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ABSTRACT: Emulsion polymerization is widely used in industrial
applications, such as paints and resins, due to its versatility and ability
to create materials with varied properties. To enhance these
processes, in-line and online monitoring techniques are crucial,
particularly for tracking the polymer particle size during reactions.
Near-infrared (NIR) spectroscopy combined with fiber optic sensors
has demonstrated potential for this purpose; however, direct
measurement is not feasible, which requires the development of
calibration models to correlate spectral data with desired properties.
The present study includes experimental data from the synthesis of 11
homopolymers and 3 copolymers of methyl methacrylate (MMA)
and styrene (St) and analyzes their NIR spectra. The spectral region
between 9000 and 14,000 cm−1 showed high sensitivity to particle size changes during emulsion polymerization. Calibration models
using Principal Component Regression (PCR), Partial Least Squares regression (PLS), and Artificial Neural Networks (ANN) with
spectral ranges of 14,000−4000 cm−1 and 14,000−9000 cm−1 were developed. Results indicated that the ANN model with the
14,000−4000 cm−1 range performed best, demonstrating that a robust calibration model for monitoring particle size across various
formulations and conditions was achievable.

1. INTRODUCTION
Monitoring polymer properties is often carried out through
sampling and offline measurement of quality parameters on a
laboratory scale. Due to the extended time required for offline
analysis, such data are generally inadequate for control
purposes. To achieve the production of a polymer resin with
specified end-use properties, the availability of efficient control
techniques is crucial. A gap between the polymerization
process and the control technique must be filled with precise
and robust instrumentation for online and in-line monitoring
and calculation.1 Thus, the development of real-time measure-
ment techniques for polymerization process variables has been
an area of intense research over the last decades.2−5

Various approaches are available for monitoring polymer-
ization processes, including techniques based on ultrasound,
calorimetry, near-infrared (NIR) spectroscopy, and Raman
spectroscopy. Many different techniques used offline can be
adapted to appropriate sampling and preparation/dilution
devices for use in online applications.6,7 Regarding the particle
size and particle size distribution, many works have reviewed
the available measurement techniques (based on microscopic,
on separative procedures, and on light scattering) with their
pros and cons.8−13 More recently new techniques (e.g., photon

density wave spectroscopy) have been arisen for use in online
monitoring of particle size in polymerization processes.14−17

Among the different techniques available, near-infrared
(NIR) spectroscopy�a type of vibrational spectroscopy with
wavenumbers ranging from 4000 to 12,000 cm−1 (a physical
quantity inversely proportional to wavelength)�has been
widely applied as an effective tool for monitoring and detecting
polymer characteristics, owing to its rapid spectral recording,
nondestructive measurement, and real-time in-line analysis.
Using optical fibers and probes, NIR spectra of polymers can
be recorded in situ in reactors, especially for colloidal polymer
particles in an aqueous dispersion system.18 Furthermore, this
technique is noninvasive, requires minimal sample preparation
(the probe can be directly inserted in the reaction medium),
and is able to obtain both chemical and physical data
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acquisition in only one instrument, making it applicable in
various processes, including monitoring chemical reactions
such as polymerization.

However, the information obtained by this technique is not
a direct measurement of the variables of interest. To estimate
properties and characterize the reaction medium using
spectroscopic methods, it is necessary to develop a calibration
model that correlates spectral data with the properties of
interest measured by offline reference techniques. For particle
size monitoring, reference measurements are usually performed
using dynamic light scattering techniques, which require
sampling and dilution, or through direct observation using
transmission electron microscopy, which involves more
complex and time-consuming sample preparation and analysis.
This calibration model development stage is crucial for the
success of the technique, generally requiring not only samples
collected during polymerization trials but also samples
synthetically prepared to cover a broader range of variables
and thus attempt to represent all possible variations expected
in the process.

Despite the variety of calibration methods in use, the main
issues lie in the complexity of the spectrum’s nature in the NIR
region, where peaks of interest are almost certainly overlapped
by one or more peaks, creating interferences, broad and
scattered bands.19 Additional difficulties arise in the case of
polymerization in heterogeneous media, such as emulsion
polymerization processes, where the heterogeneous nature of
the medium, i.e., the presence of dispersed polymer particles in
the aqueous medium, affects the spectrum. On the other hand,
the effect of particle presence on spectra can be used to extract
information about particle size, which is crucial for product
quality.

Some studies have been developed in this direction and
reported the effective possibility of monitoring particle size in-
line from near-infrared spectra.20−26 However, the calibration
models found are valid exclusively for the conditions under
which the calibration was performed. Any alteration in the
system, even if minor, requires a new calibration, which means
spending significant time on this stage again and also involving
financial costs, thus limiting the broader application of this
monitoring technique in the chemical industry. This limitation
is generally circumvented by constructing robust models that
attempt to cover the maximum expected variations of the
system, but a model valid for different reaction systems has not
yet been found, despite the monitored variable being a physical
measure, in this case, particle size, mainly due to the overlap of
bands in the spectrum.

Previous studies suggest an opportunity for investigation in
this direction: many studies indicated that NIR spectra can be
sensitive to changes of chemical composition (due to
absorption) and particle size (due to light scattering), and
the spectral region at shorter wavelengths (higher wave-
numbers, say, beyond 9000 cm−1) shows high sensitivity to the
evolution of particle size during emulsion polymerization, with
minimal interference from other components present in the
medium, thus presenting the potential for predicting particle
size evolution.19−26 However, the behavior of the NIR
spectrum in this region and its relation to particle size is
quite complex and nonlinear: in some experiments conducted
by Silva et al.,19 it was observed that the spectrum intensity
increased with the increase in particle size, but in other
situations, the opposite was observed. Thus, a detailed study
aimed at clarifying the root cause of the NIR spectrum

behavior in the spectral region of higher wavenumbers could
enable the future proposition of a single robust calibration
model capable of monitoring the particle size in emulsion
polymerizations using different formulations (monomers) and
process conditions, as this region appears to be free of
absorbance from other components typically present in these
systems.

This work aims to study more systematically the relationship
between the NIR spectrum and the particle size. For this
purpose, the relationship between this spectroscopic technique
and the average particle diameter (d) will be presented through
NIR spectral analysis and a calibration model.

2. METHODOLOGY
Distilled water, methyl methacrylate (MMA) 99 wt % (Sigma-
Aldrich), styrene (St) 99 wt % (Sigma-Aldrich), sodium lauryl
sulfate (SLS) (Quiḿica Moderna), potassium persulfate (KPS)
>99 wt % (Sigma-Aldrich), hydroquinone >99 wt % (Sigma-
Aldrich), and acetone >99.5 wt % (Sigma-Aldrich) were used
without further purification.

The experimental setup used for the emulsion polymer-
ization reactions comprised a 1 L jacketed reactor with four
ports, a condenser, a nitrogen sparger, a thermocouple, a
mechanical stirrer, an optical fiber, and a near-infrared (NIR)
probe. Additionally, a cold bath connected to the condenser
and a hot bath for temperature control and system heating
were employed. Figure 1 illustrates the apparatus used for the
reaction system in the experimental assays.

To study the relationship between the near-infrared (NIR)
spectrum and the size and concentration of polymer particles
in the emulsion and to analyze some aspects involved in this
relationship, an experimental plan was implemented with the
following steps:

Step 1: A series of ten experiments was conducted using
methyl methacrylate (MMA), varying the concentrations of
emulsifier and initiator to produce samples with different
particle sizes, maintaining a solid content of approximately 30
wt %.

Step 2: No new syntheses were performed in this stage.
Instead, the synthesized polymers were diluted to adjust the
particle concentrations (30, 25, 20, 15, and 10 wt %), while
keeping the particle size constant, to study the effect of particle
concentration on the NIR spectra.

Step 3: No new syntheses were conducted in this stage
either. A new set of measurements was carried out by mixing

Figure 1. Apparatus for emulsion polymerization reactions.
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previously produced particles of different sizes (d1 and d2) in
various ratios (100:0, 85:15, 50:50, 25:75, and 20:80). The
NIR spectra were recorded to investigate how the non-
uniformity in particle sizes affects the spectra.

Step 4: Three copolymerization experiments were con-
ducted under the same conditions as the previous syntheses
but with varying MMA and St ratios in the formulation (20:80
and 80:20) to obtain copolymer particles with different
compositions along with the copolymer synthesized with an
equimolar ratio of the two monomers (50:50). The spectra of
these samples were compared to assess the effect of particle
composition on the spectra.

The emulsion polymerization reactions for the production of
the particles used in this study were conducted using both
batch and batch methods with intermittent addition processes.

Three MMA homopolymerization reactions and one styrene
(St) homopolymerization reaction were carried out using
batch processes, following the procedure initially based on the
methodology used by Fontenot and Schork.27 The reactor
agitation was set to 400 rpm, and the temperature was
maintained at 60 ± 10 °C throughout the reaction for MMA
homopolymers and at 70 ± 10 °C for the St homopolymer.
Initially, the reactor was charged with water, emulsifier, and
monomer (MMA or St), which was sparged with nitrogen for
30 min to remove oxygen from the reaction medium and
prevent inhibition of the polymerization reaction. The mixture
was then heated using water from a hot bath circulating
through the reactor jacket until reaching the desired temper-
ature of 60 or 70 °C, at which point the initiator was added,
and polymerization then started. After the reaction began,
nitrogen was maintained at a reduced flow rate. The MMA
homopolymerization reactions lasted for 120 min, while the St
homopolymerization reaction lasted for 240 min. By varying
the concentrations of the emulsifier and initiator appropriately,
polymer particles of defined sizes were produced, covering the
range of interest for the study. Table 1 shows the formulations
for the MMA1, MMA2, MMA3, and ST1 experiments.

In the batch homopolymerization experiments of MMA with
intermittent addition, previously produced polymer particles
were used as seeds to obtain polymers with larger particle

diameters. These procedures were also based on the method-
ology used by Fontenot and Schork27 regarding operational
conditions, while the formulations were initially based on the
methodology of Silva et al.19 The total reaction time was 120
min. The main difference in these experiments, besides using
previous batches as seeds, was the addition of monomer at four
distinct times: at 0, 20, 40, and 60 min. Each intermittent
addition was performed quickly with the aid of a funnel and
lasted only a few seconds. Table 2 presents the formulations
used in these batch homopolymerization experiments with
intermittent addition.

In addition, three copolymerization experiments were
conducted, varying the molar ratio of MMA to St in the
formulations (20:80, 50:50, and 80:20) to obtain copolymer
particles with different compositions. The reactor agitation was
set to 600 rpm, and the temperature was maintained at 70 ±
10 °C throughout the reactions. Initially, the reactor was
charged with water, emulsifier, and monomers (MMA and St),
which was sparged with nitrogen for 30 min. The reaction
mixture was then heated using water from a hot bath
circulating through the reactor jacket until it reached 70 °C,
at which point the initiator was added and copolymerization
commenced. The reactions lasted approximately 240 min, and,
as in the previous experiments, nitrogen was maintained at a
reduced flow rate after the reaction began. Table 3 shows the
formulations used in the MMA and St copolymerization
experiments.

Offline NIR analyses were conducted through sampling to
collect spectra used for monitoring the polymerization
parameters of the present study. Additionally, in-line analyses
were performed with the same equipment to monitor the
synthesis of certain polymers. Samples from all conducted
experiments were analyzed using NIR techniques, employing
an immersion infrared sensor (Hellma model 661-622-NIR
with a transflection probe and an optical path length of 1 mm)
connected to a Bruker IFS 28/N spectrometer.

The spectra obtained from the offline analysis had resolution
2 cm−1 and a number of scans suitable for a short acquisition
time, approximately 20 to 30 s per spectrum. In contrast, in-
line tests were collected every 30 s, with each spectrum
generated using 4 scans. For the offline tests, after completing

Table 1. Formulations of the Batch Homopolymerization
Experiments

Experiment H2O/g SLS/g KPS/g MMA/g St/g

MMA1 406.2065 1.0962 0.5555 177.0483 -
MMA2 406.2040 3.9033 1.8308 177.0003 -
MMA3 405.4798 0.8804 0.5103 176.9400 -
ST1 406.1750 3.9033 1.8304 - 184.1287

Table 2. Formulations of the Batch Experiments with Intermittent Addition

MMA/g − Intermittent addition

Experiment H2O/g SLS/g KPS/g Seed/g 0 min 20 min 40 min 60 min

MMA4 200.59 0.438 0.510 100.08 (MMA3) 50.17 50.05 50.31 50.06
MMA5 240.72 0.409 0.513 100.04 (MMA1) 35.04 35.01 35.01 35.06
MMA6 400.00 0.440 0.512 100.03 (MMA3) 50.02 50.04 50.04 50.20
MMA7 270.26 0.460 0.551 98.55 (MMA2) 30.03 30.03 30.07 30.05
MMA8 270.00 0.461 0.512 100.46 (MMA1) 35.02 35.06 35.06 35.01
MMA9 400.15 0.440 0.510 100.00 (MMA18) 50.04 50.08 50.05 50.03
MMA10 200.00 0.321 0.499 100.23 (MMA18) 50.22 50.01 - -

Table 3. Formulations of the MMA and St
Copolymerization Experiments

Experiment H2O/g SLS/g KPS/g St/g MMA/g

STMMA1 406.2098 3.9032 1.8304 92.5928 88.4967
STMMA2 406.2654 3.9017 1.8335 147.3107 35.4167
STMMA3 406.2078 3.9028 1.8307 36.7908 141.5727
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the experimental trials, the synthesized polymers were diluted
to alter the particle concentration in terms of solid content
(30%, 25%, 20%, 15%, and 10%), while maintaining the same
average diameter. This approach aimed to dissociate the
evolution of particle concentration from the evolution of
diameter, enabling a systematic study of the effect of NIR on
particle concentration and size as well as generating data for
the development of the calibration model for this study.

The conversion of monomer to polymer was measured
offline by gravimetric technique.28 The average particle size of
the emulsion polymer particles was determined by the
Dynamic Light Scattering (DLS) technique, also known as
Photon Correlation Spectroscopy, a widely used technique to
determine the average size of emulsions, particles, and
molecules in suspension with diameters ranging from 0.3 nm
to 6 μm.29 Size measurements by light scattering calculate the
equivalent diameter of the particles through an intensity-
weighted average of the scattered light.

3. RESULTS AND DISCUSSION
3.1. Experimental Results. The volatilization gravimetry

technique was used to quantify the overall experimental
conversion of the reactions. Satisfactory results were obtained
concerning the overall conversion, with values exceeding 96%.
Figure 2 shows the conversions for the MMA batch

homopolymerization reactions, and Figure 3 presents the
conversions for the MMA batch homopolymerization experi-
ments with intermittent addition. Finally, Figure 4 shows the
conversions for the styrene homopolymerization and styrene-
MMA copolymerizations.

The expected overall conversions in MMA emulsion
polymerization syntheses can vary depending on the specific
reaction conditions and process objectives. However, high
overall conversions are generally anticipated to obtain solid
polymers with the desired properties. Czajka and Armes,30 in
their study on X-ray scattering during the polymerization of
methyl methacrylate, achieved overall conversions of 93% to
95%.

It can be observed from the conversion graphs in Figures 2,
3, and 4 that the polymerization of styrene generally proceeded
more slowly than that of MMA. The fact that PMMA is more
hydrophilic than polystyrene allows a greater surface area to be

stabilized by the same amount of surfactant, leading to a higher
number of particles. Polystyrene produced more coagulum and
achieved lower overall conversions.

The high monomer conversion rate in emulsion polymer-
ization reactions of both MMA and styrene can be attributed
to several factors, including particle size, emulsion stabilization,
the presence of suitable emulsifiers and initiators, temperature
control, and the removal of the generated heat, among others.

Figure 5 shows the variation in average diameters for the 10
MMA homopolymerization reactions conducted. These results
indicate that a good range of sizes was obtained, enabling the
study of this variable with particles ranging from 100 to 465
nm.

Figure 6 presents the average diameters obtained during the
styrene homopolymerization reaction and styrene-MMA
copolymerizations. In this case, it is observed that smaller
average particle diameters were obtained compared to those of
the products from MMA homopolymerizations. The con-
ditions and formulations used contributed to this result, as did
the chemical structure of the monomers. Styrene is a monomer
that contains a benzene ring, making it more bulky and rigid.

Figure 2. Conversions of MMA batch homopolymerization reactions.

Figure 3. Conversions of MMA batch homopolymerizations with
intermittent addition.

Figure 4. Conversions of the styrene (St) homopolymerization and
styrene (St) and MMA copolymerizations.
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During polymerization, styrene molecules tend to organize in a
more compact manner, resulting in smaller and denser polymer
chains. On the other hand, methyl methacrylate has a more
flexible and less bulky structure, and during polymerization,
polyMMA molecules can arrange themselves in a more spaced-
out manner, leading to the formation of larger and less dense
chain arrangements compared to that for polystyrene.

Similar to the average diameter, the particle size distribution
obtained from DLS analysis is weighted by the intensity of
light scattered by the particles, and PSD affects the emulsion
rheology, adhesion, optical properties, mechanical strength,
and latex stability.31 Figure 7 shows the size distribution as a
graph of the relative intensity of scattered light versus size
classes on a logarithmic scale for the following samples:
MMA1, MMA2, MMA6, MMA7, ST1, and STMMA1.

The polydispersity index (PDI) of the sample is provided by
the equipment and is a measure of the range of particle size
distribution. According to Horgan and Vincent,32 this index
provides an indication of the micelle/particle size distribution.
Values above 0.2 are considered indicative of broad
distributions, while narrow and monodisperse samples typically

have PDI values below 0.1. Thus, it can be observed from the
graphs in Figure 7 that the analyzed samples can be considered
monodisperse, as PDI values were obtained between 0.038 and
0.090.
3.2. Qualitative Analysis of the Influence of Average

Particle Size, Solids Content, and Copolymer Compo-
sition on the NIR Spectra. The NIR spectra collected during
the polymerization reaction experiments display the behavior
shown in Figure 8, in this case during the MMA3 experiment,
where the evolution of the reaction can be observed in the in-
line NIR spectra.

At time t = 0, during the initial collection, the reaction
mixture consisted only of monomer (MMA), water, emulsifier,
and initiator. Thus, in the absence of polymeric particles at the
initial moments, the region from 14,000 to 9000 cm−1 shows
virtually zero absorbance. This region does not exhibit
significant absorption bands related to chemical components,
whereas in the region from 6500 to 5400 cm−1, peaks related
to the double bond present in the monomer (C�CH2) can be
observed. This double bond disappears as the monomer is
converted into a polymer during the polymerization. Addi-
tionally, the spectrum also shows the highest concentration of
C−H bonds of MMA in the form of (−CH2) in the region
between 5600 and 6200 cm−1.19

As the reaction progresses, the baseline of the spectrum
shows a change in the slope. This slope is related to the
formation of particles and the resulting light scattering. Thus,
the spectral regions associated with the chemical part of the
process (consumption of the double bond and formation of
the polymer chain) are correlated to the physical part
(formation and growth of polymeric particles).

In NIR spectroscopy, dispersed polymer particles influence
the spectra mainly through light scattering. As particle size
increases, the scattering intensity changes the baseline slope
and overall signal intensity, especially in regions without strong
chemical absorption bands. This effect occurs because
scattering reduces the transmitted light reaching the detector,
altering the apparent absorbance in a size-dependent manner.

The effect of particle concentration on the NIR spectra was
studied through dilutions, which allowed different concen-
trations in terms of solid content (SC) to be obtained while
maintaining the same particle diameter (d).

The spectra were compared with different preprocessing
methods: (a) the original spectrum with only a noise filter
(smoothing) over 25 points; (b) the first derivative; and (c)
the second derivative. Figures 9, 10, and 11 show the NIR
spectra corresponding to the MMA2 experiment.

The spectra in Figures 9, 10, and 11 exhibit notable
sensitivity in both the original spectra and the first and second
derivatives, across the three observed regions. This observation
aligns with the established understanding that variations in the
solid content can significantly affect NIR spectra. Studies have
demonstrated that increases in solid content typically result in
enhanced absorbance in specific spectral regions, which can be
attributed to changes in the interaction between NIR light and
the sample matrix.33 The consistent patterns observed, as
indicated by the arrows, reflect the systematic relationship
between the solid content and the spectral response. The use
of first and second derivative treatments enhances the
detection of these patterns by minimizing baseline shifts and
highlighting subtle changes in the spectra.34,35

For the study of the effect of the average particle diameter
on NIR spectra, a region of the near-infrared spectrum, located

Figure 5. Average diameters of the particles obtained through MMA
homopolymerization.

Figure 6. Average diameters of the particles obtained through styrene
homopolymerization and styrene-MMA copolymerizations.
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between 10,475 and 13,000 cm−1, was observed. According to
previous studies, this region exhibits high sensitivity to changes
in particle size.19−22 It is also important to highlight that this
study is crucial for evaluating the potential to develop a robust

calibration model capable of monitoring particle diameter in
emulsion polymerization reactions.

The NIR spectra of samples with different particle diameters
at fixed solid contents are presented in Figure 12.

Figure 7. Particle size distribution of MMA and St homopolymerization samples and St-MMA.
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Figure 12 reveals a discernible pattern in the measured
spectra. The signal intensity increases with larger particle
diameters, but there is also a noticeable angular variation, as
indicated by the arrows in the presented graphs. Additionally,
spectra from larger particles (200, 240, 272, 295, 365, and 462
nm) exhibit more pronounced bands and additional vibrations
compared with those from smaller particles (100, 130, 144, and

160 nm). This observation aligns with findings from studies
that show how the particle size affects the scattering and
absorption characteristics in NIR spectra. Larger particles tend
to interact more significantly with infrared light, resulting in
more distinct spectral features. This pattern supports the
feasibility of developing a robust calibration model for particle
size monitoring.

In the NIR region between 9000 and 14,000 cm−1,
significant changes are observed, as noted by Torraga and
Giudici.36 This region, often termed the “physical” region of
the spectrum, lacks prominent absorption bands related to
chemical functionalities but is sensitive to physical changes
such as particle size. Studies by Horgan and Vincent37 also
confirm that this spectral range is crucial for monitoring
physical properties due to its sensitivity to variations in particle
size and distribution. Their research underscores the
importance of this region in distinguishing between different
sizes of polymer particles, providing a reliable basis for
calibration models used in the real-time monitoring of
polymerization processes. These findings suggest that with
appropriate calibration, the NIR spectral data from this region
could be effectively utilized to develop predictive models for

Figure 8. In-line NIR spectra collected during the MMA3 experiment.

Figure 9. NIR spectra of the same emulsion at different dilutions (different solid content, SC, same particle diameter) from the MMA2 experiment.
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particle size, enhancing the accuracy and efficiency of
polymerization monitoring and control.

After mixing particles of different sizes (d1 and d2) in
different mass ratios (100:0, 75:25, 50:50, 25:75, 0:100) with
the same solid content, NIR spectra were measured (Figure
13) to assess how the nonuniformity of particle sizes might
affect the spectra.

Figure 13 shows that the spectra change according to the
indicated arrows with increasing intensity and shifting angular
positions as the mass ratio of the larger particle rises.
Additionally, in mixtures of smaller particles (<200 nm) with
larger particles, the spectra at a 50:50 mass ratio exhibit bands
that are more characteristic of the larger particles, with these
bands becoming more pronounced.

The study of the effect of particle composition on the NIR
spectrum was conducted by comparing the spectra of particles
obtained from three experiments varying the molar ratio of
MMA and St. These experiments are STMMA1 (50:50
MMA:St), STMMA2 (20:80 MMA:St), and STMMA3
(80:20 MMA:St). The residual concentrations of MMA and
St in the copolymerization experiments STMMA1, STMMA2,
and STMMA3 were estimated by using gas chromatography

(GC). Thus, the composition of each copolymer was estimated
according to the data in Table 4.

Consequently, it can be analyzed that the compositions of
the copolymers were closed to the molar ratio of the
experiments. This was expected since the monomer conversion
was high. Moreover, during the copolymerization, the
composition drift is expected to be small because the
monomers MMA and St have very similar reactivity rates of
0.46 and 0.52, respectively. Furthermore, the GC analysis also
confirmed the conversions previously obtained by gravimetry,
which were approximately 99% in all three experiments. To
evaluate the effect of these different compositions on the NIR
spectrum, the spectra of the three copolymer experiments were
measured, and the spectra presented in Figure 14 were
obtained. It can be observed in the spectra of Figure 14 that
despite varying the composition of the copolymers, the
difference between the spectra is quite small. Since the
diameters of these particles are very similar, this supports the
notion that NIR demonstrates good sensitivity for monitoring
this physical variable, which could enable the creation of a
robust model for monitoring the particle size obtained in
emulsion polymerization reactions with different formulations
and reaction parameters.

Figure 10. NIR spectra after first derivative treatment of the dilutions from the MMA2 experiment.

Figure 11. NIR spectra after the second derivative treatment of the dilutions from the MMA2 experiment.
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3.3. NIR Calibration Models. The selection of the test set
for calibration and external validation of the particle diameter
monitoring model was made by using in-house samples
collected during the emulsion polymerization reactions, both
from the final samples and from the dilutions. According to
Mevik and Wehrens,38 the process of selecting a diverse
calibration set is crucial for ensuring that the model captures
the full variability of the system being studied, improving the

robustness of the predictions. Moreover, the selection of
calibration samples that encompassed a wide range of particle
diameters was prioritized, as suggested by Esbensen et al.,39

who emphasize that a wide distribution of sample sizes is
essential for minimizing bias in multivariate calibration models.
Samples with different solid contents were also used, which can
help account for matrix effects that could influence the particle
diameter measurements.

Figure 12. Effect of the particle diameter on NIR at different solid contents.
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A total of 54 data points (DLS-measured diameters and the
corresponding NIR spectra) were employed for the model
calibration, covering the range of particle size 62−462 nm and
solids content 10−30% (see Figure 15) and including data of
homopolymerizations (MMA, ST) and copolymerization
(STMMA). The final latexes of the polymerization reactions
at 30% solids content were diluted to alter the particle
concentration (to solids content 25%, 20%, 15%, and 10%),
while keeping the same average diameter. The separation of
data for calibration and validation was carried out through

Figure 13. NIR spectra of mixtures of particles of different sizes.

Table 4. Compositions of the Copolymers Obtained by GC

Experiment MMA Composition St Composition

STMMA1 0.5008 0.4992
STMMA2 0.1985 0.8015
STMMA3 0.7917 0.2083

Figure 14. NIR spectra of STMMA1, STMMA2, and STMMA3 with
TS of 30%.

Figure 15. Samples used for calibration and validation.
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random partitioning in RStudio, where 65% of the data (35
data points) were used for calibration and 35% for validation
(19 data points). This approach follows the recommendations
of Kuhn and Johnson,40 who advocate for random data
partitioning to reduce potential bias and improve general-
izability. Additionally, during the development of the models,
all data underwent min-max normalization. Normalization is a
key step in machine learning preprocessing, as it rescales each
data point between a minimum and maximum value (typically
0 and 1), ensuring that features are on the same scale, thereby
preventing features with larger ranges from dominating the
model.41 This technique is widely used for models that rely on
distance-based metrics or gradient-based optimization.

In terms of the bands chosen for calibration and validation
of the model, two distinct databases (spectral ranges) were
used. The first one utilized only the absorbances between the
wavenumbers of 14,000 to 9000 cm−1, as both the literature
and our previously presented results indicate that this is a
region of interest regarding particle diameter. The second
database covered the entire spectrum, from 14,000 to 4000
cm−1. Both databases were used in the development of
calibration models using Principal Component Regression
(PCR), Partial Least Squares regression (PLS), and Artificial
Neural Networks (ANN) in RStudio.

These three chemometric approaches (PCR, PLS, and
ANN) were selected to represent a range of commonly applied
calibration strategies in NIR spectroscopy, from conventional
linear methods (PCR, PLS) to a more advanced nonlinear
approach (ANN), allowing both baseline and state-of-the-art
performance to be assessed under the same data set.

The main idea of PCR and PLS is the reduction of the
number and collinearity of the independent variables of the
regression (the absorbances measured in the NIR spectra) by
the techniques of projection in reduced spaces. Strong
collinearity exists in the spectra because each chemical group
corresponds to a number of different peaks/bands; in addition,
the broadbands of NIR spectra imply that several points that
form a given band will also change in a similar way. After the
projection in the reduced space, the new independent
variables, called principal components (PCs) in PCR, or latent
variables (LVs) in PLS, are actually linear combinations of the
original ones, grouping the collinear information into a small
group of new noncollinear variables that contain virtually the
same information as the full spectrum. The PCs are
determined from the analysis of the independent variables,
while the determination of LVs also accounts for the variability
of the corresponding dependent variable. Artificial Neural
Networks (ANNs) were also tested because they can account
for nonlinearities in the relationship between the independent
and the dependent variables that may exist in the case under
study (due to multiple scattering, concentrated medium, etc.).
In order to reduce the number of independent variables in
ANNs, we employed the reduced number of PCs as
independent variables, instead of using the full number of
absorbances measured in each spectrum (2500 absorbances for
the spectral range 14,000−9000 cm−1, or 5000 absorbances for
the spectral range 14,000−4000 cm−1). This is particularly
convenient for two reasons: (a) reducing the number of inlet
variables strongly reduces the number of weights of the ANN
model; (b) using a reduced number of PCs instead of the
absorbances avoids the collinearity of the independent
variables, making the ANN more robust and the estimation
of the model parameters (weights and biases) more reliable.

Additionally, the criteria used for evaluating and selecting
the models were the coefficient of determination (R2), which
measures the proportion of data variability explained by the
model, and the root-mean-square error of cross-validation
(RMSECV), which assesses the model’s accuracy. The use of
R2 as a primary metric is common in regression analysis, as it
indicates how well the model explains the variance in the
dependent variable.42 A high R2 value, typically close to 1, is
indicative of a strong model fit, meaning the model is able to
explain a large portion of the data’s variability (although some
care must be exercised when interpreting R2 values).43

In addition to R2, the RMSECV is a critical measure for
evaluating the accuracy of predictive models during cross-
validation. As pointed out by Chai and Draxler,44 RMSECV
quantifies the discrepancy between predicted and observed
values, with lower values indicating better predictive perform-
ance. It provides a direct measure of the model error during
cross-validation, ensuring that the model not only fits the
training data but also generalizes well to data not used in the
model training.45 The combination of these two metrics, R2

and RMSECV, ensures a comprehensive evaluation of both the
model fit and predictive accuracy, aligning with established
best practices in model validation.
3.3.1. Principal Component Regression (PCR) Models. In

the development of the PCR calibration model, the smallest
possible number of principal components (PCs) was analyzed,
so that the model still achieved a reasonable R2 value and the
lowest RMSECV value. The careful selection of principal
components is critical in PCR, as it helps to balance model
complexity and predictive accuracy. According to Wold et al.,46

the number of PCs used should be minimized to avoid
overfitting while still capturing the essential variance in the
data. This approach aligns with the principles outlined by
Massy,47 who emphasized the importance of retaining only
those components that contribute significantly to the
explanation of variability, thereby enhancing the interpret-
ability of the model.

The PCR approach was first applied considering the spectral
range from 14,000 to 9000 cm−1 that does not contain bands
corresponding to chemical bonds (“chemical information”). In
Figure 16a, the root-mean-square errors of cross-validation
(RMSECV) are plotted as a function of the number of PCs.
This visualization is essential for identifying the optimal
number of components, as it allows for the assessment of the
RMSECV in relation to the complexity of the model. As noted
by Martens and Naes,48 monitoring the RMSECV as the
number of components increases helps identify the point at
which additional components no longer provide significant
improvement in model performance, effectively guiding the
model selection process. Thus, the analysis of latent variables is
fundamental to developing robust and efficient PCR models. It
can be observed that RMSECV decreases as the number of
PCs increases up to 4 components, and then the RMSECV
value does not change significantly, indicating that the choice
of 4 components (with RMSECV = 0.0762) is sufficient.
Figure 16b presents the observed and predicted values of
average diameter (R2 = 0.9572) using only the data set for
calibration (65% of the database), and Figure 16c shows the
comparison of the predictions for the data set for testing (35%
of the database), for which R2 = 0.9499 and RMSECV =
0.0869 were obtained.

A second attempt was the application of the PCR for the full
spectral range measured (14,000 to 4000 cm−1) that contains
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also the bands related to the chemical information. In Figure
17a, the graph of the root-mean-square errors of cross-
validation by the number of PCs can be observed for the
model that used the complete database with the full range of
absorbances measured in the NIR spectra. It is noted that the
trend of RMSECV does not change significantly for more than
8 principal components. Therefore, in this case, the choice was
made for 8 components in this model, with RMSECV =
0.0499. Figure 17b shows the fitting of the model for the
calibration set (R2 = 0.9848) and Figure 17c for the testing set
(R2 = 0.9806 and RMSECV = 0.0494). Comparing the two
spectral ranges tested, the PCR model for the full range
required a large number of PCs (8) and, in turn, gave better
predictions for the particle diameter.
3.3.2. Partial Least Squares (PLS) Models. In the

development of the PLS calibration models, the goal was
also to use the smallest possible number of latent variables
while still achieving a reasonable R2 value and the lowest
RMSECV. The effective selection of latent variables in PLS is
crucial for enhancing model interpretability and performance.
Recent studies emphasize that PLS is particularly advantageous

for analyzing data with multicollinearity, as it can extract
relevant latent structures from complex data sets.49,50

In Figure 18a, the graph of the root-mean-square errors from
cross-validation by the number of PLS components is
presented, again starting by the use of the reduced spectral
range of 14,000 to 9000 cm−1. This visualization is vital for
determining the optimal number of components. As noted by
Zhang et al.,51 monitoring RMSECV across varying compo-
nent numbers helps to ensure the model achieves a balance
between fitting the training data and maintaining predictive
accuracy on data not used in model training. Furthermore,
employing robust validation techniques, including cross-
validation and independent test sets, as highlighted by
Ruckstuhl et al.,52 is essential for confirming the reliability
and generalizability of the PLS model’s predictions. The graph
in Figure 18a illustrates that, beginning with 6 components, the
RMSECV value starts to rise gradually, and after reaching 10
components, the error increases significantly. Consequently,

Figure 16. PCR model (spectral range 14,000 to 9000 cm−1) with 4
PCs (principal components).

Figure 17. PCR model (spectral range 14,000 to 4000 cm−1) with 8
PCs (principal components).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.5c02647
Ind. Eng. Chem. Res. 2025, 64, 19045−19063

19056

https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c02647?fig=fig17&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.5c02647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the decision was made to select 6 components for this model,
with RMSECV = 0.0750. Figure 18b presents the curve
generated by the calibration model for the observed and
predicted values for the data used for calibration (65% of the
database) with the previously determined number of
components, yielding a R2 = 0.9727. Figure 18c shows the
comparison of the predictions for the separated database for
model validation with R2 = 0.9518 and RMSECV = 0.0827.

The same approach of the PLS calibration model was
performed using the full spectral range (14,000 to 4000 cm−1).
Figure 19a shows that the choice of 6 latent variables for this
model is appropriate, with RMSECV = 0.0479. This PLS
model fitted the data well for the calibration set (R2 = 0.9921,
Figure 19) and also for the test set (R2 = 0.9796, Figure 19).

Comparing Figures 18 and 19, we see that the use of the full
spectral range provides a better calibration model for the same
number of latent variables.

3.3.3. Artificial Neural Network (ANN) Models.
3.3.3.1. Principal Component Analysis (PCA). In an Artificial
Neural Network model for obtaining the particle size as a
function of the NIR spectrum, the input (independent)
variables are, in principle, the full set of absorbances measured
at several different wavenumbers. As already discussed, such a
large set of independent variables is highly correlated to each
other (highly collinear), thus requiring a previous treatment to
reduce these variables to a smaller number of truly
independent variables. Thus, in the creation of a calibration
model using Artificial Neural Networks, the execution of a
Principal Component Analysis (PCA) of the spectral data
helps to reduce the dimensionality of the data by removing
redundant information and highlighting key patterns. This
dimensionality reduction is crucial as it can accelerate the
training of the network and reduce the risk of overfitting.
Overfitting occurs when the model is overly complex,
capturing noise and random variations in the training data,

Figure 18. PLS model (spectral range 14,000 to 9000 cm−1) with 6
LVs (latent variables).

Figure 19. PLS model (spectral range 14,000 to 4000 cm−1) with 6
LVs (latent variables).
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which impairs its ability to generalize well to new data not
previously used in model training.53,54

In this case, to obtain the diameter calibration models using
an ANN, a PCA was initially performed, resulting in new
reduced sets of variables, called principal components (in the
context of PCR) or latent variables (in the context of PLS).
These components effectively represent the independent
information contained in the spectrum, allowing for a more
robust calibration model with the monitored variables.55,56

Figure 20a,b presents the variance of the data as a function of
the number of principal components (PCs) for the NIR
database covering the absorbance ranges of 14,000 to 9000
cm−1 and 140,00 to 4000 cm−1, respectively. The graphs
illustrate how the selected components account for the
variance in the data, supporting the selection of an optimal
number of PCs for subsequent analysis.57,58 For the database
from 14,000 to 9000 cm−1, approximately 99.7% of the total
variance of the data set is captured with only 5 PCs. In
contrast, for the database from 14,000 to 4000 cm−1, this
variance of about 99.7% was achieved with 6 PCs, thus
defining the number of PCs for both cases.

After the Principal Component Analysis was performed, a
new database was generated, consisting solely of the principal
component data and the average particle diameters (d). The
scores of the principal components were used as the input for
the neural network, while the average particle diameters
represented the output. Normalization was performed to adjust
the values of the numerical columns in the data set to a
common scale, which is crucial for ensuring that all features
contribute equally to the distance calculations during train-
ing.59,60 This process helps to preserve the relationships among
different variables while minimizing the impact of differing
ranges.

Additionally, feedforward networks were developed using
the backpropagation algorithm, a widely used method for
training neural networks that optimizes the weights by
minimizing the error through iterative updates.53,61 The
ANN models used are of one hidden layer, using a sigmoidal
function as the nonlinear activation function of each neuron.

For model development, only the data set aside for
calibration was used, which constituted 65% of the data, as
previously mentioned. In configuring the structure of the
neural network, it was necessary to vary the number of neurons
in the hidden layer (NH) until the minimum RMSECV was
achieved. The “for” command in RStudio was utilized, which
efficiently repeats commands controlled by a variable, to

execute the ANN function while varying NH from 1 to 20,
with 5 repetitions for each value to train the network.62,63 This
approach ensured that the error values for each NH were
systematically obtained for the training data set, as shown in
Figure 21. From this figure, it was found that the minimum

RMSECV for the test data is around 0.0486 when the ANN
comprises 11 neurons in the hidden layer, establishing this
number as the optimal quantity of neurons for that layer.

After training, the ANN model with 11 neurons in the
hidden layer, obtained for the database from 14,000 to 9000
cm−1, using 5 PCs as input variables is illustrated in Figure 22.
This model fitted the training data very well (R2 = 0.9992,
RMSECV = 0.00751) and also the testing data very
satisfactorily (R2 = 0.9658, RMSECV = 0.0744), as shown in
Figure 23.

The same procedure was employed for fitting an ANN
model for the broader database from 14,000 to 4000 cm−1 and
the results are presented in Figure 24 for the determination of
the number of neurons in the hidden layer, which was 6 in this
case, Figure 25 for the resulting structure and parameters of the
ANN model, and Figure 26 for the performance of the fitting
of this ANN model, for training data R2 = 0.9996 and
RMSECV = 0.0056, and for the testing data R2 = 0.9802 and
RMSECV = 0.0381.
3.4. Comparisons of the Developed Diameter

Calibration Models. Tables 5 and 6 present the comparison
of the developed particle diameter models using different
methods for selecting bands from the NIR spectrum between

Figure 20. Variance of the spectra as a function of the number of PCs (a) for the spectral database from 14,000 to 9000 cm−1 and (b) for the
spectral database from 14,000 to 4000 cm−1.

Figure 21. RMSECV of the ANN model as a function of the NH in
the hidden layer for training data (database from 14,000 to 9000
cm−1).
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14,000 to 9000 cm−1 and 14,000 to 4000 cm−1 (the entire
spectrum), respectively.

Overall, it can be observed that the selection of a reduced
band does not yield significant improvements in the model
results (in terms of R2 and RMSECV), indicating that slightly
better calibration models were obtained without the need for
spectral band selection. This finding aligns with studies
suggesting that band selection may inadvertently remove
important information from the spectrum, leading to
suboptimal model performance.64,65 The “physical part of the
spectrum” (higher wavenumbers) refers to the light scattered
by the polymer particles, and this can be related to the particle
size and particle concentration (solids content). The “chemical
part of the spectrum” (lower wavenumbers) contains
information about the amount of water. As the main
components of the emulsion are water and polymer particles,
more water means less polymer (and vice versa). So, it seems
that the use of the full spectral range may help the calibration
model to better account for the effects of particle size and
particle concentration. This is probably the reason why the
calibration models using the full spectral range (Table 6)

performed a little better than the corresponding calibration
models that used the reduced spectral range (Table 5).

Moreover, it is noted that in general, the ANN model
achieved a slightly better predictive accuracy compared to the
other two methods. Recent research supports the notion that
ANN can capture complex nonlinear relationships within the

Figure 22. Structure and parameters of the Artificial Neural Network
model (database from 14,000 to 9000 cm−1).

Figure 23. Fitting performance of the ANN calibration model (database from 14,000 to 9000 cm−1).

Figure 24. RMSECV of the ANN model as a function of the NH in
the hidden layer for training data (database from 14,000 to 4000
cm−1).

Figure 25. Structure and parameters of the Artificial Neural Network
model (database from 14,000 to 4000 cm−1).
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data more effectively than traditional methods, resulting in
enhanced predictive accuracy.66,67 Additionally, it can be seen
that the PLS models provided more satisfactory results
compared to those developed using PCR, as expected, which
is consistent with findings that highlight PLS’s robustness in

dealing with multicollinearity and its ability to extract
meaningful latent structures.68,69

Artificial Neural Networks (ANN) offer several advantages
over traditional calibration models like Principal Component
Regression (PCR) and Partial Least Squares (PLS) due to
their ability to handle nonlinear relationships and capture
complex patterns in the data. ANNs can automatically learn
from the data, adapting to intricate features that may be missed
by linear models like PCR and PLS, making them particularly
useful in applications where data structures are complex.70,71 It
is known that chemical information represented by the
absorbance is linearly related to the concentrations of the
chemical groups. On the other hand, particle size is related to
the scattering, diffraction, reflection, and refraction of light in a
much more complex way; moreover, for in-line application in
an undiluted medium (high particle concentration), multiple
scattering certainly occurs, making the relationship between
the near-infrared spectrum and particle size more complex and
nonlinear. These conditions indicate that flexible, nonlinear
models, such as ANN models, may be more likely to establish a
reliable relationship between particle size and NIR spectra

Figure 26. Fitting performance of the ANN calibration model (database from 14,000 to 4000 cm−1).

Table 5. Comparison of the Calibration Model Results for
Particle Diameter (Database from 14,000 to 9000 cm−1)

Method Components RMSECV R2

PCR 4 0.0762 0.9572
PLS 6 0.0750 0.9727
ANN 5 0.0486 0.9992

Table 6. Comparison of the Calibration Model Results for
Particle Diameter (Database from 14,000 to 4000 cm−1)

Method Components RMSECV R2

PCR 8 0.0499 0.9848
PLS 6 0.0479 0.9921
ANN 6 0.0358 0.9996

Figure 27. (a) ANN−NIR predicted vs DLS-measured particle diameters for the independent MMA11 reaction. (b) Time evolution of the particle
diameter during the MMA11 reaction measured by DLS and predicted by the ANN−NIR model.
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Moreover, ANNs are better equipped to manage large data
sets and interrelated variables, enabling them to model
intricate relationships effectively.72,73 However, the training
of ANNs often requires more extensive data sets for effective
learning and hyperparameter tuning, which can make their
implementation more complex. Additionally, they can be more
challenging to interpret than linear models, posing a significant
barrier in fields where model transparency is crucial.74,75

Ultimately, the choice between these methods depends on
the specific needs of the problem at hand as well as the
availability of data and resources. While ANNs can provide
superior performance in certain contexts, simpler models like
PCR and PLS may be more appropriate for cases where
interpretability and ease of use are prioritized.76,77

In the case of ANN models, it is important to emphasize that
the number of neurons in the hidden layer has a significant
impact on the performance and learning complexity. If the
hidden layer has too few neurons, the network may not be able
to capture the complexity of the patterns in the data, resulting
in low learning capacity and underfitting.78 On the other hand,
if the hidden layer has too many neurons, the network may
become excessively complex and struggle to generalize to new
data, leading to overfitting.79

Near-infrared spectroscopy has proven to be a simple, rapid,
nondestructive, low-cost, and environmentally friendly techni-
que for monitoring emulsion polymerization reactions. Based
on the results obtained, it can be said that the models
developed, particularly the one using neural networks with the
entire spectrum, are capable of monitoring the particle
diameter across different systems. It is important to emphasize,
however, that in-line monitoring with NIR spectroscopy is
subject to interferences that may affect the calibration model.
Such interferences include the presence of air bubbles in the
optical path of the probe, sample nonuniformities, elevated
concentrations in the samples, differences in the optical path of
the probe, and variations in the intensity of the NIR source.
3.5. External Validation of the ANN−NIR Model Using

Data Collected in an Independent Emulsion Polymer-
ization Reaction. To verify the predictive performance of the
developed ANN−NIR calibration model, an independent
emulsion polymerization reaction (MMA11) was monitored.
This was a batch reaction carried out at 60 °C with 400 g of
water, 175.4 g of monomer MMA, 1.2862 g of emulsifier SLS,
and 0.5675 g of initiator KPS. Samples were collected at time
intervals over a total of 120 min of reaction time; particle
diameters were measured by Dynamic Light Scattering (DLS)
and NIR spectra were collected and used to predict the particle
diameter using the trained ANN−NIR model.

Figure 27a shows the parity plot between the ANN−NIR
predicted and DLS-measured diameters for this experiment
MMA11. The results exhibit a strong linear relationship (y =
1.021x − 1.21), with R2 = 0.9883 and RMSE = 1.86 nm,
confirming the model’s ability to reproduce DLS results for
new conditions not previously used in the model calibration.

Figure 27b presents the time evolution of the particle size for
the same reaction. Both ANN−NIR and DLS results follow the
same trend: a rapid increase in particle diameter during the
initial 15 min, a plateau between approximately 30 and 90 min,
and a slight increase toward the end of the polymerization.
Minor deviations between the curves remain within expected
measurement uncertainties, confirming the robustness of the
ANN−NIR approach for real-time monitoring.

4. CONCLUSION
The present study involved successful experiments focused on
the formation of emulsion polymer particles with varying
average diameters, enabling the proposed investigation of the
relationship between NIR spectra and average particle size in
the emulsion polymerization process. All experiments demon-
strated high conversion rates and resulted in monodisperse
particles. Initially, a visual analysis was conducted to assess the
effects of particle concentration, particle diameter, size
uniformity, and the composition and uniformity of the particles
on the NIR spectra.

Following spectral analysis, several regions of good
sensitivity concerning the studied properties were identified,
with the most significant being in the range of 14,000 to 9000
cm−1, highlighting a correlation between concentration and
mean particle diameter with NIR spectroscopy.

Calibration models were developed by using different
spectral regions and various multivariate calibration methods.
However, it was observed that restricting the region to 14,000
to 9000 cm−1 did not result in improved model performance.
Furthermore, the models created using Artificial Neural
Networks exhibited slightly better performance and accuracy.

Thus, the study reinforces the feasibility of creating a robust
calibration model capable of monitoring homopolymerizations
and copolymerizations in emulsions, utilizing different
formulations (monomers) and process conditions. Future
work could amplify the number of formulations of different
copolymerization systems for broader tests of the calibration
models here studied.

The models developed for determining particle diameter, in
comparison to common measurement techniques that require
sample preparation/dilution, such as dynamic light scattering
(DLS), allow for results to be obtained much more rapidly.
This speed represents a significant advantage for quality
control in the industry, enabling quicker responses and
informed decision-making based on the relevant data.
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