
• Neo-Hookean/Plane strain
• E = 104 kN/m2

• ν = 0.25  
• 200 elements (T10)
• 961 nodes 

A

Figure 4. Geometry, mesh and parameters for the large deformation cube example
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Figure 5. Evolution of (a) temperature, (b) thermal stretch ratio, (c) E11 and (d) E22 at the point A, for the large
deformation cube example

Figure 6. Deformed configurations for the large deformation cube example, using the multiplicative decomposition
and exponential thermal expansion law, with component σ11 of the Cauchy stress displayed in the color map
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5 Conclusions

The proposed numerical examples were able to show the main differences between the four thermo-elastic
models presented in this work. As could be seen from the isostatic beam example (section 4.1), the models are
approximately equivalent while in the small strain regime, but tend to divert from each other in moderate strain
levels. The difference between the additive and multiplicative decomposition, however, is only significant for the
case where mechanical and thermal strains are in the same order of magnitude (second analysis case). As for the
case with purely thermal loads, the difference lies basically in the adopted thermal expansion law. A remarkable
difference in this case is the fact that the exponential law is free from residual stresses, as opposite to the linear
law. For the next example (section 4.2), the models were applied to a case with excessively large strain levels.
As expected, the models with linear expansion law or additive decomposition proved to be inappropriate for this
analysis, showing convergence problems in early steps due to negative Jacobian. The case with multiplicative
decomposition and exponential law, however, showed no convergence problem during the analysis, leading to the
conclusion that, from the presented models, it is the most appropriate for large strain problems.
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[7] Mićunović, M., 1974. A geometrical treatment of thermoelasticity of simple inhomogeneous bodies. i: Geo-
metrical and kinematical relations. Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Techniques,
vol. 22.
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