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ON THE DARBOUX INTEGRABILITY OF A THREE–DIMENSIONAL

FORCED–DAMPED DIFFERENTIAL SYSTEM

JAUME LLIBRE1, REGILENE OLIVEIRA2 AND CLAUDIA VALLS3

Abstract. In 2011 Pehlivan proposed a three–dimensional forced–damped autonomous differential sys-

tem which can display simultaneously unbounded and chaotic solutions. This untypical phenomenon

has been studied recently by several authors. In this paper we study the opposite to its chaotic motion,
i.e. its integrability, mainly the existence of polynomial, rational and Darboux first integrals through

the analysis of its invariant algebraic surfaces and its exponential factors.

1. Introduction and statement of the main result

We consider in R3 the autonomous system of differential equations

ẋ = −ax+ y + yz,

ẏ = x− ay + bxz,

ż = cz − bxy,
(1)

where a, b, c are real parameters. This system arise in mechanical, electrical and fluid–dynamical contexts,
see for more details the articles of Miyaji, Okamoto and Craik [11, 12] and the references quoted there.
This system was proposed and studied by Pehlivan [13]. The system extends a previous study of Craik
and Okamoto [1], including linear forcing and damping.

Pehlivan showed that system (1) displays simultaneously unbounded and chaotic solutions. This
phenomenon has been studied in more depth by Miyaji, Okamoto and Craik who also find that can be
accompanied by three distinct period–doubling cascades of periodic orbits to chaos.

Chaotic systems are nonlinear deterministic systems which exhibits a complex and unpredictable be-
havior, hence it is a very interesting phenomenon in nonlinear dynamical systems and it has been inten-
sively studied starting with the Lorenz system. The majority of the known chaotic system have one or
more quadratic non-linearities. The existence of quadratic nonlinearities may increase the chaoticity of
the system, so in this paper we do not consider the case b = 0.

As far as we know this rich dynamical system (1) has never been investigated from the integrability
point of view. The main goal of this paper is to characterize the polynomial and rational first integrals
of system (1). For doing this we need to provide a complete characterization of the invariant algebraic
surfaces of system (1) depending on its parameters. In order to obtain such invariant algebraic surfaces
we shall use the Darboux theory integrability which gives a link between the algebraic geometry of the
system and its first integrals, see for more details about this theory [3, 4, 5, 7, 8, 9, 10].

It is well known that the existence of a first integral for three–differential system allows to reduce the
study of its dynamics in one dimension, and that the existence of two independent first integrals allows to
describe completely the dynamics of the system. These arguments justify the study of the integrability
of a differential system. The Darboux theory of integrability is classical. The Darboux integrability
essentially captures the elementary first integrals, i.e. the first integrals given by elementary functions,
which are the ones that roughly speaking can be obtained by composition of exponential, trigonometric,
logarithmic and polynomial functions, see for more details about the Darboux integrability the Chapter
8 of [3], and the references quoted there. The Darboux integrability in dimension three is based in the
existence of invariant algebraic surfaces f(x, y, z) = 0, where f(x, y, z) is a polynomial, called a Darboux
polynomial. A sufficient number of such polynomials taking into account their multiplicity (through the
so–called exponential factors) force the existence of first integrals.
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Historically, the theory received mainly contributions from Darboux [?] who gave a link between
the algebraic geometry and the search of first integrals and showed how to construct a first integral
of a polynomial differential system in the plane having sufficient number of invariant algebraic curves.
Poincaré noticed the difficulty in obtaining an algorithm to compute Darboux first integrals and Singer
proved the relation for polynomial differential system in the plane to have a Liouvillian first integral in
terms of a Darbouxian integrating factor.

Let U be an open and dense subset of R3. A nonconstant function H : U → R is called a first integral
of system (1) on U if H(x(t), y(t), z(t)) is constant for all of the values of t for which (x(t), y(t), z(t)) is
a solution of system (1) contained in U . So H is a first integral of system (1) if and only if

(−ax+ y + yz)
∂H

∂x
+ (x− ay + bxz)

∂H

∂y
+ (cz − bxy)

∂H

∂z
= 0,

for all (x, y, z) ∈ U . If H is a polynomial (respectively a rational function) we say that H is a polynomial
(respectively rational) first integral.

Let R[x, y, z] be the ring of the polynomials in the variables x, y and z with coefficients in the field R.

Given g ∈ R[x, y, z] the surface g(x, y, z) = 0 is called an invariant algebraic surface of system (1) if
there exists k ∈ R[x, y, z] such that

(2) (−ax+ y + yz)
∂g

∂x
+ (x− ay + bxz)

∂g

∂y
+ (cz − bxy)

∂g

∂z
= kg.

The polynomial k satisfying (2) is called the cofactor of the invariant surface g(x, y, z) = 0 and it has
degree at most 1. The name of invariant algebraic surface comes from the fact that if a solution of system
(1) has a point on the such surface the whole solution is contained in it.

Let U be an open and dense subset of R3. We recall that two functions f, g : U → R3 are functionally
independent or simply independent if their gradients are linearly independent at all points of U except
perhaps in a zero Lebesgue set. Differential system (1) is completely integrable if it has two first integrals
which are functionally independent.

The aim of this paper is to study the existence of first integrals of system (1) that can be described by
functions of Darboux type (see (3)). In general, for a given differential system it is difficult to determine
the existence or nonexistence of first integrals.

An exponential factor F (x, y, z) of system (1) is an exponential function of the form F = exp(g/h)
with g, h ∈ C[x, y, z] coprime, denoted by (g, h) = 1, and satisfying

(yz − ax+ y)
∂F

∂x
+ (bxz + x− ay)

∂F

∂y
+ (−bxy + cz)

∂F

∂z
= `F

for some `(x, y, z) ∈ C[x, y, z] a polynomial of degree at most one, which is called the cofactor of F .

A first integral H of system (1) is called a generalized Darboux first integral or here simply a Darboux
first integral if it has the form

(3) G=f
λ1
1 · · · fλp

p Fµ1

1 · · ·Fµq
q ,

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential factors and λj , µk ∈ C for
j = 1, . . . , p and k = 1, . . . , q.

Note that polynomial first integrals and rational first integrals are Darboux first integrals.

The main results of this paper are the following five theorems.

Theorem 1. If c = a = 0 and b = 1, then system (1) is completely integrable with the two independent
first integrals H1(x, y, z) = 2z + z2 + x2 and H2(x, y, z) = x2 − y2.

Theorem 2. Assume c2 + a2 6= 0 and b 6= 0. System (1) has an invariant algebraic surface if and only
if a + c = 0 or b = 1. The irreducible invariant algebraic surfaces are described in Table 1 with their
corresponding cofactors.

Theorem 3. Assume c2 + a2 6= 0 and b 6= 0. System (1) has a polynomial first integral if and only if
a = 0 and b = 1. This first integral is x2 − y2.



INTEGRABILITY OF A 3–DIMENSIONAL DIFFERENTIAL SYSTEM 3

Parameters Irreducible invariant algebraic surface Cofactor

a+ c = 0 b(x2 − y2 − z2) + z2 = 0 −2a
b = 1 x+ y = 0 1− a+ z
b = 1 x− y = 0 −1− a− z

Table 1. The invariant algebraic surfaces of system (1) with its corresponding cofactors.

Theorem 4. Assume c2 + a2 6= 0 and b 6= 0. System (1) has no rational first integrals which are not
polynomial.

Theorem 5. For all a, c ∈ R and b ∈ R \ {0}, except when a = c = 0, or a = 0 and b = 1, system (1)
has no Darboux first integrals.

The proofs of these theorems are given in Sections 3 and 4. Similar results on the integrability of a
polynomial Lotka–Volterra differential system in R3 can be found in [6].

2. Preliminary results

Before to proof the main results of this paper we will introduce some well-known results. The first was
proved in [3]

Lemma 6. Let f be a polynomial and f =
∏s
j=1 f

αj

j its decomposition into irreducible factors in C[x, y, z].
Then f is a Darboux polynomial if and only if all the fj are Darboux polynomials. Moreover, if k and kj
are the cofactors of f and fj, then k =

∑s
j=1 αjkj.

The second result whose proof and geometrical meaning is given in [2] is the following.

Proposition 7. The following statements hold.

(a) If E = exp(g0/g) is an exponential factor for the polynomial system (1) and g is not a constant
polynomial, then g = 0 is an invariant algebraic hypersurface.

(b) Eventually eg0 can be an exponential factor, coming from the multiplicity of the infinite invariant
hyperplane.

The proof of the third and fourth results is given in [3].

Theorem 8. If system (1) has a rational first integral then either it has a polynomial first integral or
two Darboux polynomials with the same nonzero cofactor.

Theorem 9. Suppose that system (1) admits p Darboux polynomials and with cofactors ki and q expo-
nential factors Fj with cofactors `j. Then there exists λj , µj ∈ C not all zero such that

q∑
i=1

λkki +

q∑
i=1

µi`i = 0

if and only if the function G given in (3) (called of Darboux type) is a first integral of system (1).

In Theorem 9 we say that the function (3) is real. It follows from the following fact. Since the vector
field X is real, it is well-known that if a complex Darboux polynomial or exponential factor appears, then
its conjugate must appear simultaneously. If among the Darboux polynomials of X a complex conjugate
pair f , f̄ occur, the first integral (3) has a real factor of the form fλf̄λ, which is the multi-valued real
function

[(Ref)2 + (Imf)2]Reλ exp
(
− 2Imλ arctan

( Imf

Ref

))
,

if ImfImλ 6= 0. If among the exponential factors of X a complex conjugate pair F = exp(h/g) and
F̄ = exp(h̄/ḡ) occur, the first integral (3) has a real factor of the form(

exp
(h
g

))µ(
exp

( h̄
ḡ

))µ̄
= exp

(
2Re

(
µ
h

g

))
.

We can assume that b > 0 and introduce the change of variables

(4) X =
√
bx, Y = y, Z = z
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and the rescaling of time t = τ/
√
b. In these new variables system (1) is written as

Ẋ = −a1X + Y + Y Z,

Ẏ =
1

b
X − a1Y +XZ,

Ż = c1Z −XY,

(5)

where a1 = a/
√
b and c1 = c/

√
b.

Now considere the linear operator

(6) L = Y Z
∂

∂X
+XZ

∂

∂Y
−XY ∂

∂Z

The characteristic equation associated to L is

dY

dZ
=
Y Z

XY
,

dY

dZ
= −XZ

XY
.

It general solution is

X2 + Z2 = d1, Y 2 + Z2 = d2

where d1, d2 are arbitrary constants. We make the change of variables

(7) u = X2 + Z2, v = Y 2 + Z2, w = Z.

Its inverse change is

(8) X = ±
√
u− w2, Y = ±

√
v − w2, Z = w.

In the paper we only use the positive case. The negative one gives the same results.

We also introduce the linear operator

(9) Da1,b,c,s1 =
(
a1X − Y

) ∂

∂X
−
(1

b
X − a1Y

) ∂
∂Y
− c1Z

∂

∂Z
+ s1.

3. Proofs of Theorems 1 to 4

The proofs of the theorems will be divided into several propositions.

Proposition 10. Let g(x, y, z) = 0 be an algebraic invariant surface of system (1) with b 6= 0. Then

(a) its cofactor is of the form k = rz + s, and
(b) the homogeneous part of highest degree of the polynomial f(x, y, z) is of the form(

y +
√
b x
)|r|/√b

g

(
x2 +

1

b
z2, y2 + z2

)
,

with b > 0 if r 6= 0, |r|/
√
b a non–negative integer, and g a homogeneous polynomial in the

variables x2 + z2/b and y2 + z2.

Proof. We write g(x, y, z) =

n∑
i=0

gi(x, y, z), where gi is the homogeneous part of f of degree i for i =

0, 1, ..., n; and its cofactor k as k = px + qy + rz + s. Substituting g and k in (11), the homogeneous
component gn of degree n of the polynomial f satisfies

(10) yz
∂gn
∂x

+ bxz
∂gn
∂y
− bxy ∂gn

∂z
= gn(px+ qy + rz).

The solutions of this linear partial differential equation are of the form

exp

(
±
√
b q arctan

√
b x
z ± p arctan y

z

b

)(
y +
√
b x
)±r/√b

G

(
x2 +

1

b
z2, y2 + z2

)
,

where G is an arbitrary C1 function. Since gn is a homogeneous polynomial of degree n it follows that
p = q = 0, |r|/

√
b a non–negative integer, and G is a homogeneous polynomial in the variables x2 + z2/b

and y2 + z2. Hence the two statements of the proposition are proved. �
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From Proposition 10 we shall consider two cases, the case where the cofactor k is written as k = rz+s,
where r 6= 0 and the case k = s. In these new variables introduced in (4) if we set g(X,Y, Z) = f(x, y, z)
then we have that f is an invariant algebraic surface of system (1) with cofactor k = rz + s if and only

if g is an invariant algebraic surface of system (5) with cofactor k = r1z + s1 where r1 = r/
√
b and

s1 = s/
√
b. So from now on we will study the invariant algebraic surfaces of system (5) and in the proofs

we are concerned with characterizing polynomials f ∈ R[x, y, z] such that

(11) (−a1X + Y + Y Z)
∂f

∂X
+ (

1

b
X − a1Y +XZ)

∂f

∂X
+ (c1Z −XY )

∂f

∂Z
= (r1Z + s1)f.

Note that now by Proposition 10 we have that the highest degree of the polynomial f(x, y, z) is of the
form

(12) (Y +X)|r1|f(X2 + Z2, Y 2 + Z2)

with |r1| a nonegative integer, and f a homogeneous polynomial in the variables X2 + Z2 and Y 2 + Z2.

We first consider the case r = 0 (i.e., r1 = 0).

Proposition 11. Assume c2 + a2 6= 0 and b > 0. Let g = g(x, y, z) = 0 be an invariant algebraic surface
of system (1) of degree n ≥ 1 with cofactor k = s. Then n is even, s = −an, and its invariant algebraic
surfaces are described in Table 2.

Parameters Invariant algebraic surface Cofactor

a+ c = 0 (b(x2 − y2 − z2) + z2)n/2 = 0 −an
b = 1 (x2 − y2)n/2 = 0 −an

Table 2. Invariant algebraic surfaces of system (1) with its corresponding cofactors.

Proof. To prove Proposition 11 we will study the invariant algebraic curves of system (5) with k = s1,
i.e., system (11) with r1 = 0.

Assume that k = s1 is the cofactor of the invariant algebraic surface f = 0 of degree n. By (12) we get
that the homogeneous part of highest degree of the polynomial f(x, y, z) is of the form f(X2+Z2, Y 2+Z2),
where f a homogeneous polynomial in the variables X2+Z2 and Y 2+Z2. So n must be even, i.e. n = 2m,
where m is a positive integer.

From (11) the following partial differential equations

(13) L[f2m] = 0, L[f2i−1] = Da1,b,c1,s1 [fi]

for i = 2m, . . . , 1, and s1f0 = 0.

It follows from section 2 that all solutions of L[f2m] = 0 can be written as

f2m =

m∑
i=0

ami
(
X2 + Z2

)m−i
(Y 2 + Z2)i,
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where ami is a constant for i = 0, 1, , , ,m. Introducing f2m into the second equation of (13) we have

L[f2m−1] = Da1,b,c1,s1 [f2m]

= 2X(a1X − Y )

m∑
i=0

(m− i)ami
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i

+ 2Y (a1Y −
1

b
X)

m∑
i=0

iami
(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

− 2c1Z
2
m∑
i=0

(m− i)ami
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i

− 2c1Z
2
m∑
i=0

iami
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i−1

+ s1

m∑
i=0

ami
(
X2 + Z2

)m−i
(Y 2 + Z2)i.

(14)

Now writing X2 = X2 + Z2 − Z2 and Y 2 = Y 2 + Z2 − Z2, we get

L[f2m−1] = −2XY

[
m∑
i=0

(m− i)ami
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i +

m∑
i=0

iami
b

(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

]

+ 2a1

m∑
i=0

(m− i)ami
(
X2 + Z2

)m−i
(Y 2 + Z2)i − 2a1Z

2
m∑
i=0

(m− i)ami
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i

+ 2a1

m∑
i=0

iami
(
X2 + Z2

)m−i
(Y 2 + Z2)i − 2a1Z

2
m∑
i=0

iami
(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

− 2c1Z
2

[
m∑
i=0

(m− i)ami
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i +

m∑
i=0

iami
(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

]

+ s1

m∑
i=0

ami
(
X2 + Z2

)m−i
(Y 2 + Z2)i.

Then, making the change i→ j − 1 in some sums and joint the sums conveniently we get

L[f2m−1] = −2XY

m∑
j=1

((m− j + 1)amj−1 +
j

b
amj )

(
X2 + Z2

)m−j
(Y 2 + Z2)j−1

+

m∑
j=0

(2a1m+ s1)amj
(
X2 + Z2

)m−j
(Y 2 + Z2)j

− 2Z2
m∑
j=1

(a1 + c1)
(
(m− j + 1)amj−1 + jamj

) (
X2 + Z2

)m−j
(Y 2 + Z2)j−1.

(15)

Using u, v, w, introduced in section 2, we obtain the ordinary differential equation

df2m−1

dw
= − 1√

u− w2
√
v − w2

m∑
j=0

(2a1m+ s1)amj u
m−jvj

+
w2

√
u− w2

√
v − w2

m∑
j=1

2(a1 + c1)
(
(m− j + 1)amj−1 + jamj

)
um−jvj−1

+2

m∑
j=1

((m− j + 1)amj−1 +
jamj
b

)um−jvj−1.
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By solving it, we get

f2m−1 =

 m∑
j=0

(2a1m+ s1)amj u
m−jvj

∫ dw√
u− w2

√
v − w2

−2(a1 + c1)

 m∑
j=1

(
(m− j + 1)amj−1 + jamj

)
um−jvj−1

∫ w2dw√
u− w2

√
v − w2

+2w

m∑
j=1

(
(m− j + 1)amj−1 +

j

b
amj

)
um−jvj−1 +B2m−1(u, v),

where B2m−1 is an arbitrary function in the variables u and v.

Since

(16)

∫
w2dw√

u− w2
√
v − w2

= −
∫ √

u− w2

√
v − w2

dw + u

∫
dw√

u− w2
√
v − w2

,

the two integrals which appear in the expression of the polynomial f2m−1 are reduced to the integrals

(17)

∫
dw√

u− w2
√
v − w2

and

∫ √
u− w2

√
v − w2

dw.

Since these are elliptic integrals of the second and first kinds, respectively (which cannot compensate
for producing a polynomial, this follows considering their expansions in Taylor series), and f2m−1 is a
homogeneous polynomial of degree 2m− 1, we must have

B2m−1

(
X2 + Z2, Y 2 + Z2

)
= 0,

(2a1m+ s1)amj = 0, j = 0, 1, ...,m,

(a1 + c1)
(
(m− j + 1)amj−1 + jamj

)
= 0, j = 1, ...,m.

(18)

Therefore, writing bmj = 2

(
(m− j + 1)amj−1 +

jamj
b

)
we have

f2m−1 =

m∑
j=1

bmj
(
X2 + Z2

)m−j
(Y 2 + Z2)j−1Z.

If amj = 0, for j = 0, 1, ..,m, we should have that f2m = 0, consequently we obtain that s1 = −2a1m =
−a1n. By the third equation in (18) we get either a1+c1 = 0, or a1+c1 6= 0 and (m−j+1)amj−1+jamj = 0,
for j = 1, ..,m.

Now, we split the proof in two cases.

Case 1: a1 + c1 = 0. As a2
1 + c21 6= 0, k = s1 6= 0 and s1 = −2a1m it follows that s1 = 2mc1. Introducing

f2m, f2m−1 into the third equation of (13) with i = 2m − 1 and doing similar computations as the ones
for passing from (14) to (15) we obtain

L[f2m−2] = Da1,b,c1,2mc1 [f2m−1]

= −2XY Z

m∑
i=2

(
(m− i+ 1)bmi−1 +

(i− 1)

b
bmi

)(
X2 + Z2

)m−i
(Y 2 + Z2)i−2

− 2c1Z

m∑
i=1

bmi
(
X2 + Z2

)m−i
(Y 2 + Z2)i−1.

(19)

Again, using u, v, w we get

df2m−2

dw
= 2w

m∑
i=2

(
(m− i+ 1)bmi−1 +

(i− 1)

b
bmi

)
um−ivi−2

+ 2c1
w√

u− w2
√
v − w2

m∑
i=1

bmi u
m−ivi−1 +B2m−2(u, v).
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Since

(20)

∫
wdw√

u− w2
√
v − w2

= log |
√
w2 − u+

√
w2 − v|,

where f2m−2(x, y, z) = f2m−2 is a homogeneous polynomial in the variables x, y and z, we must have either

c1 = 0 or bmi = 0, for all i = 1, 2, ...,m. But a2
1+c21 6= 0 and a1 = −c1 so bmi = 2

(
(m−i+1)ami−1+

i

b
ami

)
= 0,

consequently f2m−1 = 0, and

ami = (−1)ibi
(
m
i

)
am0 .

Consequently,

f2m−2 = B2m−2

(
X2 + Z2, Y 2 + Z2

)
and f2m = am0

(
X2 + Z2 − bY 2 − bZ2

)m
.

Repeating the same steps that we have done for f2m now for

f2m−2 =

m−1∑
i=0

am−1
i

(
X2 + Z2

)m−i−1
(Y 2 + Z2)i,

we conclude that f2m−3 = 0 and

(2a1(m− 1) + s1)am−1
i = 0, i = 0, 1, ...,m− 1.

Since s1 = −2a1m we have am−1
i = 0 for i = 0, 1, ...,m− 1. Hence f2m−2 = 0.

Finally following this recursive method we conclude that

f = f2m = am0
(
X2 + Z2 − bY 2 − bZ2

)m
and so

g = am0
(
bx2 + z2 − by2 − bz2

)m
= am0 b

m

(
x2 − y2 − z2 +

1

b
z2

)m
In short g = 0 is a invariant algebraic surface with cofactor k = nc in the case c1 + a1 = 0 (which is
equivalent to c+ a = 0).

Case 2: a1 + c1 6= 0 and (m− j+ 1)amj−1 + jamj = 0, for j = 1, ..,m. In this case working in a similar
way to the previous case we get

amj = (−1)j
(
m
j

)
am0 and f2m−1 =

m∑
j=1

bmj (X2 + Z2)m−j(Y 2 + Z2)j−1Z,

where

(21) bmj = 2

(
(m− j + 1)amj−1 +

j

b
amj

)
.

So bmj = 2

(
−jamj +

j

b
amj

)
=

2

b
(1− b)jamj .

Proceeding as in Case 1 we have that the second equation of (13) for i = 2m− 2 can be written as

L[f2m−2] = Da1,b,c1,−2a1m[f2m−1]

= −2XY Z

m∑
i=2

(
(m− i+ 1)bmi−1 +

(i− 1)

b
bmi

)(
X2 + Z2

)m−i−1
(Y 2 + Z2)i−1

− 2(c1 + 2a1)Z

m∑
i=1

bmi
(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

− 2(a1 + c1)Z3
m∑
i=2

(
(m− i+ 1)bmi−1 + bmi (i− 1)

) (
X2 + Z2

)m−i
(Y 2 + Z2)i−2.

(22)
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Therefore, using u, v, w we get

df2m−2

dw
=− 2w

m∑
i=2

(
(m− i+ 1)bmi−1 +

(i− 1)bmi
b

)
um−i+1vi−1

− 2(c1 + 2a1)
w√

u− w2
√
v − w2

m∑
i=1

bmi u
m−ivi−1

− 2(a1 + c1)
w3

√
u− w2

√
v − w2

m∑
i=2

(
(m− i+ 1)bmi−1 + (i− 1)bmi

)
um−ivi−2.

(23)

By equation (20), since

(24)

∫
w3dw√

u− w2
√
v − w2

=
1

2

√
u− w2

√
w2 − v + (u+ v) log |

√
w2 − u+

√
w2 − v|,

and f2m−2 is a homogeneous polynomial in the variables x, y and z of degree 2m− 2 we must have

(c1 + 2a1)bmi = 0, for i = 1, ...,m,

(m− i+ 1)bmi−1 + (i− 1)bmi = 0, for i = 2, ...,m.
(25)

From

(m− i+ 1)ami−1 + iami = 0,

we have amj = −1

j
(m− j + 1)amj−1. Then bmj =

2

b

(
1− 1

b

)
(m− j + 1)amj−1. Hence

(m− i+ 1)bmi−1 + (i− 1)bmi =
2

b

(
1− 1

b

)
(m− j + 1)

(
(m− j + 2)amj−2 +

(j − 1)

b
amj−1

)
= 0.

Then we only need to consider two subcases, c1 + 2a1 = 0 and bmj = 0, for j = 1, 2, ..,m.

Subcase 2.1: bmj = (m − j + 1)amj−1 +
j

b
amj = 0 for j = 1, 2, ..,m. From the hypothesis of Case 2 we

get
1

b
jamj (1 − b) = 0 for j = 1, 2, ..,m. So amj = 0 or b = 1. But if amj = 0, for j = 1, 2, ..,m we have

f2m = 0, a contradiction. If b = 1 then amj = (−1)j
( m
j

)
am0 and f2m = am0 (x2 − y2)m, f2m−1 = 0 and

f2m−2 = B2m−2

(
X2 + Z2, Y 2 + Z2

)
=

m−1∑
i=0

am−1
i

(
X2 + Z2

)m−i−1
(Y 2 + Z2)i,

Repeating the same steps for passing from f2m to f2m−2, and so on as we have done in Case 1, we get
that fk = 0 for k = 0, 1, 2, .., 2m− 1. Consequently f = f2m = am0 (X2 − Y 2) and g = am0 (x2 − y2)m with
b = 1.

Subcase 2.2: c1 + 2a1 = 0. In this case solving the differential equation (23) we have

f2m−2 =

m∑
i=2

cmj
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i−1Z2 +B2m−2

(
X2 + Z2, Y 2 + Z2

)
=

m∑
i=2

cmj
(
X2 + Z2

)m−i−1
(Y 2 + Z2)i−1Z2 +

m−1∑
j=0

dm−1
j

(
X2 + Z2

)m−i
(Y 2 + Z2)i,

where

(26) cmj = ((m− j + 1)bmj−1 +
(j − 1)

b
bmj ) =

2

b2
(1− b)2j(j − 1)amj .
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Taking in equation (13) i = m− 2 we obtain

L[f2m−3] = Da1,b,−2a1,−2a1m[f2m−2]

= −2XY Z2
m∑
i=3

(
(m− i)cmi−1 +

(i− 1)cmi
b

)
(X2 + Z2)m−i−1(Y 2 + Z2)i−2

− 2Z4(c1 + a1)

m∑
i=2

(
(m− i)cmi−1 + (i− 1)cmj

) (
X2 + Z2

)m−i−1
(Y 2 + Z2)i−2

− 2XY

m−1∑
i=1

((m− i+ 1)dmi−1 +
i

b
dmi )

(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

− 2Z2
m−1∑
i=1

(a1 + c1)
(
(m− i+ 1)dmi−1 + idmi

) (
X2 + Z2

)m−i
(Y 2 + Z2)i−1.

(27)

Passing to the variables u, v and w, we have the ordinary differential equation

df2m−3

dw
= −2w2

m∑
i=3

(
(m− i)cmi−1 +

(i− 1)cmi
b

)
um−i−1vi−2

− 2
w4

√
u− w2

√
v − w2

(c1 + a1)

m∑
i=2

(
(m− i)cmi−1 + (i− 1)cmj

)
um−i−1vi−2

− 2

m−1∑
i=1

((m− i+ 1)dmi−1 +
i

b
dmi )um−ivi−1

− 2
w2

√
u− w2

√
v − w2

(c1 + a1)

m−1∑
i=1

(
(m− i+ 1)dmi−1 + idmi

)
um−ivi−1.

(28)

Again the expression of f2m−3 depends on elliptic integrals and logarithmic functions and they force that

(m − i)cmi−1 +
i− 1

b
cmj = 0 for i = 2, 3, ..,m, and (m − i + 1)dmi−1 +

i

b
dmj = 0 for for i = 1, 2, 3, ..,m − 1,

because a+ c 6= 0. Since (m− i)cmi−1 +
i− 1

b
cmj = 0 and we are in Case 2, we obtain

4

b2
(1− b)2i(i− 1)ami = 0.

If some of the ami is zero then all the ami ’s are zero, because amj = (−1)jbj
(
m
j

)
am0 . But this is a

contradiction because then f2m = 0. Therefore b = 1, and consequently from (26) all the cmi ’s are zero.

Hence f2m−2 =
∑m−1
j=0 dm−1

j

(
X2 + Z2

)m−i
(Y 2 + Z2)i. And as in the Case 1 with b = 1 we obtain

f = f2m = am0 (X2 − Y 2)m and so g = am0 (x2 − y2)m. This complete the proof of the proposition. �

Proposition 12. Assume c2 +a2 6= 0. Let g = g(x, y, z) = 0 be an irreducible algebraic invariant surface
of system (1) of degree n and cofactor k = rz + c. Then b = 1, g(x, y) = x+ y and k = z + 1− a.

Proof. Going through the change of variables (4) to f(X,Y, Z) we have that f = f(X,Y, Z) = 0 is an
algebraic invariant surface of system (5) of degree n and cofactor k = r1z + c1.

Assume r1 > 0, the case r1 negative can be proved in the same way. From Proposition 10 it follows
that f is an algebraic invariant surface of degree n with cofactor k = r1z + s1 then f can be written as
f =

∑n
i=1 fi, where fi are homogeneous polynomials of degree i with

fn = (X + Y )r1
m∑
i=0

ami (X2 + Z2)m−i(Y 2 + Z2)i,

where n = 2m+r1, or equivalently, r1 = n−2m. Then, from (11) we get the following partial differential
equations

(29) L[fn] = (n− 2m)Zfn L[fi] = Da1,b,c1,s1 [fi+1] + (n− 2m)Zfi,
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for i = n− 1, ..., 1 and

Da1,b1,c1,s1 [f1] + (n− 2m)Zf0 = 0.

Introducing fn in the above second equation with i = n − 1 and writing X2 = X2 + Z2 − Z2,
Y 2 = Y 2 +Z2 −Z2 and Y = X + Y −X or doing i = j − 1 if necessary, we get the following differential
equation

L[fn−1] = (n− 2m)Zfn−1 − 2XY (X + Y )n−2m
m∑
i=1

(
(m− i+ 1)ami−1 +

iami
b

)(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

+ [(a1 − 1 + 2a1m)(n− 2m) + s1](X + Y )n−2m
m∑
i=0

ami
(
X2 + Z2

)m−i
(Y 2 + Z2)i

− 2(a1 + c1)Z2(X + Y )n−2m
m∑
i=1

((m− i+ 1)ai−1 + iami )
(
X2 + Z2

)m−i
(Y 2 + Z2)i−1

+

(
1− 1

b

)
(n− 2m)X(X + Y )n−2m−1

m∑
i=0

ami
(
X2 + Z2

)m−i
(Y 2 + Z2)i.

Passing to the variables u, v, w from the above equation we obtain√
u− w2

√
v − w2

dfn−1

dw
= −(n− 2m)wfn−1

− 2
√
u− w2

√
v − w2(

√
u− w2 +

√
v − w2)n−2m

m∑
i=1

(
(m− i+ 1)ami−1 +

iami
b

)
um−ivi−1

+ [(a1 − 1 + 2a1m)(n− 2m) + s1](
√
u− w2 +

√
v − w2)n−2m

m∑
i=0

ami u
m−ivi

− 2(a1 + c1)w2(
√
u− w2 +

√
v − w2)n−2m

m∑
i=1

((m− i+ 1)ai−1 + iami )um−ivi−1

+

(
1− 1

b

)
(n− 2m)

√
u− w2(

√
u− w2 +

√
v − w2)n−2m−1

m∑
i=0

ami u
m−ivi.

This is a linear ordinary differential equation in fn−1, its corresponding homogeneous differential equation
is √

u− w2
√
v − w2

dfn−1

dw
= −(n− 2m)wfn−1,

Its general solution is

fn−1 = En−1(u, v)
(√

u− w2 +
√
v − w2

)n−2m

,

where En−1 is any C1 function in the variables u and v. Hence, the general solution of the non–
homogeneous linear differential equation for fn−1 is

fn−1 = En−1(u, v)
(√

u− w2 +
√
v − w2

)n−2m

+
(√

u− w2 +
√
v − w2

)n−2m

(
− 2

m∑
i=1

(
(m− i+ 1)ami−1 +

iami
b

)
um−ivi−1

∫
dw

+ [(a1 − 1 + 2a1m)(n− 2m) + s1]

m∑
i=0

ami u
m−ivi

∫
1√

u− w2
√
v − w2

dw

− 2(a1 + c1)

m∑
i=1

(
(m− i+ 1)ami−1 + iami

)
um−ivi−1

∫
w2

√
u− w2

√
v − w2

dw

+

(
1− 1

b

)
(n− 2m)

m∑
i=0

ami u
m−ivi

∫
(
√
u− w2 +

√
v − w2)−1

√
v − w2

dw

)
.
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Solving this integral, proceeding as above taking into account that r1 > 0 we must have

[(a1 − 1 + 2a1m)(n− 2m) + s1]ami = 0,

(a1 + c1)((m− i+ 1)ai−1 + iami ) = 0,(
1− 1

b

)
(n− 2m)ami = 0.

Since n > 2m, it follows from the last identity above that either b = 1 or ami = 0, for i = 1, 2, ...,m. But
if ami = 0 then f2m+r is zero (a contraction), so b = 1. Moreover, (a1 − 1 + 2a1m)(n− 2m) + s1 = 0 and
either a1 + c1 = 0 or ai−1(m− i+ 1) + iami = 0.

Assuming b = 1 we have

f2m+r−1 = (X + Y )n−2m
m∑
i=1

bmi (X2 + Z2)m−i(Y 2 + Z2)i−1Z,

where bmi = 2((m− i+ 1)ami−1 + iami ).

We consider two cases.

Case 1: a1 + c1 6= 0. It follows from the explanation above that (m − i + 1)ai−1 + iami = 0. Then,

f2m+r−1 = 0 and, by recurrence, ami = (−1)m
(
m
i

)
am0 which yields f2m+r = am0 (X + Y )n−2m(X2 −

Y 2)m. Substituting the expression of f2m+r−1 into (29) we get√
u− w2

√
v − w2

df2m+r−2

dw
= (n− 2m)wf2m+r−2.

Solving it, and taking into account that f2m+r−2 is a homogeneous polynomial of degree 2m+ r − 2 we

get f2m+r−2 = fn−2 = (X+Y )n−2m
∑m−1
i=0 bmi (X2 +Z2)m−i(Y 2 +Z2)i−1. Substituting the expression of

f2m+r−2 into (29) and solving for f2m+r−3 we get that f2m+r−3 = 0 and f2m+r−2 = bm0 (X+Y )n−2m(X2−
Y 2)m−1 for some constant bm0 . Proceeding inductively we conclude that f = (X + Y )n−2mP (X2 − Y 2),
being P a polynomial in the variables X2 − Y 2 and so g = (x + y)n−2mP (x2 − y2). If we want g to be
irreducible then P must be constant, n = 1 m = 0 and g = x+ y. The cofactor is 1− a+ z.

Case 2: a1 + c1 = 0. In this case if ai−1(m− i+1)+ iami = 0 then proceeding as in Case 1 we conclude
that the irreducible polynomial is g = x + y with cofactor 1− a + z. If ai−1(m− i + 1) + iami 6= 0 then
substituting the expression of f2m+r−1 into (29) we get√

u− w2
√
v − w2

df2m+r−2

dw
= (n− 2m)wf2m+r−2

− 2
√
u− w2

√
v − w2(

√
u− w2 +

√
v − w2)r

m∑
i=2

((m− i+ 1)bmi−1 + (i− 1)bmi )um−ivi−1w

− c1(
√
u− w2 +

√
v − w2)n−2m

m∑
i=1

bmi u
m−ivi.

Solving this linear equation, using that f2m+r−2 is a homogeneous polynomial in the variables X,Y and
Z we must have c1 = 0. But then a1 = 0 in contradiction with the fact that a2

1 + c21 6= 0. Hence, this
case is not possible and the proposition is proved. �

Proof of Theorems 3 and 4. Theorems 3 and 4 follow directly from Proposition 10 and 11. �

4. Proofs of Theorems 5

We separate the proof of Theorem 5 into a lemma and two propositions.

Lemma 13. If a+ c 6= 0 or b 6= 1 then system (1) has no Darboux first integrals.

Proof. In view of Theorems 2, 3 and 4 system (1) has no Darboux polynomials. Then in view of Propo-
sition 7 if it has an exponential factor F then it must be of the form F = exp(f) with f ∈ C[x, y, z] \ C.
Finally, from Theorem 9 we conclude that if G is a Darboux first integral then it must be of the form
G = Fµ1

1 · · ·F
µq
q with Fi = exp(hi), hi ∈ C[x, y, z] and

∑q
i=1 µi`i = 0. Take g =

∑q
i=1 hi and consider
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G = exp(g). Then g ∈ C[x, y, z] \C and G is an exponential factor with cofactor L =
∑q
i=1 µi`i = 0. So,

g satisfies, after simplifying by G,

(yz − ax+ y)
∂g

∂x
+ (bxz + x− ay)

∂g

∂y
+ (−bxy + cz)

∂g

∂z
=

q∑
i=1

µi`i = 0.

In particular g must be a polynomial first integral. However, in view of Theorems 2, 3 and 4, system (1)
with either b 6= 1 or a2 + c2 6= 0 has no polynomial first integrals. This completes the proof. �

Guided by section 2 instead of working with system (1) we will work with system (5) and all the results
that we will obtain for system (5) follow clearly for system (1).

Proposition 14. If b = 1, system (5) has a Darboux first integral if and only if a = 0. In this case the
first integral is H = x2 − y2.

Proof. Let F = exp(h/g) be an exponential factor of system (1) with b = 1. In view of Proposition 7, F
can be of the form F = exp(h/(fn1

1 fn2
2 )) with h ∈ C[x, y, z] and n1, n2 ∈ N, f1 = x+ y, f2 = x− y with

and (h, f1) = 1 (coprime) if n1 > 0 and (h, f2) = 1 (coprime) if n2 > 0.

Case 1: n1 = n2 = 0. In this case F = exp(h) and h satisfies

(30) (−ax+ y + yz)
∂h

∂x
+ (x− ay + xz)

∂h

∂y
+ (cz − xy)

∂h

∂z
= k0 + k1x+ k2y + k3z,

with ki ∈ C. Evaluating the above equation on x = y = z = 0 we obtain that k0 = 0. Now we write
h =

∑n
i=0 hi where each hi is a homogeneous polynomial in its variables. Without loss of generality we

can assume that hn 6= 0 and n ≥ 1. If n ≤ 2, i.e., h has degree less than or equal to two, there is a
solution if and only if a = 0 and in this case h = α(x2 − y2) with α ∈ C and k0 = k1 = k2 = k3 = 0. So,
n ≥ 3.

We use the notation in the proof of Proposition 11 (since b = 1, X = x, Y = y and Z = z, a1 = a and
c1 = c). The terms of degree n+ 1 satisty L[hn] = 0 and so n = 2m and

hn =

m∑
i=0

ami (x2 + z2)m−i(y2 + z2)i.

Computing the terms of degree n in (30), we get (see (9))

L[h2m−1] = Da,1,c,0[h2m].

Proceeding as in Proposition 11 (see (12) with s1 = 0, b = 1, a1 = a, c1 = c) we get that either ami = 0,
for i = 0, 1, . . . ,m or a = 0. In the first case h2m = 0 which is not possible. So a = 0, c 6= −a (otherwise
c = 0 which is a case not considered here) and hn = am0 (x2−y2)m, am0 ∈ C. Moreover hn−1 = h2m−1 = 0
because hn−1 must be a homogeneous polynomial of degree n− 1. Note that the terms of degree 2m− i
for i = 2, ldots, 2m− 1 satisfy

L[h2m−i] = D0,1,c,0[h2m−i+1], i = 1, . . . , 2m− 1,

and

(31) 0 = L[h0] = D0,1,c,0[h1] = (k1x+ k2y + k3z).

Computing the term of degree n − 1 that is, solving L[h2m−2] = D0,1,c,0[h2m−1] we get h2m−1 = 0

and h2m−2 = am−1
0 (x2 − y2)m−1. Proceeding inductively, we get h2k+1 = 0 for k = 0, . . . ,m − 1 and

h2k = a2k
0 (x2 − y2)k for k = 1, . . . ,m. So, from (31) we get 0 = k1x + k2y + k3z, i.e., k1 = k2 = k3 = 0

and so ki = 0, for i = 0, 1, 2, 3. This implies that there are no exponential factors of the form F = exp(h)
for a 6= 0 and for a = 0 the unique exponential factors of the form F = exp(h) satisfy h = h(x2 − y2)
being h a polynomial of degree n and ki = 0, for i = 0, 1, 2, 3.

Case 2: n1 > n2 or n2 > n1. In this case h is coprime with f1 = x+y (when n1 ≥ 0) and with f2 = x−y
(when n2 ≥ 0) and satisfies

(−ax+ y + yz)
∂h

∂x
+ (x− ay + xz)

∂h

∂y
+ (cz − xy)

∂h

∂z

− (n1(1− a+ z) + n2(−1− a− z))h = kfn1
1 fn2

2 ,
(32)
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where k = k0 + k1x + k2y + k3z with ki ∈ C. We consider the case n1 > n2 (i.e, n1 ≥ 1). The case
n1 < n2 can be done in a similar manner and so we do not do it here. Assume that h = c ∈ C. Then
from equation (42) we have

−c(n1(1− a+ z) + n2(−1− a− z)) = k(x+ y)n1(x− y)n2

Since n1 ≥ 1 and the left-hand side of the above equation is not divisible by x+ y we get a contradiction.
So, h is not constant.

Now we introduce the new variables (X̂, Ŷ , z) where X̂ = f1 = x + y and Ŷ = f2 = x − y. In these

new variables we set h(x, y, z) = g(X̂, Ŷ , z) and so g ∈ CX̂, Ŷ , z]. From (42) we obtain that g satisfies

(1− a+ z)X̂
∂g

∂X̂
+ (−1− a− z)Ŷ ∂g

∂Ŷ
+
(
cz − X̂2 − Ŷ 2

4

)∂g
∂z

− (n1(1− a+ z) + n2(−1− a− z))g = kX̂n1 Ŷ n2 .

(33)

We assume n1 < n2, the case n1 > n2 is done in a similar way. In this case, if we denote by ḡ the
restriction of g to X̂ = 0, i.e. ḡ = ḡ(y, z) = g(−y, y, z), and we restrict (44) to X̂ = 0 (i.e., x = −y) we
get that ḡ is a Darboux polynomial of system

(34) ẏ = −y(1 + a+ z), ż = cz + y2

with cofactor n1(1− a+ z) + n2(−1− a− z), so it satisfies

(35) −y(1 + a+ z)
∂ḡ

∂y
+ (cz + y2)

∂ḡ

∂z
= (n1(1− a+ z) + n2(−1− a− z))ḡ.

We consider two cases.

Case 2.1: c = 0. In this case solving (35) we get

ḡ = K0(y2 + z(2 + 2a+ z))y−n1+n2+2an1/
√
y2+(1+a+z)2

(
y2 + (1 + a+ z)2

+ |1 + a+ z|
√
y2 + (1 + a+ z)2

)2an1/
√
y2+(1+a+z)2

.

Since n1 6= 0 and ḡ must be a polynomial we get ḡ = 0, in contradiction with the fact that g is not
divisible by X̂. So, there are no exponential factors of this form in this case.

Case 2.2: c 6= 0. We consider two different subcases.

Subcase 2.2.1: ḡ is not divisible by y. Setting y = 0 and denoting g̃ = g̃(z) = ḡ(0, z) we get that g̃ 6= 0
and satisfies

cz
dg̃

dz
= (n1(1− a+ z) + n2(−1− a− z))g̃.

Solving it we obtain

g̃ = c0e
(n1−n2)z/cz((a−1)n1+(1+a)n2)/c, c0 ∈ R.

Since n1 > n2 and g̃ is a polynomial we must have c0 = 0 and so g̃ = 0, which is not possible.

Subcase 2.2.2: ḡ is divisible by y. We write ḡ = yj ḡ1 where j ≥ 1 and ḡ1 6= 0. Moreover, it follows from
(35) that ḡ1 satisfies

−y(1 + a+ z)
∂ḡ1

∂y
+ (cz + y2)

∂ḡ1

∂z
= (n1(1− a+ z) + (n2 − j)(−1− a− z))ḡ1.

Setting y = 0 and denoting g̃1 = g̃1(z) = ḡ1(0, z) we get that g̃1 6= 0 and satisfies

cz
dg̃1

dz
= (n1(1− a+ z) + (n2 − j)(−1− a− z))g̃1.

Solving it we get

g̃1 = c1e
(n1−n2+j)z/cz((a−1)n1+(1+a)(n2−j))/c, c0 ∈ R.

Since n1 > n2 and g̃1 is a polynomial we must have c1 = 0 and so g̃1 = 0, which is not possible.

This means that ḡ = 0 in contradiction with the fact that g is not divisible by X̂. Hence, there are no
exponential factors of this form in this case.

Case 3: n1 = n2 ≥ 1. Working in a similar way to the proof of Case 2 in Proposition 15 and Case 1
in Proposition 14 we get that the unique possibility is a = 0 and that h = h(x2 − y2) with ki = 0, for
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i = 0, 1, 2, 3. So, in this case there are exponential factors only when a = 0 and the exponential factors
are of the form F = exp(h/(x2 − y2)n1) with h = h(x2 − y2) and ki = 0, for i = 0, 1, 2, 3.

If a 6= 0, since there are no exponential factors for system (5) when b = 1 and a 6= 0, by Theorem 9 we
conclude that if G is a Darboux first integral then it must be of the form G = fµ1

1 fµ2

2 with µ1, µ2 ∈ C
being the cofactor K = (1 − a + z)µ1 − (1 + a + z)µ2. Since the cofactor must be zero and a 6= 0 we
must have µ1 = µ2 = 0 but then G is constant, which is not possible. Hence, there are no Darboux first
integrals in this case.

If a = 0, since the unique exponential factors are of the form F = exp(h/(x2−y2)n) with h = h(x2−y2)
and the cofactor k = 0, in view of (3) we get that the unique Darboux first integrals are Darboux functions
of the polynomial first integral x2 − y2. This concludes the proof of the proposition. �

Proposition 15. If a+ c = 0 with a 6= 0, system (5) has no Darboux first integrals.

Proof. Let F = exp(h/g) be an exponential factor of system (5) with a1 + c1 = 0 and a1 6= 0. In
view of Proposition 7, F can be of the form F = exp(h/fn3

3 ) with h ∈ C[X,Y, Z] and n3 ∈ N, f3 =
X2 +Z2− b(Y 2 +Z2) and (h, f3) = 1 (coprime) if n3 > 0. We will first compute the exponential factors,
showing that there are none.

Case 1: n3 = 0. In this case h satisfies

(36) (−a1X + Y + Y Z)
∂h

∂X
+ (

1

b
X − a1Y +XZ)

∂h

∂Y
+ (c1Z −XY )

∂h

∂Z
= k0 + k1X + k2Y + k3Z,

with ki ∈ C. Evaluating the above equation on X = Y = Z = 0 we obtain that k0 = 0. Now we write
h =

∑n
i=0 hi where each hi is a homogeneous polynomial in its variables. Without loss of generality we

can assume that hn 6= 0 and n ≥ 1. The terms of degree n+ 1 satisfy

[hn] = 0

Proceeding as in the proof of Proposition 10 we get that n = 2m and

hn =

m∑
i=0

ami (X2 + Z2)m−i(Y 2 + Z2)i.

where ami is a constant for i = 0, 1, . . . ,m. Computing the terms of degree n we obtain

L[h2m−1] = Da1,b,−a1,0[h2m].

Proceeding as in the proof of Proposition 10 Case 1 with s1 = 0 we conclude that h2m = h2m−1 = 0
which is not possible. Hence there are no exponential factors of the form exp(h), with h ∈ C[X,Y, Z] \C.

Case 2: n3 ≥ 1. In this case h satisfies(
− a1X + Y + Y Z

) ∂h
∂X

+
(1

b
X − a1Y +XZ

) ∂h
∂Y

+
(
− c1Z −XY

) ∂h
∂Z

= 2n3a1h+
(
X2 + Z2 − b(Y 2 + Z2)

)n3
(k0 + k1X + k2Y + k3Z),

(37)

with ki ∈ C. We claim that n ≥ 2n3 + 1. Otherwise, in what follows we can prove that ki = 0, for
i = 0, 1, 2, 3. So h is a Darboux polynomial with cofactor −2an3 and hence from Theorem 2, h =
α(X2 +Z2− b(Y 2 +Z2))n3 = αfn3

3 with α an arbitrary constant. But this is not possible because h and
f3 are coprime.

We first prove the claim. If n− 2n3 − 1 < −2, from (37) and taking in account the degree of equation
(37), it is easy to see that k0 = k1 = k2 = k3 = 0, which is not possible.

If n − 2n3 − 1 = −2 then proceeding as before we get that k1 = k2 = k3 = 0 and L[hn] = k0f
n3
3

(see (6)). Applying the method of characteristic curves to this equation, we obtain that

hn = h̃n(u, v, w) = k0

n3∑
i=0

(
n3

i

)
bi(−1)iun3−ivi

∫
dw√

u− w2
√
v − w2

.

Since fn must be a homogeneous polynomial of degree n and using the expression of the integral, given
in (17), we conclude that k0 = 0 which it is not possible.
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If n− 2n3 − 1 = −1, we get L[hn] = (k1X + k2Y + k3Z)fn3
3 or in other words

hn =

n3∑
i=0

(
n3

b

)i
(−1)iun3−ivi

(
k1

∫
dw√
v − w2

+ k2

∫
dw√
u− w2

+ k3

∫
wdw√

u− w2
√
v − w2

)
+ f̂n(u, v).

(38)

Using (20) and that∫
dw√
v − w2

= arctan
( w√

v − w2

)
,

∫
dw√
u− w2

= arctan
( w√

u− w2

)
,

together with the fact that hn must be a homogeneous polynomial of degree n we conclude that k1 =

k2 = k3 = 0 and n = 2m. So hn = h2m =
∑m
i=0 a

m
i

(
X2 + Z2

)m−i
(Y 2 + Z2)i, with ami ∈ C. Computing

the terms of degree n = 2m in (37), we must solve

L[hn−1] = Da1,b,−a1,0[hn] + k0f
n3
3 + 2n3a1hn.

Using hn, f3, the changes in (7) and (8) and proceeding as in the proof of Proposition 11 we get

dh̃n−1

dw
= 2a1

n3 −m√
u− w2

√
v − w2

m∑
i=0

ami u
m−ivi,

+ 2w

m∑
i=1

(ami−1(n− i+ 1) +
iami
b

)um−ivi

+
k0√

u− w2
√
v − w2

n3∑
i=0

(
n3

i

)
bi(−1)iun3−ivi.

(39)

Note that now n = n3. So using the integrating formula (17) together with the fact that hn−1 is a
homogeneous polynomial of degree n− 1 we get k0 = 0. So, ki = 0, for i = 0, 1, 2, 3 which is not possible.
This proves the claim.

We thus have n = 2n3 + 1 + ζ for some ζ ∈ N ∪ {0}. Then from (37) we obtain

L[hn−i] = Da1,−a1,0[hn−i+1], i = 1, . . . , ζ,

L[hn−ζ−1] = Da1,−a1,0[hn−ζ ] + (k1x+ k2y + k3z)f
n3
3 ,

L[hn−ζ−2] = Da1,−a1,0[hn−ζ−1] + k0f
n3
3 ,

L[hn−ζ−j ] = Da1,−a1,0[hn−ζ−j+1], j = 1, . . . , n− ζ − 1,

(40)

where hi = 0 for i < 0 or i > 2n3 + 1 + ζ. Since the operators Da1,−a1,0 and L are linear we separate hi
in the following way hi = hi,0 + hi,1 where

(41) L[hi,0] = Da1,−a1,0[hi−1,0], i = 0, 1, . . . , 2n3 + ζ + 2,

(42) L[hn−i,1] = 0 i = 1, . . . , ζ,

(43) L[hn−ζ−1,1] = (k1x+ k2y + k3z)f
n3
3 ,

(44) L[hn−ζ−2,1] = Da1,−a1,0[hn−ζ−1,1] + k0f
n3
3 + 2a1n3hn−ζ−2,1,

L[hn−ζ−j,1] = Da1,−a1,0[hn−ζ−j+1,1], j = 1, . . . , n− ζ − 1.

Moreover, we require that in the process to solve hi,l for i = 0, . . . , n and l = 0, 1 the polynomials hi,1
do not contain integrating constants.

From (41) working as in Proposition 11 we obtain that h0 =
∑n
i=0 hi,0 is a Darboux polynomial of

system (5) with cofactor −2a1n3. So, by Theorem 2 we must have h0 = α(X2 +Z2 − b(Y 2 +Z2)n3 with
α ∈ C.
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Under the assumptions on hi,1 we obtain that equation (42) have the unique solutions hn−i,1 = 0 for
i = 1, . . . , ζ. From equation (43) we get

hn−ζ−1(x, y, z) =

n3∑
i=1

(
n3

i

)
bi(−1)iuivn3−i

(
k1

∫
dw√
v − w2

+ k2

∫
dw√
u− w2

+ k3

∫
wdw√

u− w2
√
v − w2

)
+ ĥn−ζ−1(u, v),

which is equation (38). Hence, k1 = k2 = k3 = 0 and hn−ζ−1 = 0. Moreover, equation (44) yields

dh̃n−ζ−2

dw
=

k0√
u− w2

√
v − w2

n3∑
i=0

(−1)ibiun3−ivi.

From (17) and using that hn−ζ−2 is a homogeneous polynomial we must have k0 = 0. Then ki = 0 for
i = 0, 1, 2, 3, which is not possible. This shows that there are no exponential factors for system (5) and
so, there are no exponential factors for system (1) in this case.

Since there are no exponential factors for system (5) when a+ c = 0 with a, c 6= 0, by Theorem 9 we
conclude that if G is a Darboux first integral then it must be of the form G = fµ3

3 with µ3 ∈ C being
the cofactor k = −2aµ3. Since a 6= 0 and the cofactor must be zero we must have µ3 = 0 but then G is
constant, which is not possible. Hence, there are no Darboux first integrals in this case. This concludes
the proof of the proposition. �

Proof of Theorems 5. Theorem 5 follows directly from Theorem 1 and Lemma 13 and Propositions 14
and 15. �
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Equations, Eds. A. Cañada, P. Drabek and A. Fonda, Elsevier, 2004, 437–533.

[6] J. Llibre and C. Valls, Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka-Volterra

systems, Z. Angew. Math. Phys. 62 (2011), 761–777.
[7] J. Llibre and C. Valls, On the Darboux integrability of the Painlevé II equations, J. Nonlinear Math. Phys. 22
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