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ON THE DARBOUX INTEGRABILITY OF A THREE-DIMENSIONAL
FORCED-DAMPED DIFFERENTIAL SYSTEM

JAUME LLIBRE!, REGILENE OLIVEIRA? AND CLAUDIA VALLS?

ABSTRACT. In 2011 Pehlivan proposed a three—dimensional forced—damped autonomous differential sys-
tem which can display simultaneously unbounded and chaotic solutions. This untypical phenomenon
has been studied recently by several authors. In this paper we study the opposite to its chaotic motion,
i.e. its integrability, mainly the existence of polynomial, rational and Darboux first integrals through
the analysis of its invariant algebraic surfaces and its exponential factors.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

We consider in R? the autonomous system of differential equations
T=—ax+y+yz,
(1) Y=z —ay+bxz,
z = cz — by,

where a, b, ¢ are real parameters. This system arise in mechanical, electrical and fluid—dynamical contexts,
see for more details the articles of Miyaji, Okamoto and Craik [11, 12] and the references quoted there.
This system was proposed and studied by Pehlivan [13]. The system extends a previous study of Craik
and Okamoto [1], including linear forcing and damping.

Pehlivan showed that system (1) displays simultaneously unbounded and chaotic solutions. This
phenomenon has been studied in more depth by Miyaji, Okamoto and Craik who also find that can be
accompanied by three distinct period-doubling cascades of periodic orbits to chaos.

Chaotic systems are nonlinear deterministic systems which exhibits a complex and unpredictable be-
havior, hence it is a very interesting phenomenon in nonlinear dynamical systems and it has been inten-
sively studied starting with the Lorenz system. The majority of the known chaotic system have one or
more quadratic non-linearities. The existence of quadratic nonlinearities may increase the chaoticity of
the system, so in this paper we do not consider the case b = 0.

As far as we know this rich dynamical system (1) has never been investigated from the integrability
point of view. The main goal of this paper is to characterize the polynomial and rational first integrals
of system (1). For doing this we need to provide a complete characterization of the invariant algebraic
surfaces of system (1) depending on its parameters. In order to obtain such invariant algebraic surfaces
we shall use the Darboux theory integrability which gives a link between the algebraic geometry of the
system and its first integrals, see for more details about this theory [3, 4, 5, 7, 8, 9, 10].

It is well known that the existence of a first integral for three—differential system allows to reduce the
study of its dynamics in one dimension, and that the existence of two independent first integrals allows to
describe completely the dynamics of the system. These arguments justify the study of the integrability
of a differential system. The Darboux theory of integrability is classical. The Darboux integrability
essentially captures the elementary first integrals, i.e. the first integrals given by elementary functions,
which are the ones that roughly speaking can be obtained by composition of exponential, trigonometric,
logarithmic and polynomial functions, see for more details about the Darboux integrability the Chapter
8 of [3], and the references quoted there. The Darboux integrability in dimension three is based in the
existence of invariant algebraic surfaces f(x,y,z) =0, where f(z,y, z) is a polynomial, called a Darboux
polynomial. A sufficient number of such polynomials taking into account their multiplicity (through the
so—called exponential factors) force the existence of first integrals.
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2 J. LLIBRE, R. OLIVEIRA AND C. VALLS

Historically, the theory received mainly contributions from Darboux [?] who gave a link between
the algebraic geometry and the search of first integrals and showed how to construct a first integral
of a polynomial differential system in the plane having sufficient number of invariant algebraic curves.
Poincaré noticed the difficulty in obtaining an algorithm to compute Darboux first integrals and Singer
proved the relation for polynomial differential system in the plane to have a Liouvillian first integral in
terms of a Darbouxian integrating factor.

Let U be an open and dense subset of R3. A nonconstant function H: U — R is called a first integral
of system (1) on U if H(z(t),y(t), 2(t)) is constant for all of the values of ¢ for which (z(¢),y(t), z(t)) is
a solution of system (1) contained in U. So H is a first integral of system (1) if and only if

(—az +y+ 1) 2+ (@ — ay + be2) 2+ (cx — bary)
—aw 2)— +(z—a x2)— + (cz — bry)— =

yry ox 4 dy 4 0z
for all (z,y,2) € U. If H is a polynomial (respectively a rational function) we say that H is a polynomial
(respectively rational) first integral.

0,

Let R[z,y, z] be the ring of the polynomials in the variables x, y and z with coefficients in the field R.

Given g € R[z,y, z] the surface g(z,y,z) = 0 is called an invariant algebraic surface of system (1) if

there exists k € R[z,y, 2] such that
99 9g 9g

2 — — — brz)— —bry) == = kg.
(2) (max +y+yz)5 + (@ —ay + $2)8y+(02 y) 5, = kg
The polynomial k satisfying (2) is called the cofactor of the invariant surface g(z,y,z) = 0 and it has
degree at most 1. The name of invariant algebraic surface comes from the fact that if a solution of system
(1) has a point on the such surface the whole solution is contained in it.

Let U be an open and dense subset of R3. We recall that two functions f,g: U — R3 are functionally
independent or simply independent if their gradients are linearly independent at all points of U except
perhaps in a zero Lebesgue set. Differential system (1) is completely integrable if it has two first integrals
which are functionally independent.

The aim of this paper is to study the existence of first integrals of system (1) that can be described by
functions of Darboux type (see (3)). In general, for a given differential system it is difficult to determine
the existence or nonexistence of first integrals.

An exponential factor F(x,y,z) of system (1) is an exponential function of the form F' = exp(g/h)
with g, h € Clz, y, 2] coprime, denoted by (g,h) = 1, and satisfying

(yz — ax + y)g—i + (brz+x — ay)%—j + (=bxy + cz)%—}; =/(F

for some £(z,y, z) € Clz,y, 2] a polynomial of degree at most one, which is called the cofactor of F'.

A first integral H of system (1) is called a generalized Darbouz first integral or here simply a Darboux
first integral if it has the form
(3) G fyr Y Fj,
where fi,..., f, are Darboux polynomials and Fi,..., F; are exponential factors and A;, ui € C for
j=1,....,pand k=1,...,q.

Note that polynomial first integrals and rational first integrals are Darboux first integrals.

The main results of this paper are the following five theorems.

Theorem 1. Ifc=a =0 and b = 1, then system (1) is completely integrable with the two independent
first integrals Hy(x,y,2) = 2z + 2% + 2% and Ha(x,y,2) = 22 — y%.

Theorem 2. Assume c¢® +a? # 0 and b # 0. System (1) has an invariant algebraic surface if and only
ifa+c=0 orb=1. The irreducible invariant algebraic surfaces are described in Table 1 with their
corresponding cofactors.

Theorem 3. Assume c? +a? # 0 and b # 0. System (1) has a polynomial first integral if and only if
a=0 and b= 1. This first integral is x> — y>.
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Parameters Irreducible invariant algebraic surface Cofactor
a+c=0 b(z2 —y?—22)+22=0 —2a
b=1 z+y=0 l—a+z
b=1 z—y=0 —1l—a—-=z

TABLE 1. The invariant algebraic surfaces of system (1) with its corresponding cofactors.

Theorem 4. Assume c¢® +a? # 0 and b # 0. System (1) has no rational first integrals which are not
polynomial.

Theorem 5. For all a,c € R and b € R\ {0}, except when a =c=0, ora=0 and b =1, system (1)
has no Darboux first integrals.

The proofs of these theorems are given in Sections 3 and 4. Similar results on the integrability of a
polynomial Lotka—Volterra differential system in R? can be found in [6].

2. PRELIMINARY RESULTS

Before to proof the main results of this paper we will introduce some well-known results. The first was
proved in [3]

Lemma 6. Let f be a polynomial and f = Hj’:l f;” its decomposition into irreducible factors in Clx, y, z].
Then f is a Darboux polynomial if and only if all the f; are Darbouz polynomials. Moreover, if k and k;
are the cofactors of f and f;, then k = 2;21 ajk;.

The second result whose proof and geometrical meaning is given in [2] is the following.

Proposition 7. The following statements hold.

(a) If E =exp(go/g) is an exponential factor for the polynomial system (1) and g is not a constant
polynomial, then g = 0 is an invariant algebraic hypersurface.

(b) Eventually €9° can be an exponential factor, coming from the multiplicity of the infinite invariant
hyperplane.

The proof of the third and fourth results is given in [3].

Theorem 8. If system (1) has a rational first integral then either it has a polynomial first integral or
two Darboux polynomials with the same nonzero cofactor.

Theorem 9. Suppose that system (1) admits p Darboux polynomials and with cofactors k; and q expo-
nential factors F; with cofactors £;. Then there exists A;, p; € C not all zero such that

q q
> Awki+ D piti =0
i=1 i=1

if and only if the function G given in (3) (called of Darbouz type) is a first integral of system (1).

In Theorem 9 we say that the function (3) is real. It follows from the following fact. Since the vector
field X is real, it is well-known that if a complex Darboux polynomial or exponential factor appears, then
its conjugate must appear simultaneously. If among the Darboux polynomials of X a complex conjugate
pair f, f occur, the first integral (3) has a real factor of the form f*f*, which is the multi-valued real
function

mf

[(Ref)? + (Imf)Q]Re)‘ exp ( — 2Im) arctan (;Tf))’

if ImfTmA # 0. If among the exponential factors of X a complex conjugate pair F' = exp(h/g) and

F = exp(h/g) occur, the first integral (3) has a real factor of the form

(o () (e () = (ane(12)).

We can assume that b > 0 and introduce the change of variables

(4) X=Vbozr, Y=y, Z=z2
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and the rescaling of time ¢ = 7/v/b. In these new variables system (1) is written as

X=-uX+Y+YZ,
1

(5) V= X-ay+X7,
Z=c7Z— XY,

where a; = a/v/b and ¢; = ¢/V/b.
Now considere the linear operator
0 0 0

(6) L=YZyo+XZo0 — XY

The characteristic equation associated to L is
ay Yz dY = XZ
az XY’ dZ XY’
It general solution is
X?+2Z2%=di, Y’+2°=d>
where dy,ds are arbitrary constants. We make the change of variables
(7) u=X*+2% v=Y’+2° w=27Z
Its inverse change is
(8) X=+Vu—w? Y=+Vv—uw? Z=w.
In the paper we only use the positive case. The negative one gives the same results.
We also introduce the linear operator
0 1

(9) Dal,b,c,sl = (alX Y)i — (ZX — a1Y)

9]
8X 6127

97 + s1.
3. PROOFS OF THEOREMS 1 TO 4
The proofs of the theorems will be divided into several propositions.
Proposition 10. Let g(z,y,z) = 0 be an algebraic invariant surface of system (1) with b # 0. Then

(a) its cofactor is of the form k =rz+ s, and
(b) the homogeneous part of highest degree of the polynomial f(x,y,z) is of the form

Ir|/vb 1
(y—i-\/l;m) g(acQ—&—bZQ,y2—|—,22)7

with b > 0 if r # 0, |r|/\/l; a non—negative integer, and g a homogeneous polynomial in the
variables % + 2 /b and y* + 2°.

Proof. We write g(z,y, z Z gi(z,y,2), where g; is the homogeneous part of f of degree ¢ for i =
0,1,...,n; and its cofactor k as k: = pxr + qy + rz + s. Substituting g and k in (11), the homogeneous
component gn of degree n of the polynomial f satisfies

O9n Ogn 8gn

(10) ya—+b a—yfb By = gn(px + qy + 12).

The solutions of this linear partial differential equation are of the form

+v/bgarctan Y22 + parctan ¥ +r/Vb 1
exp( Vb garctan 2 par n2><y+\/5m) G(x2+22,y2—|—22),

b b

where G is an arbitrary C! function. Since g, is a homogeneous polynomial of degree n it follows that
D= q =0, |r\/\/l; a non-negative integer, and G is a homogeneous polynomial in the variables x? + 22 /b
and y? + z2. Hence the two statements of the proposition are proved. O
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From Proposition 10 we shall consider two cases, the case where the cofactor k is written as k = rz+s,
where 7 # 0 and the case k = s. In these new variables introduced in (4) if we set ¢(X,Y, Z) = f(x,y, 2)
then we have that f is an invariant algebraic surface of system (1) with cofactor k = rz + s if and only
if g is an invariant algebraic surface of system (5) with cofactor k = r1z + s; where 71 = r/v/b and
s1=s/ vb. So from now on we will study the invariant algebraic surfaces of system (5) and in the proofs
we are concerned with characterizing polynomials f € Rz, y, z] such that

(11) (—ai X +Y + YZ)g—)f( + (%X —aY + XZ)%J; + (a1 Z — XY)% =(mZ+s1)f.

Note that now by Proposition 10 we have that the highest degree of the polynomial f(x,y,z) is of the
form

(12) Y + X))l (X2 + 22,72 4 2?)
with |r1| a nonegative integer, and f a homogeneous polynomial in the variables X2 + Z2 and Y2 + Z2.

We first consider the case r =0 (i.e., r; = 0).

Proposition 11. Assume ¢>+a? #0 and b > 0. Let g = g(z,y,z) = 0 be an invariant algebraic surface
of system (1) of degree n > 1 with cofactor k = s. Then n is even, s = —an, and its invariant algebraic
surfaces are described in Table 2.

Parameters Invariant algebraic surface Cofactor
a+c¢=0 (b(x? —y? — 22) + 222 =0 —an
b=1 (2 —y*)"/2 =0 —an

TABLE 2. Invariant algebraic surfaces of system (1) with its corresponding cofactors.

Proof. To prove Proposition 11 we will study the invariant algebraic curves of system (5) with k = s1,
ie., system (11) with r; = 0.

Assume that k& = s is the cofactor of the invariant algebraic surface f = 0 of degree n. By (12) we get
that the homogeneous part of highest degree of the polynomial f(x,y, 2) is of the form f(X2+22 Y?2+22),
where f a homogeneous polynomial in the variables X2+ 22 and Y2+ Z2. So n must be even, i.e. n = 2m,
where m is a positive integer.

From (11) the following partial differential equations

(13) L[f2m] =0, L[fZi—l] = Da17b,C1,31 [fz]

for i =2m,...,1, and s1fy = 0.

It follows from section 2 that all solutions of L[fa,,] = 0 can be written as

m .
f2m — Za:n (XQ + ZQ)mfz (YQ + ZQ)i’
=0
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where al” is a constant for ¢ = 0,1,,,,m. Introducing fa,, into the second equation of (13) we have

L[me—l] = Dal,b,cl,sl [me]

m X )
=2X(a X = V)Y (m—i)al (X2+ 22)" T (Y2 + 22)
=0

1 i m—1 .
+2Y (@Y - 3 X) S ia (X2 4 22)" T (YR 4 %)
0

(14) o 20122 zm:( _ ’L) (X2 + Zg)m—i—l (Y2 + Z2)i

i=0
— 20,27 Zia;n (X?+ Z2)m_i_1 (Y2 4 z2)i-!

+slza (X2 + 22" (V2 + 2%,

Now writing X2 = X2+ 22 - 22 and Y2 =Y2 + 72 — Z2, we get

L[f2m71} - _9XY Z( _ Z) <X2 + Z2)m—i—1 (YQ + Z2)i + Z # (X2 + Zz)m—i (Y2 + Zz)i—l
=0 1=0
+ 20 Z (X2 422" TN (Y 4 2%) - 20, 2 Z (X242 T (Y 22

+ 2a4 Zialm (X2 + Z2)m7i (Y2 + Zz)i — 20172 Ziazn (XQ n Zg)mfi (YQ n ZZ)z'—l

=0
_ 20122 Z(m _ Z) (Xz + Zg)mfifl (Y2 + Z2)i + Zia;n (X2 + Z2)m7i (Y2 + Z2)i—1
=0 =0

+512a (X2 4+ 2" (V2 + 22)"

1=0

Then, making the change ¢ — j — 1 in some sums and joint the sums conveniently we get

m

L{fom-1] = —2XY Z((m —J+ Daj™ i aj’) (X2 + ZQ) j T (Y24 z%i !
Jj=1
(15) +Z (2a1m + s1)a]" (X? +22)m_j (Y2 +2%)
7=0

—222 a1 +ex) ((m—j +Da +jal) (X2 + 22" (V2 4+ 22)i~
j=1

Using u, v, w, introduced in section 2, we obtain the ordinary differential equation

d?Q'HL—l . 1 m m ] J
dw ﬁmzz‘“m“” !

w2
\/u—wQ\/v — w? 4 Z @)

j .
2 _ 1 J m—j ]—1.
+ § i+ e Ll

((m—j+1)al"y +jaf*) u™ I/~
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By solving it, we get

m
_ . w
= E 2a1m + s1)a’tu™ 7 /
Fam-1 ‘ 0( ! ) J Vu — w2vv — w?

Jj=

i o 2dw
—2(a; +ec —j+Dal, +jal) u™ ol
(arte) jzl(( J Dajly + jai) u NN

2w Z ( 4 e, + Zaﬁ'n> u™ vt 4 Boa (u,0),

where Bs,,_1 is an arbltrary function in the variables u and v.

Since
(16) dw YUz /
=— w4 u
Vu — w2vv — w? Vo — w? \/u—wQ\/v—w2

the two integrals which appear in the expression of the polynomial f,,, ; are reduced to the integrals
/ w d Vu—w? w2
an
Vu — wvVv — w? \/v—w2
Since these are elliptic integrals of the second and first kinds, respectively (which cannot compensate

for producing a polynomial, this follows considering their expansions in Taylor series), and fo,,—1 is a
homogeneous polynomial of degree 2m — 1, we must have

Bom-1 (X?+ 22 Y?+ Z%) =0,
(18) (2a1m + s1)a}" =0, i=0,1,...,m,
(a1 +c1) ((m —J+1)]1+ﬂ1):0, j=1,...,m.

(17)

> 4T

a”
Therefore, writing b7 = 2 <(m —J+ajl, + ij) we have

fomo1 = Y 0P (X2 4+ 22" (V2 4+ 2212,
j=1
If af* = 0, for j = 0,1, ..,m, we should have that fam, = 0, consequently we obtain that 81 = —2a1m =
—ain. By the third equatlon in (18) we get either a;+c; = 0, or a1 +c1 # 0 and (m—j+1)aj’ +ja7* =0,
for j =1,.
Now, we split the proof in two cases.

Case1: a; +c1 =0. Asa? +c2 #0, k=51 # 0 and s; = —2a;m it follows that s; = 2me;. Introducing
fom, fam—1 into the third equation of (13) with ¢ = 2m — 1 and doing similar computations as the ones
for passing from (14) to (15) we obtain

L[f2m72] = Dal,b c1,2mecy [f2m71]

(19)
_ 2CIZZb;n (X2 + Zz)m—i (Y2 + ZQ)ifl
i=1

Again, using u, v, w we get
f2m 2 _ 2 : < i+ 1 bm ( ; )b:n) um720172

memzz 1+BQm Q(UU)

+ 2¢;

Vau — w2\/v — w? 4
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Since

wdw
Vu — w?vVu — w?
where fo,—2(7,Y,2) = fo,_o is a homogeneous polynomial in the variables x, y and z, we must have either
c1=0o0rb™ =0, foralli=1,2,..,m. Buta?+c? # 0and a; = —c; so bI" = 2((m—i+1)aﬁ1+1a;ﬂ) =0,
consequently fo,,—1 = 0, and

(20) =log |Vw? —u+ Vw? — v,

Consequently,
fom—2=Bom—o (X*+Z%,Y?+2Z?) and fon =ag' (X*+ 2> —bY? - bZ*)"

Repeating the same steps that we have done for fs,, now for
m—1
Foma =Y @ (X2 4 22" (Y2 4 22
i=0
we conclude that fo,,_3 = 0 and
(2a1(m — 1) +s1)a" ' =0, i=0,1,...,m—1.
Since s; = —2a;m we have a;"_l =0for:=0,1,...,m — 1. Hence fa,,—2 = 0.
Finally following this recursive method we conclude that
f=fom =al (X*+ 2% —bY? —b2%)"
and so
1 m
g=ay (b:c2 + 22 —by? — bzz)m =a;'b™ (mz —y? -2+ bzz)
In short ¢ = 0 is a invariant algebraic surface with cofactor k = nc in the case ¢; + a; = 0 (which is
equivalent to ¢+ a = 0).

Case 2: a1 +c1 #0 and (m—j+1)al", +ja* =0, for j =1,..,m. In this case working in a similar
way to the previous case we get

aft = (-1) ( i ) af' and  famoy = Y BPUXE 4+ 22V 4 22707,
j=1

where

(21) bt =2 ((m —J+1ajt, + 5% ) .

2 .
SO b;n:2< Ja + b ;n) = g(l—b)ja;n.
Proceeding as in Case 1 we have that the second equation of (13) for i = 2m — 2 can be written as

L{fom—2] = Day p,c1,—2a1m [ fom—1]

= —2XYZZ < —i+ )b, ( ; 1)b;n) (X2 + Z2)m—i—1 (Y2 4 22)i-1

—2(c1 + 2a1)ZZb;," (X2 + Zz)m—z‘ (Yz + Z2)i71

i=1

2(a1 + 1 ZBZ — i DB = 1)) (X2 4 22" (v 4 22)
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Therefore, using u, v, w we get

dem 2 _ 2wz ( —i+1 bm ( — 1)b;’n> um—i+1vi—1
b

w .o
23 —2(c1 + 2a by iyt
@) (e 20) el s 2

w3

Vu — wvv — w? 2:; ((

—2(ay + 1) m—i+ )b + (i — 1)b) u™ v 2

By equation (20), since

(24) \/72\772 \/u—w2 w2 — v+ u+vlog|\/w2—u+\/w2—v|,
u—wivv —w

and fo,,_2 is a homogeneous polynomial in the variables x,y and z of degree 2m — 2 we must have

(c1 4 2a1)b" =0, fori=1,...,m,

25
(25) (m—i+ 1), + (i —1)b" =0, fori=2,...,m.
From
(m—i+1Da*, +ia]* =0,
IS 2 1
we have a}' = ](m J+1Dal" ;. Then b] =3 1—5 (m —j+1)al",. Hence

(m—i+ 1™, + (i — 1)b§”§(12) (m—j+1) <(mj+2)a§”_2+(j;1)a;”_1> 0.

Then we only need to consider two subcases, ¢1 +2a; =0 and b7* =0, for j =1,2,..,m

J
b J

1
get gja}n(l —b)=0forj=1,2,..,m Soaj =0orb=1 Butifal=0,for j =1,2,..,m we have

fom = 0, a contradiction. If b =1 then a”* = (—l)j( Zz )agI and for, = al* (22 — y*)™, fam_1 = 0 and

Subcase 2.1: b" = (m—j+1)a™ ai’y + < =0 for j = 1,2,..,m. From the hypothesis of Case 2 we

J
m—1
f2m—2 _ BQm—Q (X2 + ZQ,YQ + ZQ Z [l -1 X2 + ZQ)m—i—l (Y2 + Z2)i,
=0

Repeating the same steps for passing from fa,, to fo,,—2, and so on as we have done in Case 1, we get
that fr, = 0 for k =0,1,2,..,2m — 1. Consequently f = fa,, = af*(X? — Y?) and g = a*(2* — y?)™ with
b=1.

Subcase 2.2: ¢1 + 2a; = 0. In this case solving the differential equation (23) we have

Fom—2 _ZC X2 + Zz m—i—1 (Y2 + Z2)1—1Z2 + Boyy s (X2 + ZQ’YQ + Z2)

m m—1
=Y e (x24T 2 22 Y ar (X2 2T (v 4 22,
=2 7=0

where

(26) c; :((m—]+1)bj_1+ ( 5 )bj ) = = (lfb) (]fl)aj .
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Taking in equation (13) 4 = m — 2 we obtain

L{fom—3] = Day p,—2a1,~2aym[fom—2]

= —2xY 22y <(m iy 4 A2 bl)ci ) (X2 4 22" (Y2 4+ 22) 2
=3
— 2Z4 Cl + a1 Z — Z Z 1+ (Z _ 1) ) (XQ + Zz)m—i—l (Y2 + Zz)ifz
(27) 1=2
—2XY S D)dT L) (X2 4 22) T (V2 4 22)i
Z i+ DALy + 5 d) (X2 +27)7 (Y + 27)
m—1 ) .
—272 ) (a1 + 1) ((m—i+ D) +id) (X7 + 2%)" " (V2 + 2%) !
=1

Passing to the variables u, v and w, we have the ordinary differential equation

df2m3 2 (l_l)czn m—i—1,i—2
dw = 2w Z —&—T U v

_9 u;4 (e + 1) Em: m— )y + (i — 1)) um i—1,i-2

Vu — w2vv — w? = G-
(28) m—1
—22 m—i+1)d", + dm)m"qﬂ'*1
w2 m—1

-2 c1+a m —i+ 1)d" +id™) u™ 'L

mm( 1 1) ; (( ) 1 )

Again the expression of fs,,_3 depends on elliptic integrals and logarithmic functions and they force that

(m —i)c™ 7 c§"=0fori=23 ,m, and(m—i—&—l)d;’il—kéd;":0forfori:1,2,3,..,m—1,

because a + ¢ # 0. Since (m —)c™

= 0 and we are in Case 2, we obtain

¢y’
4 . m
b—2(1 - b)2Z(Z —Da* =0.

If some of the aj* is zero then all the aj*’s are zero, because af* = (—1)7t/ Zn ) aZ'. But this is a

contradiction because then fs,, = 0. There_fore b =1, and consequently from (26) all the ¢/*’s are zero.
Hence fo,—2 = Z;’:OI d;"_l (X% + Z2)m71 (Y2 + Z2)". And as in the Case 1 with b = 1 we obtain
f= fom = al(X? —=Y2%)™ and so g = a*(z? — y*)™. This complete the proof of the proposition. O

Proposition 12. Assume ¢*+a? # 0. Let g = g(z,y, 2) = 0 be an irreducible algebraic invariant surface
of system (1) of degree n and cofactor k =rz+c. Thenb=1, g(z,y) =x+y andk=24+1—a.

Proof. Going through the change of variables (4) to f(X,Y,Z) we have that f = f(X,Y,Z) =0 is an
algebraic invariant surface of system (5) of degree n and cofactor k = r1z + ¢;.

Assume 11 > 0, the case r; negative can be proved in the same way. From Proposition 10 it follows
that f is an algebraic invariant surface of degree n with cofactor k = 71z + s; then f can be written as
f=>", fi, where f; are homogeneous polynomials of degree i with

fr = (X +Y)" Zazm(XZ + Z2>m—i(y2 + Z2)i7
i=0
where n = 2m+rq, or equivalently, 11 = n—2m. Then, from (11) we get the following partial differential
equations

(29) Lifn] = (n=2m)Z fy L{fi] = Day b1, [fisa] + (n = 2m) Z f;,
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fori=n-—1,...,1 and
Dalyblycl7sl[f1] + (’I’L - 2Tn)ZfO =0.

Introducing f, in the above second equation with i = n — 1 and writing X? = X2 4+ 72 — 72,

Y?2=Y24+272?2-27?andY = X +Y — X or doing i = j — 1 if necessary, we get the following differential
equation

’I'VL

b

i) = (0= 2m) 2y =20 O 4770 S (=i 1+

i=1

) (X2 _~_Z2)m*i (YZ +Z2)i—1

+l(ar — 14 2am)(n — 2m) + s1)(X + V)72 S (X2 4 22" (V2 4 22
=0

—2ar + ) Z2(X + Y)Y ((m— i+ Daiy +ia") (X7 + 72" (Y2 4 72y
=1

1 —2—1mn, 2 2\M—1 1y 2 2\i
—I—(l—b) (n—2m)X(X+Y)” m gai’(X +Z) (Y —i—Z)l.

Passing to the variables u, v, w from the above equation we obtain
dfn 1
Vu—w2Vv— w22 = —(n - 2m)wf,_
—2\/u—w2\/v—w2 Vu—w? + v — w)"" 2”‘2( —i+1)a

m o
um—ivz—l
b

+ (a1 — 14 2a1m)(n — 2m) + s1](Vu — w? + Vv — w?)" 2" Z al"u™
i=0

—2(a1 + c1)w \/u—w2+\/v—w2 n—2m E m—i+ 1Da;_1 +ia™)u™ i1

1 n—im-— mm%'L
(l—b) n—2m\/u—w2 Vau—w?+ v — w?)" 2 12(1

This is a linear ordinary differential equation in f,_1, its corresponding homogeneous differential equation
is

\/u—wQ\/v—uﬂdf" L= —(n-2m)wf, ,,

Its general solution is

Foo1 = Eni1(u,v) (\/u —w? + \/11 — w2>n72m ,

where E,,_; is any C! function in the variables u and v. Hence, the general solution of the non—
homogeneous linear differential equation for f,,

=Bt () (0 )

m

( Z( —i41 zl+ z)umz11 dw

+ [(a1 — 14+ 2a;m)(n — 2m) + 5] Z
i=0

(=)

/mm

m
2(a1+clz m—i+1)al*, +ial") mlzl/
p \/u—wQ\/v—w2

+ <1 - 2) (n— 2m)§;arum—ivi/ (Vu— w\z/:_i\/:; w?)™ dw).
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Solving this integral, proceeding as above taking into account that r; > 0 we must have
[(a1 — 1+ 2a1m)(n —2m) + s1]a]* = 0,
(a1 + 1) ((m — i+ 1)a;_y +ia*) =0,

<1 - 2) (n — 2m)al™ = 0.

Since n > 2m, it follows from the last identity above that either b =1 or a]* =0, for i = 1,2, ...,m. But
if ™ = 0 then fa,,4, is zero (a contraction), so b = 1. Moreover, (a1 — 1+ 2a;m)(n —2m) + s; = 0 and
either a; +¢; =0or a;—1(m —i+ 1) + i = 0.

Assuming b = 1 we have

f2m+r—1 — (X + Y)n—Qm ZbT(XQ + Z2)m—i(y2 + ZZ)@'—lz7
i=1
where b* = 2((m — i+ 1)al* | +ial").
We consider two cases.
Case 1: a1 + c¢1 # 0. It follows from the explanation above that (m — i+ 1)a;—1 + ial* = 0. Then,

fom+r—1 = 0 and, by recurrence, a" = (—1)™ < Tzn ) af* which yields fop4, = af'(X +Y)"72m(X? —

Y2)™. Substituting the expression of fo,,1,_1 into (29) we get

df, _
Vu—wiy v — w? 7f2;$r_2 =m—=2m)wfo, o

Solving it, and taking into account that fo,,4,_2 is a homogeneous polynomial of degree 2m + r — 2 we
get fomir—a = fu_o = (X + V)2 S Tpm (X2 4 22)m(Y2 4 Z2)~1. Substituting the expression of
fom+r_2 into (29) and solving for fo, 1,3 we get that fo,ir—3 = 0and fo 1,0 = bJ(X+Y)"72m (X2~
Y?2)m=1 for some constant bj*. Proceeding inductively we conclude that f = (X + V)" 2mP(X?% — Y?),
being P a polynomial in the variables X2 — Y2 and so g = (z + y)" 2™ P(2? — 3?). If we want g to be
irreducible then P must be constant, n =1 m =0 and g = x + y. The cofactor is 1 — a + z.

Case 2: a;+c1 = 0. In this case if a;—1(m —i+1) +ia™ = 0 then proceeding as in Case 1 we conclude
that the irreducible polynomial is ¢ = = 4+ y with cofactor 1 —a + z. If a;—1(m — i+ 1) + ia™ # 0 then
substituting the expression of fo,,4-—1 into (29) we get

di _
Va—wrvo—w e g onuf,,,,,

m

—2v/u— wVv — w2 (Vu — w? + Vo — w?)" Z((m — i D), + (= DY) ™

=2

m
— o (Vu—w? + Vo — w2)? 2" Z byt
i=1

Solving this linear equation, using that fa,,1,_2 is a homogeneous polynomial in the variables X, Y and
Z we must have ¢; = 0. But then a; = 0 in contradiction with the fact that a? + ¢ # 0. Hence, this
case is not possible and the proposition is proved. ]

Proof of Theorems 8 and 4. Theorems 3 and 4 follow directly from Proposition 10 and 11. O

4. PROOFS OF THEOREMS 5
We separate the proof of Theorem 5 into a lemma and two propositions.
Lemma 13. Ifa+c¢#0 or b # 1 then system (1) has no Darboux first integrals.

Proof. In view of Theorems 2, 3 and 4 system (1) has no Darboux polynomials. Then in view of Propo-
sition 7 if it has an exponential factor F' then it must be of the form F = exp(f) with f € C[z,y, 2] \ C.
Finally, from Theorem 9 we conclude that if G is a Darboux first integral then it must be of the form
G = F{" ... F}* with F; = exp(h;), hi € Clz,y,2] and .7, u;il; = 0. Take g = >°7_, h; and consider
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G =exp(g). Then g € Clz,y, 2]\ C and G is an exponential factor with cofactor L = Y7, u;¢; = 0. So,
g satisfies, after simplifying by G,
dg dg g &
(yz — ax + y)% + (bzz +x — ay)a—y + (—bzy + CZ)@ = ;m& =0.
In particular g must be a polynomial first integral. However, in view of Theorems 2, 3 and 4, system (1)
with either b # 1 or a? + c? # 0 has no polynomial first integrals. This completes the proof. O

Guided by section 2 instead of working with system (1) we will work with system (5) and all the results
that we will obtain for system (5) follow clearly for system (1).

Proposition 14. If b =1, system (5) has a Darbouz first integral if and only if a = 0. In this case the
first integral is H = 2% — y2.

Proof. Let F' = exp(h/g) be an exponential factor of system (1) with b = 1. In view of Proposition 7, F
can be of the form F = exp(h/(f{"* f3?)) with h € C[z,y, 2] and n1,n2 €N, f1 =z 4y, fo =z —y with
and (h, f1) =1 (coprime) if n; > 0 and (h, f2) = 1 (coprime) if ng > 0.

Case 1: n1 = ng = 0. In this case F' = exp(h) and h satisfies

oh oh oh
(30) (—ax+y+ yz)a—x + (x —ay + xz)a—y + (ez — xy)g = ko + k12 + koy + k32,

with k; € C. Evaluating the above equation on x = y = z = 0 we obtain that kg = 0. Now we write
h = Z?:o h; where each h; is a homogeneous polynomial in its variables. Without loss of generality we
can assume that h,, # 0 and n > 1. If n < 2, i.e., h has degree less than or equal to two, there is a
solution if and only if a = 0 and in this case h = a (2% — y?) with a € C and ko = k; = ka = k3 = 0. So,
n > 3.

We use the notation in the proof of Proposition 11 (since b=1, X =z,Y =y and Z = z, a; = a and
¢1 = ¢). The terms of degree n + 1 satisty L[h,] = 0 and so n = 2m and

h, = ZCLT(!L‘Q + ZQ)m—i(yQ + 22)1'.
=0

Computing the terms of degree n in (30), we get (see (9))
L[thfl] = Da,l,c,O[th}~

Proceeding as in Proposition 11 (see (12) with s; = 0,b = 1,a1 = a,¢; = ¢) we get that either a]* = 0,
fori=0,1,...,m or a = 0. In the first case ha,, = 0 which is not possible. So a =0, ¢ # —a (otherwise
¢ = 0 which is a case not considered here) and h,, = aZ*(z? —y?)™, ai* € C. Moreover h,,_1 = hay,—1 =0
because h,_1 must be a homogeneous polynomial of degree n — 1. Note that the terms of degree 2m — i
for i = 2,ldots, 2m — 1 satisfy

Llhom—i] = Do1colhom—iv1], t=1,...,2m —1,

and
(31) 0= L[ho] = DO,l,c,O[hl] = (klfﬂ + kgy —+ kgz)
Computing the term of degree n — 1 that is, solving L[hom—2] = Do 1,c0lhom—1] we get hopm—_1 = 0

and hgpm_o = aglfl(xg —y?)™~ 1. Proceeding inductively, we get hori1 = 0 for k = 0,...,m — 1 and

hog = ad* (22 — y?)F for k = 1,...,m. So, from (31) we get 0 = kyz + koy + k3z, i.e., by = ko = k3 =0
and so k; = 0, for ¢ = 0, 1,2,3. This implies that there are no exponential factors of the form F' = exp(h)
for a # 0 and for a = 0 the unique exponential factors of the form F = exp(h) satisfy h = h(z? — y?)
being h a polynomial of degree n and k; = 0, for i = 0,1, 2, 3.

Case 2: nq > ng orng > ny. In this case h is coprime with f; = x4y (when ny > 0) and with fo =z —y
(when ny > 0) and satisfies

(caz 4y 4y o (&= ay - a2) O (2 a)
(32) az +y +yz)o- + (¢ —ay + x2 a9 cz — aY) 5

—(m(l—a+z)+na(=1—a—2z)h=Ekf"f3°,
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where k = ko + kix + koy + ksz with k; € C. We consider the case ny > ny (i.e, ny > 1). The case
n1 < ng can be done in a similar manner and so we do not do it here. Assume that h = ¢ € C. Then
from equation (42) we have
—e(m(l—a+2) +ns(—1—a—2)) = k(x +y)" (x — )"

Since n; > 1 and the left-hand side of the above equation is not divisible by x + y we get a contradiction.
So, h is not constant.

Now we introduce the new variables (X, Y, z) where X = fi=xz+yand Y = fo = x —y. In these
new variables we set h(z,y,z) = g(X,Y,z) and so g € CX,Y, z]. From (42) we obtain that g satisfies

~ Og ~ Og X2 Y2\ 9y

l—a+2) X—+(-1—a—2)Y —= (cz—i)—

(33) ( ) 0X ( ) oY 4 0z
—(m(l—a+2)+ny(—1—a—2z)g=kX™Y",

We assume n; < no, the case ny; > no is done in a similar way. In this case, if we denote by g the
restriction of g to X =0, i.e. g = g(y,2) = g(—v,y, z), and we restrict (44) to X =0 (i.e.,, z = —y) we
get that g is a Darboux polynomial of system
(34) g=—-y(l+a+z2), t=cz+y?

with cofactor ni(1 —a+ z) + na(—1 — a — z), so it satisfies

(35) —y(l+a+ z)g—g + (ez + yQ)% =1 —a+z2)+na(-1—a—2))g.

We consider two cases.
Case 2.1: ¢ = 0. In this case solving (35) we get

= Koy’ +2(2+ 2a + 2))y~ et 2o/ Va2 (2 4 (140 2)°
any [/ a+z
+|1+a+z|\/y2+(1+a+z)2)2 IV Qteta)®

Since ny # 0 and g must be a polynomial we get g = 0, in contradiction with the fact that g is not
divisible by X. So, there are no exponential factors of this form in this case.
Case 2.2: ¢ # 0. We consider two different subcases.
Subcase 2.2.1: g is not divisible by y. Setting y = 0 and denoting § = §(z) = g(0, z) we get that g # 0
and satisfies ~

czzll—z =m(l—a+z2)+na(—-1-a—2))g.

Solving it we obtain
g = Coe(nl—nz)z/cz((a—l)nl+(1+a)n2)/c’ co € R.
Since ny > n9 and g is a polynomial we must have ¢y = 0 and so g = 0, which is not possible.
Subcase 2.2.2: § is divisible by y. We write § = 37§, where j > 1 and §; # 0. Moreover, it follows from
(35) that g; satisfies
03 ag .
—y(14+a+ z)aiyl + (ez +y2)% =(m(l—a+2)+(ny—j)(-1—a—2))g.
Setting y = 0 and denoting §; = §1(z) = §1(0, 2) we get that §; # 0 and satisfies
dg . -
cz% =(mi(l—a+2)+n2—5)(-1—a—2))g.
Solving it we get
G1 = crelm—retiz/e ((a-lm++a)(na=f))/c o c R,
Since ny > no and §; is a polynomial we must have ¢; = 0 and so g; = 0, which is not possible.
This means that g = 0 in contradiction with the fact that g is not divisible by X. Hence, there are no
exponential factors of this form in this case.

Case 3: n; = ny > 1. Working in a similar way to the proof of Case 2 in Proposition 15 and Case 1
in Proposition 14 we get that the unique possibility is @ = 0 and that h = h(2? — 3?) with k; = 0, for
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1 =0,1,2,3. So, in this case there are exponential factors only when a = 0 and the exponential factors
are of the form F = exp(h/(z% — y?)™) with h = h(2? — y?) and k; = 0, for i = 0, 1,2, 3.

If a # 0, since there are no exponential factors for system (5) when b = 1 and a # 0, by Theorem 9 we
conclude that if G is a Darboux first integral then it must be of the form G = f["* f3'* with py,us € C
being the cofactor K = (1 —a + z)u1 — (1 + a + z)pe. Since the cofactor must be zero and a # 0 we
must have 3 = po = 0 but then G is constant, which is not possible. Hence, there are no Darboux first
integrals in this case.

If a = 0, since the unique exponential factors are of the form F = exp(h/(xz%—y?)") with h = h(2?—y?)
and the cofactor k = 0, in view of (3) we get that the unique Darboux first integrals are Darboux functions
of the polynomial first integral 22 — y2. This concludes the proof of the proposition. O

Proposition 15. If a4+ ¢ =0 with a # 0, system (5) has no Darboux first integrals.

Proof. Let F' = exp(h/g) be an exponential factor of system (5) with a3 +¢; = 0 and a3 # 0. In
view of Proposition 7, F can be of the form F = exp(h/f3?) with h € C[X,Y,Z] and n3 € N, f3 =
X2+ 7% -b(Y?2+Z?) and (h, f3) = 1 (coprime) if ng > 0. We will first compute the exponential factors,
showing that there are none.

Case 1: n3 = 0. In this case h satisfies

oh 1 oh oh

with k; € C. Evaluating the above equation on X =Y = Z = 0 we obtain that ky = 0. Now we write
h =", h; where each h; is a homogeneous polynomial in its variables. Without loss of generality we
can assume that h, # 0 and n > 1. The terms of degree n + 1 satisfy

[ha] = 0

Proceeding as in the proof of Proposition 10 we get that n = 2m and

hn =Y al(X?+ 22" (Y2 + Z%)"
=0

where a]" is a constant for ¢ = 0,1,...,m. Computing the terms of degree n we obtain
L[th—l] = Dal,b,—al,O[th]-

Proceeding as in the proof of Proposition 10 Case 1 with s; = 0 we conclude that hs,, = hopy—1 =0
which is not possible. Hence there are no exponential factors of the form exp(h), with h € C[X,Y, Z]\ C.

Case 2: ng > 1. In this case h satisfies

oh /1 oh oh
(~aX +Y+YZ) oo+ (3X —aY + XZ) 50 + (- 12 - XY) o

=2ngarh+ (X2 + 2% = b(Y? + Z%))"* (ko + k1 X + koY + k3 Z),

(37)

with k; € C. We claim that n > 2n3 + 1. Otherwise, in what follows we can prove that k; = 0, for
i = 0,1,2,3. So h is a Darboux polynomial with cofactor —2an3 and hence from Theorem 2, h =
a(X?+ 22— b(Y?+ Z?))" = afy® with a an arbitrary constant. But this is not possible because h and
f3 are coprime.

We first prove the claim. If n — 2n3 — 1 < —2, from (37) and taking in account the degree of equation
(37), it is easy to see that kg = k1 = ko = k3 = 0, which is not possible.

If n —2n3 —1 = —2 then proceeding as before we get that ky = ko = k3 = 0 and L[h,] = kof3?
(see (6)). Applying the method of characteristic curves to this equation, we obtain that

n3

- ns\ S dw
hn = ho(u,0,0) =k D (b (=1) im0 .
(0, w) Oi_0(2> (=1’ U/mm

Since f, must be a homogeneous polynomial of degree n and using the expression of the integral, given
in (17), we conclude that ko = 0 which it is not possible.
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Ifn—2ng—1= -1, we get Lh,] = (51X + k2Y + k3Z) f3® or in other words
(38)

hnzgc;j’)z(_l)’ s 1(k1/m+k2/ T_W +I<;3/ u—wzm) Falu,0).
Using (20) and that

= arctan ( = arctan (

/ dw w ) / dw w )

Vo —w? Vo —w?/’ Vu —w? Vu—w?/’

together with the fact that h, must be a homogeneous polynomial of degree n we conclude that k; =
ko = ks =0 and n = 2m. So h,, = ho,y, = Zl 03 (X2 + ZQ) (Y2 + Z?)%, with o™ € C. Computing
the terms of degree n = 2m in (37), we must solve

L[hnfl] = Dal,b,fal,O[hn} + k’Of%% + 2n3a1hn.

Using h,,, f3, the changes in (7) and (8) and proceeding as in the proof of Proposition 11 we get

diLn_l — 9% ns — Zam m—i z
dw ! VU w2\/ w2 ’
'am o
(39) + 2w Z (n—i+1)+ T)um_W

ko € 713) ; i ma
+ ) bl _1 ’Lu’rbg K2 ’L.
\/u—wzx/v—w2§<l (=1)

Note that now n = n3. So using the integrating formula (17) together with the fact that h,_; is a
homogeneous polynomial of degree n — 1 we get kg = 0. So, k; = 0, for i = 0, 1, 2,3 which is not possible.
This proves the claim.

We thus have n = 2n3 4+ 1 + ¢ for some ¢ € NU {0}. Then from (37) we obtain
Lihn—] = Day,~ay,0 oln—iv1], i=1,...,¢
[ n—_— 1] Da,,—ay,0 [h ] (k1x+k2y+k3z)f§lsa
Llhn—¢-2] = Day —ay 0lhn—c—1] + ko f3,
] [nC]‘i‘l] ]:1,...,7’1,—4—1,

(40)

[nCJ

ala_ala

where h; = 0 for ¢ < 0 or ¢ > 2n3 + 1 + . Since the operators Dy, _q,,0 and L are linear we separate h;
in the following way h; = h; o + h;1 where

(41) Llhio] = Dgy,—ay 0lhi—10], i=0,1,...,2n3+(+ 2,
(42) Lhp—i1]=0 i=1,...,¢,

(43) Llhn—¢-1.1] = (k1x + kay + k32) f3°,

(44) Llhn—¢—21] = Dyy,—ay 0lhn—c—11] + ko f3® + 2a1n3hn—c—2.1,

Lihn—¢—j1) = Day,—ay 0lPn—c—j+11), j=1,....,n—¢—1

Moreover, we require that in the process to solve h;; for i =0,...,n and [ = 0,1 the polynomials h; 1
do not contain integrating constants.

From (41) working as in Proposition 11 we obtain that hy = Z?:o hio is a Darboux polynomial of
system (5) with cofactor —2ains. So, by Theorem 2 we must have hg = a(X? + Z? — b(Y? + Z?)" with
aeC.
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Under the assumptions on h, 1 we obtain that equation (42) have the unique solutions h,_; 1 = 0 for
t=1,...,¢. From equation (43) we get

i wdw i
+ 3 mm + n—g—l(uav>7

which is equation (38). Hence, k; = ko = k3 = 0 and hn—¢—1 = 0. Moreover, equation (44) yields
dﬁn—{—Q

dw mmz

From (17) and using that h,_¢_o is a homogeneous polynomial we must have kg = 0. Then k; = 0 for
1 =0,1,2,3, which is not possible. This shows that there are no exponential factors for system (5) and
so, there are no exponential factors for system (1) in this case.

bz ns— ’L,U’L

Since there are no exponential factors for system (5) when a + ¢ = 0 with a,c¢ # 0, by Theorem 9 we
conclude that if G is a Darboux first integral then it must be of the form G = f§*® with p3 € C being
the cofactor k = —2aps. Since a # 0 and the cofactor must be zero we must have us = 0 but then G is
constant, which is not possible. Hence, there are no Darboux first integrals in this case. This concludes
the proof of the proposition. O

Proof of Theorems 5. Theorem 5 follows directly from Theorem 1 and Lemma 13 and Propositions 14
and 15. O
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